
HAL Id: hal-04536542
https://hal.science/hal-04536542

Submitted on 8 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-locally discrete actions on the circle with at most N
fixed points

Christian Bonatti, João Carnevale, Michele Triestino

To cite this version:
Christian Bonatti, João Carnevale, Michele Triestino. Non-locally discrete actions on the circle with
at most N fixed points. Mathematische Zeitschrift, 2024, 307 (1), pp.6. �10.1007/s00209-024-03482-z�.
�hal-04536542�

https://hal.science/hal-04536542
https://hal.archives-ouvertes.fr


NON-LOCALLY DISCRETE ACTIONS ON THE CIRCLE WITH AT MOST N

FIXED POINTS

CHRISTIAN BONATTI, JOÃO CARNEVALE, AND MICHELE TRIESTINO

Abstract. A subgroup of Homeo+(S1) is Möbius-like if every element is conjugate to an element of
PSL(2,R). In general, a Möbius-like subgroup of Homeo+(S1) is not necessarily (semi-)conjugate to
a subgroup of PSL(2,R), as discovered by N. Kovačević [Trans. Amer. Math. Soc. 351 (1999), 4823–
4835]. Here we determine simple dynamical criteria for the existence of such a (semi-)conjugacy.
We show that Möbius-like subgroups of Homeo+(S1) which are elementary (namely, preserving a
Borel probability measure), are semi-conjugate to subgroups of PSL(2,R). On the other hand, we
provide an example of elementary subgroup of Diff∞

+ (S1) satisfying that every non-trivial element
fixes at most 2 points, which is not isomorphic to any subgroup of PSL(2,R). Finally, we show that
non-elementary, non-locally discrete subgroups acting with at most N fixed points are conjugate to
a dense subgroup of some finite central extension of PSL(2,R).
MSC 2020: Primary 37C85, 57M60. Secondary 37B05, 37E05.

1. Introduction

Let X be a topological space, and G ≤ Homeo(X) a subgroup of homeomorphisms of X. Given
N ∈ N, we say that G has at most N fixed points if every non-trivial element of G has at most N
fixed points. When N = 0, this means that the action of G on X is free. A natural problem is to
characterize actions with at most N fixed points:

Question 1.1. Given N ∈ N, which subgroups of Homeo(X) have at most N fixed points?

Here we will address this problem for the case when X = S1 is the circle (the case N = 2 and
X = R has been discussed by the second author in [5], extending classical work of Hölder and
Solodov). To simplify the discussion, we will rather consider subgroups of Homeo+(S1), the group
of order-preserving homeomorphisms of the circle, which is of index 2 in Homeo(S1). The classical
group PSL(2,R) of Möbius transformations acts on the circle with at most 2 fixed points. This
group may be seen in two ways:

• it is the group of projective transformations of the projective line RP1;
• it is also the group of isometries of the hyperbolic disc D, which acts on its circle at infinity.

For any integer k ≥ 1, the k-fold central extension
1 → Zk → PSL(k)(2,R) → PSL(2,R)

also acts on the circle (which is homeomorphic to its k-fold covering), and it gives a natural example
of group acting with at most 2k fixed points. Somehow we want to understand to what extent
groups with at most 2k fixed points are comparable to subgroups of PSL(k)(2,R). The case k = 1
is already interesting on its own. For this, we say that a group G is Möbius-like if every element
is individually conjugate to an element in PSL(2,R). In practice, this means that any element
in G is either conjugate to a rotation (elliptic), or it admits exactly one fixed point (parabolic),
or it admits exactly two fixed points, one attracting and one repelling (hyperbolic). On the other
hand, a basic example of subgroup of Homeo(S1) with at most 2 fixed points but not Möbius-like,
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is the cyclic subgroup generated by a homeomorphism with exactly two fixed points, but which is
not (topologically) hyperbolic: in this case both fixed points are (topologically) parabolic, namely
repelling on one side and attracting on the other.

Several works have exhibited conditions under which Möbius-like groups are conjugate to sub-
groups of PSL(2,R). Notably, a major result in this context has been obtained by Tukia [20] (in the
torsion-free case), and then independently extended by Gabai [8] and Casson and Jungreis [6], after
which subgroups of PSL(2,R) are dynamical determined through the notion of convergence groups.
Let us also mention the more recent work of Baik [3], describing a characterization of subgroups of
PSL(2,R) in terms of invariant laminations on the circle. In [15], Kovačević proved that a Möbius-
like subgroup of Homeo+(S1) with a global fixed point is always semi-conjugate to a subgroup of
PSL(2,R). We extend this result to elementary subgroups, that is, subgroups of Homeo+(S1) pre-
serving a Borel probability measure on S1. Concretely, a subgroup G ≤ Homeo+(S1) is elementary
if either it admits a finite orbit or it is (continuously) semi-conjugate to a subgroup of rotations
(see the discussion in §3.1, or Ghys [9, Proposition 6.17]).

Remark 1.2. This terminology is coherent with the usual notion of elementary subgroup of PSL(2,R),
which is a subgroup whose action on D has a finite orbit. Concretely, an elementary subgroup of
PSL(2,R) is either conjugate in PSL(2,R) to a subgroup of rotations, or has a finite orbit on the
circle at infinity (which has to be either a fixed point or a periodic orbit of order 2); see Kim,
Koberda, and Mj [13, Proposition 2.1].

In practice, compared to the work of Kovačević, we also consider the case of periodic orbit of
order 2, which is a bit harder than the other cases.

Theorem A. If G < Homeo+(S1) is an elementary, Möbius-like subgroup, then G is continuously
semi-conjugate to an elementary subgroup of PSL(2,R) and, moreover, the corresponding morphism
G → PSL(2,R) is injective.

Our proof is a modern revised version of that from [15], which is somehow difficult to digest
as Kovačević needs to prove Solodov’s theorem along way. Originally presented in [19, Theorem
3.21], this is now a classical result in the subject (see Ghys [9, Theorem 6.12] and Farb–Franks
[7, Theorems 1.3 and 1.4]). For further reference, it is more convenient to add a first item to its
usual statement, which is a direct consequence of Hölder’s theorem [9, Theorem 6.10].

Theorem 1.3 (Solodov). Let G < Homeo+(R) be a subgroup with at most 1 fixed point. Then
• either the action of G admits a unique fixed point p, in which case the restriction of the action

of G to (−∞, p) (respectively, to (p,+∞)) is continuously semi-conjugate to an action by
translations, and the corresponding morphism G → R is injective, or

• the action of G is continuously semi-conjugate to an action by affine transformations, and
the corresponding morphism G → Aff+(R) is injective.

In the opposite direction, Kovačević [14] showed that the above result fails for general Möbius-like
groups.

Theorem 1.4 (Kovačević). There exist finitely generated (even finitely presented) Möbius-like
subgroups of Homeo+(S1) whose action is minimal (every orbit is dense) but not conjugate into
PSL(2,R).

When a subgroup of Homeo+(S1) has at most 2 fixed points but is not semi-conjugate into
PSL(2,R) (or not even Möbius-like), one may still wonder whether it is abstractly isomorphic to a
subgroup of PSL(2,R). Building on the proof of Theorem A, we settle this problem for the negative.

Theorem B. There exists a finitely generated, elementary group of smooth (C∞) circle diffeomor-
phisms, with at most 2 fixed points, and which is not isomorphic to any subgroup of PSL(2,R).
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For the next main result, we will consider the following topological condition (inspired by work
of Rebelo [18] in the real-analytic setting). To state it, recall (see [9, Proposition 5.6]) that any
subgroup G ≤ Homeo+(S1) admits a non-empty G-invariant compact subset Λ ⊂ S1 which is
minimal with respect to inclusion, called a minimal invariant subset; moreover, if G does not have
any periodic orbit, the minimal invariant subset is always unique, and it is either the whole circle
or a Cantor set. In particular, when G ≤ Homeo+(S1) is a non-elementary subgroup, we can refer
to the minimal invariant subset of G. We also say that a non-empty interval I ⊂ S1 is wandering
(for G) if Λ ∩ I = ∅.

Definition 1.5. A non-elementary subgroup G ≤ Homeo+(S1) of circle homeomorphisms is locally
discrete if for every non-wandering interval I ⊂ S1, the identity is isolated among the collection of
restrictions {g|I : g ∈ G} ⊂ C0(I;S1), with respect to the C0 topology.

It is clear that if a subgroup is locally discrete, then it is discrete in the usual sense. In fact,
we will see that in the C0 topology, the two properties are equivalent (Lemma 4.5), whereas in
the real-analytic setting of Rebelo [18], the equivalence is an open problem (see the discussion
in Alvarez et al. [1, Remark 1.9]). The condition of considering non-wandering intervals only in
the definition sounds technical, but it is actually the appropriate one (see Proposition 4.2). For
non-locally discrete groups with at most N fixed points, we prove the following.

Theorem C. Let G < Homeo+(S1) be a non-elementary, non-locally discrete subgroup with at
most N fixed points. Then, there exists k ≥ 1 such that G is conjugate to a dense subgroup of
PSL(k)(2,R).

Remark 1.6. The degree of the extension k is given by half of the largest number of fixed points for
non-trivial elements in G (which is thus necessarily even).

Corollary D. Let G < Homeo+(S1) be a non-elementary, non-locally discrete subgroup with at
most 2 fixed points. Then, G is conjugate to a dense subgroup of PSL(2,R).

Remark 1.7. Another consequence of Theorem C is that, if moreover the group G is finitely gener-
ated, it necessarily contains elements with irrational number (see Kim, Koberda, and Mj [13, Lemma
2.24]). Actually, a key step of the proof (see Lemma 4.10) is to show that the closure G contains
an element with irrational rotation number. Let us also comment that when considering finitely
generated subgroups G ≤ Diff1

+(S1) which are non-locally discrete with respect to the C1 topology,
the analogue conclusion is still open, even in real-analytic regularity (see Matsuda [17]).

Let us describe the structure of the paper. After introducing the main terminology in Section 2,
we discuss Theorems A and B in Section 3. The last section is devoted to the proof of Theorem
C. Let us give a quick outline of the proof. First of all, we remark that the action of G is minimal
(Lemma 4.5). The next step is to understand which elements belong to the C0 closure G: we
prove that G has also at most N fixed points (Lemma 4.7) and, up to conjugacy, it contains the
group of rotations SO(2) (Lemma 4.10). We then conclude by using the classification by Giblin
and Markovic [10] (see Theorem 4.11) of closed subgroups of Homeo+(S1) acting transitively and
containing a non-constant continuous path.

2. Preliminaries

2.1. Topology of the circle and of the group of circle homeomorphisms. In what follows,
we let Homeo+(S1) be the group of orientation-preserving homeomorphisms of the circle. Here, the
circle S1 will be considered as the one-dimensional torus R/Z, with its normalized Lebesgue measure.
Given a Borel subset A ⊂ S1, we denote by |A| its Lebesgue measure. Any f ∈ Homeo+(S1) lifts
to a homeomorphism F : R → R commuting with integer translations, and this lift is defined
uniquely, up to integer translations. This allows to identify the universal cover of Homeo+(S1)
with the group HomeoZ(R) of homeomorphisms of the line commuting with integer translations.
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If x, y ∈ S1 are two distinct points, we denote by (x, y) the (open) interval of points z ∈ S1 such
that the triple (x, z, y) is positively ordered. When x = y, (x, x) is by convention, just the empty
set. Similarly we denote other kind of intervals [x, y], [x, y), (x, y]. We can then define the distance
d(x, y) = min{|(x, y)|, |(y, x)|}. When d(x, y) < 1/2, this is the usual distance between points in
any Euclidean chart containing x, y, so that we can write (with slight abuse of notation) |x − y|
instead of d(x, y). We want to consider the C0 topology on Homeo+(S1), and in order to quantify
this, we consider the distance d∞(f, g) := supx∈S1 d(f(x), g(x)). It is well-known that the distance
d∞ on Homeo+(S1) is not complete, and for this reason we will also consider the additional distance
dC0(f, g) := d∞(f, g) + d∞(f−1, g−1), which makes Homeo+(S1) complete. When d∞(f, g) < 1/2,
we can take any lifts f̃ , g̃ ∈ HomeoZ(R) of f and g, respectively, such that |f̃(0) − g̃(0)| < 1, and we
have d∞(f, g) = ∥f̃ − g̃∥, where ∥ · ∥ is the usual uniform norm on continuous functions. Because
of this, when d∞(f, g) < 1/2, we will also write ∥f − g∥ for the distance d∞(f, g), and tacitly make
computations in a local Euclidean chart. This also justifies the following definition.
Definition 2.1. Let f ∈ Homeo+(S1) be a circle homeomorphism such that d∞(f, id) < 1/2. We
say that f is positive if for every x ∈ S1, we have f(x) ∈ (x, x + 1

2). When f−1 is positive, we say
that f is negative. Given an interval I ⊂ S1, we say that f is positive (respectively, negative) on I
if the previous conditions hold simply for any x ∈ I.
Remark 2.2. Observe that the definition above implies that a positive (respectively, negative) home-
omorphism does not have any fixed point. Moreover, when f, g ∈ Homeo+(S1) are positive, the
composition fg is also positive, provided that d∞(f, id) + d∞(g, id) < 1/2.

As we work with homeomorphisms having a prescribed bound on the number of fixed points, it
is fundamental to have in mind that if f, g ∈ Homeo+(S1) and x ∈ S1 are such that f(x) = g(x),
then g−1f(x) = x. When this occurs, we say that f and g cross. More specifically, I ⊂ S1, we say
that f and g cross in I if there exists x ∈ I such that f(x) = g(x). More specifically, we say that f
and g cross hyperbolically at x, if x is a (topologically) hyperbolic fixed point (either attracting, or
repelling) for the composition fg−1: equivalently, one has

(f(x− η) − g(x− η))(f(x+ η) − g(x+ η)) < 0
for any sufficiently small η > 0. We will also say that f and g cross weakly hyperbolically in an
interval I if there exists an interval J = [x, y] ⊂ I (possibly, x = y) such that f |J = g|J and

(f(x− η) − g(x− η))(f(y + η) − g(y + η)) < 0
for any sufficiently small η > 0.
Remark 2.3. Having a weakly hyperbolically crossing in some open interval I is stable under suffi-
ciently small C0 perturbations.

We will be interested in counting the number of points for which f(x) = g(x), so that we will say
that f and g cross once, twice, 3 times, and so on.

2.2. Semi-conjugacy of group actions on the circle. A group action on a topological space
X is semi-conjugate to an action of the group on a topological space Y if there exists a continuous
equivariant map from X to Y . This classical notion of semi-conjugacy in dynamical systems can
be slightly modified to get an equivalence relation on group actions on the line and the circle. For
a detailed discussion, we refer to the monograph by Kim, Koberda, and Mj [13], from which we
borrow some terminology.

Let G be a group, and φ,ψ : G → Homeo+(R) two homomorphisms. We say that φ and ψ are
conjugate if there exists h ∈ Homeo+(R) which is (φ,ψ)-equivariant: h(φ(g)(x)) = ψ(g)(h(x)) for
any g ∈ G and x ∈ R. We say that φ and ψ are semi-conjugate if there exists a non-decreasing map
h : R → R such that |h(x)| → ∞ as |x| → ∞, and which is (φ,ψ)-equivariant. When the map h is
continuous, we recover the usual notion of continuous semi-conjugacy from φ to ψ.
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Similarly, when φ,ψ : G → Homeo+(S1), we say that φ and ψ are conjugate if there exists a
(φ,ψ)-equivariant circle homeomorphism. However, for extending the notion of semi-conjugacy to
this situation, we have to pass through actions on the line: using the cyclic central extension

1 → Z → HomeoZ(R) → Homeo+(S1) → 1,

we say that φ,ψ : G → Homeo+(S1) are semi-conjugate if we can find a cyclic central extension

1 → Z → G̃ → G → 1,

and semi-conjugate homomorphisms φ̃, ψ̃ : G̃ → HomeoZ(R) (in the previous sense), which send
any integer n ∈ Z ⊂ G̃ to the translation by n, and lift the homomorphisms φ and ψ, respectively:
in short, the following diagram must commute

G̃ G

1 Z HomeoZ(R) Homeo+(S1) 1

φ̃,ψ̃ φ,ψ

When φ̃ is continuously semi-conjugate to ψ̃, we say that φ is continuously semi-conjugate to ψ.
Note that this does not coincide with usual notion in dynamical systems, as we only allow continuous
semi-conjugacies through degree-1 maps of the circle.

With abuse of terminology, we will also say that the subgroups φ(G), ψ(G) are (continuously)
(semi-)conjugate, and more generally, we say that two subgroups of homeomorphisms G1 and G2 are
(continuously) (semi-)conjugate, if there exist a groupG and surjective homomorphisms φi : G → Gi
(for i ∈ {1, 2}) which are (continuously) (semi-)conjugate.

3. Elementary groups

3.1. Basic results. Recall from the introduction that a subgroup G of Homeo+(S1) is elementary
if its action preserves a Borel probability measure. Recall from the introduction that an elementary
subgroup G < Homeo+(S1), either admits a finite orbit or is semi-conjugate to a subgroup of
rotations. We assume that the reader is familiar with the notion of rotation number for circle
homeomorphisms. It is well-known that given a circle homeomorphism g ∈ Homeo+(S1), we can
compute its rotation number rot(g) ∈ R/Z ∼= S1 by taking any g-invariant Borel probability measure
µ and point x ∈ S1, and measure how much x is displaced: rot(g) = µ[x, g(x)). Therefore, if
G < Homeo+(S1) is an elementary subgroup, with invariant Borel probability measure µ, then one
has

rot(fg) = µ[x, fg(x)) = µ[x, g(x)) + µ[g(x), fg(x)) = rot(g) + rot(f),
which means that the restriction to G of the function rotation number defines a homomorphism.
More precisely, it gives a homomorphism ρG : G → SO(2) defined by g 7→ Rrot(g) (which does not
depend on the choice of the invariant measure µ), and the actions of G and ρG(G) are semi-conjugate
(according to the terminology introduced in the previous section). Moreover, if the action of G has
no finite orbit, then G is continuously semi-conjugate to ρG(G) (see Ghys [9, Proposition 6.17]).
We have the following basic result.

Lemma 3.1. Let G < Homeo+(S1) be a subgroup with an invariant Borel probability measure µ on
S1. Then, the kernel of the homomorphism ρG : G → SO(2) fixes supp(µ) pointwise.

Proof. Take x ∈ supp(µ). If g ∈ G is such that g(x) ̸= x, then µ[x, g(x)) ̸= 0 and thus rot(g) ̸= 0. □

Let us give a straightforward application in the case when the elementary subgroup has at most
N fixed points.
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Lemma 3.2. Let G < Homeo+(S1) be a subgroup with at most N fixed points, preserving a Borel
probability measure µ on S1, whose support contains at least N+1 points. Then, the homomorphism
ρG : G → SO(2) is injective, and G is continuously semi-conjugate to ρG(G).

In particular, G is isomorphic to a subgroup of SO(2), and thus abelian.

Proof. If there was an element in the kernel, by Lemma 3.1, it would fix the support of µ, and thus
at least N + 1 points. As we are assuming that G acts with at most N fixed points, this gives that
the kernel is trivial. Moreover, if the action of G has a finite orbit, then the image ρG(G) is finite,
and so is G. In this case, we have that G is conjugate to ρG(G) (see e.g. Herman [11, §II.6]). If
the action of G has not finite orbit, then by [9, Proposition 6.17] we get that G is continuously
semi-conjugate to ρG(G). □

3.2. Möbius-like elementary groups. Here we discuss the first result, namely Theorem A, which
states that elementary, Möbius-like subgroups of Homeo+(S1) are continuously semi-conjugate to
subgroups of PSL(2,R).

Proof of Theorem A. Let ν be a Borel probability measure preserved by the action of G on the circle.
If supp(ν) contains at least 3 points, then Lemma 3.2 gives that G is continuously semi-conjugate
to the subgroup of rotations ρG(G) ≤ SO(2) < PSL(2,R), and actually isomorphic.

Thus, from now on, we can assume that the action of G has a finite orbit, which is either a
fixed point or a pair of points. Assume first that there is a unique global fixed point for G. Then,
by Solodov’s theorem (Theorem 1.3), G is continuously semi-conjugate to a subgroup of affine
transformations, and the corresponding morphism G → Aff+(R) < PSL(2,R) is injective. Assume
next that G has two global fixed points p, q ∈ S1. After Hölder’s theorem (Theorem 1.3), the
restrictions of the actions of G to the two connected components of S1∖{p, q} are both continuously
semi-conjugate to actions by translations, and moreover the corresponding induced homomorphisms
G → R and G → R are injective. Therefore, after a continuous global semi-conjugacy (sending p
and q to the points 0 and ∞ of RP1 = R∪{∞}), we can identify G with a Möbius-like subgroup Γ of
the group Λ ∼= R2 of homeomorphisms f : RP1 → RP1 for which there exist α = α(f), β = β(f) ∈ R
such that

f(x) =
{
eαx for x ∈ [0,∞],
eβx for x ∈ [∞, 0].

From now on, we will work with Γ instead of G. Take a non-trivial element f ∈ Γ, and replacing f
by f−1 if necessary, we assume α(f), β(f) > 0. Up to replace Γ by the subgroup of Λ obtained by
conjugating Γ by the homeomorphism

h(x) =
{
x1/α(f) for x ∈ [0,∞],
−(−x)1/β(f) for x ∈ [∞, 0],

we can assume that α(f) = β(f) = 1.
We claim that also for every other g ∈ Γ, we have α(g) = β(g). Indeed, if for some g ∈ Γ, α = α(g)

and β = β(g) satisfy α − β ̸= 0, then there exists an integer N ∈ Z such that N(α − β) > 1 and
so, there exists a second integer M ∈ Z such that Nα > M > Nβ. Therefore, Nα − M > 0 and
Nβ − M < 0 and so for the element γ = gNf−M ∈ Γ one has α(γ) > 0 and β(γ) < 0. This
contradicts the assumption that Γ is Möbius-like. Now, since the subgroup of elements g ∈ Λ with
α(g) = β(g) is a subgroup of PSL(2,R) (it is the stabilizer of the points 0 and ∞), we conclude
that Γ is in PSL(2,R).

For the last case, we will assume that G has a finite orbit of order 2, and denote by ν the
corresponding invariant probability measure. After Lemma 3.1, we have a short exact sequence

1 → G0 → G → Z2 → 1,
where we write G0 = ker(ρG). By the previous case (two global fixed points), G0 is isomorphic
and continuously semi-conjugate to a subgroup of the stabilizer of 0 and ∞ in PSL(2,R), which is
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isomorphic to R. By continuity of the rotation number, the closure G in Homeo+(S1) also fits a
short exact sequence

1 → G0 → G → Z2 → 1,
and acts on the circle fixing the same two fixed points as G0. In particular, it is left-orderable,
and actually order-isomorphic to either Z or R, with the standard order (or the reflected one). Let
a ∈ G be an element of the group with rot(a) = 1/2. Observe that if a2 ̸= id then a2 fixes the
2 atoms of ν and no further point, so they are both parabolic fixed points. This contradicts the
Möbius-like assumption. Thus, we must have a2 = id. Therefore the exact sequence splits, so that
G ∼= G0⋊AZ2, where A is the involution of Aut(G0) defined by the conjugacy by a (clearly this also
gives the isomorphism G ∼= G0 ⋊AZ2, where we keep denoting by A the restriction of the involution
to G0). We denote by −id ∈ Aut(G0) the involution that sends any element to its inverse.

Claim 1. We have A = −id, thus G ∼= G0 ⋊−id Z2.

Proof of claim. Note that A acts as an order-automorphism of order 2 on G0, which is isomorphic
to either Z or R. Hence it must be A ∈ {id,−id}. However, if A = id, then any non-trivial element
of G0 is centralized by a, and therefore its two fixed points should have the same dynamical nature
(both parabolic), contradicting the Möbius-like assumption. We conclude that aga−1 = g−1 for any
element of G0. □

Let us now see thatG is continuously semi-conjugate to a subgroup of PSL(2,R). Let p, q = a(p) ∈
S1 be the finite orbit, and take a G0-invariant atomless Radon measure µ on (p, q) (coming from
Hölder’s theorem). When y < x, we will use the convention µ[x, y) = −µ(y, x]. With such notation,
we have that for any f ∈ G0, there exists a constant α(f) ∈ R such that µ[x0, f(x)) = µ[x0, x)+α(f)
for any choice of x0, x ∈ (p, q). The function α : G0 → R is an injective homomorphism, and it
actually corresponds, up to a scalar multiple, to the α(f) previously considered. Now, fix a point
x0 ∈ (p, q), and consider the function h : S1 → RP1 defined by

h(x) =


0 if x = p,

eµ[x0,x) if x ∈ (p, q),
∞ if x = q,

−e−µ[x0,a(x)) if x ∈ (q, p).

The function h is continuous and of degree 1. Let us check that it defines a semi-conjugacy from G
to the subgroup of PSL(2,R), generated by the maps

Af (t) = eα(f)t (for f ∈ G0),

and I(t) = −1/t. Indeed, if x ∈ (p, q), then we have

h(a(x)) = −e−µ[x0,a(a(x))) = −1/eµ[x0,x) = −1/h(x) = I(h(x)),

and for f ∈ G0,

h(f(x)) = eµ[x0,f(x)) = eµ[x0,x)+α(f) = eα(f)h(x) = Af (h(x)).

When x ∈ (q, p), then we have

h(a(x)) = −eµ[x0,a(x)) = −1/(−e−µ[x0,x)) = −1/h(x) = I(h(x)),

and for f ∈ G0,

h(f(x)) = −e−µ[x0,af(x)) = −e−µ[x0,f−1a(x)) = −e−µ[x0,a(x))−α(f−1) = eα(f)h(x) = Af (h(x)).

This concludes the proof. □
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3.3. A group of smooth diffeomorphisms which is not isomorphic to any Möbius group.
Here we give an example of group of C∞ circle diffeomorphisms, with at most 2 fixed points, but
which is not isomorphic to any subgroup of PSL(2,R).

Proof of Theorem B. For the construction of this example we will consider the following maps with
respect to the projective coordinates of the circle: fix λ, µ > 1 such that log λ and logµ are linearly
independent over Q, and set

f(x) =
{
λx for x ∈ [0,∞],
µx for x ∈ [∞, 0].

For convenience, set g = R 1
2
fR 1

2
. It is clear that f and g generate a rank 2 abelian free group.

Moreover, conjugation by the rotation R 1
2

defines an action of Z2 on such Z2 given by the matrix

A =
(

0 1
1 0

)
(with respect to the basis f, g). In other terms, the group G = ⟨f,R 1

2
⟩ is isomorphic to the semi-

direct product Z2 ⋊A Z2. By construction, one can observe that G acts with at most 2 fixed points.

Claim. The group G is not isomorphic to any subgroup of PSL(2,R).

Proof of claim. By contradiction, let us assume G is isomorphic to some subgroup H ≤ PSL(2,R).
Then H ∼= Z2 ⋊AZ2 is virtually abelian, and therefore its action on S1 preserves a Borel probability
measure. We conclude that H is elementary and Möbius-like. In particular, it satisfies the assump-
tions of Theorem A. Let us go through the cases discussed in its proof. If H preserves an atomless
Borel probability measure, that it must be abelian by Lemma 3.2, but this is a contradiction. In
the case H has fixed points, then by Solodov’s theorem, H is isomorphic to a subgroup of Aff+(R),
and therefore torsion free. This is again a contradiction. Therefore we are left with the case of
order-2 orbit, so by Claim 1, we have

(3.1) H ∼= Z2 ⋊−id Z2 = ⟨f, g, a | [f, g] = id, a2 = id, afa−1 = f−1, aga−1 = g−1⟩.

However, this contradicts the fact that

(3.2) H ∼= Z2 ⋊A Z2 = ⟨f, g, a | [f, g] = id, a2 = id, afa−1 = g⟩,

because the the semi-direct products at lines (3.1) and (3.2) have different abelianizations (as one
easily checks from the presentations: (3.1) gives (Z2)3, while (3.2) gives Z × Z2). This ends the
proof of the claim. □

Finally, conjugating G by a suitable C∞ homeomorphism which is infinitely flat at 0 and ∞, we
can embed G into Diff∞(S1). This proves Theorem B. □

Remark 3.3. An example of a minimal finitely generated group of circle homeomorphisms, with at
most 2 fixed points, and which is not isomorphic to any subgroup of PSL(2,R), can be built by
taking a free product of the group G from Theorem B with itself, obtained by blowing-up a free
orbit. This kind of construction is inspired by Kovačević’s work [14], and it is detailed in the second
author’s PhD thesis: indeed, let G1 and G2 be two copies of the group G, considered as acting on
distinct circles Γ1 and Γ2, and choose any two points x ∈ Γ1 and y ∈ Γ2 with trivial stabilizer in G1
and G2, respectively. Then, [4, Theorem D] gives that the amalgamated product (G1, x) ⋆ (G2, y)
(properly defined after [4, Theorem 4.7]; note that in this case it is simply a free product) is a
subgroup of Homeo+(S1) acting minimally, and with at most 2 fixed points.
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4. Non-locally discrete groups with at most N fixed points

In this section we discuss Theorem C, about non-locally discrete groups with at most N fixed
points. We start this section with an example that justifies our definition of non-local discreteness
(Definition 1.5).

We first need a result that can be seen as a consequence of the “Projective Baumslag Lemma”
[13, Lemma 3.4].

Lemma 4.1. Let A ≤ PSL(2,R) be a countable subgroup. Then, there exists a countable set
D ⊂ SO(2) such that for every rotation Rρ ∈ SO(2) ∖D, the subgroup ⟨A,Rρ⟩ is isomorphic to the
free product A ∗ ⟨Rρ⟩.

Proof. The subgroup SO(2) is a maximal abelian subgroup of PSL(2,R), acting without fixed points.
Let

w = (k, g1, . . . , gk,m1, . . . ,mk)
be a choice of an integer k ≥ 1, non-trivial elements g1, . . . , gk ∈ A, and finitely many integers
m1, . . . ,mk ∈ Z ∖ {0} (so, there are countably many such choices). By [13, Lemma 3.4], for any
such w, there exists a finite subset Dw ⊂ SO(2) such that for any Rρ ∈ SO(2)∖Dw the composition

ϕ(w) = g1R
m1
ρ · · · gkRmk

ρ

is non-trivial (more precisely, the square of its trace is different from 4). We can then take D =⋃
wDw, which is a countable union of finite subsets, and hence countable. □

Proposition 4.2. There exists a finitely generated non-elementary subgroup G < Homeo+(S1) with
at most 2 fixed points, which is not Möbius-like, and for which there exists a wandering interval
I ⊂ S1 such that the image of Stab(G, I) is non-discrete in Homeo+(I).

Proof. First, we will construct a non-elementary subgroup of PSL(2,R) with the stabilizer of a
point p ∈ S1 being parabolic and isomorphic to Z2. For this, let Tα, Tβ be two parabolic elements
of PSL(2,R) fixing the same point p ∈ S1, such that the subgroup T = ⟨Tα, Tβ⟩ is free abelian of
rank 2. After Lemma 4.1, we can find an irrational rotation Rρ ∈ SO(2) such that F = ⟨T,Rρ⟩ is
isomorphic to the free product T ∗ ⟨Rρ⟩ ∼= Z2 ∗ Z. Observe that the stabilizer of the point p has
not changed, that is Stab(F, p) = Stab(T, p) = T . Indeed, for every element g ∈ PSL(2,R) that
fixes the point p, we have that the parabolic element gTαg−1 fixes p and so it commutes with Tα;
so if Stab(F, p) ̸= T , we could then find an element g ∈ F ∖ T such that [gTαg−1, Tα] = id. This is
not possible after our choice of Rρ. Finally, note that F is a non-elementary subgroup of PSL(2,R)
with a parabolic stabilizer T of the point p isomorphic to Z2.

For the second step of the construction, we blow-up the action of F at the orbit of p (see for
instance Kim and Koberda [12]), in such a way that the action of the stabilizer T on the interval I
inserted at p is conjugate to the original action of T on S1 ∖ {p} ∼= R (which is a minimal action by
translations). Choosing the good orientation for this T -action on I, we have that any non-trivial
element of T acts on the new circle with 2 parabolic fixed points. We call G the resulting subgroup
of Homeo+(S1), which is abstractly isomorphic to F ∼= Z2 ∗ Z. It is not difficult to verify that
any non-trivial element of G has at most 2 fixed points (we do not have changed the action on the
complement of the F -orbit of p, and conjugates of T are now acting with at most 2 fixed points).
Therefore, G is a non-elementary group of circle homeomorphisms, with at most 2 fixed points. The
subgroup Stab(G, I) ∼= T acts on I minimally by translations, and thus its image in Homeo+(I) is
non-discrete. □

It turns out that non-discreteness and non-local discreteness are equivalent for non-elementary
subgroups. To see this, we need a fundamental structural result for non-elementary subgroups. To
state it, we say that the action of a subgroup G ≤ Homeo+(S1) is proximal if for every non-empty
open intervals I, J ⊂ S1, there exists an element g ∈ G such that g(I) ⊂ J . Note that if the



10 CHRISTIAN BONATTI, JOÃO CARNEVALE, AND MICHELE TRIESTINO

action is proximal, then it is automatically minimal, and G non-elementary. Being proximal is not
invariant under semi-conjugacy, since if J is a wandering interval and I is not, there is no way we
can send I inside J . For this reason, we also say that the action of a non-elementary subgroup
G is proximal in restriction to the minimal invariant subset if the previous statement holds only
for intervals J ⊂ S1 which are non-wandering (that is, intersecting the minimal invariant subset).
This property is preserved under semi-conjugacy, and when the action is minimal, we recover the
usual notion of proximal action. In particular, any non-elementary subgroup G which is proximal in
restriction to the minimal invariant subset is (continuously) semi-conjugate to a proximal action. As
a consequence, if G is proximal in restriction to the minimal invariant subset, then it is automatically
non-elementary. The following fundamental result can be deduced from the work of Antonov [2],
although it has been unknown to experts for a long time (see e.g. Ghys [9, §5.2]). Our statement is
very close to that appearing in the work of Malyutin [16, Theorem 1].
Theorem 4.3 (Antonov). Let G ≤ Homeo+(S1) be a non-elementary subgroup. Then there exists a
finite order element γ ∈ Homeo+(S1) which commutes with every g ∈ G, and such that the induced
action of G on the quotient S1/⟨γ⟩ is proximal in restriction to the minimal invariant subset.
Remark 4.4. In the setting of Theorem 4.3, several dynamical properties are equivalent for the
actions of G on S1 and S1/⟨γ⟩:

• (local) discreteness,
• minimality,
• all non-trivial elements have a uniformly bounded number of fixed points (because if γ is of

order d, and an element g ∈ G acts on S1/⟨γ⟩ with k fixed points, then gd acts on S1 with
dk fixed points).

In particular, the last argument gives that if an element g ∈ G acts on S1/⟨γ⟩ without fixed points,
then it also acts without fixed points on S1.

We will use this correspondence several times in the rest of the section to work under the more
convenient assumption that the action of G on S1 is proximal in restriction to the minimal set.
Lemma 4.5. If G ≤ Homeo+(S1) is a non-elementary, non-locally discrete subgroup, then G is
non-discrete.

Moreover, if G has at most N fixed points, its action on the circle is minimal.
Proof. Because of the principle in Remark 4.4, we can assume that the action of G on S1 is proximal
in restriction to the minimal invariant subset. Since G is non-locally discrete, there exists a non-
wandering open interval I ⊂ S1, and a sequence of non-trivial elements (gn)n∈N ⊂ G, such that
gn|I → id|I . If I = S1, we immediately get that G is non-discrete. Otherwise, fix η ∈ (0, 1

2), and
a non-wandering open interval J = (a, b) ⊂ S1 with |J | < η

2 . By proximality in restriction to the
minimal invariant subset, we can find an element f ∈ G such that f(S1 ∖ I) ⊂ J . By continuity
of composition, we have that the sequence of conjugates hn := fgnf

−1 converges to the identity in
restriction to f(I). In particular, we can fix n ∈ N such that |hn(x) − x| < η

2 for every x ∈ f(I).
On the other hand, if x ∈ J = (a, b), as a, b ∈ f(I), we have

a− η

2 ≤ hn(a) ≤ hn(x) ≤ hn(b) ≤ b+ η

2 ,

and since |J | < η
2 , this gives

−η < (a− x) − η

2 ≤ hn(x) − x ≤ (b− x) + η

2 < η.

As S1 = f(I) ∪ J , we conclude that |hn(x) − x| < η for any x ∈ S1, as wanted.
For the second part of the statement, assume the action admits an invariant Cantor set Λ ⊂ S1.

For any given ε > 0, every element g ∈ G which is ε-close to the identity must fix every gap of Λ
(that is, any connected component of the complement of Λ) whose size exceeds ε. For sufficiently
small ε, this gives that g fixes more than N points, and thus g = id. □
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Lemma 4.6. Let G < Homeo+(S1) be a non-elementary, non-discrete subgroup with at most N fixed
points. Then, there exists a sequence of fixed-point-free elements in G converging to the identity.

Proof. After Lemma 4.5, we know that the action of G on S1 is minimal. Using again the corre-
spondence in Remark 4.4, we can assume that G is proximal. Under this additional assumption,
we can take a sequence of non-trivial elements converging to the identity whose fixed points are all
contained in an arbitrarily small interval:

Claim 1. For every interval J ⊂ S1 and every ε > 0, there exists an element g ∈ G which is ε-close
to the identity and has no fixed points in the interval J .

Proof of claim. Let (gn)n∈N ⊂ G be a sequence of non-trivial elements such that gn → id. If
(gn)n∈N ⊂ G contains a subsequence without fixed points, there is nothing to do. Otherwise, by
taking a subsequence, we can assume that the fixed points of gn are converging to points p1, . . . , pM ∈
S1, for some M ≤ N . Let J ⊂ S1 be any closed interval. By proximality of G, there exists an element
k ∈ G which sends p1, . . . , pM to the complement of J . Now, by choosing gn close enough to the
identity, we can assume that kgnk−1 ∈ G is ε-close to the identity, and that this element only fixes
points which are in the complement of the interval J . □

Throughout the rest of the proof, we use the distance d∞ on Homeo+(S1) to quantify how close
elements are. Recall that this can be locally computed by using the uniform norm ∥ · ∥. We assume
by contradiction that for a fixed (small) ε > 0, every element ε-close to the identity has fixed points.
After Claim 1, we can define recursively a sequence of nested intervals (Jn) ⊂ S1 with the following
properties.

(1) The sequence (Jn) is shrinking to a point p ∈ S1, namely
⋂
n Jn = {p}.

(2) For any n ∈ N, there exists an element gn ∈ G such that ∥gn − id∥ ≤ ε
2 and gn is positive

on the complement of Jn, with gn(Jn) = Jn.

Claim 2. For any n ∈ N such that |Jn| < 1 − ε
2 , there exists m ∈ N such that ε

4 < ∥gmn − id∥ ≤ ε
2 .

Proof of claim. Indeed, if we assume that gn is ε
4 -close to the identity (otherwise m = 1 works),

since gn has fixed points only in Jn, for a sufficiently large power m ∈ N, the distance of gmn to the
identity will be larger than ε

2 . Therefore, there exists m0 ∈ N such that gm0
n is not ε

2 -close to the
identity, but gmn is ε

2 -close to the identity for every 0 ≤ m < m0. The point is that gm0−1
n is ε

2 -close
to the identity, but it is not ε

4 -close: indeed, there exists x ∈ S1 such that
ε

2 < |gm0
n (x) − x| <

∣∣∣gn (gm0−1
n (x)

)
− gm0−1

n (x)
∣∣∣+ |gm0−1

n (x) − x| < ε

4 + |gm0−1
n (x) − x|.

This proves the claim. □

From now on, after Claim 2, we can and will assume that ε
4 < ∥gn − id∥ ≤ ε

2 . Hence, when n

is sufficiently large so that |Jn| < ε
4 , we can find a point xn ∈ S1 ∖ Jn such that gn(xn) > xn + ε

4 .
Consider the interval In ⊂ S1 defined by In := (xn + ε

12 , xn + ε
6). After passing to a subsequence,

we can assume that xn converges to a point x ∈ S1, and for n0 ∈ N large enough we have that
I :=

⋂
n≥n0 In is a non-trivial interval. With such choices, for every y ∈ I and n ≥ n0 we have

xn + ε
6 > y and

(4.1) gn(y) > gn(xn) > xn + ε

4 > y + ε

12 .

On the other hand, for every n ∈ N, the interval Jn is disjoint from the interval [xn, xn + ε
4 ], so that

by choosing n1 ≥ n0 such that |xn − x| < ε
48 for any n ≥ n1, we have that the intervals I and Jn

are at least ε
24 -apart for any such n. We deduce that the union J :=

⋃
n≥n1 Jn and I are at least

ε
24 -apart. After Claim 1, we can take an element f ∈ G which is ε

2 -close to the identity, and negative
on the complement of I. As J and I are separated, we can find δ > 0 such that f(y) < y − δ for
every y ∈ J .
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Take m > n1 sufficiently large such that |Jm| < δ; we claim that the element f−1gm ∈ G is
ε-close to the identity and it has no fixed points in the circle. Indeed, since f is negative on the
complement of I and gm is positive on the complement of Jm, it is clear that gm does not cross f
in the complement of Jm ∪ I. Now, we have |I| ≤ |Im| = ε

12 , so that from the inequality (4.1) we
deduce that gm does not cross f in I. Similarly, the size of the interval Jm is smaller than δ and
f(y) < y − δ for every y ∈ J ⊃ Jm, which implies that gm does not cross f in Jm. Therefore, gm
does not cross f in the whole circle S1, which implies that the element f−1gm has no fixed points
in S1. Finally, as f−1gm is the composition of two elements ε

2 -close to the identity, this element is
ε-close to the identity, as desired. □

Given a subgroup G ≤ Homeo+(S1), we denote by G its closure in Homeo+(S1) with respect to
the C0 topology, which is still a subgroup of Homeo+(S1).

Lemma 4.7. Let G < Homeo+(S1) be a non-elementary, non-discrete subgroup with at most N
fixed points. Then, its closure G has at most N fixed points.

Proof. As before, we use the correspondence in Remark 4.4 to work under the additional assumption
that G is proximal. We then remark that any f ∈ G has at most ⌊N2 ⌋ components I of supp(f) :=
S1 ∖ Fix(f) for which f(x) > x for every x ∈ I. Indeed, arguing by contradiction, by Lemma 4.6,
we can take an element g ∈ G, sufficiently close to the identity and without fixed points, so that g
crosses weakly hyperbolically the element f at least 2

(
⌊N2 ⌋ + 1

)
≥ N + 1 times. After Remark 2.3,

we can find an element f0 ∈ G sufficiently close to f , which also crosses hyperbolically g at least
N + 1 times. This contradicts the assumption that G have at most N fixed points. Repeating the
argument for f−1, we deduce that supp(f) has at most 2⌊N2 ⌋ ≤ N connected components, and so
does Fix(f).

Assume now that G contains a non-trivial element f such that Fix(f) contains a non-empty open
interval I. Let us choose such an element f ∈ G such that the number C of connected components
of supp(f) is maximal. As we are assuming that G be proximal, we can find an element h ∈ G

such that h(supp(f)) ⊂ I. Then the element f ′ = fhfh−1 ∈ G is such that supp(f ′) has 2C > C
connected components, contradicting maximality. □

The next result we need is very general (and classical).

Lemma 4.8. Let f ∈ Homeo+(S1) be a circle homeomorphism of order q ≥ 2, with rotation number
rot(f) = p

q , where p ≥ 1 is a natural number. Then, for every ε > 0 there exists δ ∈ (0, 1/2) such
that for every circle homeomorphism g ∈ Homeo+(S1) which is positive and δ-close to the identity,
one has

dC0(f, gf) < ε and rot(gf) ∈
(
p

q
,
p

q
+ 1
q3

]
.

Proof. Note that the homeomorphism f is conjugate in Homeo+(S1) to the rotation Rp/q (see Her-
man [11, §II.6]) Since Homeo+(S1) is a topological group (so composition, and thus conjugacy, are
continuous), and since the function rotation number is continuous on Homeo+(S1), and conjugacy-
invariant, we can assume f = Rp/q, and fix ε > 0 and δ > 0 such that

(4.2) dC0(Rp/q, gRp/q) < ε and rot(gRp/q) ∈
(
p

q
− 1
q3 ,

p

q
+ 1
q3

]
for every circle homeomorphism g ∈ Homeo+(S1) which is δ-close to the identity.

Let us next make the basic observation that if h, k ∈ Homeo+(R) are two homeomorphisms of
the real line such that h ≤ k (meaning that h(x) ≤ k(x) for any x ∈ R), then for any integer n ≥ 0,
one has hn ≤ kn. This can be easily checked by induction:

hn(x) = h(hn−1(x)) ≤ h(kn−1(x)) ≤ k(kn−1(x)) = kn(x).
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For homeomorphisms h ∈ HomeoZ(R) of the real line commuting with integer translations, the
translation number τ(h) is defined as

τ(h) = lim
n→∞

hn(x)
n

,

and this limit does not depend on the choice x ∈ R. Consequently, if h, k ∈ HomeoZ(R) are such
that h ≤ k, then τ(h) ≤ τ(k). The rotation number rot(f) of a homeomorphism f ∈ Homeo+(S1)
is classically defined by taking any lift f̃ ∈ HomeoZ(R) and setting rot(f) = τ(f̃) (mod Z).

For what follows, we denote by Tα the translation by a ∈ R. Lift f = Rp/q to the translation
Tp/q. If g ∈ Homeo+(S1) is positive and δ-close to the identity, we can find some λ ∈ (0, δ) and a
lift g̃ ∈ HomeoZ(R) such that Tp/q < Tp/q+λ ≤ g̃Tp/q ≤ Tp/q+δ. Taking translation numbers, we get

p/q + λ ≤ τ(g̃Rp/q) ≤ p/q + δ,

so that passing to rotation numbers, and considering condition (4.2), we get

rot(gRp/q) ∈
[
p

q
+ λ,

p

q
+ 1
q3

]
,

as desired. □

Lemma 4.9. Let G < Homeo+(S1) be a non-elementary, non-discrete subgroup with at most N
fixed points. Then, G contains an element with irrational rotation number.

Proof. If the subgroup G < Homeo+(S1) has an element with irrational rotation number there is
nothing to prove, because G ⊂ G. Therefore, we will suppose that G has no element with irrational
rotation number. We want to construct a converging sequence (hn)n∈N ⊂ G whose limit h ∈ G has
irrational rotation number.

We start by choosing a sequence of elements (fn)n∈N ⊂ G without fixed points and converging to
the identity, whose existence is ensured by Lemma 4.6. After changing fn for f−1

n when necessary and
taking a subsequence, we can assume that (fn)n∈N is a sequence of positive circle homeomorphisms
whose distance to the identity decreases. Let us fix also a sequence (εn)n∈N of positive numbers
such that

∑
εn < 1/2. We choose h0 ∈ G to be the first element fm0 such that dC0(fm0 , id) < ε0.

We write rot(h0) = p0/q0, where p0, q0 ≥ 1 are natural numbers with gcd(p0, q0) = 1.
Now, let us assume by induction that hn ∈ G is a positive circle homeomorphism such that

dC0(hn, id) <
∑n
k=0 εk and of rational rotation number

rot(hn) = pn
qn

∈
(
pn−1
qn−1

,
pn−1
qn−1

+ 1
q3
n−1

]
,

where pn, qn ≥ 1 are natural numbers with gcd(pn, qn) = 1. As G has at most N fixed points,
whenever qn > N (this condition is satisfied for any sufficiently large n ∈ N), we must have
hqn
n = id. By Lemma 4.8, there exists δn > 0 such that for every positive circle homeomorphism
g ∈ Homeo+(S1) which is δn-close to the identity, we have that dC0(hn, ghn) < εn+1 and rot(ghn) ∈(
pn

qn
, pn

qn
+ 1

q3
n

]
. Then, we define hn+1 as fmnhn ∈ G, where fmn is the first element of the sequence

(fn)n∈N such that dC0(fmn , id) < δn. This gives that

dC0(hn+1, id) ≤ dC0(hn+1, hn) + dC0(hn, id) < dC0(fmnhn, hn) +
n∑
k=0

εk <
n+1∑
k=0

εk.

Since
∑n+1
k=0 εk <

1
2 , hn+1 ∈ G is a positive circle homeomorphism (Remark 2.2). By our assumption

on G, the rotation number of hn+1 is rational, and we write rot(hn+1) = pn+1
qn+1

, which belongs to(
pn

qn
, pn

qn
+ 1

q3
n

]
by construction. Hence, the inductive assumptions are satisfied.
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We next check that (hn) is a Cauchy sequence with respect to the dC0-distance (for which
Homeo+(S1) is complete), so that it admits a limit h ∈ G. Indeed, for every n,m ∈ N we have

dC0(hn+m, hn) ≤
n+m∑
k=n

dC0(hk+1, hk) <
n+m∑
k=n

εk <
+∞∑
k=n

εk
n→+∞−−−−−−→ 0.

It remains to prove that rot(h) /∈ Q. To see this, for every n ∈ N, we consider the interval
In =

(
pn

qn
, pn

qn
+ 1

q2
n

)
. By the classical Dirichlet’s approximation theorem, we have that In is a nested

sequence of intervals, such that
⋂
In is an irrational number. Let us detail this for completeness.

First, we recall that
pn+1
qn+1

∈
(
pn
qn
,
pn
qn

+ 1
q3
n

]
,

so that pn+1
qn+1

> pn

qn
. Next, we want to prove that pn+1

qn+1
+ 1

q2
n+1

< pn

qn
+ 1

q2
n

. We will first show that
qn+1 > qn. Indeed, if qn+1 ≤ qn then

pn+1 ∈
(
pnqn+1
qn

,
pnqn+1
qn

+ qn+1
q3
n

]
⊂
(
pnqn+1
qn

,
pnqn+1
qn

+ 1
q2
n

]
,

which is an absurd, because
(
pnqn+1
qn

, pnqn+1
qn

+ 1
q2

n

]
does not contain any integer. Now, we have the

following inequality
pn+1
qn+1

+ 1
q2
n+1

≤ pn
qn

+ 1
q3
n

+ 1
q2
n+1

≤ pn
qn

+ 1
q3
n

+ 1
(qn + 1)2 = pn

qn
+ q3

n + (qn + 1)2

q3
n(qn + 1)2

= pn
qn

+ 1
q2
n

q3
n + q2

n + 2qn + 1
q3
n + 2q2

n + qn
<
pn
qn

+ 1
q2
n

q3
n + q2

n + 2qn + 1 + (q2
n − qn − 1)

q3
n + 2q2

n + qn
= pn
qn

+ 1
q2
n

.

So, we conclude that In+1 ⊂ In for every n ∈ N. On the other hand, (qn)n∈N is an increasing
sequence of integers, and therefore |In| = 1

q2
n

−→ 0. Hence,
⋂
n∈N In converges to a point α ∈ R.

We claim that α is not a rational number, otherwise α = p
q with p, q ∈ Z, and q ≥ 2, which implies

that p
q ∈ In =

(
pn

qn
, pn

qn
+ 1

q2
n

)
, for every n ∈ N. Therefore, for n sufficiently large, we have 2q < qn

and then
p ∈

(
pnq

qn
,
pnq

qn
+ q

q2
n

)
⊂
(
pnq

qn
,
pnq

qn
+ 1

2qn

)
,

which is an absurd, because
(
pnq
qn
, pnq
qn

+ 1
2qn

)
does not contain any integer.

Let us go back to our converging sequence (hn). By construction we have

rot(hn+1) ∈
(
pn
qn
,
pn
qn

+ 1
q3
n

]
⊂
(
pn
qn
,
pn
qn

+ 1
q2
n

)
= In,

so that rot(hn+k) ∈ In+k ⊂ In for any k ≥ 1. Hence, by continuity of rot : Homeo+(S1) → S1, it
follows that rot(h) ∈ In, for every n ∈ N, and therefore rot(h) = α is irrational, as desired. □

Lemma 4.10. Let G < Homeo+(S1) be a non-elementary, non-discrete subgroup with at most N
fixed points. Then, G contains an element which is conjugate to an irrational rotation. Therefore,
up to conjugacy, G contains SO(2).

Proof. We will prove that any f ∈ G with irrational rotation number α = rot(f) (by Lemma 4.9, we
can find such an element in G) is conjugate to the rotation Rα. We argue by way of contradiction.
Let us denote by Λ the minimal f -invariant Cantor set. Recall that a gap of Λ is a connected
component of the complement S1 ∖ Λ. Up to conjugating G by some circle homeomorphism, we
can assume that the size of any gap does not exceed 1

4 . After the discussion in Section 2, f is
semi-conjugate to the rotation Rα. Denoting by (qn) the sequence of denominators of rational
approximations of α, we have Rqn

α → id, which implies that for any x ∈ Λ which is not in the
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closure of any wandering interval, we have f qn(x) → x. (This is because any such x satisfies that
{x} = h−1(h(x)), where h : S1 → S1 is a continuous monotone map such that hf = Rαh giving the
semi-conjugacy.) After the choice of the size of the gaps, we can take n0 ∈ N sufficiently large so
that d∞(f qn , id) < 1/2 for any n ≥ n0, and then take a subsequence (qnj )j∈N ⊂ (qn)n≥n0 such that
f qnj is positive for any j ∈ N.

Take ε > 0 smaller than the size of the N largest gaps. By Lemma 4.6, we can choose a positive
element g ∈ G which is ε-close to the identity. Note that for any j ∈ N sufficiently large, g crosses
f qnj twice on a small neighborhood of any of the N largest gaps, hence at least 2N times. This
contradicts the assumption that g−1fnj ∈ G have at most N fixed points. So we conclude that
f ∈ G with rot(f) /∈ Q is conjugate to an irrational rotation and therefore G contains a conjugate
copy of SO(2). □

We finally use a result by Giblin and Markovic [10, Theorem 1.2]. (A self-contained argument
for the conclusion in the case N = 2 is given in the second author’s PhD thesis [4].)

Theorem 4.11 (Giblin–Markovic). Let G ≤ Homeo+(S1) be a closed transitive subgroup which
contains a non-constant continuous path. Then we have the following alternative:

(1) either G is conjugate to SO(2), or
(2) G is conjugate to PSL(k)(2,R), for some k ≥ 1, or
(3) G is conjugate to Homeo(k)

+ (S1), for some k ≥ 1, where Homeo(k)
+ (S1) is the group of all

homeomorphisms commuting with the group of order k rotations.

We can now put everything together and prove the main result of our work.

Proof of Theorem C. Let G be a non-elementary subgroup with at most N fixed points. If G is
non-locally discrete, then after Lemma 4.5, G is non-discrete, so that by Lemma 4.10 its closure G
contains a conjugate copy of the subgroup of rotations SO(2). In particular, G is closed, transitive
and contains a non-constant continuous path. As G is non-elementary, the first possibility in
Theorem 4.11 cannot occur. On the other hand, after Lemma 4.7, G has at most N fixed points,
so that the third possibility in Theorem 4.11 cannot occur either. We conclude that G is conjugate
to PSL(k)(2,R), for some k ≥ 1, as desired. □
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