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1 LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France 2 Thermo Fisher Scientific, Bordeaux, France

Motivation
Image segmentation is one of the oldest problems in computer vision. However, objects of interest do not
all appear at the same scale and may be nested within each other, making segmentation an ill-posed
problem.

Image Hierarchy of partitions Hierarchical representation Regions

▶ A hierarchy is a series of nested partitions of a (image) domain:
• a series (P0, . . . ,Pℓ) of partitions of a set V such that for any i in {0, . . . , ℓ − 1}, each element of Pi is included in an

element of Pi+1.

The Binary Partition Hierarchy and the Minimum Spanning Tree are key structures for hierarchical
analysis: (hierarchical) watersheds, constrained connectivity, quasi-flat zones, ultrametric opening, etc.

Problem
▶ When the image exceeds a certain size:

• the data cannot fit in the main memory;
• the usual sequential algorithm fails to produce a result.

▶ Examples: biological, astronomical, satellite images, etc.

Solution: Compute an Out-of-Core Structure
▶ Produce the same result as the usual algorithms.
▶ While minimizing the size of the data structures that are simultaneously needed at the different

computation steps.

Select, Join and Insert - Causal Pass

In order to calculate the distribution of a binary partition hierarchy, we will use the three operations
introduced in [1] :

Our method is applied on a causal partition of V ,
that is, for k ∈ N, the sequence (S0, . . . , Sk) such
that for each t in 0, · · · , k},
St = {(i, j) ∈ V | t × w

k ≤ i < (t + 1) × w
k . Each

element of this partition is called a tile. Let us
consider a bi-partition of the space (S0, S1).
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First, for each region of the partition (S0, S1), we
compute the binary partition hierarchys locally to
obtain the partial hierarchies X and Y.
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For each hierarchy, extract the border trees.
That is to say, for X, the set of regions containing
an element of S0 neighbor to one of S1 noted
𝛾•S1(S0) (respectively 𝛾

•
S0
(S1) for Y). We thus obtain

the edge trees X′ = select (S0, S1) and
Y′ = select (S1, S0).
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We can then join the information of the two edge
trees thanks to the common neighborhood of
the supports of X and Y, the set of edges having
one end in S0 and the other in S1, in order to
obtain M = join (X′, Y′).
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In order to correct Y, we need to insert the
information of M in it through
M′ = select

(
𝛾•S0(S1),M

)
. We then obtain the

local hierarchy enriched by the global
information B = insert (M′,Y).

Once the causal pass is completed, the last partial hierarchy considered, Y, has benefited from the entire
global context and is therefore "correct" with B = select (H , S1). It only remains to retro propagate the
information to correct the previous partial hierarchy, X.
[1] Jean Cousty, Benjamin Perret, Harold Phelippeau, Stela Carneiro, Pierre Kamlay, and Lilian Buzer. An algebraic framework for out-of-core

hierarchical segmentation algorithms In DGMM, pages 378–390, 2021.

Binary Partition Hierarchy and Minimum
Spanning Tree

The binary partition hierarchy
is the hierarchy obtained
during the execution of the
Kruskal algorithm allowing to
obtain a minimum spanning
tree A of a given G = (V , E,w).
Each leaf is associated to a
vertex of A and each internal
node is an edge of A.
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In black a binary partition tree
and in bold red its associated
minimum spanning tree.

Formal Problem Statement

Given: 6
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▶ Compute the distribution of the binary partition hierarchyH
of (G, ≺) over a causal partition of its ground set.
• Without computeH .
• Where each computation step requires a limited amount of memory.

A High Level Calculus
Data: A graph (V , E), a total order ≺ over E, and a causal

partition (S0, . . . , Sk) of V .
Result: {B↓

0, . . . ,B
↓
k}: a distribution of the binary partition hierarchy B≺

V
over {S0, . . . , Sk}.

1 B↑
0 := B≺

S0
// Call the algorithm PlayingWithKruskal [2]

2 foreach i from 1 to k do // Causal pass

3 Call PlayingWithKruskal to compute B≺
Si

4 M↑
i := join

(
select

(
𝛾•Si (Si−1),B

↑
i−1

)
, select

(
𝛾•Si−1(Si),B

≺
Si

))
5 B↑

i := insert (select
(
𝛾•Si−1(Si),M

↑
i

)
,B≺

Si
)

6 end
7 B↓

k := B↑
k;M

↓
k := M↑

k
8 foreach i from k − 1 to 0 do // Anticausal pass

9 B↓
i := insert (select

(
𝛾•Si+1(Si),M

↓
i+1

)
,B↑

i )

10 if i > 0 thenM↓
i := insert (select

(
𝛾•Si−1(Si),B

↓
i

)
,M↑

i )
11 end

▶ O(k) operations select, join and insert, where k is the number of
regions in which the data is split.

[2] Laurent Najman, Jean Cousty, and Benjamin Perret. Playing with Kruskal: algorithms for
morphological trees in edge-weighted graphs. In ISMM, pages 135–146, 2013.

Efficient Implementations

The high-level calculation is based on three operations for which
we have given efficient implementations [3].
▶ Select and Insert have linear complexity with respect to the

number of regions in the input hierarchies.
▶ The complexity of Join is log-linear because it is dominated by a

sorting on the edges of the common neighborhood.
[3] Josselin Lefèvre, Jean Cousty, Benjamin Perret, and Harold Phelippeau. Join, select, and

insert: Efficient out-of-core algorithms for hierarchical segmentation trees. In DGMM, pages
274–286, 2022.

Memory Consumption

▶ Experimentation with a
constant tile size on a
workstation with 32GB
RAM.

▶ In-core algorithm
cannot produce a result
for images exceeding
560 MB.

▶ Execution time for 10
tiles (200 MP): 38.3s for
in-core and 83.8s for
out-of-core
computation (including
20% disk access).
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Future Works
Enrich this out-of-core framework to compute attributes,
connected filters, (hierarchical) watersheds and state of the art
interactive segmentation framework.

2023


