« Modélisation Thermo-Optique Semi-Quantique du procédé d'ablation USPL sur des aciers électriques à Grains Orientés »

SGE – Symposium de Génie Electrique

6 Juillet 2023 à Lille – 10h50 – 4/id452577

<u>Olivier MALOBERTI</u>^{a,b}, Manar NESSER^{b,a}, Prescillia DUPONT^a, Julien DUPUY^c, Anne HENROTTIN^d, Jean-Pierre BIRAT^e, Camille PINEAU^f, Stéphane PANIER^b

^aUNILASALLE Amiens - SYMADE, 14 quai de la Somme, 80080 Amiens, France / ^bLTI – UPJV, Laboratoire LTI, IUT d'Amiens Avenue des Facultés – Le Bailly, Amiens, 80025, France / ^cMULTITEL a.s.b.l., 2 rue Pierre et Marie Curie, Parc Initialis, Mons, 7000, Belgique / ^dLASEA, 31 rue Louis Plescia, 4102, Seraing, Belgique / ^eIFSTEELMAN, 5 rue du Gate-Chaux, 57280, Semecourt, France / ^fIRT – M2P, 4 rue Augustin Fresnel, Metz, 57070, France

ESSIAL

SOMMAIRE

1. Contexte du travail – Le projet ESSIAL 2. Etat de l'Art et Présentation du Procédé USPL **3. Modélisation Numérique Eléments Finis (EF)** 4. Modèle Analytique Moyen – Calcul d'Ablation **5. Discussion, Conclusion et Perspectives**

1. Contexte et Etat de l'Art

^{le} Picardie

ASEA

PROJET ESSIAL

Procédés laser de structuration de domaines magnétiques

¥

Réduction des pertes > 20%

Réd

Réduction du bruit > 20%

Procédés laser de texturisation et assemblage

Ecoconception, recyclage, re-use

UniLaSalle

Amiens

Réduction du coût global de 20%

2. Procédé USPL d'ablation

3. Modélisation numérique EF

Flux thermique gaussien (W/m^2)

SOURCE LASER

DISTRIBUTION TEMPORELLE

Fonction porte ou créneau:

Puissance crête par impulsion

$$\widehat{P} = P_w / (f.\tau)$$

Intensité ou densité de puissance crête

$$\hat{I} = \hat{P} / (\pi (f_x r)^2)$$

LaSalle

Amiens

Energie par impulsion et cumulée

$$E_1 = \tau \hat{P} = \frac{P_w}{f} \text{ et } E_N = N_p N E_1 = N_p \frac{f_x w_0 P_w}{v \tau f}$$

Energie ou Fluence par impulsion et cumulée

$$F_1 = \frac{E_1}{\pi (f_x a)^2} = \frac{P_w}{\pi (f_x a)^2 f} \text{ et } F_N = N_p N F_1 = N_p \frac{f_x w_0 P_w}{\pi (f_x a)^2 v \tau f}$$

Paramètres du laser:

longueur d'onde λ = 1030 nm, **largeur temporelle** τ = 500 fs, puissance moyenne $P_w < 4$ W (basse fluence) et $P_w < 20$ W (haute fluence), Fréquence de répétition f (1-330 kHz), vitesse de balayage v (1-2000 mm/s). WAIST du laser $w_0 = 2a$ (~ 10 à 50 µm), $f_x \ge 1$ coefficient de focalisation

DISTRIBUTION SPATIALE

Faisceau gaussien, de largeur spatiale $w_0 = 2a$ définie le flux thermique axi-symétrique imposé sur le spot de focalisation de largeur $f_x w_0$

$$S = S_{num}(t,r) = -\mathbf{n} \cdot (-\lambda_e \nabla T)$$
$$= A_0 \cdot \frac{\hat{P}}{\pi \left(f_x \frac{w_0}{2}\right)^2} \cdot e^{-\frac{r^2}{\left(f_x \frac{w_0(z)}{2}\right)^2}}$$

Paramètres optiques

Coefficient de Transmission optique A (valeur nominale A_0) Coefficient de rendement d'ablation η (valeur nominale $\eta = 1$)

 $\hat{I}(t) = \hat{I} \cdot \Pi((t - \tau/2)/(\tau))$

Distribution réelle

Distribution dans le modèle

temps

3. Modélisation Numérique EF

Variable d'état à calculer.

Nom	Valeur	Unité	Description
р	-	μm	Profondeur du cratère issue de l'ablation
T _e	-	К	Température du gaz d'électrons
T _{ph}	-	К	Température des phonons, ie du métal

Terme source dû au flux incident du laser:

$$S = S_{num}(t, r) = -\boldsymbol{n} \cdot (-\lambda_e \nabla T)$$

3. Modélisation Numérique EF

RESULTATS

Acier test (23MXX): FeSi GO standard ρ = **7380 kg.m⁻³**, **épaisseur** ζ = **0**.23 mm (revêtement 3 µm). Propriétés thermiques du métal: T_f = **1535 K et** T_v = **2861 K**, **températures de fusion et de vaporisation**;

 $L_f = 180 \text{ kJ/kg}$ et $L_v = 6400 \text{ kJ/kg} \gg L_v$, enthalpies libres de fusion et de vaporisation;

 $C_{mph} = 460 \text{ J/kg/K}$; $\lambda_{ph} = 25 \text{ W/m/K}$, chaleur spécifique et conductivité thermique.

Propriétés thermiques des électrons et de couplage : $C'_{ve} = 100 \text{ J.m}^3 \text{.K}^2$; $\lambda_e = 4 \text{ e}^5 \text{ W.m}^1 \text{.K}^1$ et $G = 0.1 \text{ TW.cm}^3 \text{.K}^1$. Coefficients numériques d'échange: $h = 1.e^{13} W/m/K$ et $h_{vol} = 1.e^{20} W/m^3/K$; garantissent toujours $T \le T_v$ avec ablation de matière dès que $T > T_v$

Températures simulées

Ablation de matière simulée

3. Modélisation Numérique EF

Symade⁷

Acier test (23MXX): FeSi GO standard ρ = 7380 kg.m⁻³, épaisseur ζ = 0.23 mm (revêtement 3 µm).

1 jour de calcul par impulsion

ESSIAL

Cas test, paramètres Numérique EF: $C_{ve}^{t} = 100 \text{ J.m}^{-3} \text{ K}^{-2}; \lambda_{e} = 4 \cdot e^{5} \text{ W.m}^{-1} \text{ K}^{-1};$ $A = A_{0} = 0.35 \text{ et } \eta = 1;$ $G = 0.1 \text{ TW.cm}^{-3} \text{ K}^{-1}.$

Analytique: $C'_{ve} = 5.6 \text{ J.m}^{-3}.\text{K}^{-2}; \lambda_e = 0 \text{ W.m}^{-1}.\text{K}^{-1};$ $A = A_0 = 0.35; \alpha^{-1} = \alpha_0^{-1} = 30 \text{ nm} \text{ et } \eta = 1;$ $G = 0.1 \text{ TW.cm}^{-3}.\text{K}^{-1}.$

Hypothèse linéaire:

UniLaSalle

Amiens

Profondeur de gravure de N impulsions = N * profondeur de une impulsion

ASEA

EQUATIONS

 $\delta = \alpha^{-1}$ est la profondeur de pénétration de l'onde ($\delta_0 \approx 91 nm$) où $\alpha = \alpha_0$ est la part de la fluence seuil théorique d'ablation $e_{th} \approx 0.44 \text{ J.cm}^{-2}$ responsable de la sublimation.

$$\alpha_0 = (\rho . L_v) / e_{th}$$

Terme source = puissance laser transmise et absorbée

 $S = S_{an}(t, z) = \hat{S} \cdot e^{-\alpha \cdot z} = A \cdot \eta \cdot \alpha \cdot I(t) \cdot e^{-\alpha \cdot z}$

Modèle couplé analytique en négligeant les termes de conduction thermique $\lambda_{e-ph} \ll$

$$\begin{cases} \tau_{e-ph} \cdot \frac{\partial}{\partial t} \Delta T_e^2 + \Delta T_e^2 = 2 \frac{S}{C_{ve}'} t \\ \tau_{e-ph} \cdot \frac{\partial}{\partial t} \Delta T_{ph} + \Delta T_{ph} = \Delta T_e \end{cases}$$

Découplage des équations pour les électrons

Couplage simple et direct entre phonons et électrons

avec
$$\left| \tau_{e-ph} = \frac{C_{vp}}{G} \right|$$
, $\Delta T_{e-ph} = T_{e-ph} - T_0$, $\Delta T_e^2 = T_e^2 - T_0^2$

SOLUTIONS

UniLaSalle

Amiens

L'acier test étudié est le 23MXX propriétés linéaires simplifiées pour le cas test analytique: $A = A_0 = 0.35$, $\alpha^{-1} = \alpha_0^{-1} = 30 nm$, $C'_{ve} = 5.6 \text{ J.m}^{-3}$.K⁻², $G = 0.1 \text{ TW.cm}^{-3}$.K⁻¹ et $\eta = 1$.

ESSIAL

Pendant l'impulsion ($0 \le t \le \tau$ **)** Pendant l'impulsion Après l'impulsion 7 6 $-T_e$ (analytique) 6 $-T_e$ (numérique EF) $\int T_e = \int T_0^2 + 2\frac{S\tau}{C_{\nu e}'} \left(\frac{t - \tau_{e-ph}}{\tau} + \frac{\tau_{e-ph}}{\tau} e^{-t/\tau_{e-ph}}\right)$ Aire > T_v => ablation $T_{ph} = T_0 + \Delta T_e(\tau) \left(\frac{t - \tau_{e-ph}}{\tau} + \frac{\tau_{e-ph}}{\tau} e^{-t/\tau_{e-ph}} \right)$ $-T_{ph}$ (analytique) 2.5 $4 - \hat{T_v}$ 4 - T_{ph} (numérique EF) Après l'impulsion ($t \ge \tau$) Couplage e-ph $T_e = \sqrt{T_0^2 + \Delta T_e^2(\tau)} e^{\frac{-(t-\tau)}{\tau_{e-ph}}} \approx T_e + \Delta T_e(\tau) e^{\frac{-(t-\tau)}{2.\tau_{e-ph}}}$ $\int T_{ph} \approx T_0 + \left(\Delta T_{ph}(\tau) + 2\Delta T_e(\tau) \left(e^{\frac{(t-\tau)}{2.\tau_{e-ph}}} - 1\right)\right) e^{\frac{-(t-\tau)}{\tau_{e-ph}}}$ 0.5 10⁻¹⁵ 10⁻¹² 10-14 10⁻¹³ 10⁻¹¹ 10-10 10^{-9} temps (s)

ASEA

CALCUL DE L'ABLATION

Calcul des maxima de température

Le maximum de T_e est obtenu pour $t = t_{e,max} = \tau : T_{e,max} = T_e(\tau)$ Le max. de T_{ph} pour $e^{+\frac{(t_{ph,max}-\tau)}{\tau_{e-ph}}} = 2 - \tau/(2.\tau_{e-ph}) : T_{ph,max} = T_0 + T_e(\tau)/(2 - \tau/(2.\tau_{e-ph}))$

Seuil d'ablation effectif:

$$C_{vph}(\Delta T_{ph} - \Delta T_{v}) = \rho. (L_{v} + L_{f}) \approx \rho. L_{v} \quad \blacksquare \qquad F$$

$$F_{th} = \left(\left(\left(\rho \cdot \boldsymbol{L}_{v} + C_{vph} \Delta T_{v} \right)^{2} \left(e^{+ \frac{\left(t_{ph,max} - \tau \right)}{\tau_{e-ph}}} \right)^{2} \right) / \left(\frac{\alpha C_{vph}}{C_{ve}'} \tau \boldsymbol{G} \right) \right)$$

Calcul de la profondeur d'ablation:

N impulsions

ASEA

$$p(N_pN) = \sum_{i=1}^{N_pN} \frac{1}{\alpha(\hat{l})} ln\left(\frac{A(p(i),F_1).\eta(F_1).F_1}{F_{th}(C_{ve}',G(\hat{l}),\alpha(\hat{l}))}\right)$$

ESSIAL

LaSalle

Amiens

LaSalle

Amiens

RESULTATS Très grand nombre de « tirs » laser (variation de tous les paramètres: $P_w = 1 - 20 \text{ W}, v = 1 - 100 \text{ mm.s}^{-1}, f_x = 1, w_0 = 25 - 50 \mu\text{m}, f = 10 - 100 \text{ kHz}$ $\Rightarrow P_1 = 1 - 30 \text{ J.cm}^2 \text{ et } P_N = 250 - 2500 \text{ J.cm}^2$)

\SEA

L'acier:

FeSi GO conventionnel R120-27 ($\rho = 7650 \text{ kg.m}^{-3}, \zeta = 0.27 \text{ mm} + 2$ μ m). Calibrations des paramètres constants ($\Gamma_{\nu\nu}$ =9.03 J.m⁻³.K⁻²) et variables.

Profondeur du cratère calculée et mesurée avec un microscope confocal en fonction de la fluence cumulée.

Le résultat a été calibré avec F_N croissante; F_1 constante. (variation de la vitesse de balayage du laser *v*)

ESSIAL

PERSPECTIVES

 Possibilités de calculer le <u>relief en surface</u> dû à de la re-déposition et/ou refusion autour de la gravure

- Travaux parallèles présentant l'étude des impacts laser sur le magnétisme

M. Nesser et al., *IEEE Trans. on Mag.*, vol. 58 (8), p. 1-5, 2022, <u>10.1109/TMAG.2022.3152899</u> O. Maloberti et al., Journal of Magnetism and Magnetic Materials, Volume 580, 2023, 170279, ISSN 0304-8853, <u>https://doi.org/10.1016/j.jmmm.2022.170279</u>.

 Prise en compte de toutes les énergies, y compris l'énergie de <u>l'effet de</u> <u>l'onde de choc induite par le laser</u> simultanément à l'effet d'ablation

 Principe, modélisation et <u>calcul des contraintes résiduelles induites par</u> <u>l'onde de choc du laser</u>

ESSIAL

Merci et à bientôt

4(annexe). Modèle Analytique Moyen

2200

Profondeur du cratère calculée et mesurée en fonction de la fluence. Le résultat a été calibré avec F_1 croissante; mais F_N constante. (variation de P_w et f)

Profondeur du cratère calculée et mesurée en fonction de la fluence cumulée. Le résultat a été calibré avec F_N croissante; mais F_1 constante. (variation de v)

Très grand nombre de « tirs » laser (variation de tous les paramètres:

ANNEXE – IMPACTS LPL, SPL et USPL

O. Maloberti, M. Nesser, J. Dupuy, P. Dassonvalle, J. Fortin, C. Pineau, J.P. Birat, "Discriminating the physical impacts of various laser pulses on the magnetic structure of oriented electrical steels", *Journal of Magnetism and Magnetic Materials*, Vol. 566, 2023, 170248, ISSN 0304-8853, https://doi.org/10.1016/j.jmmm.2022.170248.

UniLaSalle Institut Polytechnique

ANNEXE – IMPACTS LPL, SPL et USPL

O. Maloberti, M. Nesser, J. Dupuy, P. Dassonvalle, J. Fortin, C. Pineau, J.P. Birat, "Discriminating the physical impacts of various laser pulses on the magnetic structure of oriented electrical steels", *Journal of Magnetism and Magnetic Materials*, Vol. 566, 2023, 170248, ISSN 0304-8853, https://doi.org/10.1016/j.jmmm.2022.170248.

UniLaSalle

ANNEXE – IMPACT USPL vs p

O. Maloberti et al., Journal of Magnetism and Magnetic Materials, Volume 580, 2023, 170279, ISSN 0304-8853, <u>https://doi.org/10.1016/j.jmmm.2022.170279</u>.

ANNEXE – IMPACT USPL vs p

O. Maloberti et al., Journal of Magnetism and Magnetic Materials, Volume 580, 2023, 170279, ISSN 0304-8853, <u>https://doi.org/10.1016/j.jmmm.2022.170279</u>.

Paramètres du laser et propriétés optiques du métal

Nom	Valeur	Unité	Description
τ	500	fs	Durée d'une impulsion laser
N _p	1 ou 2	s.u.	Nombre de passes du faisceau laser
\boldsymbol{P}_{w}^{c}	0.5 – 20	W	Puissance moyenne d la source laser
V	1 – 10	mm/s	Vitesse de balayage du faisceau laser
f	1 – 100	kHz	Fréquence de répétition
W ₀	25 – 50	μ m	Largeur du spot laser (au waist)
f _x	1 – 1.5	s.u.	Coefficient de focalisation
Ν	-	s.u.	Nombre d'impulsions reçues en un point
Ε1	-	μJ	Energie par impulsion laser
F ₁	-	J.cm ⁻²	Fluence par impulsion laser
E _N	-	mJ	Energie cumulée en chaque point
F _N	-	J.cm ⁻²	Densité d'énergie ou Fluence cumulée
\widehat{P}	-	MW	Puissance crête d'une impulsion
Î	-	TW.cm ⁻²	Intensité laser d'une impulsion
e _{th}	0.5	J.cm ⁻²	Fluence seuil d'ablation nominale
F _{th}	-	J.cm ⁻²	Fluence seuil d'ablation recalculée
A _o	0.35	s.u.	Transmittance optique nominale
A	A(p,F ₁)	s.u.	Transmittance optique atténuée
p _{lim}	5 – 20	μ m	Profondeur palier d'ablation
β	180	s.u.	Paramètre d'attenuation de A
α_0	0.011	nm ⁻¹	Coefficient d'absorption nominal
α	α(Î)	nm ⁻¹	Cofficient d'absorption non linéaire
X	2.48e-36	A -2	Coefficient non linéaire optique

ANNEXE - GLOSSAIRE ET DONNEES

Nom	Valeur	Unité	Description
T _f	1535	K	Température de fusion du métal FeSi
T _v	2860	К	Température de vaporisation du métal
L _f	180	kJ.kg ⁻¹	Chaleur latente de fusion << L _v
L _v	6400	kJ.kg ⁻¹	Chaleur latente de vaporisation
ρ	7.3-7.7	g.cm ⁻³	Masse volumique du métal FeSi
λ_{ph}	25	W.m ⁻¹ .K ⁻¹	Conductivité thermique du métal
C _{mph}	460	J.kg ⁻¹ .K ⁻¹	Chaleur spécifique massique du métal
C _{vph}	ρ. C _{mph}	J.m ⁻³ .K ⁻¹	Chaleur spéc. volumique du métal
λ _e	<mark>1e⁴-1e⁶</mark>	W.m ⁻¹ .K ⁻¹	Conductivité du gaz d'électrons
C _{me}	C _{ve} /ρ	J.kg ⁻¹ .K ⁻¹	Chaleur spéc. massique des électrons
C _{ve}	C _{ve} 'Te	J.m ⁻³ .K ⁻¹	Chaleur spéc. volumique des e
<mark>h</mark> s	<mark>1e¹³</mark>	W.m ⁻² .K ⁻¹	Echange pour ablation de surface
h _v	<mark>1e²⁰</mark>	W.m ⁻² .K ⁻¹	Echange pour ablation de volume
$v_{vap/abl}$	-	m.s ⁻¹	Vitesse des particules sublimées
C _{ve} ′	<mark>1-10³</mark>	<mark>J.m⁻³.K⁻²</mark>	Coefficient de chaleur spécifique
G ₀	<mark>0.1-10</mark>	TW.cm ⁻³ .K ⁻¹	Coefficient de couplage e-ph nominal
G	G(Î)	TW.cm ⁻³ .K ⁻¹	Coef. de couplage électron-phonons
F _{lim}	6-20	J.cm ⁻²	Fluence palier de rendement
K	0.939	s.u.	Coef. de dégradation de rendement
η (η(F ₁)	s.u.	Rendement d'ablation

UniLa

Données quantiques et constantes fondamentales

Nom	Valeur	Unité	Description
n _e	1.69e ²⁹	m ⁻³	Densité volumique d'électrons libres
E _F	11.2	eV	Energe de Fermi d'occupation des e ⁻
k _F	1.71	Å-1	Vecteur d'onde de Fermi
T _F	129°860	K	Température de Fermi
V _F	1985	km.s ⁻¹	Vitesse de Fermi des électrons
V _e	41	THz	Fréquence de collisions des électrons
ε_c^0	1.09	s.u.	Permittivité rel. des électrons de valence
Ø _{ph}	8.58e ¹³	rad.s ⁻¹	Fréquence Plasma des ions métalliques
V _{ph}	5960	m.s ⁻¹	Vitesse du son, des phonons
κ _D	1.91	Å-1	Vecteur d'onde de Debye
T _D	464	K	Température de Debye
h	6.63.e ⁻³⁴	m².kg.s ⁻¹	Constante de Planck
ħ	h/(2π)	m².kg.s ⁻¹	Constante de Planck barre
k _B	1.38.e ⁻²³	J.kg ⁻¹	Constante de Boltzmann
m _e	9.1.e ⁻³¹	kg	Masse d'un électrons
е	1.6.e ⁻¹⁹	С	Charge d'un électron
<i>E</i> 0	8.85.e ⁻¹²	F.m ⁻¹	Permittivité diélectrique
8	6.02.e ²³	s.u.	Nombre d'Avogadro

UniLa

BIBLIOGRAPHY

- 1. P. Beckley et al., *J. Mat. Eng. Perf.*, vol. 3 (2), p. 209-213, 1994.
- 2. K. Sato et al., *JMMM*, vol. 112, no 1-3, p. 183-185, july. 1992.
- B. Beckley et al., J. Appl. Phys., vol. 57 (8), p. 4212-4213, 1985.
- 4. S. V. Ponnaluri, J. Mat. Proc. T., vol. 112 (2-3), p. 199-204, 2001.
- 5. Y. Huang et al., *Int. J. Adv. Manu. Tech.*, vol. 70, p. 1-9, 2014.
- 6. I. Petryshynets et al., *AIP Adv.*, vol. 8, no 4, p. 047604, april 2018.
- 7. J. Dupuy et al., *SPIE LASE conf.*, USA (2019), Proc. vol. 10911.
- 8. M. Nesser et al., *IEEE Trans. on Mag.*, vol. 58 (8), p. 1-5, 2022.
- 9. M. Nesser et al., *JMMM*, vol. 504, 15 June 2020, 166696.
- ^{10.} A B. N. Chichkov et al., *Ap. Ph. M. S. Proc.*, vol. 63 (2), p. 109-115, 1996.
- 11. S. Rung, *Micromachines*, vol. 5, p. 943-953; 2014.
- 12. A. Tatra, *Physics Procedia*, vol. 83, p. 1339-1346, 2016.
- 13. Ashcroft & Mermin, Solid State Physics, Rinehart & Winston, N-Y, 1976.
- 14. S. Coudert, PhD thesis, ED SPI, Université de Bordeaux, France, 2020.
- 15. Z. Lin et al., Physical Review B, vol. 77, , 2008.
- ^{16.} M. I. Kaganov et al., *J. Exp. Th.*. *Phys.*, vol. 4, 173, 1957.
- 17. S. I. Anisimov et al., *Sov. Phys. JETP*, vol. 39, p. 375, 1974.
- 18. J. Chen et al., Int. J. Heat Mass Transfer, vol. 49, p. 307–316, 2006.
- 19. E.C. Chevallier et al., 24th-26th COMSOL conf. in Cambridge, 2019.
- 20. X. Y. Wang, *Physical Review B*, volume 50, number 11, 1994.
- ^{21.} K.-H. Leitz, *Physics Procedia*, vol. 12, part B, p. 230-238, 2011.
- 22. P. Peyre et al., Opt. Quantum Electron., vol. 27, p. 1213-1229, 1995.
- 23. O. Maloberti et al., *SMM'25th conference*, poster the 5th of may 2022.