
HAL Id: hal-04536919
https://hal.science/hal-04536919v1

Preprint submitted on 8 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Watershed Cuts: Interactive Segmentation
Algorithm with Parallel Strategy

Quentin Lebon, Josselin Lefèvre, Jean Cousty, Benjamin Perret

To cite this version:
Quentin Lebon, Josselin Lefèvre, Jean Cousty, Benjamin Perret. Incremental Watershed Cuts: Inter-
active Segmentation Algorithm with Parallel Strategy. 2024. �hal-04536919�

https://hal.science/hal-04536919v1
https://hal.archives-ouvertes.fr

1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Incremental Watershed Cuts: Interactive Segmentation Algorithm with Parallel Strategy

Quentin Lebona, Josselin Lefèvrea,b, Jean Coustya, Benjamin Perreta

aLIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France
bThermo Fisher Scientific, Bordeaux, France

ABSTRACT

In this article, we design an incremental method for computing seeded watershed cuts for interactive
image segmentation. We propose an algorithm based on the hierarchical image representation called
the binary partition tree to compute a seeded watershed cut. Additionally, we leverage properties of
minimum spanning forests to introduce a parallel method for labeling connected component. We show
that those algorithms fits perfectly in an interactive segmentation process by handling user interactions,
seed addition or removal, in linear time with respect to the number of affected pixels. Run time
comparisons with several state-of-the-art interactive and non-interactive watershed methods show that
the proposed method can handle user interactions much faster than previous methods with a significant
speedup ranging from 15 to 90 on both 2D and 3D images, thus improving the user experience on large
images.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

In image segmentation, the aim is to divide an image into
significant regions. The watershed (WS) is a classical approach
to image segmentation where an image is seen as a topologi-
cal relief which is partitioned into catchment basins associated
to the minima of the relief. The WS is an important step of
many image analysis pipelines and is still widely used in con-
junction with modern machine learning methods such as deep-
learning, usually as a pre-processing or a post-processing (see
e.g. Machairas et al. (2015); Arbeláez et al. (2011); Eschweiler
et al. (2019); Wolf et al. (2017); Lux & Matula (2019)). The
WS was first defined on images represented as vertex-weighted
graphs Vincent & Soille (1991); Beucher & Meyer (1993). It
has then been extended to edge-weighted graphs Cousty et al.
(2009) through the notion of WS cut, which is a solution to a
global combinatorial optimization problem linked to the Min-
imum Spanning Tree (MST) problem. WS can also be gen-
eralized to hierarchical watersheds, i.e. a hierarchical image
representation describing how WS regions progressively merge
into the large scale components of the image Najman & Schmitt

e-mail: quentin.lebon@esiee.fr (Quentin Lebon),
josselin.lefevre@esiee.fr (Josselin Lefèvre),
jean.cousty@esiee.fr (Jean Cousty), benjamin.perret@esiee.fr
(Benjamin Perret)

(1996); Meyer (2012). In particular, the authors of Cousty et al.
(2013a); Najman et al. (2013) have shown that WS cuts and
WS hierarchies can be computed from a prototypical hierarchi-
cal representation called the Binary Partition Tree (BPT).

WS is often considered as a low level-segmentation method
because it is highly subject to over-segmentation: as each min-
imum of the image induces a catchment basin, WS segmenta-
tions usually contain a lot of small regions. This problem can
be solved by a weakly supervised variation of the WS method
called seeded WS. In this case, the minima of the image are re-
placed by seeds, which can be automatically generated or pro-
duced by a user: the number of regions in the result is then
equal to the number of seeds.

When seeds are generated by a user, an interactive interface is
generally used, allowing the user to modify, add or delete seeds
until a satisfactory result is obtained. Traditional seeded WS
algorithms don’t handle this incremental process, and the WS
segmentation must be completely recomputed after each user
interaction, even if it only affects a few pixels. While this may
be acceptable for small images, it can seriously degrade the user
experience when processing large images and especially 3D im-
ages such as RMI or FIB-SEM images. In this context, the
authors of Falcão et al. (2004) have proposed the Differential
Image Foresting Transform (DIFT) for incrementally updating
minimum spanning forests Falcão et al. (2004), which can cor-
respond to WS segmentation, when seeds are modified in the

2

context of interactive 3D images segmentation.
Interactive segmentation has also been studied in the context

of hierarchical representations, such as component trees Passat
et al. (2011); Carlinet & Geraud (2015); Ngoc et al. (2023) or
segmentation hierarchies Salembier & Garrido (2000). In this
case, the hierarchical representation of the image is computed
once and, after each interaction, the hierarchy is reprocessed to
obtain the segmentation.

In this work, we propose an interactive seeded WS cut al-
gorithm within the framework of BPTs. First, we propose
an algorithm to compute a seeded WS segmentation using the
BPT associated to the input image. This procedure relies on
two steps: 1) seeds propagation in the BPT and 2) connected
components labeling. Second, we show how the seed propa-
gation and the connected component labeling can be updated
incrementally when the seeds are modified. Third, we pro-
pose a parallel algorithm to perform the connected compo-
nent relabeling. The proposed methods are evaluated on sev-
eral 2D and 3D images with real and simulated user interac-
tions, showing how each contribution helps in reducing pro-
cessing time and thus improving the user experience. Moreover,
we perform run-time comparisons with state-of-the-art incre-
mental and non-incremental watershed segmentation methods,
showing a significant advantage for the proposed approach. A
c++ implementation of the proposed methods is available at
https://github.com/lebonq/incremental_watershed.

This work is an extension of a previous conference paper
Lebon et al. (2023). Compared to this preliminary version, we
provide: (i) a parallel algorithm for minimum spanning forest
labeling, (ii) a more extensive experimental evaluation includ-
ing 3D images, (iii) a comparison with state-of-the-art methods
for images segmentation.

170

250 4080 110

255 190160 115

150

30 75

80

7040

5
5

95

Fig. 1. The three working areas: grayscale image, graph (in red), and
BPT (in green). The dotted blue lines depict the bijection between non-leaf
nodes and edges of the MST (in bold).

2. Watershed cuts

This section reviews the notion of a WS cut, emphasizing
its relation to minimum spanning trees and forests and the as-
sociated BPT datastructure that is used in the next section to
propose a novel WS cut algorithm. WS cuts are deeply linked
to MSTs Cousty et al. (2009): in the semi-supervised case,
given an edge-weighted graph (e.g. representing the image)
and a set of seed vertices (e.g., user-provided scribbles such
that each scribble is superimposed to an object of interest to be

segmented), a WS cut can be obtained as the cut induced by
a minimum spanning forest such that each tree in the forest is
rooted in one of the seeds Allène et al. (2010). The BPT is a
tree-based hierarchical datastructure used to represent an MST.
It allows one to efficiently browse MST’s edges. The BPT can
be seen as a by-product of the efficient Kruskal’s MST algo-
rithm. Figure 1 shows the BPT (in green) of an edge-weighted
graph (in red) and its mapping (dotted blue) to the MST of this
graph (bold edges). In particular, the leaves of the BPT are as-
sociated to the vertices of the MST and each non-leaf node is a
associated to an edge of the MST (this mapping is represented
by the dashed segments in Figure 1). Intuitively, we can say
that every non-leaf node of the BPT represents the addition of
an edge to the MST during Kruskal’s algorithm where the added
edge is used to merge the two connected regions that contain the
edge extremities. An efficient WS cut algorithm based on BPT
is presented in Cousty et al. (2013b); Najman et al. (2013) to
handle the unsupervised case with no seed provided.

3. Semi-supervised watershed cut algorithm with interac-
tions

This section introduces a new efficient algorithm to compute
a WS cut from user-provided seeds, and to update its result
based on user’s feedbacks given in the form of successive dele-
tions and additions of seeds.

The overall workflow is presented in Figure 2. It comprises
three main parts: 1) Computation of an MST and of an asso-
ciated BPT; 2) Selection of the WS cut edges associated to the
seeds provided by the user. These edges, which are found by
browsing the BPT, correspond to the edges that must be deleted
from the MST to obtain a minimum spanning forest rooted in
the provided seeds. 3) Partitioning and labeling of the graph
vertices according to the connected components (CC) of the
forest obtained at step 2. This labeling is the resulting WS cut
segmentation.

Step 1 is performed using the algorithm presented by Naj-
man et al. (2013). An efficient algorithm for step 2 is given in
Section 3.1, Section 3.2 discusses the labeling involved at step
3, and, finally, Section 3.3 shows that the proposed algorithm
can be used to incrementally update the results of the workflow
based on user’s feedback.

3.1. Tree-node marking

In this section, we present Algorithm 1 that returns the WS
cut edges from an MST given in the form of a BPT datastruc-
ture and from a set of seed vertices. The algorithm works in-
crementally, seed by seed. For each seed, taken in an arbitrary
order, one edge of the initial MST must be removed to cut the
region of this seed from the regions of the current partition (ob-
tained with the previously processed seeds). To find this edge,
we search in the BPT for the lowest node that is both an an-
cestor of the new seed and an ancestor of an already processed
seed. This node corresponds to the lowest edge of the MST
that merges a region containing the new seed with a region con-
taining an already processed seed. In order to ”prevent” this
merging and to cut the region of the new seed from the rest of

3

Input Image

Create binary
partition tree A tree Add/Remove seeds

Segmentation
display

User interactions

Split/Merge regions A Label Image

Tree creation

A marked
tree/cut set

Tree-node (un)marking Pixel Labeling

Fig. 2. Overview of our workflow of the interactive incremental watershed (WS) segmentation.

the partition, the MST edge associated to this node is tagged as
a ”WS edge” and added to the set of edges to be deleted from
the MST.

S2

S1

150

30 75

80

1

7040170

5
5

95

(a) (b)

1

1

1

2

S3 S2

S1

150

30 75

80

1

7040170

5
5

95

1

1

2

1

Fig. 3. Integer labels on non-leaf nodes represent the value of visitCount.
(a) Initialization with S 1 and S 2 as seeds. (b) Update after the addition of
S 3 as an additional seed.

In order to implement this scheme, we consider an array
visitCount which counts for every BPT node the number
of times that this node has been visited during the succes-
sive searches. Initially, visitCount is set to 0 for every
node. Then, for each leaf node of the tree corresponding to
a seed, we visit its ancestors by browsing the tree from the
leaf to the root, and we update visitCount accordingly. Let
p be an ancestor of the considered seed node found during
the traversal. If visitCount[p] = 0 then it must be incre-
mented and the traversal continues by considering the parent
of p. However, if visitCount[p] = 1, then node p has al-
ready been visited by a previous seed: it must then become
a WS node separating 2 different seeds. We thus increment
the value of visitCount[p] to 2 and we add the MST edge
associated to p (denoted by H.mstEdge[p]) to the edge set
WS (line 7 of Algorithm 1). It can be seen that the traversal
stops when visitCount[p] = 2 as the separation induced by
the addition of the new seed has been found. When a seed is
added, only the nodes in the path from this seed to its closest
WS node are visited. We can see this on Figure 3(b), where
adding seed S 3 results in browsing only three nodes. During a
call or a succession of calls to Algorithm 1, each node is visited
at most twice, leading to an overall linear-time complexity with
respect to the number of vertices.

3.2. Pixel labeling
Once the WS nodes set is computed, we return to the image

domain to compute the segmentation. First, we compute the
minimum spanning forest corresponding to the desired WS cut.

Algorithm 1: Add Seeds
Data: H : a BPT, seeds: a set of seeds and

visitCount;
Result: ws a set of edges to be removed and

visitCount updated.
1 ws← ∅
2 foreach lea f n o f seeds do
3 while n , H .root and visitCount[n] , 2 do
4 n := H .parent[n]
5 visitCount[n] := visitCount[n] + 1
6 if visitCount[n] = 2 then
7 ws := ws ∪ {H .mstEdge[p]}

To this end, we remove from the MST each WS edge returned
by Algorithm 1. Then, we perform a labeling of the CCs of the
forest with a Breadth First Search (BFS) algorithm.

3.3. Incremental workflow

The workflow presented in the previous sections is suited to
work in an incremental way, where one considers successive
addition or removal of seeds and the differential update of the
resulting WS cut and intermediary structures. Let us detail the
two cases corresponding to the addition and removal of a seed.

Seed addition: When new seeds are added, new WS edges
must be produced (one for each new seed). These new water-
shed edges can be simply obtained, in a differential way, by a
call to Algorithm 1, provided that the array visitCount has
been memorized after the previous call and that the input data
only contains the new seeds. Then, we remove the returned new
WS cut edges from the current MSF and the connected compo-
nents split by the removal of these edges are relabeled using
breadth first search started at their extremity vertices. It can
be seen that the split of a component runs in time linear with
respect to the the number of pixels in the split component.

Seed removal: When seeds are removed, WS edges must be
removed (one for each seed). We adapt Algorithm 1 to ob-
tain Algorithm 2 which accounts for seed removal in a dif-
ferential way. Such removal induces the merging of two re-
gions and the disappearance of a WS edge. The traversal pro-
cedure is the same as for adding seeds except that for each par-
ent p, visitCount[p] is decremented and the parent browsing
stops if visitCount[p] = 1 after decrementation. Indeed, if
the value was decremented to 1, the current node is no longer
a WS node and the associated edge must be removed from the

4

set of WS cut edges. Regarding the associated minimum span-
ning forest and labeling, Algorithm 2 returns a set of WS cut
edges that must be restored within the minimum spanning for-
est, inducing the merging of a CC for each of them, . This is
efficiently performed by constraining BFS to search and relabel
only the smallest CC associated with one extremity of the edge.
In this process the label of the larger CC is then spread on the
smaller one. This can be done by keeping track of the size of
each CC resulting in a linear time merging w.r.t. the number of
vertices of the smallest CC.

As a result, this incremental workflow enables updating the
segmentation in a time proportional to the number of pixels in
the regions updated by the seed refinement.

Algorithm 2: Remove Seeds
Data: H : a BPT, seeds: a set of seeds and

visitCount;
Result: ws a set of edges to be added and visitCount

updated.
1 ws← ∅
2 foreach lea f n o f seeds do
3 while n , H .root and visitCount[n] , 1 do
4 n := H .parent[n]
5 visitCount[n] := visitCount[n] − 1
6 if visitCount[n] = 1 then
7 ws := ws ∪ {H .mstEdge[p]}

4. Parallelization

As shown in the experimental Section 5.3, most of the time
spent to update a watershed cut segmentation in this differential
framework is dedicated to CCs labeling (around 99.4% for 3D
images). Therefore, to further improve the quality and speed of
the interactions when dealing with large images, we investigate
a parallel algorithm to reduce the time of this labeling by taking
advantage of multicore CPUs.

The proposed method, described in Algorithms 3 and 4, is
an improved version of the strategy proposed by Youkana et al.
(2017) which is able to take into account that the considered
CCs are trees which do not contain any cycle and that we can
propagate the labels of the initial root vertices instead of the
distances to the roots while performing the breadth-first search.
The idea is to traverse iteratively the successive level sets found
from the root vertices, each level set being traversed in parallel.
Before this parallel traversal (Algorithm 3, Line 6), the current
level set is partitioned (Line 5) in order to be distributed over the
available processors in a balanced way. Since connected com-
ponents are trees, the same vertex cannot be discovered from
several distinct neighbors, thus from several distinct processors.
Therefore, to check if a vertex is already labeled, we simply use
the regular array label without any synchronization.

Moreover, we also introduce two parameters in the method to
control the degrees of parallelization and synchronization. The
first one, denoted by MIN BREADTH, allows the algorithm to dy-
namically switch from sequential to parallel search when the
current level set (i.e. the propagation front) is large enough. The

second parameter, denoted by PAR DEPTH in Algorithm 3, al-
lows us to control the number of parallel propagation steps per-
formed between two synchronizations of the processors (union
step performed at line 10), knowing that each synchronization
between processors is time consuming, but that completely re-
moving those synchronizations could lead to an unfair distribu-
tion of the data and an unbalanced workload between proces-
sors, resulting in a poor parallelization rate.

Algorithm 3: Parallel Breadth-First Search
Data: F : a forest, roots: a set of root vertices to search

from, each of which being in a distinct tree of F ,
p: the number of processor;

Result: label: the updated segmentation.
1 E ← roots
2 label[r]:= new unique label
3 while E , ∅ do
4 if |E| > MIN BREADTH then
5 (E1, · · · , Ep) := Partition(E, p)
6 foreach processor i in {1, · · · , p} do in parallel
7 S i:= SuccessorLabeling(F , Ei)
8 foreach ℓ in {1, . . . ,PAR DEPTH} do
9 S i:= SuccessorLabeling(F , S i)

10 E ← Si=p
i=1 {S i}

11 else E:= SuccessorLabeling(F , E)

Algorithm 4: SuccessorLabeling
Data: F : a forest, E: a set of vertices to explore;
Result: S : the set of explored vertices

1 S ← ∅
2 foreach vertex v in E do
3 foreach vertex w adjacent to v in F do
4 if label[w] , label[v] then
5 S := S ∪ w
6 label[w] := label[v]

5. Experiments

We evaluate the method with three different experiments.
The first one compares different methods with real user interac-
tions. The second one relies on a publicly available dataset with
a larger number of images and associated ground truth segmen-
tation, for which the interactions are simulated by randomly
selecting markers from the ground truth. The third is based on
a 3D images dataset of CT scans. The parallel approach was
only evaluated on 3D data. Other datasets were too small to
demonstrate a speedup.

5.1. Experiment with user generated seeds

In this first experiment, we asked users to segment four im-
ages of size 2048 × 1536 pixels: three images come from the
INRIA Holidays dataset Jegou et al. (2008) and one image is
provided by ourselves. The users had to segment the images
with a graphical interface to interactively edit seeds: they could
draw green seeds for the object of interest and red seeds for

5

Table 1. Computation time (in milliseconds) of the different methods with
user generated seeds. The second column indicates the initialization time,
while the third and fourth columns show the average and maximum com-
putation time for all user interactions. The last column represents the total
computation time, which includes both the initialization and the sum of all
user interactions.

Method Init Average Max Accumulated
IWS 210.0 9.2 89.3 514.1
NIWS 210.0 82.2 94.8 3164.4
DIFT 14.0 478.4 622.8 15886.3
OpenCV ∅ 141.7 174.8 5089.4
Higra ∅ 829.1 1239.4 29012.0

Fig. 4. Computation time of OpenCV (dotted orange), DIFT (plain purple),
Higra (dashed red), NIWS (plain green) and IWS (dot-dash blue) during
an interactive session (user generated seeds). The plain black curves show
the number of pixels updated at each user interaction (right axis).

the background and if a mistake was made, they could remove
seeds with an eraser tool. Each user interaction was recorded in
batches of added/removed green/red seeds.

In this study, we consider two versions of the proposed
method: (i) a non-incremental version (denoted NIWS) where
we first compute the BPT and then, at each user interaction, we
completely recompute the WS edges (using only Algorithm 1)
and the induced labeling; and (ii) an incremental version (de-
noted IWS) where at each interaction we update visitCount

(Algorithms 1 and 2) and the labeling by considering only
the added/removed seeds. We also consider three state-of-the-
art implementations of seeded WS, namely OpenCV Meyer
(1992); Bradski (2000) (highly optimized library for image
processing), Higra Perret et al. (2019) (generic library for hi-
erarchical graph analysis) and another incremental method:
the Differential Image Foresting Transform (DIFT) Falcao &
Bergo (2004) (we used the authors’ implementation available at
https://github.com/tvspina/ift-demo). The same sets
of seeds were used for each tested method. The reported execu-
tion times are obtained using an Intel I7 13700H with 14 cores
and 20 threads at 5.0GHz running GNU Linux.

The execution times are presented in Figure 4 and in Table 1.
We see that the initialization cost (BPT creation) of both NIWS
and IWS version of our method is quickly amortized during the
segmentation process: IWS and NIWS have a much lower aver-
age execution time than other methods. In addition, we can see

Fig. 5. Evolution of the segmentations thought user interactions. First, sec-
ond and third show respectively the segmentation (yellow lines) after 2,
half and all the user interactions. Red and green lines represent respec-
tively the background and object seeds.

that the execution time of IWS is proportional to the number
of pixels affected by seed updates as expected from the theo-
retical study. The upper bound is given by the first interaction,
which labels all pixels (the first step is therefore equivalent to
NIWS), and spikes in computation time occurs during mid- or
end-interactions if the user updates seeds in a large CC, result-
ing in a significant number of pixel changes. Our results also
indicate that there is no significant difference in computation
time between adding or removing seeds.

5.2. Experiment with randomly generated seeds
To assess the methods on a standard dataset with more sam-

ples, we chose the BIG dataset Cheng et al. (2020) which is
composed of large natural images (from 2048 by 1600 to 5000
by 3600 pixels). We use all 150 images and pair each image
with a series of 70 seeds. Seeds are divided into two balanced

6

Table 2. Computation times in nanoseconds per pixel on the BIG dataset
with simulated interactions. The second column displays the initialization
time for each method. The third and fourth columns show the average and
maximum computation time for all interactions. The last column displays
the total computation time, which includes the sum of the 70 interactions
and the initialization time.

Method Init Average Max Accumulated
IWS 88.1 6.8 27.6 563.6
NIWS 88.1 28.0 28.6 2051.3
DIFT 3.8 172.0 176.3 12044.9
OpenCV ∅ 60.9 61.2 4262.0
Higra ∅ 300.7 311.9 21045.3

Fig. 6. Computation time per pixel on the BIG dataset with simulated in-
teractions of OpenCV (dotted orange), DIFT (plain purple), NIWS (plain
green), Higra (dashed red) and IWS (plain blue). The time per pixel is the
average for all 150 images. In order to avoid noisy visualizatin, the curve
is smoothed by averaging values in a window of size 2.

classes: object and background. Each seed is a ball of radius 11
centered on a randomly chosen pixel of the object (resp. back-
ground) mask eroded by a ball of radius 12 ensuring that the
seed lies in the object (resp. background).

In this experiment, we consider the same methodology as in
Section 5.1. During the iterative process, seeds are alternatively
picked within the object and within the background. In this ex-
periment, only addition of seeds is considered, never removal.

The results are presented in Figure 6 and Table 2. For each
interaction, the computation time is the average over all 150
images. With this experiment, the tendency observed in Sec-
tion 5.1 is confirmed: the execution times of other methods are
constant over the iterations whereas our incremental method
shows decreasing execution times over the iterations, as the
number of pixels affected by the interaction decreases. Further-
more, we observe that our proposed incremental methods sig-
nificantly improves the response-time to user interactions com-
pared to all other methods.

5.3. Experiment on 3D images
To assess the method on larger data, we considered the liver

segmentation dataset Soler et al. (2010), which consists of 3D
images acquired by CT scan. Out of them, we selected five 3D
images of sizes from 512 × 512 × 124 to 512 × 512 × 260 vox-
els. We use the same methodology as in Section 5.2, using the

Table 3. Computation times in nanoseconds per pixel on 3D volumes with
simulated interactions. The second column displays the initialization time
for each method. The third and fourth columns show the average and
maximum computation time for all interactions. The last column displays
the total computation time, which includes the sum of the 60 interactions
and the initialization time.

Method Init Average Max Accumulated
IWS 85.6 18.4 36.0 1189.6
IWS PAR 92.6 8.0 15.0 572.6
NIWS 85.6 37.7 38.5 2350.2
ITK ∅ 162.6 165.1 9754.6

liver masks as ground-truths. We generated 60 sets of seeds,
each set containing 30 randomly positioned seeds of 100 pix-
els. Note that since our algorithm works on arbitrary graphs, no
modifications are required to process the 3D images. For this
experiment we tested the following four methods:

1. ITK: for each iteration we call the 3D watershed imple-
mentation available in Insight Toolkit (ITK) state-of-the-
art library for medical imaging Beare & Lehmann (2006);

2. NIWS: the watershed-cut algorithm proposed in Sec-
tion 3.1, thus without using the differential updates;

3. IWS: the watershed-cut algorithm proposed in Section 3.3,
thus using differential updates but not using the parallel
BFS;

4. IWS PAR: the watershed cut method proposed in Sec-
tion 3.3 using the parallel BFS presented in Section 4. For
this method, we experimentally chose to set the parameters
MIN BREADTH and PAR DEPTH to 4000 and 3, respectively
and 10 processors/threads were used.

The execution times of these methods are presented in Fig-
ure 7 and Table 3. The tendency observed in Section 5.2 and
Section 5.1 is confirmed: the execution times for ITK and
NIWS remain constant across iterations, whereas for the two
differential methods, namely IWS and IWS PAR, the response
time to user interactions is significantly reduced and further-
more decreases after few iterations, when the addition of new
seeds starts to induce less changes in the segmentation results
corresponding to small refinement on the results. On average,
over all considered 3D images, ITK (resp. NIWS, IWS, and
IWS PAR) requires 8 (resp. 1.8, 0.9, and 0.4) seconds per inter-
action, leading to a speedup of 20 when we compare the fastest
IWS PAR method to the reference ITK. We also note that the
use of parallelization in IWS PAR leads to a speedup of 2.3 over
the IWS method.

In order to better analyze the proposed methods, we provide
the time taken for the different steps of each method. Over all
iterations, for NIWS, 95.7% (resp 0.66%, 3.64%) of the time
is spend on pixel labeling (resp. node marking/unmarking, and
building BPT), for IWS 92.3% (resp 0.5%, 7.2%) of the time
is spend on pixel labeling (resp. node marking/unmarking,
and building BPT), and for IWS PAR 82.8% (resp 1.03%,
16.17%) of the time is spend on pixel labeling (resp. node
marking/unmarking, and building BPT). Moreover, if we con-
sider only one interaction step, in average, for NIWS the time
taken by the different steps remain the same whereas for IWS

7

and PAR IWS the time spent for building the hierarchy com-
pletely vanish and, for both of them, about 99.5% of the time is
spent on labeling CC, hence justifying our choice of focusing
on parallel strategies for this particular step.

Fig. 7. Computation time in nano second per pixel on 3D images with sim-
ulated interactions. Our (IWS) is in blue, our parallelized version (IWS
PAR) is in green, the non incremental version (NIWS) is in orange, ITK
is in red. In order to avoid noisy visualization, the curve is smoothed by
averaging values in a window of size 2.

6. Conclusion

We proposed an interactive seeded WS segmentation method
that complies with an incremental process, exploiting causality
within interactive sessions to achieve remarkable performance
improvements and significantly enhance responsiveness. Ad-
ditionally, we introduced a parallel method that leverages the
properties of minimum spanning forest to further improve the
responsiveness, especially for marker addition.

In future studies, we aim to investigate the optimal values for
the parameters for parallel labeling to achieve a more significant
speedup, particularly for a high number of processors/threads.

References

Allène, C., Audibert, J.-Y., Couprie, M., & Keriven, R. (2010). Some links
between extremum spanning forests, watersheds and min-cuts. Image and
Vision Computing, 28, 1460–1471.

Arbeláez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour Detection
and Hierarchical Image Segmentation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 33, 898–916. doi:10.1109/TPAMI.2010.
161. Conference Name: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.

Beare, R., & Lehmann, G. (2006). The watershed transform in itk - discussion
and new developments, . doi:10.54294/lf8u75.

Beucher, S., & Meyer, F. (1993). The morphological approach to segmenta-
tion: The watershed transformation. Mathematical Morphology in Image
Processing, Vol. 34, 433–481. doi:10.1201/9781482277234-12.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, .

Carlinet, E., & Geraud, T. (2015). Morphological object picking based on the
color tree of shapes. In 2015 IPTA (pp. 125–130). Orleans, France: IEEE.
doi:10.1109/IPTA.2015.7367111.

Cheng, H. K., Chung, J., Tai, Y.-W., & Tang, C.-K. (2020). CascadePSP: To-
ward class-agnostic and very high-resolution segmentation via global and
local refinement. In CVPR.

Cousty, J., Bertrand, G., Najman, L., & Couprie, M. (2009). Watershed Cuts:
Minimum Spanning Forests and the Drop of Water Principle. IEEE TPAMI,
31, 1362–1374.

Cousty, J., Najman, L., & Perret, B. (2013a). Constructive links between some
morphological hierarchies on edge-weighted graphs. In Mathematical Mor-
phology and Its Applications to Signal and Image Processing: 11th Interna-
tional Symposium, ISMM 2013, Uppsala, Sweden, May 27-29, 2013. Pro-
ceedings 11 (pp. 86–97). Springer.

Cousty, J., Najman, L., & Perret, B. (2013b). Constructive links between some
morphological hierarchies on edge-weighted graphs. In ISMM (pp. 86–97).

Eschweiler, D., Spina, T. V., Choudhury, R. C., Meyerowitz, E., Cunha, A.,
& Stegmaier, J. (2019). CNN-Based Preprocessing to Optimize Watershed-
Based Cell Segmentation in 3D Confocal Microscopy Images. (pp. 223–
227). Piscataway, NJ: IEEE. Conference Name: 2019 IEEE 16th Interna-
tional Symposium on Biomedical Imaging (ISBI 2019).

Falcao, A., & Bergo, F. (2004). Interactive Volume Segmentation With Differ-
ential Image Foresting Transforms. IEEE Transactions on Medical Imaging,
23, 1100–1108. doi:10.1109/TMI.2004.829335.

Falcão, A., Stolfi, J., & de Alencar Lotufo, R. (2004). The image foresting
transform: theory, algorithms, and applications. IEEE TPAMI, 26, 19–29.
doi:10.1109/TPAMI.2004.1261076.

Jegou, H., Douze, M., & Schmid, C. (2008). Hamming embedding and weak
geometric consistency for large scale image search. In D. Forsyth, P. Torr, &
A. Zisserman (Eds.), Computer Vision – ECCV 2008 (pp. 304–317). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Lebon, Q., Lefèvre, J., Cousty, J., & Perret, B. (2023). Interactive segmenta-
tion with incremental watershed cuts. In V. Vasconcelos, I. Domingues, &
S. Paredes (Eds.), Progress in Pattern Recognition, Image Analysis, Com-
puter Vision, and Applications (pp. 189–200). Cham: Springer Nature
Switzerland.

Lux, F., & Matula, P. (2019). Dic image segmentation of dense cell populations
by combining deep learning and watershed. In 16th IEEE ISBI (pp. 236–
239). URL: https://doi.org/10.1109/ISBI.2019.8759594.

Machairas, V., Faessel, M., Cardenas, D., Chabardes, T., Walter, T., & De-
cencière, E. (2015). Waterpixels. IEEE TIP, 24, 3707–3716. doi:10.1109/
TIP.2015.2451011.

Meyer, F. (1992). Color image segmentation. In 1992 International Conference
on Image Processing and its Applications (pp. 303–306).

Meyer, F. (2012). The watershed concept and its use in segmentation : a brief
history. URL: http://arxiv.org/abs/1202.0216.

Najman, L., Cousty, J., & Perret, B. (2013). Playing with Kruskal: algorithms
for morphological trees in edge-weighted graphs. In ISMM (pp. 135–146).

Najman, L., & Schmitt, M. (1996). Geodesic saliency of watershed contours
and hierarchical segmentation. IEEE TPAMI, 18, 1163–1173. doi:10.1109/
34.546254.

Ngoc, M. Ô. V., Carlinet, E., Fabrizio, J., & Géraud, T. (2023). The dahu graph-
cut for interactive segmentation on 2d/3d images. Pattern Recognition, 136,
109–207.

Passat, N., Naegel, B., Rousseau, F., Koob, M., & Dietemann, J.-L. (2011).
Interactive segmentation based on component-trees. Pattern Recognition,
44, 2539–2554. doi:10.1016/j.patcog.2011.03.025. Semi-Supervised
Learning for Visual Content Analysis and Understanding.

Perret, B., Chierchia, G., Cousty, J., F. Guimarães, S., Kenmochi, Y., & Na-
jman, L. (2019). Higra: Hierarchical Graph Analysis. SoftwareX, 10,
100335. doi:10.1016/j.softx.2019.100335.

Salembier, P., & Garrido, L. (2000). Binary partition tree as an efficient rep-
resentation for image processing, segmentation, and information retrieval.
TIP, 9, 561–576.

Soler, L., Hostettler, A., Agnus, V., Charnoz, A., Fasquel, J., Moreau, J., Oss-
wald, A., Bouhadjar, M., & Marescaux, J. (2010). 3d image reconstruction
for comparison of algorithm database: A patient specific anatomical and
medical image database. IRCAD, Strasbourg, France, Tech. Rep, 1.

Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: an efficient
algorithm based on immersion simulations. IEEE TPAMI, 13, 583–598.
doi:10.1109/34.87344.

Wolf, S., Schott, L., Köthe, U., & Hamprecht, F. (2017). Learned Watershed:
End-to-End Learning of Seeded Segmentation. doi:10.48550/arXiv.
1704.02249 arXiv:1704.02249 [cs].

Youkana, I., Cousty, J., Saouli, R., & Akil, M. (2017). Parallelization strat-
egy for elementary morphological operators on graphs: distance-based al-
gorithms and implementation on multicore shared-memory architecture.
JMIV , 59, 136–160.

