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Abstract

The use of the classical finite element method (FEM) to solve problems with magnetic composites leads to huge linear systems
that are impossible to solve. Instead, homogenization and multiscale methods are often used with the composite material replaced
by a homogeneous material with the homogenized constitutive law obtained by solving cell-problems representing the mesoscale
material structure. For non-linear time-dependent problems, FEM is often used with a time-transient method (TTM) and the solution
is obtained one time-step at a time. However, in cases where a steady-state solution is of interest, the multiharmonic method can
be faster and more cost effective for the same accuracy of the time discretization. In addition, when solving magnetoquasistatic
multiscale problems with TTM, the dynamic hysteresis in the homogenized fields can slow down or even impede the convergence
of the macro-scale problem due to the possibly non-continously differentiable homogenized material laws. This work presents a
novel robust modelling approach for non-linear magnetoquasistatic problems combining multiharmonic method with the multiscale
method.

Keywords: multiscale modeling, multiharmonic method, eddy current problems, nonlinear magnetic materials, mixed formulations

1. Introduction

Composite materials (CM) play an important role in the field of electrical engineering [1]. However, due to their microscopic
material structure, computational design of CM-based devices can be challenging with the classical finite element method (FEM)
approach in several aspects. This work focuses on three particular challenges, posed by the numerical modeling of CM-based
devices, and proposes a novel approach for improving the feasibility of simulating such devices in magnetoquasistatics with FEM.
The three challenges are related to spatial, temporal and non-linear modeling of composite material.

The first challenge posed by the simulation of CM-based devices results from the multiscale nature of the composites. The
classical FEM approach becomes infeasible due to the extremely dense mesh needed for the CM domains, but such FEM problems can
be made tractable by the use of a multiscale method (MSM). In MSM, the composite material is homogenized, and the homogenized
material properties are obtained by solving cell FEM-problems representing the composite material behavior [2, 3, 4, 5]. In the
research field of computational electromagnetics, the multiscale methods have been used for example in [6, 7, 8, 9].

The second challenge is related to the time-domain resolution of eddy current problems. The usual approach is the time-transient
method (TTM) where the time evolution of the electromagnetic fields is obtained by solving the problem one time-step at a time.
However, especially in the case where the steady-state is of interest, TTM can require simulating several time-periods and a high
number of time-steps in order to reach the steady-state. In the worst case, this method can be practically infeasible due to the long
simulation time. For such time-periodic problems, the multiharmonic method (MHM) can be a better choice over TTM in terms of
simulation time [10]. In MHM, the electromagnetic fields in the time-domain are represented by a truncated Fourier series where the
field coefficients depend only on the spatial variable.

The third challenge is related to the resolution of FEM problems with non-linear material laws. The common approach uses the
Newton–Raphson (NR) method which involves the linearization of the nonlinear problem and the resolution of the linearized problem
using an iterative scheme. However, convergence issues have been observed especially for formulations that use concave material
laws. To overcome this challenge, the work uses a mixed FEM formulation having convex constitutive relation for both electric and
magnetic fields [11]. The resulting BJBJBJ conforming formulation uses the vector potentials AAA and TTT for the magnetic flux density BBB and
the electric current density JJJ respectively defined by BBB = curl AAA and JJJ = curl TTT .

An additional benefit, related to the second and the third challenge, that comes with using MHM in the multiscale modeling is the
avoidance of the possible convergence issues with the Newton-Raphson method (NR) arising from the eddy-current effects. At high
frequencies, the eddy currents can cause so-called dynamic hysteresis visible in the homogenized field relations in the macro-scale.
Due to this effect, the macroscopic magnetic field strength can be non-continuously differentiable with respect to the macro-scale
magnetic flux density as it will be highlighted later in Section 5. Consequently, challenges in solving the macro-scale problem with
the NR-method can be encountered.
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To overcome the three challenges, this work presents a novel FEM modeling approach for CM-based devices using a magne-
toquasistatic formulation with robust non-linear convergence, and combines the multiscale method with the multiharmonic method.
The novelty of this multiharmonic multiscale method (MMM) lies in the use of the already existing MHM method and the BJBJBJ mixed
formulation in order to develop a novel multiscale method. In this work, its performance is demonstrated in the simulation of a
CM-based device.

The article is outlined as follows. In Section 2 the MHM is discussed for the essential background information, and Section 3
covers the background for the multiscale method. Section 4 formulates the magnetoquasitatic FEM problem for the TTM, MHM
and MMM. Their capabilities are compared in Section 5. Finally, conclusions are drawn in Section 6. The appendix details the
derivation of the homogenized quantities for the MMM.

2. Multiharmonic method

In this section, the multiharmonic method is briefly introduced with the spatio-temporal dependency of the fields discretized
using the Fourier basis for the time and the usual FEM basis for the space. Let us consider a spatio-temporal dependent magnetic
flux density field BBB expressed as

BBB(xxx, t) ≈
N∑

k=0

BBBs,k(xxx) sin(kω0t) + BBBc,k(xxx) cos(kω0t). (1)

The coefficients BBBs,k and BBBc,k are spatially dependent vector fields to be approximated by FEM basis functions [12, 13]. The subscript
s,k associates the field to the coefficient of sin(kω0t) and c,k associates the field to the coefficient of cos(kω0t). The index k = 0, ...,N
defines the kth harmonic in the series. The fundamental angular frequency is ω0 = 2π f0, where f0 is the fundamental frequency.
The time domain of interest is the period defined by IT = [0,T ], where T = 1

f0
. Moreover, the harmonic is odd when k is an

odd number and even when k is an even number. In the simulations carried out in this work, the source for the problem will be
driven at the fundamental frequency which is an odd frequency. Consequently, the multiharmonic solution consists only of the odd
harmonics [12].

Furthermore, for later convenience (1) can be equivalently expressed as

BBB(xxx, t) ≈
2N−1∑
i=0

BBBi(xxx)Θi(t), (2)

where BBBi(xxx) is the ith spatial field and Θi(t) the corresponding temporal basis function in (1). All the multiharmonic fields can be
expressed with the same expansion as BBB. Especially, the multiharmonic magnetic field strength HHH is expressed as1

HHH(xxx, t) ≈
N′∑

k=0

HHHs,k(BBB(xxx, t)) sin(kω0t) +HHHc,k(BBB(xxx, t)) cos(kω0t), (3)

or equivalently as

HHH(xxx, t) ≈
2N′−1∑

i=0

HHHi(BBB(xxx, t))Θi(t). (4)

The variational formulation of the Ampere’s law (curl HHH(BBB) = JJJs) with multiharmonic electromagnetic fields is derived as follows.
If HHH(BBB) is a non-linear relation, it is first expressed as a linear approximation for the Newton-Raphson method as

HHH(BBB) ≈ HHH0(BBB0) +
dHHH(BBB)

dBBB

∣∣∣∣∣
BBB=BBB0(xxx,t)

·
(
BBB − BBB0

)
, (5)

where BBB0(xxx, t) is the known magnetic flux density in space and time at the current NR-iteration, and BBB is the yet unknown magnetic
flux density to be solved [6, 10]. Hence, curl HHH(BBB) = JJJs becomes

curl
(
HHH0 +

dHHH(BBB)
dBBB

∣∣∣∣∣
BBB=BBB0(xxx,t)

·
(
BBB − BBB0

))
= JJJs, (6)

and the variational formulation in the space-time domain Ω × IT becomes: for i = 0, 1, . . . , 2N − 1, find AAAi ∈ H0(curl;Ω) with an
appropriate gauge such that the weak form((

HHH0 +
dHHH(BBB)

dBBB

∣∣∣∣∣
BBB=BBB0(xxx,t)

·
(
BBB − BBB0

)
, BBB′

)
Ω

, Θ′
)

IT

−
((

JJJs, AAA′
)
Ωs
, Θ′

)
IT
= 0 (7)

1To note, BBB is expressed as in (1).
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holds ∀AAA′ ∈ H0(curl;Ω) and ∀Θ′ ∈ L2(IT ) with BBBi = curl AAAi. The inner product in the time domain (IT = [0,T ]) is defined by

( f , g)IT
=

2
T

∫ T

0
f (t) · g(t) dt, (8)

where f , g belong to an appropriate function space (e.g., the functions f and g belong to the space L2(IT )). The inner product in the
space domain Ω is defined by

(FFF, GGG)Ω =
∫
Ω

FFF(xxx) ·GGG(xxx) dΩ, (9)

where FFF and GGG belong to an appropriate function space (e.g., the functions FFF and GGG belong to LLL2(Ω) and the test functions AAA′ form
a basis of H0(curl;Ω). Note that in this work, the notation curl AAA′ = BBB′ is used.

The basis Θ′ consists of all the sin(kω0t) and cos(kω0t) -functions, for all k = 0...N, and the basis AAA′ consists of all the AAA′s,k and
AAA′c,k, where k = 0...N that are test fields for their respective unknown fields AAAs,k and AAAc,k with the usual Ritz-Galerkin FEM basis.
The linear system corresponding to (7) can be obtained by testing with respect to all the basis functions in Ω × IT . For the upcoming
variational formulations, the nested inner-products in space and time are denoted in short as (· , ·)Ω×IT

To complete the explanation of the weak formulation of (7) with MHM, let us further clarify the derivative term

dHHH(BBB)
dBBB

∣∣∣∣∣
BBB=BBB0(xxx,t)

. (10)

Assuming that one has the constitutive relation for HHH(BBB), and its derivative with respect to BBB in hand, then (10) and HHH(BBB0(xxx, t)) are
known everywhere in Ω × IT and the inner products in (7) can be computed via spatial and temporal discretisations [12, 13].

3. Multiscale method

In this section, the multiscale method (MSM) is explained using the same modelling domain as the one used in the upcoming
simulations of the paper. In this work, the focus is on the device shown in Fig. 1 where the CM is made of magnetic and electrically
conducting balls.

In the multiscale method, the original problem is decomposed into two problems: the macro-scale problem and the meso-scale
problems. In the macro-scale problem, the CM is modelled as homogenized material, as illustrated in the left image of Fig. 2. The
material properties are obtained by solving meso-scale cell-problems (right image of Fig. 2) at the macro-scale integration points.
Hence, the original CM domain is decomposed into a macro-scale and into a meso-scale cell problem solved with the macroscopic
field sources at each macro-integration point of the CM domain.

3.1. Homogenizing mesoscopic quantities

In this work, the field quantities of interest to be homogenized to the macro-scale are the magnetic field strength HHH, the electric
power density pel and the magnetic power density pmc of the conducting ball. The homogenized magnetic field strength is needed
for solving the macro-scale problem, and the power densities are computed only over the conducting magnetic domains (Ωmc) in the
meso-scale domain in order to compare the simulation results between the multiscale and the reference problems.

The homogenized magnetic field strength [14] can be expressed based on the cell-field hhh as

HHH =
1

2d2
meso


∫
Γ+y

hx dΓ +
∫
Γ+z

hx dΓ∫
Γ+x

hy dΓ +
∫
Γ+z

hy dΓ∫
Γ+x

hz dΓ +
∫
Γ+y

hz dΓ

 , (11)

as detailed in Appendix A.1. Furthermore, as detailed in Appendix A.2, the macroscopic magnetic power density, of a conducting
magnetic ball, is obtained as

pmc(t) =
1
|Ωm|

∫
Ωmc

∂tbbb(t) · hhh(t) dΩ. (12)

The macroscopic eddy current loss density is obtained as

pel(t) =
1
|Ωm|

∫
Ωmc

eee(t) · jjj(t) dΩ. (13)
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Figure 1: The original modelling domain consists of a coil, and the composite material made of conducting nonlinear magnetic particles. Due to symmetry, in the
simulations only the one-eighth of the full geometry, shown in the figure, is modelled.

Figure 2: Left: the homogenized macro-scale CM domain of the original problem. Right: the meso-scale cell representing the CM.

4



Figure 3: Depiction of the modelling domain

4. Magnetoquasistatic formulation

In this section, the formulation for the reference problem solved using the classical FEM with TTM and MHM, and the formula-
tion for the multiharmonic multiscale problem are presented. Throughout the paper, the reference problem is referred to as TTM or
MHM depending on whether it has been solved using TTM or MHM, and the multiscale problem is referred to as MMM.

The BJBJBJ conforming formulation based on the Maxwell’s magnetoquasistatic model is used for both the reference problem and
for the multiscale problem. The chosen formulation allows the use of convex constitutive relations in the formulation. Consequently,
better convergence with the NR-method is obtained.

The following formulations are based on the topology depicted in Fig. 3, representing the device in Fig. 1 where the whole
modelling domain Ω = Ωnc ∪Ωc and Ωs ⊂ Ωnc. Furthermore, the whole boundary of Ω is Γ = ΓD ∪ ΓN. The domain Ωnc refers to the
nonconducting domain including the source domain Ωs which is the coil with source current density. The domain Ωc is the domain
of conducting magnetic balls, and its boundary is denoted with Γc. The boundary of Ω (Γ = ΓD ∪ ΓN) consists of the boundary
ΓD through which the normal component of the magnetic flux density is zero, and of the boundary ΓN where the tangential field is
required to be zero.

4.1. Reference problem formulation
The reference problem for the original modelling domain shown in Fig. 1 is derived based on the Maxwell’s magnetoquasistatic

model2 [15]

curl HHHε = JJJε + JJJs, (14)
curl EEEε + ∂tBBBε = 000, (15)

nnn × TTT ε
∣∣∣
Γc
= 000, (16)

nnn × AAAε
∣∣∣
ΓD
= 000, (17)

where the magnetic field strength HHHε is coupled with the magnetic flux density by the reluctivity ν as HHHε =HHH(BBBε) = ν(BBBε)BBBε, and the
electric field strength EEEε is coupled with the electric current density JJJε by the resistivity ρ as EEEε = EEE(JJJε) = ρJJJε. In this work, only
linear EEEε − JJJε relation is considered. The known source current density JJJs is imposed in the coil domain Ωs to excite the problem.
The vector potentials AAAε and TTT ε are used for expressing BBBε and JJJε as BBBε = curl AAAε and JJJε = curl TTT ε so that they satisfy div BBBε = 0
and div JJJε = 0. With TTM, the variational formulation for the reference problem becomes: for almost every t ∈ IT , find AAAε and TTT ε

from appropriate function spaces such that:(
HHH(BBBε), BBBε′

)
Ω −

(
JJJε, AAAε′

)
Ωc
−

(
JJJs, AAAε′

)
Ωs
= 0, (18)(

EEE(JJJε), JJJε′
)
Ωc
+

(
∂tBBBε, TTT ε′

)
Ωc
= 0 (19)

2The fields are written with ε-superscripts to differentiate them from the macroscopic fields in the upcoming multiscale formulation.
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hold for all AAAε′ and TTT ε′ with BBBε′ = curl AAAε′ and JJJε′ = curl TTT ε′.
With MHM, the variational formulation for the reference problem becomes: find AAAε and TTT ε from appropriate function spaces

such that: (
HHH(BBBε), BBBε′

)
Ω×IT
−

(
JJJε, AAAε′

)
Ωc×IT

−
(
JJJs, AAAε′

)
Ωs×IT

= 0, (20)(
EEE(JJJε), JJJε′

)
Ωc×IT

+
(
∂tBBBε, TTT ε′

)
Ωc×IT

= 0. (21)

The unknown potentials are approximated with Whitney-1 elements and gauged with the spanning tree technique to ensure the
uniqueness of the solution [16]. The whole domain Ω consists of the nonconducting part Ωnc and of the conducting part Ωc. Since
HHH(BBBε) can be a non-linear relation, the term needs to be linearized as explained in Section 5 and the problem is solved iteratively
with NR.

The electric and magnetic powers in Ωc are computed in a post-processing step using respectively:

Pεel(t) =
∫
Ωc

EEEε(t) · JJJε(t) dΩ (22)

and
Pεmc(t) =

∫
Ωc

∂tBBBε(t) ·HHHε(t) dΩ (23)

4.2. Multiscale problem formulation
In this section, the multiscale FEM problems for macro-scale and meso-scale are formulated.

4.2.1. Macro-scale formulation
This work focuses on the simulation of CM made of insulated conducting particles. Therefore, there is no electric currents in the

macro-scale CM domain and the formulation becomes

curl HHH(BBB) = JJJs, (24)

nnn × AAA
∣∣∣
ΓD
= 000, (25)

and its variational formulation becomes: find AAA from an appropriate function space such that(
HHH(BBB), BBB′

)
Ω×IT
−

(
JJJs, AAA′

)
Ωs×IT

= 0, (26)

which holds for all AAA′ with BBB′ = curl AAA′. The field HHH in the homogenized CM domain is nonlinear with respect to BBB, obtained
by solving the cell-problem excited by the macroscale magnetic field BBB at the integration points of the CM domain. Elsewhere,
HHH(BBB) = 1

µ0
BBB.

The non-linear HHH(BBB) in the CM domain is linearized as follows. Let us denote the ith spatially unknown field of BBB by BBBi as in (2).
Then, similarly as in (5), the derivative of HHH with respect to BBBi is

HHH(BBB) ≈ HHH(BBB0) +
∑

i

∂HHH(BBB)
∂BBBi

∣∣∣∣∣
BBB=BBB0
· (BBBi − BBB0

i ), (27)

where the jth column of the tensor ∂HHH/∂BBBi is approximated by means of finite difference as

∂HHH
∂ jBBBi

∣∣∣∣∣
BBB=BBB0
≈

HHH(BBB0 + δB · v̂̂v̂vi
j) −HHH(BBB0)

δB
, (28)

where δB is the perturbation magnitude, and v̂̂v̂vi
j = v̂̂v̂v jΘi(t) addresses the perturbation to the jth spatial direction (x, y, z) on the ith term

of BBB0. The spatial unit vector is denoted as v̂̂v̂v j.
At the macro-scale, the electric and magnetic powers, as a function of time, are obtained respectively from the homogenized

power densities, (13) and (12), by integration over the CM domain ΩCM as

Pel(t) =
∫
ΩCM

pel(t) dΩ. (29)

and
Pmc(t) =

∫
ΩCM

pmc(t) dΩ. (30)
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Table 1: Dimensions of the device geometry and the modelling domain.
dmeso 100 µm

r 0.35dmeso

rcoil dmeso

dcore 4dmeso

Rcoil 3dcore

Rair 4dcore

4.2.2. Meso-scale formulation
The cell-problem is based on the cell shown on the right of Fig. 2. The cell Ωm, having the boundary Γm, consists of the insulator

domain Ωmi and the conducting domain Ωmc. Moreover, Γmc is the boundary of the conducting domain. The formulation of the cell
problem is

curl hhh = jjj, (31)
curl eee + ∂tbbb = 000, (32)

nnn × aaac
∣∣∣
Γm

periodic, (33)

nnn × tttc
∣∣∣
Γmc
= 000, (34)

where bbb = BBB+bbbc, jjj = jjjc, bbbc = curl aaac and jjjc = curl tttc. The mesocale magnetic field strength hhh is coupled with the mesocale magnetic
flux density bbb by the reluctivity ν as hhh =HHH(bbb) = ν(bbb)bbb, and the mesoscale electric field strength eee is coupled with the mesoscale
electric current density jjj by the resistivity ρ as eee = EEE( jjj) = ρ jjj. The vector potentials aaac and tttc are the unknown fields to be solved.
They are approximated with Whitney-1 elements and gauged with the spanning tree technique. Furthermore, since aaac is spanned also
on the periodic boundary of the cell, unlike tttc, a periodic spanning tree was generated using Gmsh [17] to gauge aaac. Furthermore,
aaac was required to be periodic by translation on the opposite cell-faces. This enforces the homogenized magnetic flux density to be
equal to the source BBB. With MHM, the variational cell-formulation becomes: find aaac and tttc from appropriate function spaces such
that3 (

HHH(bbb), bbb′c
)
Ωm×IT

−
(
jjjc, aaa′c

)
Ωmc×IT

= 0, (35)(
EEE( jjj), jjj′c

)
Ωmc×IT

+
(
∂tbbb, ttt′c

)
Ωmc×IT

= 0, (36)

hold for all test functions aaa′c and ttt′c with bbb′c = curl aaa′c and jjj′c = curl ttt′c Note that, the material relations in the cell are given by analytical
relations. The problem is then solved similarly as the reference problem described in Section 4.1, i.e., in Ωmc hhh(bbb) is non-linear and
needs to be linearized for the NR method. In the insulator, the linear relation is hhh(bbb) = 1

µ0
bbb.

5. Results

In this section, the predictive capabilities of the developed simulation approach (MMM) is compared with the reference problem
solved with using the time-transient method TTM and the multiharmonic method MHM. The implementations were programmed
using the C++ FEM library Sparselizard [18], and the simulations were carried out using the supercomputers of Finnish IT Center
for Science. Gmsh [17] was used for creating modelling geometries, spanning trees and generating modelling meshes. Furthermore
Gmsh was used for the visualization of the solved electromagnetic fields.

5.1. Problem set-up
The modeling domain and the mesh are shown in Fig. 1. Using symmetry, the domain presents one-eighth of the actual geometry.

Hence, the upcoming results are calculated only for the modeling domain shown in the figure. The problem is excited by applying
a sinusoidal current density in the coil with an amplitude of 30 GA/m2 at the frequency of 100 kHz. The dimensions of the domain
are detailed in Tab. 1 and their meanings are depicted in Fig. 1, except for Rair which is the radius of the external boundary of the
modelling domain.

The particle material properties are as follows. The permeability in the particles are modelled according to the anhysteretic
Fröhlich-Kennelly law [19]

BBB = µ(HHH)HHH, (37)

where
µ(HHH) = µ0 +

α

Bs + β||HHH||
, (38)

3Note that, bbb′c = curl aaa′c and jjj′c = curl ttt′c.
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Figure 4: The constitutive relation for the magnetic field in the CM particles.

Table 2: Maximum value of ||bbb|| at different harmonics.
k 1 3 5 7 9 11

max||bbbk || 1.95 0.36 0.22 0.13 0.09 0.03
% 100 18.6 11.2 6.8 4.5 1.6

Bs = 1.5 T, β = µ0(µr − 1), α = βBs and µr = 1000. For the formulations used in this paper, the law was inverted to obtain
HHH(BBB) = ν(BBB)BBB. This material relation is shown in Fig. 4. Furthermore, for the electrical conductivity of the particles, constant
σ = 10 MS/m is used, and for the non-conducting materials µ = µ0 and σ = 0 S/m was used.

5.2. Stand-alone cell
Before solving the actual multiscale problem, the behavior of the cell, representing the CM (right of image Fig. 2), was investi-

gated when excited by a homogeneous BBB(t) = Ba sin(2π f0t) · v̂̂v̂vy in the y-direction where Ba = 0.8 T and f0 = 100 kHz.
Table 2 shows the maximum value of ||bbb|| at different harmonics, calculated as

max ||bbbk || = max
√

bbbs,k · bbbs,k + bbbc,k · bbbc,k, (39)

where bbb is expressed as (1). The row with the % denotes max ||bbbk || normalized with max ||bbb1||. Based on this information, harmonics
up to 7 will be used in the upcoming simulations.

Table 3 shows the norm of the homogenized magnetic field strength HHH for different harmonics, calculated as

||HHHk || =
√

HHHs,k ·HHHs,k +HHHc,k ·HHHc,k, (40)

where HHH is expressed as (3).
According to the results, it is sufficient to use the same harmonics for HHH as used for the cell fields. Based on this, in the upcoming

simulations the macroscopic BBB will be approximated by default with harmonics 1 and 3. HHH will be approximated with the same
harmonics as the cell-fields, i.e., odd harmonics from 1 to 7.
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Table 3: The norm of the different harmonics of the homogenized magnetic field strength.
k 1 3 5 7
||HHHk || 415846 14163 5434 223

% 100 3.4 1.3 0.05

Table 4: Homogenized magnetic and electric power density from the conducting ball domain at different harmonics
k ||pmc,k || [GW/m3] % ||pel,k || [GW/m3] %
0 0 0 0.1175 81.8
2 1.3590 100.0 0.1435 100.0
4 1.1490 84.6 0.0622 43.3
6 0.4402 32.4 0.0414 28.9
8 0.0441 3.2 0.0096 6.7

10 0.1878 13.8 0.0034 2.4
12 0.1216 8.9 0.0011 0.8
14 0.0202 1.5 0.0001 0.1
16 0.0232 1.7 0 0
18 0.0188 1.4 0 0
20 0.0037 0.3 0 0

Table 4 shows the harmonic content of pmc of (12) and pel of (13), expressed using the Fourier series, for k = 0, ..., 20, as

pmc(t) =
20∑

k=0

pmc,s,k sin(kω0t) + pmc,c,k cos(kω0t) (41)

pel(t) =
20∑

k=0

pel,s,k sin(kω0t) + pel,c,k cos(kω0t). (42)

The coefficients can be computed with the inner product (8) as

pmc,s,k = (pmc(t), sin(kω0t))IT
(43)

pmc,c,k = (pmc(t), cos(kω0t))IT
(44)

pel,s,k = (pel(t), sin(kω0t))IT
(45)

pel,c,k = (pel(t), cos(kω0t))IT
. (46)

Moreover, the norms of the fields at different harmonics are measured as

||pmc,k|| =

√
p2

mc,s,k + p2
mc,c,k (47)

||pel,k|| =

√
p2

el,s,k + p2
el,c,k. (48)

This investigation shows how many harmonics should be considered when homogenizing the power densities from the cell to the
macro-scale. Based on the results, for the rest of the paper, a modelling decision is made to take into account even harmonics from 0
to 14 in the homogenized power densities.

The left image of Fig. 5 shows the homogenized magnetic field strength with respect to the source as a function of time over
one period of excitation. It can be observed that the homogenized relation is only slightly non-linear even though the particle is
highly saturated. On the right of the figure, the effect of the induced eddy currents in the cell particle on the HHH(BBB) relation is shown.
This manifests itself in the dynamic hysteresis. If the multiscale problem was solved using a time-transient method, convergence
challenges could be encountered with the NR-method due to the non-continuous derivative of HHH with respect to BBB. To illustrate the
behavior of the electromagnetic fields in the cell, bbb and jjj are shown in Fig. 6 and Fig. 7, respectively.

5.3. Modeling magnetic composite material core

Finally, the performance of MMM is tested in the simulation of a magnetic composite material core device. The simulation
problem is defined in Section 5.1. The strategy is to first obtain the reference solution and then compare with that the results given
by MMM.

9



Figure 5: The homogenized BBB −HHH relation (left) has dynamic hysteresis due to the induced eddy currents in the particle of the cell as shown in the close-up figure on
the right.

5.3.1. Reference solutions
In order to compare the predictive capabilities and the performance of the MMM, the reference problem is first solved (see

Section 4.1) with TTM and MHM. The TTM simulation of the reference problem was solved using the implicit Euler with a constant
time-step. Only the first period of excitation was simulated with 250 time-steps, and the simulation time was 50 h. The MHM
simulation of the reference problem was solved with MHM using harmonics {1,3,5,7} for AAAε and TTT ε. The simulation time was 10 h.
The trapezoidal rule with 50 evenly spaced samples for the time-period were used for solving the inner-products (8) in IT .4

Figure 8 shows the electric power (22) and the magnetic power (23) during the first period of excitation, predicted by TTM
and MHM. The results show good agreement between the two methods already after the first quarter of the first period. Note that
MHM predicts the steady-state solution while TTM models the device behavior including the initial transient phase. Due to the long
simulation time with TTM, only the first period was simulated. Therefore, the steady-state may not have been reached yet. However,
a modeling assumption is made that the TTM solution is in the steady-state after the first half of the time-period.

The simulation results for TTM and MHM are as follows. The relative difference, between TTM and MHM, in the average
steady-state Pεel was 0.02 %, where TTM predicted 5.284 mW, and MHM predicted 5.285 mW. The relative difference in the average
steady-state Pεmc was 0.67 %, where TTM predicted 16.64 mW and MHM predicted 16.52 mW. To note, from hereon the solution
of MHM is used as the reference solution, and the upcoming simulation results obtained with MMM are compared with the results
given by MHM.

5.3.2. Multiscale solutions
Next, MMM is deployed to simulate the behavior of the CM device. As the starting point, 43 elements are used in the homogenized

CM domain. Hence, the size of the macro-scale element corresponds with the size of the cell. A total of 64 CPUs were used to
parallelize the computation of the homogenized field quantities associated with each macro-element. Harmonics {1,3,5,7} were used
for the unknown vector potentials in the cell-problem. Table 5 shows the effect of the number of harmonics, used for the macro-scale
unknown vector potentials, on the solution accuracy with respect to the reference solution obtained with MHM. In the table, the
relative differences in the electric and magnetic powers are computed, respectively, as

∆el =

∫
IT
|Pεel(t) − Pel(t)| dt∫

IT
|Pεel(t)| dt

, (49)

4The same number of samples are used for the time-domain inner-products throughout this work.
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Figure 6: Magnetic flux density in the cell when sourced with y-directional B(t) = 0.8 · sin(ωt) [T] at the frequency of 100 kHz.

Table 5: The homogenized eddy current losses and magnetic power as a function of the number of macro-scale (odd) harmonics.
#harmonics 1 2 3 4

simulation time [min] 34 57 85 119
avg(Pel) [mW] 5.29 5.31 5.32 5.31
∆el [%] 1.96 1.73 0.93 0.59

avg(|Pmc|) [mW] 17.98 17.22 16.89 16.80
∆mc [%] 10.1 5.02 2.17 1.66

and

∆mc =

∫
IT
|Pεmc(t) − Pmc(t)| dt∫

IT
|Pεmc(t)| dt

. (50)
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Figure 7: Electric current density in the cell when sourced with y-directional B(t) = 0.8 · sin(ωt) [T] at the frequency of 100 kHz.

Figure 8: Comparison between TTM and MHM in the electric (left) -and magnetic (right) power over the first period of excitation.

Based on these results, MMM is able to capture well the non-linear and dynamic effects occurring in the composite material core
even with only two harmonics for the macro-scale unknown fields. To visualize the results, Figure 9 shows the electric and magnetic
powers as a functions of time for both MHM and MMM. In the figure, macro-scale AAA and TTT have harmonics 1 and 3.

Table 6 compares MHM and MMM in the power quantities as a function of the number of elements in the homogenized composite
material domain. For this comparison, harmonics 1 and 3 were used for AAA and TTT . According to these results, the effect of the mesh
density on the solution is small. Only with 23 elements in the homogenized domain, the values for the average powers are slightly
higher. This result highlights the benefit of the homogenization method in MMM: it is possible to obtain accurate results even with
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Figure 9: Comparison between MHM and MMM in the electric (left) -and magnetic (right) power.

Table 6: The influence of the number of macro elements (#elems) in the CM-domain on the accuracy.
#elems in ΩCM 23 33 43 53

simulation time [min] 30 44 57 61
number of CPUs 8 27 64 125
avg(Pel) [mW] 5.41 5.32 5.31 5.30
∆el [%] 2.51 1.67 1.72 1.69

avg(|Pmc|) [mW] 17.69 17.12 17.22 17.15
∆mc [%] 7.02 4.83 5.01 4.85

larger macro-scale elements than the size of the cell.
Figure 10 shows the macro-scale current density in the coil merged with the meso-scale induced currents in all the cells for 43

element discretization of the homogeneous CM domain. To visualize the magnetic flux density in the device, Figure. 11 shows BBB in
the coil and the composite material domain (colour scale shown only in the composite domain). In addition, bbb is shown in the corner
cell.

6. Conclusion

In this work, a modelling approach combining the multiharmonic method with the multiscale method was presented, where a
BJBJBJ-conforming magnetoquasistatic formulation was used. The developed approach was compared with the classical Galerkin finite-
element method using TTM and MHM. The comparison was carried out by simulating a device made of a coil and a composite
material core. The core was made of insulated, conducting and non-linearly magnetizing particles.

The developed multiharmonic multiscale method proved to be accurate and efficient at simulating the electromagnetic behavior
of magnetic composite materials in comparison to the classical approach. Using 43 elements in the homogenized composite material
domain and two harmonics for the macro-scale unknown fields, the relative differences in the electric and magnetic powers were
1.73 % and 5.02 %, respectively. Using MMM, the simulation time was 1/53 of that of TTM, and 1/11 of that of MHM.
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Figure 10: In-time varying macroscale current density in the coil (left) induces eddy currents in the mesoscale particles (right).

Appendix A. Homogenizing mesoscale fields

Here the derivations of the homogenized meso-scale quantities, the magnetic fields strength and the power density, are detailed.

Appendix A.1. Magnetic field strength

According to the Poynting’s theorem, the total magnetoquasistatic electromagnetic power in the mesoscopic cell Ωm is measured
using the bilinear and reflexive Poynting’s operator as

P(·, ·) =
∫
Ωm

div(· × ·) dΩ. (A.1)

To derive the homogeneous macroscale quantities, let us require that the Poynting-measure equals over Ωm for the macroscale EEE
and HHH and for the mesoscale eee and hhh as

P(EEE,HHH) = P(eee,hhh) (A.2)

Furthermore, the cell fields are decomposed into periodic and antiperiodic fields as

eee = EEE1 + eeep (A.3)
hhh = HHH1 + hhhp, (A.4)

where eeep, hhhp are cell periodic [20, 21, 7]. The macroscopic fields at a macrocale domain integration point are also decomposed as

EEE = EEE1 + EEE0 (A.5)
HHH = HHH1 +HHH0, (A.6)

where the fields EEE0, HHH0 are homogeneous, and the fields

EEE1 = −∂tBBB ×
xxx
2
, (A.7)

HHH1 = JJJ ×
xxx
2
, (A.8)
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Figure 11: Macroscale magnetic flux density in the coil and the composite material. In addition, mesoscale bbb is merged into the corner element of the homogenized
core domain.

produce the curl of EEE and HHH into the neighborhood of the point of integration, where xxx = [x y z]T. Measuring the curl of EEE and HHH in
the cell gives the cell-homogenous fields ∂tBBB and JJJ as

curl EEE = −∂tBBB (A.9)
curl HHH = JJJ. (A.10)

In this work, the cells do not carry any net-current since they are insulated – therefore HHH1 = 000. Furthermore, since EEE0 and HHH0 are
cell-homogeneous, P(EEE0,HHH0) = 0 and consequently

P(EEE,HHH) = P(EEE1,HHH0). (A.11)

Furthermore,
P(eee,hhh) = P(EEE1,hhhp) (A.12)

since for the periodic eeep and hhhp, P(eeep,hhhp) = 0.
Now, due to the bilinearity of P and using the Gauss’ theorem, the macroscopic HHH0 is derived based on (A.2), as

P(EEE,HHH) = P(eee,hhh)
⇔P(EEE1,HHH0) = P(EEE1,hhhp)
⇔P(EEE1,HHH0 − hhhp) = 0

⇔

∫
Ωm

div
(
E1E1E1 ×

(
HHH0 − hhhp

))
dΩ = 0

⇔

∫
Γm

nnn ·
(
E1E1E1 ×

(
HHH0 − hhhp

))
dΓ = 0

⇔

∫
Γm

E1E1E1 ·
((

HHH0 − hhhp

)
× nnn

)
dΓ = 0, (A.13)

where the boundary of Ωm is
Γm(x, y, z) = Γ+x ∪ Γ

−
x ∪ Γ

+
y ∪ Γ

−
y ∪ Γ

+
z ∪ Γ

−
z , (A.14)
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where

Γ+x := Γm(
1
2

dmeso, y, z) (A.15)

Γ−x := Γm(−
1
2

dmeso, y, z) (A.16)

Γ+y := Γm(x,
1
2

dmeso, z) (A.17)

Γ−y := Γm(x,−
1
2

dmeso, z) (A.18)

Γ+z := Γm(x, y,
1
2

dmeso) (A.19)

Γ−z := Γm(x, y,−
1
2

dmeso). (A.20)

Since hhhp is periodic, i.e., hhhp(Γ+· ) = hhhp(Γ−· ) for subscripts x, y and z, (A.13) yields for the homogeneous macroscale magnetic field
strength the expression

HHH0 =
1

2d2
meso


∫
Γ+y

hx dΓ +
∫
Γ+z

hx dΓ∫
Γ+x

hy dΓ +
∫
Γ+z

hy dΓ∫
Γ+x

hz dΓ +
∫
Γ+y

hz dΓ

 , (A.21)

where h j = hhhp · v̂̂v̂v j, and since HHH1 = 000, h j also equals to hhh · v̂̂v̂v j.

Appendix A.2. Power density

The homogenization of the cell power densities can be derived based on (A.2) as

P(EEE,HHH) = P(eee,hhh)

⇔

∫
Ωm

div(EEE ×HHH) dΩ =
∫
Ωm

div(eee × hhh) dΩ

⇔

∫
Ωm

curl(EEE) ·HHH − EEE · curl(HHH) dΩ

=

∫
Ωm

curl(eee) · hhh − eee · curl(hhh) dΩ

⇔

∫
Ωm

∂tBBB ·HHH dΩ =
∫
Ωm

∂tbbb · hhh + eee · jjj dΩ

⇔|Ωm|∂tBBB ·HHH =
∫
Ωm

∂tbbb · hhh + eee · jjj dΩ

⇔∂tBBB ·HHH =
1
|Ωm|

∫
Ωm

∂tbbb · hhh dΩ +
1
|Ωm|

∫
Ωmc

eee · jjj dΩ (A.22)

where
pm =

1
|Ωm|

∫
Ωm

∂tbbb · hhh dΩ (A.23)

is the macroscopic magnetic power density pm that is the sum of the insulator domain (Ωmi) power density

pmi =
1
|Ωm|

∫
Ωmi

∂tbbb · hhh dΩ (A.24)

and of the conducting domain (Ωmc) power density

pmc =
1
|Ωm|

∫
Ωmc

∂tbbb · hhh dΩ. (A.25)

The term
pel =

1
|Ωm|

∫
Ωmc

eee · jjj dΩ (A.26)

is the macroscopic electric power density that consists of the eddy current losses only.
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