

Modélisation thermo-optique semi-quantique du procédé d'ablation USPL sur des aciers GO

O. Maloberti, M. Nesser, Préscillia Dupont, Julien Dupuy, Anne Henrottin,

Jean-Pierre Birat, Camille Pineau, Stéphane Panier

▶ To cite this version:

O. Maloberti, M. Nesser, Préscillia Dupont, Julien Dupuy, Anne Henrottin, et al.. Modélisation thermo-optique semi-quantique du procédé d'ablation USPL sur des aciers GO. SYMPOSIUM DE GENIE ELECTRIQUE (SGE 2023), Jul 2023, Lille (FR), France. hal-04536898

HAL Id: hal-04536898 https://hal.science/hal-04536898v1

Submitted on 8 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modélisation thermo-optique semi-quantique du procédé d'ablation USPL sur des aciers GO

O. Maloberti^{a,b}, M. Nesser^{b,a}, P. Dupont^a, J. Dupuy^c, A. Henrottin^d, J-P. Birat^e, C. Pineau^f, S. Panier^b

^aUNILASALLE Amiens, 14 quai de la Somme, 80080 Amiens, France

^bLTI – UPJV, Laboratoire LTI, IUT d'Amiens Avenue des Facultés – Le Bailly, Amiens, 80025, France

°MULTITEL a.s.b.l., 2 rue Pierre et Marie Curie, Parc Initialis, Mons, 7000, Belgique

^dLASEA, 31 rue Louis Plescia, 4102, Seraing, Belgique

eIFSTEELMAN, 5 rue du Gate-Chaux, 57280, Semecourt, France

^fIRT – M2P, 4 rue Augustin Fresnel, Metz, 57070, France

RESUME - Dans un contexte de réduction des pertes et des vibrations dans les aciers électriques à grains Orientés (GO) par la technique de raffinement de domaines principaux à 180°, une nouvelle technique dite d'ablation laser à impulsions ultra courtes (USPL) est apparue. Ce travail propose de contribuer à la modélisation de l'interaction lumière-matière en régime USPL dans le but d'optimiser l'impact du procédé sur les performances des matériaux ferromagnétiques doux. L'article décrit, modélise et calcule une physique thermo-optique non linéaire et ultratransitoire d'origine quantique pour laquelle l'acier est considéré comme un réseau d'atomes baignant dans un gaz d'électrons libres. Le modèle s'appuie sur une séparation entre le temps de diffusion thermique dans le gaz d'électrons et celui dans le réseau cristallin mais avec un couplage incontournable entre électrons et phonons, exacerbé par la génération d'un plasma à la température électronique Te. Ce couplage fort permet le transfert d'énergie depuis le gaz d'électrons vers les phonons du cristal avec des conditions favorables de température du métal T_{ph} et de dépassement du seuil physique d'ablation par sublimation. Parmi les méthodes envisagées, seul un modèle moyen dit à deux températures, résolu analytiquement, permet de converger dans un temps raisonnable vers l'ensemble des solutions utiles à l'optimisation. La méthode des éléments finis permet cependant de consolider les courbes de températures impulsionnelles obtenues.

Mots-clés—Aciers électriques, GO, rafinement de domaines magnétiques, procédés d'ablation, impulsions ultra-courtes, éléments finis, modèle semi-quantique à deux températures.

1. CONTEXTE ET ETAT DE L'ART

Le traitement de surface des aciers électriques est utilisé depuis la fin du 20^{ème} siècle pour réduire les pertes [1-4]. La technique consiste classiquement à induire un raffinement des domaines magnétiques principaux à 180° à l'aide de ligne de gravure ou d'irradiation induisant localement une anisotropie de contraintes. Les premières techniques sont d'abord des procédés mécaniques [1], des arcs électriques [3] ou plasmas [2], lasers continus [4] puis des lasers à impulsions longues ou courtes [5, 6]. La technique USPL d'ablation a été proposée par le consortium du projet ESSIAL en 2017 [7]. Des études ont déjà été initiées dans [8] avec un modèle moyen d'ablation pour lequel il n'est possible de confronter les calculs aux mesures que partiellement. La simulation numérique par Eléments Finis (EF), utilisant des propriétés matériaux tabulées ou calibrées est une alternative pour consolider les transitoires thermiques calculés par un modèle analytique équivalent moyen et pour ensuite les confronter à des données physiques réalistes et fiables.

2. PROCEDE USPL D'ABLATION POUR LES ACIERS ELECTRIQUES

2.1. Comparaisons entre procédés USPL, SPL et LPL

Une référence [9] classe les procédés laser selon trois familles grâce à la durée des impulsions τ . Le procédé par laser continu ou impulsions longues (7>100ns, LPL) sera qualifié d'irradiation induisant uniquement des contraintes thermiques. Le procédé à impulsions courtes (10ps<7<100ns, SPL) sera qualifié de « scribing » conduisant à une gravure limitée accompagnée d'effets thermiques. Le procédé à impulsions ultra-courtes (7~500fs<<10ps, USPL), nommé ablation, intervient lorsque τ est très inférieure au temps caractéristique de diffusion de la chaleur des électrons au réseau atomique $(\tau_{e-ph} \sim 10 \text{ps})$ et lorsque la densité d'énergie du laser absorbée par la matière dépasse le seuil d'ablation (~0.5 J.cm⁻²), générant au point de focalisation un plasma à la température T_e . Il en découle une micro-explosion, un processus d'ablation par sublimation et la génération d'une onde de choc (discontinuité de température et pression) plus intense que pour les procédés LPL et SPL [8]. Si les procédés LPL ou SPL sont décrits à l'aide des lois classiques de la physique, le procédé USPL fait appel à des processus quantiques [10]. Toutes les variables utilisées dans cet article seront définies et décrites dans le glossaire (\S 6).

2.2. Source laser : Faisceau optique, focalisation et impulsion, transmittance et absorbsion de lumière

Les deux sources utilisées sont des lasers USPL de longueur d'onde $\lambda = 1030$ nm, de largeur temporelle $\tau = 500$ fs, limités en puissance moyenne à $P_w < 4$ W (basse fluence) et $P_w < 20$ W (haute fluence). Chaque source sera représentée par un faisceau gaussien, de largeur spatiale $w_0 = 2a$ (~10 à 50 µm), qui définie le flux thermique imposé sur le spot de focalisation de largeur spatiale $f_x w_0$ (Figure 2). Chaque impulsion a une puissance crête $\hat{P} = P_w/(f.\tau)$ où f est sa fréquence de répétition (1 kHz à 1 MHz). Ainsi, l'intensité maximale \hat{I} correspond à la densité surfacique de puissance crête: $\hat{I} = \hat{P}/(\pi(f_x r)^2)$. Sans perte de généralité, nous approximerons la distribution temporelle (1) en créneau ou fonction porte $\Pi((t - \tau/2)/(\tau))$ de durée égale à τ (faisceau de type « top-hat » [11]).

$$I(t) = \hat{I} \cdot \Pi((t - \tau/2)/(\tau))$$
(1)

2.2.1. Energie et Fluence par impulsion ou cumulées

L'énergie fournie par la source laser est définie soit par impulsion soit sous sa forme cumulée pour toutes les $N_p N =$ $N_p (f_x w_0) / (v \tau)$ impulsions incidentes au même endroit compte tenu de la vitesse de balayage v, à l'aide de (2) :

$$E_1 = \tau \hat{P} = \frac{P_W}{f} \text{ et } E_N = N_p N E_1 = N_p \frac{f_X w_0 P_W}{v \tau f}$$
(2)

On définit la fluence du laser par la densité surfacique d'énergie (3) notée F_1 pour une impulsion et F_N pour N_pN impulsions :

$$F_1 = \frac{E_1}{\pi (f_x a)^2} = \frac{P_W}{\pi (f_x a)^2 f} \text{ et } F_N = N_p N F_1 = N_p \frac{f_x w_0 P_W}{\pi (f_x a)^2 v \tau f}$$
(3)

 F_1 et F_N seront parmi les variables les plus importantes de réglage du procédé, et ce, quelle que soit la configuration laser.

2.2.2. Transmittance A

La transmittance A représente la part d'intensité lumineuse qui n'est pas réfléchie ou diffractée sur la surface. Ce coefficient doit prendre en compte l'état de surface, la rugosité et donc la profondeur des gravures effectuées (voir § 4.4). La valeur nominale initiale pour la transmittance correspond à celle d'un acier usuel $(@\lambda \sim 1030 \text{ nm}, i.e. \ A = A_0 \approx 0.35 \text{ s.u.})$

2.2.3. Absorption α

Le métal, opaque à cette longueur d'onde, absorbe toute la lumière transmise avec atténuation exponentielle de l'onde dans l'épaisseur. La valeur nominale initiale de $\alpha = \alpha_0$ est la part de la fluence seuil théorique d'ablation $e_{th} \approx 0.44$ J.cm⁻² responsable de la sublimation [10] et est donc donnée par (4) :

$$\alpha_0 = (\rho L_v)/e_{th} \tag{4}$$

 $\delta = \alpha^{-1}$ est la profondeur de pénétration de l'onde ($\delta_0 \approx$ 91 *nm*). La très forte intensité du laser ($\hat{l} > 1$ TW.cm⁻²) pourra induire un processus d'absorption non linéaire $\alpha(\hat{l})$ (§ 4.4).

2.2.4. Efficacité ou rendement d'ablation η

L'énergie transmise puis absorbée par le métal est à l'origine de l'ablation par sublimation. Cependant, les expériences ont révélé un ratio η entre énergie effective et énergie absorbée différent de la valeur nominale théorique $\eta_0 = 1$. Le processus peut s'accompagner d'effets thermiques et/ou mécaniques annexes pour de fortes fluences par rapport au seuil d'ablation (§ 4.4).

2.2.5. Source laser impulsionnelle effective

Pour le modèle EF, la source est représentée par une condition limite de flux thermique entrant $S = S_{ef}(t,r) = A.I(t,r)$ à travers le spot en surface (§ 3). Pour le modèle analytique moyen (§ 4), la source d'énergie S(t,z) [10] qui pénètre dans le matériau à l'instant t et à la profondeur z s'écrit (5) :

$$S = S_{an}(t, z) = A. \eta. \alpha. I(t). e^{-\alpha. z}$$
(5)

2.3. Principes physiques et thermiques de l'ablation

2.3.1. Fondements et équations du modèle

Les auteurs de [10, 12] identifient les phénomènes impliqués dans l'interaction laser-matière en régime ultracourt (pico, femto). <u>Phase 1</u>: Absorption de l'énergie par les électrons (Temps caractéristique: 10 fs) pour lesquels la température des électrons augmente mais pas celle de la matrice métallique. <u>Phase 2</u>: Diffusion de l'énergie des électrons aux phonons (Temps caractéristique: 10 ps) pour lesquels l'énergie thermique des électrons est transmise par couplage à la matrice. Les échelles de temps très différentes conduisent à adopter une vision semi-classique d'un métal [13] constitué de deux sous systèmes couplés : le gaz d'électrons *e* libres à la température T_{eh} qui baignent dans ce gaz d'électrons.

2.3.2. Statistique quantique des électrons et phonons

2.3.2.1 Chaleur spécifique des électrons et phonons

La chaleur spécifique à volume constant est la variation d'énergie interne pour une variation de température à densité électronique n_e pour les électrons et ionique n_{ph} pour les phonons constantes. Nous obtenons d'une part la chaleur spécifique des électrons C_{ve} (6) et d'autre part celle des phonons C_{vph} [14] qui doit correspondre à la valeur tabulée connue du métal FeSi (voir glossaire § 6). Pour des températures suffisamment basses (i.e. $T_e \ll T_F$), la chaleur spécifique des électrons peut s'écrire $C_{ve} = C'_{ve}$. T_e [14,15] avec

$$C_{\nu e}' = \frac{\pi^2 \, k_B^2 n_e}{2 \, E_F} \tag{6}$$

La théorie donne $1 < C'_{ve} \sim 80 < 250 \text{ J.m}^{-3} \text{ K}^{-2}$. Sachant que $T_e \sim 0.1 - 0.5T_F$, une calibration expérimentale est proposée au § 4.4.

2.3.2.2 Couplage électrons – phonons

Les collisions entre électrons et phonons induisent un échange de puissance proportionnelle à la différence de température des deux sous-systèmes. La constante de couplage e - ph notée G provient de la variation d'énergie résultante. Ce travail a été réalisé par [16, 17] menant à une expression approché pour G (7), normalement fonction de T_e [15,14] :

$$\frac{\pi^2}{6}m_e n_e V_s^2 = \frac{\pi^2 m_e n_e \varepsilon_c^0 \omega_{ph}^2}{6k_F^2} < G < \frac{m_e^2 n_e^2 (k_B T_D)^2 k_B}{16\pi^3 \hbar^5}$$
(7)

La théorie donne $0.1 \le G \le 1 \le 10$ TW.cm⁻³.K⁻¹. Une calibration non linéaire avec $\hat{I} \le 1-5$ TW.cm⁻² est proposée au § 4.4.

2.3.2.3 Conductivité thermique

La conductivité thermique des électrons est reliée à C_{ve} via le modèle de Drude (8) [14,15] où v_F est la vitesse de Fermi et v_e la fréquence de collisions des électrons.

$$\lambda_e \sim \frac{v_F^2}{2v_e} C_{ve} \tag{8}$$

La théorie donne $1T_e < \lambda_e < 100T_e$ W.m⁻¹.K⁻¹. Les termes de conduction $(\lambda_e, \lambda_{ph})$ sont très petits face aux inerties thermiques (C_{ve}, C_{vph}) et au couplage (G). Il seront négligés au § 4.

2.3.3. Modèle quantique à deux températures

Une fois intégrées les processus statistiques quantiques, l'évolution des températures des sous-systèmes électrons T_e et matrice T_{ph} est décrite [10, 15, 18] par un système d'équations aux dérivée partielles (EDP) couplées (9).

$$\begin{cases} C_{ve} \cdot \frac{\partial T_e}{\partial t} = \nabla [\lambda_e \cdot \nabla (T_e)] - G \cdot (T_e - T_{ph}) + S \\ C_{vph} \cdot \frac{\partial T_{ph}}{\partial t} = \nabla [\lambda_{ph} \cdot \nabla (T_{ph})] - G \cdot (T_{ph} - T_e) \end{cases}$$
(9)

2.3.4. Conditions, seuil et calcul de l'ablation

Le phénomène de sublimation est conditionné par $\tau \ll 10$ ps et un échauffement de la matrice supérieure à l'échauffement d'évaporation tel que $T_{ph} > T_v$. La quantité de matière ablatée est alors dérivée de (10) (avec $L_f \sim 0.0033.L_v$) :

$$C_{vph}(\Delta T_{ph} - \Delta T_v) = \rho. (L_v + L_f) \approx \rho. L_v$$
(10)

2.4. Paramètres d'impacts considérés - Discussion

On s'intéressera aux impacts physiques du procédé USPL déjà en partie étudiés dans la référence [8] : 1) La température maximale $T_{e,max}$ [K] des électrons du plasma, liée à la pression de l'onde de choc associée ; 2) La profondeur de la gravure p[µm] obtenue par ablation.

3. MODELISATION NUMERIQUE EF DU PROCEDE D'ABLATION

3.1. Géométrie et physique du modèle

Le point de focalisation du faisceau laser quasimonochromatique de type Gaussien étant circulaire de diamètre (10 à 50 um) très petit devant la tôle (>60 mm), le problème sera considéré axisymétrique 2D (Figure 1).

Figure 1: géométrie du problème d'intéraction lumière - matière étudié.

3.2. Formulation EF du modèle physique

3.2.1. Modèle thermique couplé à deux variables d'état

La modélisation EF est basée sur le même système d'équations aux dérivée partielles (EDP) couplées (9), où le terme source Sn'est présent que sous la forme d'une condition de flux thermique entrant au niveau de l'interface (§ 3.3.2).

3.2.2. Thermodynamique – changement d'état

En régime d'ablation (§ 2.3.4), la matière dont la température dépasse T_{ν} est sublimée instantanément sans passer par l'état liquide. Le phénomène est modélisé en EF en considérant un flux $\Phi_{vap/abl}$ (11) de vaporisation ou d'ablation :

 $\Phi_{vap/abl} = v_{vap/abl}\rho(L_v + L_f) \tag{11}$

où $v_{vap/abl}$ est la vitesse des particules de métal sublimées.

3.3. Conditions aux limites

Le problème compte 5 conditions aux limites (Figure 2) :

- Une condition d'axisymétrie sur l'axe de révolution ;
- Un flux thermique entrant imposé par le faisceau gaussien du laser sur la face supérieure (§ 3.3.1) ;
- Un flux de matière sublimée sur la face supérieure : $\Phi_{vap} = h \cdot (T_{ph} - T_v) \operatorname{ssi} T_{ph} \ge T_v (\S 3.3.2);$
- Condition d'isolation ailleurs $-n \cdot (-\lambda_{e-ph} \nabla T) = 0$;
- Une condition de flux source Φ_{abl} d'ablation en volume ssi $T_{ph} \ge T_{v}$ (§ 3.3.3).

Figure 2: Conditions aux limites du domain d'étude

3.3.1. Source laser : faisceau optique gaussien

La forme de la source est une gaussienne (12) qui définit le flux thermique imposé au centre du modèle 2D-axi-symétrique:

$$-\boldsymbol{n} \cdot (-\lambda_e \nabla T) = \cdot \frac{4A_0}{\pi (f_x \cdot w_0)^2} \cdot e^{-4.r^2/(f_x \cdot w_0)^2}$$
(12)

3.3.2. Conditions surfacique d'ablation de matière

Le flux de matière sublimée est représenté par un flux convectif de surface $\Phi_{vap} \ge 0$ (13) avec h_{surf} un coefficient de convection purement numérique tel que la température à l'interface ne dépasse jamais la température d'évaporation T_{vap} :

$$\Phi_{vap} = h_{surf} \cdot (T_{ph} - T_v) \operatorname{ssi} T_{ph} \ge T_v$$
(13)

3.3.3. Volume d'ablation et zone affectée

Le phénomène d'ablation en volume est modélisé en considérant un flux source d'ablation $\Phi_{abl} \leq 0$ (14) obtenu par intégration en volume d'une source thermique de type convective $h_{vol}(T_v - T_{ph})$ ssi $T_{ph} \geq T_v$ et divisée par la surface libre du cratère S_{crater} , avec h_{vol} également un coefficient de convection purement numérique très grand imposant $T_{ph} = T_v$ si $T_{ph} \geq T_v$.

$$\Phi_{abl} = v_{abl} \cdot \rho(L_v + L_f) = \frac{\int_{vol} h_{vol^*}(T_v - T_{ph})}{s_{crater}}$$
(14)

3.4. Maillage et remaillage

le problème est maillé avec environ 1 300 éléments quadrilatères (15000 Degrés De Liberté), affinés dans la zone d'intérêt, i.e. la zone du cratère (Figure 1). L'ablation de matière est simulée grâce à une déformation de l'interface métal – air et du maillage correspondant [19] avec une vitesse calculée v_{mesh} (15) à partir des flux de vaporisation et d'ablation définis ci-avant :

$$\boldsymbol{v_{mesh}} \cdot \boldsymbol{n} = \boldsymbol{v_{vap}} - \boldsymbol{v_{abl}} = \frac{+\phi_{vap} - \phi_{abl}}{\rho(L_v + L_f)}$$
(15)

avec **n** le vecteur normal à la surface ($v_{vap} > 0, v_{abl} < 0$).

3.5. Resultat des Simulations

3.5.1. Propriétés des matériaux et calibration du modèle

L'acier test étudié ici est un FeSi GO conventionnel basse densité $\rho = 7380 \text{ kg.m}^{-3}$ à forte teneur en silicium, d'épaisseur $\zeta = 0.23 \text{ mm}$ (revêtement de 3 µm) nommé 23MXX. Les propriétés thermodynamiques et thermiques du métal sont : $T_f =$ 1535 K et $T_v = 2861 \text{ K}$ les températures de fusion et de vaporisation; $L_f = 180 \text{ kJ/kg}$ et $L_v = 6400 \text{ kJ/kg} \gg L_v$ l'enthalpie libre de fusion et de vaporisation; $C_{mph} =$ 460 J/kg/K; $\lambda_{ph} = 25 \text{ W/m/K}$. En toute rigueur, le modèle nécessite une calibration des coefficients A_0 , h et h_{vol} qui règlent la vitesse et le rendement d'ablation. Les propriétés thermiques C_{ve} et G doivent aussi être calibrées [19] pour régler T_e . Pour le cas test numérique, les électrons ont les propriétés suivantes : $C'_{ve} = 100 \text{ J.m}^{-3}.\text{K}^{-2}$; $\lambda_e = 4.e^5 \text{ W.m}^{-1}.\text{K}^{-1}$ et G =0.1 TW.cm}^{-3}.\text{K}^{-1}. Enfin, les coefficients d'échange seront donnés par $h = 1.e^{13} W/m/K$ et $h_{vol} = 1.e^{20} W/m^3/K$.

3.5.2. Simulation pour une impulsion

L'unique configuration laser testé dans cette partie est la suivante : P_w =2.3W, f_x =1.2, w_0 =50 µm \Rightarrow F_1 = 11,71 J.cm⁻².

3.5.2.1 Simulation des températures lors d'une impulsion

Les températures T_e et T_{ph} simulées sont tracées Figure 3 ; où il est observé un 1^{er} maximum $T_{e,max} \sim 60\ 000$ K à l'instant $t = \tau$, *i.e.* à la fin de l'impulsion [20]. La température T_{ph} ne croît à son tour que bien après l'impulsion pour atteindre la température d'évaporation T_v entre $\tau_{e-ph}/5 \sim 2$ ps et $10.\tau_{e-ph} \sim 100$ ps.

3.5.2.2 Volume et Profondeur d'ablation d'une impulsion

En parallèle des températures calculées concordantes entre les deux méthodes (numérique et analytique), les profondeurs d'ablation d'une impulsion seule dp_1 calculées le sont également (Figure 4) et en accord avec l'estimation à partir des mesures (voir Figure 5 avec 100 impulsions).

3.5.3. Extrapolation pour N impulsions

3.5.3.1 Hypothèse athermique et fréquence de répétition

Les résultats obtenues Figure 3 montrent que tous les phénomènes transitoires prennent fin au-delà d'une durée 35. $\tau_{e-ph} \sim 350$ ps (temps de relaxation de la matrice). La fréquence de répétition des impulsions étant fixée à f = 10 kHz, la période des impulsions est de $T_L = 100 \ \mu s >> 100 \tau_{ph}$.

Figure 3: Températures simulées en EF et calculée selon un modèle moyen (voir § 3 et (17), (18) du § 4) au centre du cratère pour le premier matériau test et une impulsion en fonction du temps en échelle logarithmique.

Figure 4: Simulation montrant T_e et T_{ph} et la gravure pour une impulsion.

3.5.3.2 Volume et Profondeur d'ablation de N impulsions Il est donc raisonnable de considérer les impulsions successives indépendantes et de déterminer la profondeur totale p de l'ablation de N impulsions par : $p = Ndp_1$ (Figure 5).

Figure 5: Profondeur du cratère simulée en EF, calculée avec le modèle analytique (§ 3 et (22), (23) du § 4) et mesurée pour $F_1 = 11,71$ J.cm².

3.6. Confrontations aux mesures, discussion et perspectives La configuration laser test à fluence constante $F_1 = 11,71$ J.cm² est celle d'une impulsion avec f=10kHz et une vitesse de balayage variable v=5, 10, 25, 50, 100, 150, 200, 250 mm.s⁻¹.

Un nombre croissant d'impulsions s'accumulent en chaque point de la gravure. Si les simulations EF des températures et de la gravure semblent correctes, les temps de calibration et de calcul sont déraisonnables. Ajouter des coefficients non linéaires pour la transmittance A, l'absorption α et le rendement η n'est pas envisagé. La vraie profondeur de gravure, seule grandeur vérifiable par les mesures, ne peut être précise qu'au prix d'une calibration de paramètres fastidieuse qui aboutit par ailleurs à des valeurs de C'_{ve} très différentes selon que la conductivité λ_e est prise en compte ou non. Nous choisirons une résolution analytique équivalente du modèle à deux températures.

4. MODELE ANALYTIQUE MOYEN EQUIVALENT

4.1. Equations thermiques avec approximations

Avec la source S(5) et en négligeant les termes de conduction, le système d'équations (9) devient un système découplé (16) après dérivation de la première ligne et combinaisons de lignes :

$$\begin{cases} \tau_{e-ph} \cdot \frac{\partial}{\partial t} \Delta T_e^2 + \Delta T_e^2 = 2 \frac{S}{C_{ve}'} t \\ \tau_{e-ph} \cdot \frac{\partial}{\partial t} \Delta T_{ph} + \Delta T_{ph} = \Delta T_e \end{cases}$$
(16)

Avec $\tau_{e-ph} = C_{vph}/G$, $\Delta T_{e-ph} = T_{e-ph} - T_0$, $\Delta T_e^2 = T_e^2 - T_0^2$ où T_0 est la température ambiante.

4.2. Modélisation d'une impulsion

4.2.1. *Résolution des équations du modèle*

Le système d'équations (16) a les solutions suivantes :

$$\begin{cases} 1.2.1.1 \quad Pendant \ l'impulsion \ (0 \le t \le \tau) \\ T_e = \sqrt{T_0^2 + 2\frac{\hat{s}\tau}{c_{ve}'} \left(\frac{t - \tau_{e-ph}}{\tau} + \frac{\tau_{e-ph}}{\tau} e^{-t/\tau_{e-ph}}\right)} \\ T_{ph} = T_0 + \Delta T_e(\tau) \left(\frac{t - \tau_{e-ph}}{\tau} + \frac{\tau_{e-ph}}{\tau} e^{-t/\tau_{e-ph}}\right) \end{cases}$$
(17)

4.2.1.2 Après l'impulsion ($t \ge \tau$)

$$\begin{cases} T_e = \sqrt{T_0^2 + \Delta T_e^2(\tau)} e^{\frac{-(t-\tau)}{\tau_e - ph}} \approx T_e + \Delta T_e(\tau) e^{\frac{-(t-\tau)}{2 \cdot \tau_e - ph}} \\ T_{ph} \approx T_0 + \left(\Delta T_{ph}(\tau) + 2\Delta T_e(\tau) \left(e^{\frac{(t-\tau)}{2 \cdot \tau_e - ph}} - 1 \right) \right) e^{\frac{-(t-\tau)}{\tau_e - ph}} \end{cases}$$

4.2.1.3 Températures maximales au centre du cratère Le maximum de T_e (19) est obtenu pour $t = t_{e,max} = \tau$:

$$T_{e,max} = T_e(\tau) \tag{19}$$

Le max. de
$$T_{ph}$$
 (20) pour $e^{+\frac{(t_{ph,max}-\tau)}{\tau_{e-ph}}} = 2 - \tau/(2, \tau_{e-ph})$:

$$T_{ph,max} = T_0 + T_e(\tau) / \left(2 - \frac{\tau}{2, \tau_{e-ph}} \right)$$
(20)

4.2.2. Equation estimant l'ablation de matière

4.2.2.1 Seuil, palier et rendement d'ablation

La condition d'ablation donnée par (10) permet de définir la fluence seuil F_{th} (21) [10] calculée pour $T_{ph,max}$ correspondant à la fluence $A\eta F_1$ requise pour l'ablation à partir de la surface :

$$F_{th} = \left(\left(\left(\rho.L_{\nu} + C_{\nu ph} \Delta T_{\nu} \right)^2 \left(e^{+\frac{\left(t_{ph,max} - \tau\right)}{\tau_{e-ph}}} \right)^2 \right) / \left(\frac{\alpha C_{\nu ph}}{c_{\nu e}'} \tau G \right) \right)$$
(21)

4.2.2.2 Profondeur et volume d'ablation

On en déduit la profondeur d'ablation dp_1 pour une impulsion :

$$dp_1 = \frac{1}{\alpha} ln \left(\frac{A \cdot \eta F_1}{F_{th}} \right) \tag{22}$$

4.2.3. Comparaisons de modèles pour 1 impulsion

L'acier étudié est le 23MXX avec des propriétés linéaires simplifiées pour le cas test : $A = A_0 = 0.35$, $\alpha^{-1} = \alpha_0^{-1} = 30 \text{ nm}$, $C'_{ve} = 5.6 \text{ J.m}^{-3}\text{.K}^{-2}$, $G = 0.1 \text{ TW.cm}^{-3}\text{.K}^{-1}$ et $\eta = 1$. Les températures T_e et T_{ph} calculées sont tracées Figure 3 ; avec les mêmes observations ($T_{e,max} \sim 60\ 000 \text{ K}$ à l'instant $t = \tau$), mais T_{ph} n'est plus limitée par T_v où $T_{ph} > T_v$ pendant l'intervalle de temps de l'ablation ($T_{ph,max} \sim 35^{\circ}000 \text{ K}$ à l'instant où $T_{ph} = T_e$ et $T_{ph} > T_v$ entre $\tau_{e-ph}/5 \sim 2$ ps et $25.\tau_{e-ph} \sim 250$ ps).

4.3. Modélisation de l'ablation pour N impulsions

Pour toutes les fréquences de répétition $f \ge 10 - 1000$ kHz, la période des impulsions est de $T_L = 1 - 100 \ \mu s >> 100 \tau_{ph}$. Bien qu'il n'y ait aucun recouvrement temporel entre deux impulsions successives (22) (voir § précédent), la profondeur p (23) de la gravure sera tout de même calculée de manière générale à l'aide d'une équation itérative incluant potentiellement des coefficients non linéaires : $A(p,F_I)$, $\alpha(\hat{I})$, $G(\hat{I})$ et $\eta(F_I)$.

$$p(N_pN) = \sum_{i=1}^{N_pN} \frac{1}{\alpha(\hat{i})} ln\left(\frac{A(p(\hat{i}),F_1).\eta(F_1).F_1}{F_{th}(C'_{ve},G(\hat{i}),\alpha(\hat{i}))}\right)$$
(23)

L'application de la formule (23) avec des coefficients constants [21] permet, pour une configuration laser à relativement basse fluence, de calculer convenablement la profondeur de gravure obtenue après plusieurs nombres d'impulsions (voir Figure 5). Cependant les paramètres fixes précédents deviennent non consistants si on change de configuration laser.

4.4. Calibration du modèle et synthèse avec les mesures

L'acier étudié désormais est un FeSi GO conventionnel haute densité $\rho = 7650$ kg.m⁻³ à faible teneur en Si, d'épaisseur $\zeta = 0.27$ mm (revêtement de 2 µm) nommé R120-27. Les résultats sur un très grand nombre de « tirs » laser (variation de tous les paramètres: $P_w = 1 - 20$ W, v = 1 - 100 mm.s⁻¹, $f_x = 1$, $w_0 = 25 - 50$ µm, f = 10 - 100 kHz $\Rightarrow F_1 = 1 - 30$ J.cm⁻² et $F_N = 250 - 2500$ J.cm⁻²) nous conduit à proposer les calibrations des paramètres constants ($C'_{ve}=9.03$ J.m⁻³.K⁻²) et variables ((24) pour G et α , (25) pour A, (26) pour η et Figure 6). La forte intensité du laser, capable d'induire un plasma, exacerbe des effets non-linéaires (24) pour α et pour G qui diminue et augmente en fonction de \hat{I} ($\chi = 2.48e^{-36}$ A⁻².)

$$\begin{cases} G = G_0 \left(1 + \chi(\hat{l})^2 \right) \\ \alpha = \alpha_0 / \left(1 + \chi(\hat{l})^2 \right) \end{cases}$$
(24)

L'expérience en micro-usinage classique permet de définir une limite pratique pour le facteur de forme des cratères au-delà d'une profondeur $p \ge f_x w_0/2$. Cette limitation peut se traduire pour chaque impulsion par une transmittance A (25) possédant un palier à 0.35 puis une décroissance au-delà d'une profondeur limite selon w_0 et la fluence F_1 ($\beta = 180$ s.u. et $p_{lim} \sim 19 \mu$ m).

$$A = A_0 \left(1 - erf\left(\beta \frac{p_{max} - p_{lim}}{p_{lim}}\right) \right)$$
(25)

On observe enfin que le rendement d'ablation η (26) peut décroître pour des fluences $F_1 \ge F_{th}$ ($\kappa \sim 0.94$). Deux régimes d'ablation sont identifiés: l'un pour les faibles fluences ($F_{lim} \sim 6 \text{ J.cm}^{-2}$), l'autre pour les plus fortes fluences ($F_{lim} \sim 12 \text{ J.cm}^{-2}$).

$$\eta = 1 - erf\left(\kappa \frac{F_1 - F_{lim}}{F_{lim}}\right)$$
(26)

Figure 6: Résultats des calibrations expérimentales des paramètres inconnus du modèles d'ablation : $G_{e,ph}(F_l)$, $\alpha(F_l)$, $A(p,F_l)$ et $\eta(F_l)$, selon des lois empiriques permettant d'estimer au mieux toutes les mesures (Figure 9)

Figure 7: Profondeur du cratère calculée et mesurée en fonction de la fluence d'impulsion utilisée à fluence cumulée constante, faible et forte.

Figure 8: Profondeur du cratère calculée et mesurée en fonction de la fluence cumulée reçue à fluence d'impulsion constante, faible et forte.

Le résultat (25) a été calibré avec F_1 croissante (variation de P_w et f); mais F_N constante (Figure 7). Le résultat (26) a été calibré avec F_N croissante (variation de v); mais F_1 constante (Figure 8). Plus de 130 configurations laser ont été calculées grâce au modèle. La Figure 9 présente une synthèse des corrélations observées entre mesures confocales et calculs théoriques de p.

5. CONCLUSION ET PERSPECTIVES

La résolution analytique approchée, beaucoup plus simple et moins coûteuse en temps, est plus adaptée à l'optimisation du procédé USPL d'ablation pour les aciers électriques. Elle fournie les fluences F_1 et F_N conduisant aux impacts physiques recherchés (température $T_{e,max}$ et profondeur p). Un effet de saturation, qui écrête p et peut provoquer de la refusion – re déposition (h non présentée), est révélé pour F_1 et p supérieures à des limites identifiées. L'utilisation d'une fluence F_1 majorée peut aider l'induction par le laser d'une onde de choc (LISW) favorable [22], générée par le plasma à une pression liée à $T_{e,max}$ et \hat{P} . Les mécanismes expliquant les impacts $T_{e,max}$ et p sur le magnétisme sont pour partie traités dans [23]. La physique relative à l'effet LISW fera l'objet d'une autre publication.

Figure 9: graphe de corrélation entre profondeur de cratère calculée et profondeur mesurée à l'aide d'un microscope confocal.

6. GLOSSAIRE

Tableau 1. Paramètres du laser et propriétés optiques du métal.

Nom	Valeur	Unité	Description	
τ	500	fs	Durée d'une impulsion laser	
N_p	1 ou 2	s.u.	Nombre de passes du faisceau laser	
P_w	0.5 - 20	W	Puissance moyenne d la source laser	
v	1-10	mm/s	Vitesse de balayage du faisceau laser	
f	1 - 100	kHz	Fréquence de répétition	
w_0	25 - 50	μm	Largeur du spot laser (au waist)	
f_x	1 – 1.5	s.u.	Coefficient de focalisation	
N	-	s.u.	Nombre d'impulsions reçues en un point	
E_{I}	-	μJ	Energie par impulsion laser	
F_{I}	-	J.cm ⁻²	Fluence par impulsion laser	
E_N	-	mJ	Energie cumulée en chaque point	
F_N	-	J.cm ⁻²	Densité d'énergie ou Fluence cumulée	
Ŷ	-	MW	Puissance crête d'une impulsion	
Î	-	TW.cm ⁻²	Intensité laser d'une impulsion	
e_{th}	0.5	J.cm ⁻²	Fluence seuil d'ablation nominale	
F_{th}	-	J.cm ⁻²	Fluence seuil d'ablation recalculée	
A_0	0.35	s.u.	Transmittance optique nominale	
A	$A(p,F_l)$	s.u.	Transmittance optique atténuée	
p_{lim}	5-20	μm	Profondeur palier d'ablation	
β	180	s.u.	Paramètre d'attenuation de A	
α_0	0.011	nm ⁻¹	Coefficient d'absorption nominal	
α	$\alpha(\hat{l})$	nm ⁻¹	Cofficient d'absorption non linéaire	
χ	2.48e-36	A ⁻²	Coefficient non linéaire optique	

Tableau 2. Propriétés thermiqu	es et thermogynamiques c	le l'acier électrique
--------------------------------	--------------------------	-----------------------

Nom	Valeur	Unité	Description
T_f	1535	К	Température de fusion du métal FeSi
T_{ν}	2860	К	Température de vaporisation du métal
L_{f}	180	kJ.kg ⁻¹	Chaleur latente de fusion $\ll L_v$
L_{ν}	6400	kJ.kg ⁻¹	Chaleur latente de vaporisation
ρ	7.3-7.7	g.cm ⁻³	Masse volumique du métal FeSi
λ_{ph}	25	W.m ⁻¹ .K ⁻¹	Conductivité thermique du métal
C_{mph}	460	J.kg ⁻¹ .K ⁻¹	Chaleur spécifique massique du métal
C_{vph}	$\rho.C_{mph}$	J.m ⁻³ .K ⁻¹	Chaleur spéc. volumique du métal
λε	1e ⁴ -1e ⁶	W.m ⁻¹ .K ⁻¹	Conductivité du gaz d'électrons
C_{me}	C_{ve}/ρ	J.kg ⁻¹ .K ⁻¹	Chaleur spéc. massique des électrons
C_{ve}	C _{ve} 'Te	J.m ⁻³ .K ⁻¹	Chaleur spéc. volumique des e
h_s	1e ¹³	W.m ⁻² .K ⁻¹	Echange pour ablation de surface
h_v	1e ²⁰	W.m ⁻² .K ⁻¹	Echange pour ablation de volume
$v_{vap/abl}$	-	m.s ⁻¹	Vitesse des particules sublimées
Cve	1-10 ³	J.m ⁻³ .K ⁻²	Coefficient de chaleur spécifique
G_{θ}	0.1-10	TW.cm ⁻³ .K ⁻¹	Coefficient de couplage e-ph nominal

G	$G(\hat{I})$	TW.cm ⁻³ .K ⁻¹	Coef. de couplage électron-phonons
F_{lim}	6-20	J.cm ⁻²	Fluence palier de rendement
к	0.939	s.u.	Coef. de dégradation de rendement
η	$\eta(F_l)$	s.u.	Rendement d'ablation

Tableau 3. données quantiques et constantes fondamentales.

Nom	Valeur	Unité	Description
	20	2	
n _e	1.69e ²⁹	m ⁻³	Densité volumique d'électrons libres
E_F	11.2	eV	Energe de Fermi d'occupation des e-
k_F	1.71	Å-1	Vecteur d'onde de Fermi
T_F	129°860	K	Température de Fermi
v_F	1985	km.s ⁻¹	Vitesse de Fermi des électrons
Ve	41	THz	Fréquence de collisions des électrons
\mathcal{E}_{c}^{0}	1.09	s.u.	Permittivité rel. des électrons de valence
ω_{ph}	8.58e ¹³	rad.s ⁻¹	Fréquence Plasma des ions métalliques
Vph	5960	m.s ⁻¹	Vitesse du son, des phonons
k _D	1.91	Å-1	Vecteur d'onde de Debye
T_D	464	K	Température de Debye
h	6.63.e ⁻³⁴	m ² .kg.s ⁻¹	Constante de Planck
ħ	h/(2π)	m ² .kg.s ⁻¹	Constante de Planck barre
k_B	1.38.e ⁻²³	J.kg ⁻¹	Constante de Boltzmann
me	9.1.e ⁻³¹	kg	Masse d'un électrons
е	1.6.e ⁻¹⁹	C	Charge d'un électron
\mathcal{E}_0	8.85.e ⁻¹²	F.m ⁻¹	Permittivité diélectrique
8	$6.02.e^{23}$	s.u.	Nombre d'Avogadro

Tableau 4. Variable d'état à calculer.

Nom	Valeur	Unité	Description
р	-	μm	Profondeur du cratère issue de l'ablation
T _e	-	K	Température du gaz d'électrons
T_{ph}	-	K	Température des phonons, ie du métal

7. REMERCIEMENTS

Nous remercions la commission européenne qui a partiellement financé ces travaux (GRANT NO. 766437) et à Elise Chevalier (SIMTEC) pour la mise en place du modèle numérique.

8. REFERENCES BIBLIOGRAPHIQUES

- [1] P. Beckley et al., J. Mat. Eng. Perf., vol. 3 (2), p. 209-213, 1994.
- [2] K. Sato et al., *JMMM*, vol. 112, no 1-3, p. 183-185, july. 1992.
- [3] P. Beckley et al., J. Appl. Phys., vol. 57 (8), p. 4212-4213, 1985.
- [4] S. V. Ponnaluri, J. Mat. Proc. T., vol. 112 (2-3), p. 199-204, 2001.
- [5] Y. Huang et al., Int. J. Adv. Manu. Tech., vol. 70, p. 1-9, 2014.
- [6] I. Petryshynets et al., AIP Adv., vol. 8, no 4, p. 047604, april 2018.
- [7] J. Dupuy et al., SPIE LASE conf., USA (2019), Proc. vol. 10911.
- [8] M. Nesser et al., IEEE Trans. on Mag., vol. 58 (8), p. 1-5, 2022.
- [9] M. Nesser et al., *JMMM*, vol. 504, 15 June 2020, 166696.
- [10] A B. N. Chichkov et al., Ap. Ph. M. S. Proc., vol. 63 (2), p. 109-115, 1996.
- [11] S. Rung, *Micromachines*, vol. 5, p. 943-953; 2014.
- [12] A. Tatra, *Physics Procedia*, vol. 83, p. 1339-1346, 2016.
- [13] Ashcroft & Mermin, Solid State Physics, Rinehart & Winston, N-Y, 1976.
- [14] S. Coudert, PhD thesis, ED SPI, Université de Bordeaux, France, 2020.
- [15] Z. Lin et al., Physical Review B, vol. 77, , 2008.
- [16] M. I. Kaganov et al., J. Exp. Th.. Phys., vol. 4, 173, 1957.
- [17] S. I. Anisimov et al., Sov. Phys. JETP, vol. 39, p. 375, 1974.
- [18] J. Chen et al., Int. J. Heat Mass Transfer, vol. 49, p. 307–316, 2006.
- [19] E.C. Chevallier et al., 24th-26th COMSOL conf. in Cambridge, 2019.
- [20] X. Y. Wang, *Physical Review B*, volume 50, number 11, 1994.
- [21] K.-H. Leitz, *Physics Procedia*, vol. 12, part B, p. 230-238, 2011.
- [22] P. Peyre et al., Opt. Quantum Electron., vol. 27, p. 1213-1229, 1995.
- [23] O. Maloberti et al., SMM '25th conference, poster the 5th of may 2022.

pating