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Abstract

Water sharing rules are a key component of water conservation. We evaluate an

innovative scheme where water is shared between farmers according to physical irriga-

tion efficiency. Measuring efficiency requires information exchange between farmers

and the water manager, as well as a digital architecture to share these data. Relying

on a Discrete Choice Experiment with 202 French farmers, we analyse their prefer-

ences for this architecture. We find that around half of them are likely to join such

a scheme where information is collected and used by the manager to allocate water.

But most farmers are reluctant to share automatically through a smart meter their

water consumption data. However, they are less reluctant to the transmission of

information on cropping patterns, if they remain in charge (as opposed to automatic

transmission from satellite observations or link with administrative data).
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1 Introduction

Climate change, population growth, and economic development increase competition for

water and exacerbate water scarcity and drought-related losses (IPCC 2023), resulting

in the identification of water crises as the greatest global societal threat (WEF 2019).

Farming currently accounts for 70% of freshwater use worldwide (FAO 2019) and often

constitutes the least productive use (Damania et al. 2017). Securing food production

while making more water available to alternative uses requires efficiency improvements

in agricultural water management. This entails increasing allocative efficiency through

water sharing rules between competing uses, and increasing physical irrigation efficiency

through water conservation technologies (WCTs) (Pérez-Blanco, Hrast-Essenfelder, and

Perry 2020).

Reviewing available evidence on the impact of WCTs on water conservation, Pérez-

Blanco et al. (2020) show that WCTs can worsen rather than alleviate water scarcity.

For water conservation to occur, there must be (i) either a reduction in acreage, a shift

toward less water-intensive crops, or an intentional reduction of crop water consumption

through regulated deficit irrigation (RDI), (ii) a combination of WCTs and water sharing

rules. We focus on these last two levers and test the acceptability by farmers of water

sharing rules accounting for physical irrigation efficiency and, in particular, the use of

RDI as an allocation key.

Regulated deficit irrigation (RDI) has been identified as one of the key water-saving

technologies in agriculture (Chai et al. 2016). RDI is generally defined as an irrigation

practice whereby ”a crop is irrigated with an amount of water below the full requirement

for optimal plant growth; this is to reduce the amount of water used for irrigating crops,

improve the response of plants to the certain degree of water deficit, and reduce irrigation

amounts or increase the crop’s water use efficiency” (Chai et al. 2016). By limiting water

applications to drought-sensitive growth stages, this practice aims to maximise water

productivity and to stabilise – rather than maximise – yields. RDI has been widely

investigated as a valuable and sustainable production strategy in dry regions (Geerts and

Raes 2009), but its use in less water-scarce area will develop since soil water content will

also decline.

Measuring the efficiency in conducting RDI requires information exchange between

farmers and water manager: in particular, each farmer water consumption and its crop-

ping pattern to calculate the theoretical water needs for optimal plant growth. It also

requires a digital architecture to share these data. We analyse farmers’ preferences for
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this architecture, and in particular whether farmers agree to share personal data, if they

are used to allocate irrigation water in a more sustainable way. A few studies have fo-

cused on the acceptability of water saving technologies (Wang et al. 2017; Zekri et al.

2017; Chabé-Ferret et al. 2019; Ouvrard et al. 2023), but none combine water saving

technologies and water allocation rules. It is also the first evaluation of a water allocation

scheme where water is shared between farmers according to irrigation efficiency, and in

particular the adoption of RDI.

We first model farmers’ water use decisions in a two-periods framework: a normal

period with no water restrictions and a dry period where water is generally banned.

Farmers who improve their irrigation efficiency can benefit from derogatory access to

water in a dry period. We analyse conditions under which farmers are more likely to join

such a scheme. Since preferences towards personal data sharing cannot be captured in this

model, we further rely on a Discrete Choice Experiment (DCE) to capture behavioural

drivers of decisions. Our methodological contribution is twofold: (i) we couple Q method

and DCE to select attributes and triangulate the results; (ii) There is no price mechanism

to foster water use reduction. Rather, we analyse willingness to accept with a non-

monetary payment vehicle: farmers engaged in RDI can benefit from guaranteed volumes,

even when irrigation is restricted.

This paper is structured as follows. In Section 2, we develop a theoretical framework

to understand the conditions favourable to scheme adoption. Section 3 details the ex-

perimental design. Results are presented in section 4. Finally, the paper ends with a

discussion including recommendations for the implementation of the water saving scheme

in section 5 and a conclusion.

2 Theoretical modelling of farmers’ decisions

The model is developed for f farmers and a water manager, under the assumption of

perfect information and risk neutrality. Under this simplified representation, we analyse

under which conditions are farmers more likely to join the scheme.

We consider a territory composed by f farmers located around a common water

resource managed collectively under the responsibility of a manager. The set of farmers

denoted by F = {1, . . . , f} shares the total volume of water available for irrigation during

the growing season, denoted by Q. The water quota allocated to farmer i by the manager

is denoted by Qi. It is the maximum volume the farmer can use over the K weeks of the

irrigation season, with qik the weekly volume consumed by farmer i during week k such
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that: ∑
k=1,...,K

qik = Qi.

Moreover, the sum of individual water quotas of all farmers i ∈ F cannot exceed the

amount of water available for agricultural use Q during the growing season.

Thus, ∑
i=1,...,f

Qi ≤ Q. (1)

In case of drought, water extraction by agriculture can be restricted or purely banned,

upon administrative decision taken on a weekly basis, in order to safeguard priority uses

(environmental flows and domestic use). In case of such restrictions, the water allocation

to farmer i in week k is lower than their needs.

To study this constrained use of water, we focus on decisions taken by farmers and

the manager each week. We consider two states of the world: one normal one (N) and

one dry one with potential restrictions (D), with p the probability of a dry week.

2.1 Water use without restrictions (normal week)

Farmers claim a water volume at the beginning of the season in order to maximise their

utility provided by water use. We assume utility only depends on water use (for sim-

plicity, no other inputs are modelled). Utility of any farmer i ∈ F is composed by two

terms. First, concave benefits from water extraction, as the first water units extracted

are important for crops and additional ones are less necessary (as suggested by the RDI

concept). Second, a constant marginal cost per unit of water used. This assumption

applies in the most frequent case of pure volumetric water tariff, and no investment cost.

The utility function Ui : R
n
+ → R of farmer i is given by:

Ui = αiqi −
βi
2
qi

2 − Cqi (2)

where the marginal value of water is defined by the amplitude of benefit αi and its

depreciating slope βi (function on farm characteristics such as crops and soils), and C is

the constant marginal cost. Each farmer maximises his utility, adjusting his level of water

extraction. The first-order condition of utility maximisation for agent i with respect to

qi is given by
∂Ui

∂qi
= αi − βiqi − C
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Then the equilibrium weekly water extraction is given by

q∗ik =
αi − C

βi
. (3)

In a normal week without water restriction, a farmer is entitled the right to use up

to their water need. Their weekly water allocation is therefore qNi = q∗i , ∀i ∈ F .

Applying deficit irrigation, a farmer can use less water while securing their yields. We

assume that an efficient farmer will extract the volume qNi = ϵiq
∗
i in a normal period,

with 0 ≤ ϵi < 1.

2.2 Water use in a dry week

In dry weeks, farmers face restriction and cannot use all their water allocation, such that

qDi = δikq
∗
i , with δik < 1. For simplicity, we assume water use is totally banned for

non-efficient farmers (those who have used qNi = q∗i in the normal period), such that

δik = 0. For efficient farmers, 0 ≤ δik ≤ 1 is set by the manager according to the state

of the water resource and their individual irrigation efficiency. A farmer with ϵi < 1 in

a normal week may not benefit from δik > 0 in the following dry week, if the resource

is too scarce. Before knowing the state of the world (normal or dry week), farmers are

uncertain about δik, but can form beliefs on their efficiency, on others’ efficiency, on the

state of the water resource, and ultimately on the manager decision with regard to δik.

2.3 Under which conditions are farmers more likely to join the scheme

?

We analyse whether farmers are likely to join the water saving scheme under which they

commit to reduce their water use in a normal week by ϵ in exchange for the right to irrigate

in a dry week up to δ of their weekly water needs. We first define the participation and the

incentive constraints, before highlighting the conditions under which a farmer is better

off participating to the scheme and improving their irrigation efficiency.

2.3.1 Participation constraint

The expected utility of farmer i is given by:

EUi = (1− p)Ui(q
N
i ) + pUi(q

D
i )

Under non adoption, the expected utility EUNA
i comes from water consumption in
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the normal period only since water use is banned in dry period.

EUNA
i = (1− p)

[
αiq

N
i − βi

2
(qNi )

2 − CqNi

]

Under adoption, the expected utility EUA
i increases with the benefits from water use

in the dry period but is reduced by the fixed cost T . T includes transaction costs such

as the time spent to share the data with the manager or the installation of the meter.

We assume water use in the normal period qNi is not impacted by participation (this

assumption will be modified in the incentive constraint).

EUA
i = (1− p)

[
αiq

N
i − βi

2
(qNi )

2 − CqNi

]
+ p

[
αiq

D
i − βi

2
(qDi )

2 − CqDi

]
− T

Farmers are better-off with participation to the scheme if EUA
i ≥ EUNA

i , i.e.

(1−p)

[
αiq

N
i − βi

2
(qNi )

2 − CqNi

]
+p

[
αiq

D
i − βi

2
(qDi )

2 − CqDi

]
−T ≥ (1−p)

[
αiq

N
i − βi

2
(qNi )

2 − CqNi

]

or equivalently,

p

[
αiq

D
i − βi

2
(qDi )

2 − CqDi

]
≥ T.

The participation constraint is binding if the fixed cost is lower than the expected

benefits from water use in the dry period.

2.3.2 Incentive constraint

The manager would like farmers not only to participate, but also to make the effort to

reduce their water use thanks to deficit irrigation in normal periods. Doing so, they can

benefit from derogatory water allocation during dry weeks.

The expected utility of a farmer improving their irrigation efficiency in the scheme

framework is given by :

EUE
i = (1− p)

[
αiϵiqi −

βi
2
(ϵiqi)

2 − Cϵiqi

]
+p

[
αiδiqi −

βi
2
(δiqi)

2 − Cδiqi

]
− T

and the expected utility of a farmer participating to the scheme, but not improving

irrigation efficiency is given by :

EUNE
i = (1− p)

[
αiqi −

βi
2
qi

2 − Cqi

]
− T
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The scheme is incentive-compatible if EUE
i ≥ EUNE

i , i.e:

(IC) : (1− p)

[
αiqi −

βi
2
qi

2 − Cqi

]
− T ≤ (1− p)

[
αiϵiqi −

βi
2
(ϵiqi)

2 − Cϵiqi

]
+p

[
αiδiqi −

βi
2
(δiqi)

2 − Cδiqi

]
− T

or equivalently,

(IC) : (1− p)

[
(1− ϵi)(αiqi − Cqi)− (1− ϵ2i )

βi
2
qi

2

]
≤ p

[
αiδiqi −

βi
2
(δiqi)

2 − Cδiqi

]

Farmers have an incentive to be efficient and preserve water in normal period if the

gain in dry period exceeds the losses due to irrigation efficiency in normal periods.

2.3.3 Conditions for improvements in irrigation efficiency in the scheme

framework

We combine the participation and incentive constraints to determine under which con-

ditions a farmer is better-off implementing RDI in the scheme framework. To do so, we

study cases in which EUNA
i ≤ EUE

i .

This corresponds to:

(1−p)

[
αiqi −

βi
2
qi

2 − Cqi

]
≤ (1−p)

[
αiϵiqi −

βi
2
(ϵiqi)

2 − Cϵiqi

]
+p

[
αiδiqi −

βi
2
(δiqi)

2 − Cδiqi

]
−T

equivalently, isolating the cost of the scheme :

T ≤ (1− p)

[
(ϵi − 1)(αiqi − Cqi)− (ϵ2i − 1)

βi
2
qi

2

]
︸ ︷︷ ︸

Loss in normal period (≤0)

+ p

[
αiδiqi −

βi
2
(δiqi)

2 − Cδiqi

]
︸ ︷︷ ︸

Additional gain in dry period for efficient farmers (≥0)

A farmer is better-off improving their irrigation efficiency in the scheme framework if

the fixed cost of the scheme is sufficiently low compared with the difference between the

extra gain in the dry period and the loss in the normal period due to RDI implementation.

The manager decision with regard to derogatory water allocation in the dry period

δ has a key role in insuring water conservation effort. A farmer with pessimistic expec-

tations with regard to the state of the water resource or their ability to improve their

irrigation efficiency may believe they will not be granted any derogatory water alloca-

tions in dry periods (δi=0). In this case, we show that EUE
i ≤ EUNA

i , i.e. they have

no interest in participating to the scheme. On the contrary, EUE
i ≥ EUNA

i for more
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optimistic farmers with regard to their performance and the state of the resource. They

have positive beliefs on derogatory water access in dry period (δ > 0) and can have an

interest to adopt the scheme and be efficient according to the value of other parameters

such as p and ϵi.

This theoretical model presents conditions under which the water-saving scheme can

increase farmers’ profits. To further understand under which conditions such as water

saving scheme can be accepted, we rely on a discrete choice experiment. This stated

preference method can better capture obstacles such as the psychological costs of data

sharing, pessimism with regard to the state of the water resource or trust in the manager

capacity and willingness to grant derogatory access to water in restriction times.

3 Experimental design and Method for data analysis

3.1 Q-method and selection of the attributes

We rely on a discrete choice experiment (DCE) to evaluate farmers’ preferences for such

a scheme combining technologies likely to improve physical irrigation efficiency and rules

targeting better allocative efficiency. DCEs are particularly valuable for investigating

individuals’ preferences in hypothetical decision-making situations (Louviere et al. 2000).

Here, adoption data are not available since the scheme is not yet implemented. The

method has been previously used in similar contexts, for example to evaluate ex-ante

programs targeting water conservation (Giannoccaro et al. 2022).

The validity of DCE relies on researcher’s ability to identify, select, define and articu-

late the attributes together in a way that is understandable to the respondents (Armatas

et al. 2014). Well-defined attributes can increase the perceived credibility of the valua-

tion scenario and consequentiality of the topic (Welling et al. 2022) and limit the risk of

attribute non attendance (Koetse 2017).

Most discrete choice experiment studies rely on focus groups, expert consultations,

interviews, literature reviews to choose the right set-up and attributes. This often lacks

transparency on the foundations and the process is often poorly documented (Jensen

2019). The Q methodology, developed by Stephenson (1953), can overcome these limi-

tations. In a Q-method study, participants (P-sample) have to sort a list of statements

(Q-set) into a pre-defined grid, indicating their affinity for each statement in relation to

a given topic (Watts and Stenner 2012). The analysis of the ranking position of state-

ments provides an overview of the main profiles of perception within a population for a
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Figure 1: Q methodology to calibrate discrete choice experiment

given topic and main consensus and disagreement statements between these profiles. Q

methodology can provide transparency to the design choices made in a DCE framework

(Armatas, Venn, and Watson 2014, Jensen 2019). It can also be an interesting comple-

mentary tool to choice experiment for triangulation of results (Hampson, Ferrini, and

Turner 2022).

As suggested by a limited number of previous studies (Venus and Sauer 2022, Armatas,

Venn, and Watson 2014, Jensen 2019), we used results from a Q-method study with 25

farmers and advisors of the case study area to define the basis scheme and select the

different attributes to be tested in this DCE study (Figure 1). First, the Q-method

study provided us with first inputs on farmers’ perceptions on combining technologies

and incentives for water conservation. This exploratory approach is useful to highlight

the barriers and levers of intervention for a water manager to foster water conservation.

Second, we use consensus statement as a baseline to define the scheme analysed

through the DCE. Main consensus highlighted by the Q methodology concern the material

aspect of the scheme: sensors in soils and the mobile app are well accepted. Respondents

also agree on the need of transparency on how the system works and score calculation,

and information on the state of the water resources. We also observed huge consensus

in favor of an in-kind compensation - a derogatory water allocation- rather than a finan-

cial payment or a label, which are way more controversial. In the Q-method, all factors

(except one for which it is more neutral) sorted the derogatory water allocation in the

positive extreme part of the grid indicating that it favors acceptability, while other types

of reward were less preferred. This has been confirmed by post-sort interviews.
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Following these consensus elements provided by the qualitative study, the baseline of

the water-saving scheme for the discrete choice experiment is set-up as follows:

• The calculation of an irrigation efficiency score, which depends on efforts in con-

ducting the most adjusted irrigation to the needs of the crops (RDI), weighted by

a merit indicator. The more critical the state of the resource and the less it rains,

the more meritorious farmers are if they limit the irrigation.

• The calculation of such a score requires weekly transmission of water consumption

data to the manager, either by manual entry into the application or by a smart

meter. The manager also needs to have perfect knowledge of the crop rotation.

• A mobile application that aggregates in one place various information: the state of

the water resource, farmers’ water consumption and the irrigation efficiency score.

• Incentives in the form of derogatory access to water when irrigation is prohibited,

conditional to the score, and within the limit of farmers’ individual authorised

volume.

Third, as in Venus and Sauer (2022), main disagreements are tested in the choice

experiment as attributes. Q-study results highlighted that there is no consensus on how

the score should be calculated. Then, while weekly metering of water consumption is

necessary, farmers do not all agree with the extra workload induced. We selected two

attributes that relate to the information the farmers need to provide to the manager in

order for the scheme to operate and a monetary attribute.

The first attribute refers to calculation of the score and data required for it. Q study

shows that irrigators generally disagree on the communication of farm’s data to the man-

ager. More generally, there is no consensus on how the score should be calculated, and

whether it should account for weather and climatic conditions. There is a trade-off be-

tween collecting precise information to obtain a more robust score, and reducing the need

of data exchange between the irrigators and the manager. Thus, we include an attribute

on the precision of data requested for the scheme to operate. In the actual system, irriga-

tors declare their irrigated crops at farm level and can update this information during

the season. Another option is envisaged and consists of a declaration of crops irrigated

and soil types at plot level. This version would allow the useful water reserve to be

calculated, therefore better taking into account for weather and climatic conditions. A

last option is automatic satellite transmission of crops irrigated and soil types to the

manager.
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The second attribute concerns how water consumption data are shared with the man-

ager. The Q study has shown that irrigators do not want to compromise to share each

week their water consumption with the manager, because it takes too much of their time

during the growing season. However, previous evidence has shown that smart meter are

not always well accepted. Nevertheless, for the scheme to operate, the manager needs to

know (at least) the weekly water consumption of each irrigator. The first level is manual

reading: the irrigator can read his meter and enter manually his data consumption in

the application each week. The data is then accessible to the manager. Alternatively, a

smart meter can be installed on the farm to forward automatically consumption data to

the manager in real time.

Lastly, the monetary attribute is presented as a derogatory water allocation in %

of weekly needs. Given that all respondents in the Q method were in favor of water

derogatory rights, we ensure that this monetary attribute has a non-negative effect on

water-saving scheme adoption. When irrigation is prohibited by decree, only irrigators

with a high score can benefit from those derogatory volumes of water, corresponding

to a percentage of their weekly needs (providing they haven’t already consumed all their

individual water allocation). The levels have been chosen to encourage irrigators to adopt

the scheme but also not to exceed the 50% threshold actually authorised in periods of

drought.

These attributes have been validated by experts (advisers from the chamber of agri-

culture, irrigators representatives, private company selling water-saving scheme) through

interviews. Table 1 shows these three attributes and their 2 to 5 levels. The levels were

all set at realistic range, as discussed with field partners.

Based on pilot data collection (n=25), we have created a Bayesian D-efficient design,

with 2 blocks of 8 choices. Figure 4 shows an example of choice card, with two unlabelled

water saving schemes (A and B) and a status-quo option.

3.2 Data collection

The survey was disseminated by the agricultural chamber, through emails and text mes-

sages, to 641 irrigators in two water catchments located in Maine-et-Loire, France (77

from Aubance-Sud Loire and 564 from Authion). The survey was also administered face-

to-face to 17 farmers, at the end of meetings organized by the agricultural chamber on

irrigation-related topics. We filtered persons who are responsible for irrigating decisions

on their farm. We obtained 202 complete answers, representing a response rate of 32%.
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Table 1: Attributes and levels

Attributes Levels Pictos
Crop declaration
: Data needed to
calculate the score

- Declaration at farm level of irrigated
crops (type, surface)
- Declaration at plot level of irrigated crops
(type, surface) and soil types (allowing the
useful water reserve to be calculated)
- Satellite transmission at plot level of irri-
gated crops (type, surface) and soil types
(allowing the useful water reserve to be cal-
culated)

Water
consumption :
Data transmission
to the manager

- The irrigator reads his meter every week
and enters the data in the application,
which is then automatically forwarded to
the manager
- A smart meter is installed on the farm.
This allows for automatic transmission of
consumption data to the manager on a con-
tinuous basis.

Incentive : Dero-
gation to the irriga-
tion ban

The percentage corresponds to the deroga-
tory water volume authorised for an effi-
cient irrigator with 5 levels : 0%, 20%,
30%, 40% and 50%.

Figure 2: Example of choice card
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Beyond choices in the DCE, we collected information to characterise the respondent

(experience in farming, age, education) and its farm (location, UAA, irrigated UAA,

types of soil, number of extraction water points of the farm, water consumption during

the last three years, whether the farm has faced water restrictions, irrigation material,

whether the farm is involved in production contracts, whether the production is certified

(organic, in conversion towards organic production, high environmental value . . . )). We

further collected information on reasons why farmers always opted-out and main reason

to subscribe to the water-saving scheme for the interested respondents. The full text of

the survey is available in Appendix A2.

The French Maine et Loire department was selected as the case study area for sev-

eral reasons. First, water needs are important due to crop and soil types and weather

conditions. While 10% of utilised agricultural area is irrigated (6.9% in France) in 2019,

irrigated productions represent 25% of the total economic value from agriculture in the

area. Second, there are conflicts of use between water users, with agriculture being the

main extractor. Agricultural water withdrawals for irrigation represent 53 millions of cu-

bic meters, i.e. 45% of the total volume of water withdrawn for all uses. In 2022, almost

all irrigators in the department of Maine-et-Loire have faced water restrictions during the

entire irrigation period.

The water saving scheme under study has been experimented in 2021 and 2022 at

small scale on 9 farmers of the Authion watershed (located in the case study area).

Smart meters, weather stations and tensiometric sensors were installed on the plots of

those farms. The 9 irrigators were trained on the use of an app that provided irrigation

recommendations based on plot observations and weather data, and the calculation of

their score. Farmers could also see on the app what would be their potential gains if

the reward system was implemented (it was hypothetical in the experimentation phase).

This experimentation was monitored by the agricultural chamber and a private company

developing the app.

For a successful scaling-up of this very small scale experimentation, we analyse the

conditions of acceptability of the scheme in two water catchments described in Table 2.

This territory is characterised by high heterogeneity in crop types, plots sizes and water

availability.

Aubance (joint with southern Loire) area is characterised by a small number of irri-

gators and rather homogeneous crops. Except during years of strong drought as 2022,

water is not yet scarce. Until now, water management stays individual, and irrigators
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Table 2: Characteristics of the two water catchments in the case study area
Aubance Authion

Number of irrigators 70 600

Number of ha irrigated
each year

around 3000 between 16000 and 18000

Volumes of extracted water around 15 million m3 between 10 and 30 million m3

Crops types Mainly corn, grassland and
seeds

Very diversified (corn and
other cereals, arboriculture,
horticulture, vegetables)

Type of water resources
used for irrigation

Mainly retention water Very diversified (surface and
ground water, retention)

can extract water as long as there is no ban.

Authion area represents a much bigger irrigation community, with high diversity of

crops, soils, and farm sizes. Water management on this territory is organised collectively

and the agricultural chamber acts as manager of the Single collective management or-

ganisation (OUGC in France). The manager is responsible for sharing a total volume

available for irrigation into individual water allocations. Each year, irrigators make a

declaration of their expected production and their associated needs in water (requested

volume). Given this information, the manager determines individual water allocations,

which can be equal or lower than the requested volumes, based on criteria such as match

between claims, irrigated surfaces and crops. From now, irrigation efficiency is not taken

into account.

3.3 Data Analysis

The econometric estimation of DCE data is in line with the behavioral framework of the

random expected profit approach developed by McFadden (1974). Irrigants are assumed

to choose their preferred scheme such that their expected utility is greater than either

the other option or opting out. For each farmer i the expected utility obtained from

alternative s in choice set t can be written as:

Ufst = Vist + ϵist = X ′
istβi + ϵist

The expected utility is a function of observable attributes Vist plus an unobserved random

component ϵist (the stochastic error term). Xist refers to the vector of levels of the

attributes, i.e. the scheme characteristics.

We include in Xist an individualized Alternative Specific Constant (ASC) to take into

account the respondent’s current situation. This ASC captures preferences for scheme’s
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characteristics not included in our attributes. Accounting for each farmer’s individual

SQ situation improves the explanatory power of models, in particular in study settings

where: (i) one cannot afford to have a large sample, (ii) there is large heterogeneity in

perception of respondents and (iii) the policy is viewed as so contentious that a significant

portion of respondents is expected to prefer their current situation to a proposed policy

(Barton and Bergland 2010).

The monetary attribute is specified as a continuous variable. For the other attributes,

we include one dummy variable for each level of the attribute described in Table 1 except

one. This excluded level per attribute represents the reference level for each attribute.

To estimate preferences, we rely on the Random Parameter Logit (RPL) model which

allows parameters to vary randomly (with a normal distribution) across respondents

(Boxall and Adamowicz 2002). We apply several tests to check the robustness of the

results to different specifications of the RPL (Appendix A1). To further understand

heterogeneity, we also estimate a latent class model. Latent class models work similarly

to mixed logit models, except that the distribution of β coefficients is assumed to follow

a discrete rather than normal mixing distribution (Pacifico and Yoo 2013).

From RPL estimates, we obtain individual parameters for each attribute, and can

calculate the utility of each respondent for different schemes. We assume that an ir-

rigant would join the scheme if their utility from a given scheme S defined by its X

characteristics xS is higher than their utility from the status-quo (as captured by the

coefficient associated to the alternative specific constant ASC). For each respondent, we

know whether they would subscribe or not to the scheme for different volumes of deroga-

tory water allocation ranging from 0% to 50%. From this, we can calculate adoption rate

at sample level.

The following hypotheses are tested. They have been elaborated based on the litera-

ture on water saving scheme acceptability levers and obstacles. They are also in line with

results from the Q-study.1

• H0: Farmers have a preference for the status-quo (with no monitoring of irrigation

efficiency and associated incentives)

• H1a: Farmers who have experienced irrigation restrictions in the past are more

1Numbering differs compare to the pre-registration available here:
https://osf.io/jwtnb/?view only=051b9aee41cb4291a58460e143a257f3. Variables in italic have been
added compared to the version of pre-registered hypotheses available on-line. The pre-registration also
mentioned the possibility to aggregate variables through a principal component analysis. Given the low
measure of sampling adequacy of the PCA over the variables considered to test H1a-d (54.91%), we did
not used the PCA dimensions in further analyses
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likely to be interested in the scheme.

• H1b: More pessimistic farmers with regard to the frequency of restrictions in the

future and those who are more optimistic with regard to their ability to reach

frequently a high efficiency score are more likely to be interested in the scheme.

• H1c: Farmers who are highly dependent on irrigation are more likely to be inter-

ested in the scheme. Dependence to irrigation is approximated by the following

variables: the share of irrigated land in the total surface, being engaged in pro-

duction contracts, being engaged into certifications including water management

requirements, cultivating specialized production.

• H1d: Farmers who already use a decision-support tool to manage their irrigation

are more likely to be interested.

• H1e: Farmers already operating under water collective management are more likely

to be interested.

• H2: If the scheme requires providing manually detailed information on crops and

soil at the plot level, farmers are less likely to accept it.

• H3: If the scheme imposes smart meters, farmers are less likely to accept it.

• H4: Those preferring smart meters also prefer the automatic transmission of crops

and soil information to the manager.

• H5: The larger the incentive (in terms of % of individual weekly water allocation

that can be used despite the irrigation ban), the more likely farmers are to join the

scheme.

4 Results

We test our pre-registered hypotheses and run complementary exploratory analyses. We

first investigate the profile of farmers more likely to join the scheme. We then analyze

scheme features more likely to trigger adoption.

4.1 Descriptive statistics

The final sample included in the analysis consisted of 202 responses, whose characteristics

are described in Table 3. In light of the online mode of participation, and the distribution
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channels, the present sample must be regarded a convenience sample and findings of

subsequent analyses may not necessarily hold for the general French farmer population

relying on irrigation.

We collected information on who is already equipped with a smart meter (5.94% of

the sample) and who is already sharing information on cropping patterns to a water

manager (All those under collective management, i.e. 81.6% of the respondents). This

information is used to account for the individualised status quo in further analysis.

The average farm size in the sample is 112ha, with 47ha of irrigated area on average

but heterogeneity is very high, as the sample includes farm from 0.4 to 600ha of irrigated

surface. The average sample size is large compare to the population of French farmers

(69ha on average) since we reminded in particular farms with the highest water claims

(and water claims are correlated with the total surface). Our sample is highly concerned

by irrigation. On average, respondents irrigate 49% of their farm land, while in France

only 11% of the utilized agricultural area can be irrigated.

The farmers surveyed used on average 1423 m3 per hectare over the 3-years period

2020-2022 (median 1153 m3), slightly less than the French average (1902 m3 in 2020,

according to data from ”Banque National des Prélèvements Quantitatifs en Eau”). In

France, the most irrigated crop is corn (38% of irrigated land), followed by wheat (12%).

Other crops represent less than 10% irrigated land in 2020. In our sample, 40.1% of farm-

ers grow specialised crops (including fruits, grapes for wine, seeds, vegetables and other

horticultural plants), who are the more dependant on irrigation. Other farms surveyed

are equally divided between field crops, mixed crops and mixed crops and livestock. 20.3%

of the farms surveyed are certified organic farming or in transition and 19.3% have High

Environmental Value certification, slightly more than in the population (respectively 14%

and 8.4% of the French farms).

The median survey completion time was 33 minutes. We checked reading time of at-

tributes and interview time to be sure to avoid questionnaire-surfing in our responses. 75%

of the respondents answered correctly to the three quiz questions, suggesting a relatively

good understanding of the scheme despite its complexity and the on-line format. 20%

of the respondents dedicated less than 4 minutes to the video presenting the attributes,

and they have a significantly lower score on average to the three understanding questions

(2.36 vs 2.72 correct answers). We therefore include robustness checks to account for

potential impact on preferences.
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Table 3: Sample characteristics (n=202)

Variable Mean or % SD Median Min Max

Farm type Specialised Crops 40.1 %
Specialized-Orchard 3.5 %
Specialized-Vineyard 0.5%
Specialized-Horticulture Vegetables 11.9 %
Specialized-Horticulture Other 6.9 %
Specialized-Seeds 17.3 %
Farm type Cereals, Oilseeds and
Protein crops

19.8 %

Farm type Livestock 0.5 %
Farm type Mixed Crops & Livestock 21.3 %
Farm type Mixed Crops 18.3 %
UAA 112.11 92.75 101 1 600
Irrigated Surface 47.38 52.94 35 0.4 500
Ratio Irrigated/Total UAA 0.49 0.3 0.44 0.04 1
Average volume per hectare (2020-
2022) (m3)

1423.42 1290.09 1152.63 37.11 10192.73

Under collective management (Au-
thion Watershed)

81.6 %

Certification including water man-
agement requirements

20.83 %

(High Environmental Value, Global-
gap)
Organic certification (or transition) 20.3 %
Score certif 0.391 0.655 0 0 3
Score DSS 0.5 0.633 0 0 3
Score contract 2.421 1.512 2 1 8

Note: Specialised crops includes Horticulture, Seeds, Vineyards and Orchards.
Score certif is the number of certifications including water management requirements (e.g.
High Environmental Value, Global gap...)
Score contracts is the number of buyers with which they have signed production contracts
Score DSS is the number of sensors or Decision Support Tools used for irrigation
∗ Statistics for n=199 (3 missing observations)

Prior to the choice experiments, we asked respondents to indicate what they could

change to increase their irrigation efficiency. Interestingly because they are at the heart

of the scheme, irrigation material and metering tools were most cited. However, change

in cropping patterns (such as switch to less water-intensive crops) were also cited, while

they cannot contribute to increase irrigation efficiency in this specific scheme. Indeed,

the performance of deficit irrigation is assessed crop by crop, i.e. for a given cropping

pattern.
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Figure 3: What to change to increase irrigation efficiency ? Citation frequency in an
open question

4.2 Adopters’ profiles

We first analyse data with a random parameter logit model, with all parameters assumed

to be normally distributed. On average, farmers have a preference for the status-quo (with

no monitoring of physical irrigation efficiency and associated incentives): In Figure 4, the

coefficient associated to the alternative-specific constant is positive. We can therefore not

reject H0.

We observe preferences heterogeneity with significant standard deviation for all pa-

rameters. Moreover, Figure 4 highlights that the distribution of individual coefficients

for the ASC is bimodal. This suggests that a share of our sample is interested by the

scheme (negative coefficient for the alternative-specific constant ASC). To a lower extent,

we observe that preferences towards the transmission of water consumption data are also

splitted between positive and negative coefficients.

Further analysis of heterogeneity is performed through a latent class model. We select

the number of classes based on the BIC and CAIC, as well as the interpretability of the

parameter estimates. According to the values of the BIC and CAIC, the 4-class solution

is preferred (Appendix A1). But two classes in the 4-class solution are small (12.3% and

15.9% of the sample). The 3-class solution offers a clear segmentation easier to interpret

(Table 5). With a negative sign associated with ASC, farmers belonging to class 2 are

on average interested by the scheme, but they reject the smart meter. On the contrary,

respondents in class 1 show interest for the smart meter. On average, they prefer the

status-quo but their preferences are more impacted by the size of the incentives (Vol).

Respondents in class 3 (43.1%) are not significantly more interested by the scheme than
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the status-quo, and they reject in particular the smart meter.

In order to test our hypotheses on the influence of farms’ characteristics on scheme

acceptability, we study their impact as potential determinants of class membership. We

find no influence of the experience of restrictions in the past -rejecting H1a-, nor of

higher dependence on irrigation (as proxied by the share of irrigated land in the total

surface, being engaged in production contracts, being engaged into certifications including

water management requirements -H1c is rejected-) or experience with irrigation decision

support system -H1d is rejected-. On the contrary, beliefs with regard to the future

shape preferences towards the scheme -we cannot reject H1b-. In particular pessimism

with regard to the frequency of water restrictions in the future and confidence in the

possibility to implement deficit irrigation and reach irrigation efficiency both increase

the probability of belonging to classes 1 and 2. As a robustness check, we re-run the

RPL model including these two variables and find that they both significantly reduce

preferences for the status-quo (Figure 5), while other coefficients remain stable. This

is consistent with the results of the theoretical model: farmer with optimistic beliefs

concerning the probability to be granted derogatory water allocations in dry periods (δi)

have more interest in participating to the scheme.

4.3 Preferences for contract features

If the scheme imposes smart meters, farmers are less likely to accept it (H3), but they

are even more rejecting the manual transmission of their water consumption on a weekly

basis. Concerning the information to be transmitted to the manager to measure the score,

there is high heterogeneity in preferences, with no clear picture on average. Automatic

transmission of cropping patterns data collected by the administration for distribution of

agricultural subsidies or based on satellite observations is rather rejected, while providing

information in order to get a more precise estimate of the score is rather positively

perceived. We find no significant interaction between the automatic transmission of crops

and automatic transmission of water consumption (smart meter), and can therefore reject

H4.

The individual coefficients estimated from the RPL model provides complementary

information on the share of the respondents with positive (and negative) preferences

towards an attribute’s level (Table 6). While a majority of the respondents prefer their

status-quo than the smart meter, one third of them increases their utility if the scheme

includes a smart meter.
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We also calculate the adoption rate for different version of the schemes in terms of

data requirement and size of the incentives. Scheme 1 with 0% incentives is similar to the

status-quo under collective management (where cropping patterns data are shared with

the manager), but farmers have access to more information through the app and sensors.

We find that in this context 46.5% of the farmers accept to join the scheme. With

access to 50% guaranteed volumes in restriction periods, the proportion of interested

farmers can increase up to 58.4%. But this number drops to 40.6% when the scheme

includes features less preferred by respondents such as scheme 3, where farmers have to

provide detailed data (crops and soils at plot level and water consumption on a weekly

basis). Less detailed declaration of cropping patterns and smart meters (Scheme 2) could

constitute an in-between set-up which favors adoption. A scheme with fully automated

data exchange (scheme 4) is less preferred.

Table 4: Random Parameter Logit
Mean SD

DeclaFarm 0.416 1.952***
(0.39) (5.72)

DeclaPlotSoil 0.579 -0.236
(0.53) (-0.36)

DeclaAuto -0.625 1.647***
(-0.59) (5.56)

ManualWeekly -3.498*** -1.748*
(-3.33) (-1.94)

Smart -1.042** 3.764***
(-2.03) (7.98)

Vol 0.0568*** 0.0526***
(7.26) (6.59)

ASC 1.256** 6.212***
(2.37) (8.46)

N 4848

21



Figure 4: Distribution of individual parameters Kernel

Table 5: Latent class: Probability to join the scheme
Class 1 Class 2 Class 3

In favor of In favor of the scheme Against

the smart meter only but not the smart meter the scheme

-28.20% -28.60% -43.10%
ASC 1.239** -2.102*** 2.895***

-2.72 (-6.65) -7.82
DeclaFarm -0.493+ 0.57 0.929***

(-1.71) -1.39 -3.48
DeclaPlotSoil 0.247 0.187 0.740*

-0.8 -0.45 -2.28
DeclaAuto -0.710* 0.18 -0.287

(-2.07) -0.43 (-0.76)
ManualWeekly 0.0349 -1.725*** -41.81

-0.02 (-4.99) (-0.57)
Smart 1.604*** -1.270*** -1.479***

-5.94 (-7.29) (-4.16)
Vol 0.0483*** 0.0292*** 0.0241**

-7.25 -3.58 -2.77
Prob. to belong to class 1 Prob. to belong to class 2

rather than 3 rather than 3

Pessimism 0.21150 *** 0.27186***
-2.78 -3.56

Expected performance
0.13814** 0.12026*

-2.08 -1.82

cons
-2.851784 *** -2.4597

(-4.07) (-4.37)
N 4848

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001
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Figure 5: Random Parameter Logit, with interaction variables

Table 6: Sign of individual coefficients: frequency among the 202 respondents based on
RPL estimates in Table 4

Attribute Frequency ≥ 0 Frequency < 0

DeclaFarm 74% 26%
DeclaPlotSoil 100% 0%
DeclaAuto 22% 78%
ManualWeekly 100% 0%
Smart 30% 70%
Vol 95% 5%
ASC 58% 42%

Table 7: Adoption rate by scheme type (in %)
Incentive size Scheme 1 Scheme 2 Scheme 3 Scheme 4
0% 46.5 38.6 25.7 32.2
20% 50.0 43.6 31.2 42.6
30% 52.0 47.0 34.2 44.1
40% 57.4 50.5 38.6 48.0
50% 58.4 52.5 40.6 51.0

Note:
Scheme 1: Data sharing as the status-quo (only crops at farm level)
Scheme 2: Sharing cropping patterns at farm level with smart meter
Scheme 3: Sharing cropping patterns at plot level with manual weekly transmission of water consumption
Scheme 4: Automatic transmission of water and cropping patterns data
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5 Discussion

Our results highlight preference for the status-quo for around half of the respondents

(Table 6). While the attributes focus on the transmission of information to the manager,

the scheme is also composed of elements providing information to farmers (e.g., sensors

measuring the temperature of the soils or a phone app which provides information on the

state of the resource in a water catchment). This suggests that farmers preferring the

status-quo put limited value on this extra-information to pilot their irrigation. Among the

limitations mentioned in an open question at the end (answered by 166/202 respondents),

two third indicated the perceived high administrative burden associated with such a

scheme implementation, or the fact that it was too far-fetched given their perception of

the current water context. The fact that the scheme was unadapted to deal with farms’

heterogeneity or even likely to generate inequalities was also mentioned. Lastly, several

respondents questioned the fact that other means were more adequate to deal with water

scarcity.

The need to go beyond water conservation technologies is also highlighted by Perrez-

Blanco et (2020), who indicates that one cannot adapt to changing conditions by focusing

primarily on increasing irrigation efficiency through WCTs. There is a need for more

sweeping changes in water institutions, infrastructure, and management (Hanak et al.

2009). The original incentive we included to the scheme constitutes one step towards

new water management. Rather than mobilizing the price mechanism to foster overall

water use reduction, the scheme offers in-kind compensation to reduce water withdrawals

from the beginning of the growing season. Doing so, it can contribute to reducing the

frequency of irrigation restrictions, even if the compensation in the form of guaranteed

volumes generates water extractions in the restriction periods.

We found that the size of the incentive (the % of weekly water needs guaranteed

in restriction periods) has a significant positive impact on choices, but the effect size is

low.2 Other studies have found that some respondents ignore the price attribute (Zanten

et al. 2016). Mariel et al. (2021, pages 27-29) indicated that a payment vehicle ”has

to be broadly accepted in the population and there has to be trust in the institutional

setting”. The exploratory preliminary research we conducted with the Q method has

shown that most farmers find acceptable such an in-kind incentive. The respondents who

have declared as likely or highly likely the scheme implementation in their watershed in

2While the volume attribute was assumed to be normally distributed, we found that only 3% of the
respondents face a dis-utility when more volumes are guaranteed (negative coefficient).
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the next years (56.4% of the sample) gave significantly (at the 5% level) more attention

to the size of the incentives (as assessed by the individual parameters for the volume

attribute estimated from the RPL model). The other respondents may have perceived

the institutional constraints likely to deter the implementation of such original incentives,

not yet permitted by French water regulation, and this translated by lower influence of

the incentive size on their willingness to accept the scheme.

Concerning the influence of the data sharing attributes on preferences, we found that

farmers’ are rather keen of sharing cropping patterns and soil data, in order to benefit

from a more precise score. This results highlights respondents on average well understood

the efficiency score and the associated incentives. However, they are more reluctant to

the set-up of smart meters to share automatically their water consumption data. Despite

the time saving offered by smart meters, this result can easily be interpreted at the light

of previous research reporting farmers’ lack of trust in the privacy of data collected by

smart farming technologies (Pfeiffer et al. 2021, Mohr and Kühl 2021, Jakku et al. 2019),

or smart energy meters (Ram and Sheth 1989; Chamaret, Steyer, and Mayer 2020),

and more generally farmers’ aversion to control (Thomas et al. 2019). Indeed, several

respondents reported they fear their data will be shared by the administration, even if

the scheme focus on data exchange with the water manager.

A methodological contribution of this article relies on the selection of the attributes

based on exploratory results of a Q-study. Furthermore, we check whether the profiles

identified with the Q study (”the Q-profiles”) match with the classes estimated with

choices made in the DCE. The Q-profile of those who want to manage their production

risk and receive compensation for participation to the scheme is more represented in class

3 (those against the scheme). Two Q-profiles are mostly represented in the class 2 (in

favor of the smart mater): those who want to be actor of water preservation but first need

to understand the scheme, and those who want a simple scheme with smart meters to

save time. The fourth Q-profile of those who accept increased complexity in exchange of

fairness are split across the 3 classes. Overall, there is a partial match between Q-profiles

and DCE-classes.

Interestingly, being located in a watershed already under collective management has

no impact on preferences. For those farmers located in the Aubance watershed, the

change towards collective management is perceived as unavoidable, even if they are not

yet concerned by the consequences in terms of data transmission (their water allocation

does not yet depend on their cropping patterns). This can explain why they have not
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shown more reluctance towards the scheme.

The robustness of our results relies on the complementary between the theoretical

predictions and the empirical test with the DCE, particularly relevant when predictions

are ambiguous or behavioral factors are coming into play. In particular, in the DCE, we

found that the need to share data has a significant influence on the scheme acceptance.

Moreover, we found that perceived probabilities of benefiting from the compensation influ-

ences the willingness to join the scheme. Previous research on preferences has shown the

importance of beliefs variables. For example, subjective probabilities of hazards influence

insurance decisions (Čop, Cerroni, and Njavro 2023). In environmental valuation, Dis-

sanayake and Meyer (2021) found that stated beliefs about the status quo long-term land

use influences willingness to pay for a new national park. Here the perceived probability

to face restrictions (Pessimism) and the expected probability to be efficient (Expected

performance) significantly explain the probability to fit in a class rather than another.

Water institutions working on the design of new water allocation rules should account

for behavioral factors such as beliefs towards the future and control aversion.

The adoption rates estimated here should be taken with a grain of salt given the

hypothetical nature of choices in DCEs. Respondents may indeed underestimate the

costs of participating in such a scheme. Moreover, while we analysed with the DCE

individual adoption, collective adhesion is a pre-requisite for the scheme to work, in the

framework of the ”Single Unique Organisation for collective water management”. Another

main limitation of the study is the limited external validity of the results. The scheme

has been developed for this particular case study area and consequentiality may seriously

decrease if we would analyse preferences of farmers located in another area. Replication

in other areas would allow to assess the role of past and future water flows and restriction

background.

6 Conclusion

By providing an ex-ante robust evaluation of an innovative water allocation scheme cou-

pled with water saving technologies, this article contribute to the literature on the use

of digital technologies to improve the sustainability and resilience of agri-food systems,

in particular irrigated agriculture. We find that half of the respondents are willing to

join such a scheme, but we observe that automatized data sharing, for example through

smart meters, can be an adoption barrier. The conditions of implementations of the

scheme, and in particular the choices made in terms of data transmission, will influence

26



the acceptability and, most likely, the efficiency of the scheme on water preservation.

Our results also suggest that raising awareness on the changes in water availability in

the context of climate change can foster adoption. Development of extension services on

deficit irrigation could also foster confidence in the probability to reach a sufficiently high

efficiency score, and therefore increase the number of farmers willing to join.

27



References

Armatas, Christopher A., Tyron J. Venn, and Alan E. Watson (2014). “Applying Q-

methodology to select and define attributes for non-market valuation: A case study

from Northwest Wyoming, United States”. en. In: Ecological Economics 107, pp. 447–

456.

Barton, David N. and Olvar Bergland (2010). “Valuing irrigation water using a choice

experiment: an ’individual status quo’ modelling of farm specific water scarcity”.

In: Environment and Development Economics 15.3. Publisher: Cambridge University

Press, pp. 321–340.

Boxall, Peter C. and Wiktor L. Adamowicz (2002). “Understanding Heterogeneous Pref-

erences in Random Utility Models: A Latent Class Approach”. en. In: Environmental

and Resource Economics 23.4, pp. 421–446.
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7 Appendix

A1: Robustness checks

We run the same RPL model than the one presented in the main text (Figure 4) to

different subgroups. In column (1), we first exclude responses to the first choice card

seen by respondents, to account for learning effects. In column (2), we exclude responses

to the last choice card in order to check for a lassitude effect. In column (3), we exclude

respondents who indicated no interest in the scheme before answering choice cards, since

they are more likely to have provided random answers. In column (4), we exclude those

who have always opted-out. Finally, in column (5), we exclude respondents who read the

description of attributes, including the video presenting the scheme in less than 4’, which

is considered as too short for a comprehensive overview. In column (6), we exclude the

36 respondents who were interviewed face to face in order to keep only self-completed

responses.
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Table 8: RPL estimates for subgroups
1)Excl. (2)Excl. (3)Excl. (4)Excl. (5)Excl. (6)Excl. (7) Excl.
first choice last

choice
Not in-
terested

Always
opt-out

Low
time

Face to
face

Low Un-
derstand

Mean
ASC 2.099 0.658 0.103 2.216** 0.204 3.909*** 1.481*

(1.43) (0.77) (0.11) (2.28) (0.21) (3.05) (1.76)

DeclaFarm 1.996 0.625 0.177 2.022** 0.387 4.105*** 1.632*
(1.37) (0.71) (0.18) (1.98) (0.39) (3.07) (1.81)

DeclaPlotSoil 0.759 -0.481 -0.960 1.113 -0.780 2.677** 0.235
(0.52) (-0.54) (-0.95) (1.10) (-0.80) (2.14) (0.27)

DeclaAuto -2.714** -
3.101***

-1.395 -
3.290***

-2.916* -
39.83***

-1.104

(-2.55) (-3.45) (-1.35) (-3.20) (-1.93) (-5.04) (-1.02)

ManualWeekly -1.545*** -
0.919***

-0.979** -0.724** -
1.544***

-
1.499***

-0.405

(-2.90) (-2.64) (-2.23) (-2.00) (-2.75) (-2.68) (-1.19)

Smart 0.0586*** 0.0537*** 0.0603*** 0.0671*** 0.0517*** 0.0825*** 0.0691***
(6.07) (6.82) (6.19) (7.16) (6.15) (5.68) (7.22)

Vol 1.680*** 1.464*** 0.768 1.521*** 1.312** 0.915 3.074***
(2.62) (2.74) (1.26) (3.15) (2.00) (1.10) (4.32)

SD
ASC 1.670*** 1.561*** 1.904*** 1.572*** 1.371*** 1.856*** -0.451

(5.21) (3.48) (4.06) (5.20) (4.23) (4.33) (-0.76)

DeclaFarm 0.586 -0.856** -1.029* 0.988** -0.541 0.468 -
1.622***

(1.33) (-2.03) (-1.94) (2.44) (-0.44) (1.00) (-4.44)

DeclaPlotSoil 1.611*** 1.517*** 1.650*** -
1.539***

1.532*** 2.774*** 2.312***

(4.50) (4.13) (4.94) (-5.25) (5.60) (5.88) (5.84)

DeclaAuto -4.610*** -1.596** 1.103 0.538 -0.293 44.29*** 1.577**
(-3.84) (-2.26) (1.27) (0.47) (-0.26) (4.98) (1.96)

ManualWeekly 4.007*** 3.365*** 3.790*** 3.628*** 3.495*** 4.590*** 3.736***
(6.23) (7.83) (7.73) (8.30) (7.42) (5.51) (8.54)

Smart 0.0773*** 0.0502*** 0.0545*** 0.0504*** 0.0551*** -
0.0918***

-
0.0512***

(5.92) (5.67) (5.25) (6.33) (5.73) (-5.43) (-5.46)

Vol 6.542*** 6.163*** 7.516*** 8.788*** 7.421*** 5.476*** 8.872***
(8.56) (8.09) (8.46) (7.02) (8.28) (6.00) (6.40)

N 4242 4242 4688 3864 4464 2736 3624

t statistics in parentheses : * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 9: Criteria for determining the optimal number of classes in the Latent Class model

Number of classes Log-likelihood (LL) AIC BIC Prediction accuracy:
Average latent class
posterior probability

2 -1154.205 2342.41 2398.65 99%
3 -1074.681 2203.362 2292.685 96%
4 -1019.046 2112.093 2234.499 96%

Notes: AIC (Akaike Information Criterion) is −2(LL − j) where j is the number of
parameters to be estimated in the model; BIC (Bayesian Information Criterion) is −LL+
(k/2)xln(N) where N is the number of observations.
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