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Abstract. In machine learning process, hyper parameters are chosen in a way to decrease the
prediction error and improve the convergence. However, the optimized hyper parameters have
a limit in terms of enhancing the performance of the neural networks. In this work, the datasets
used for the numerical experiments arise from the resolution of partial differential equations
(PDE) defined on a spatial domain. We propose a DYNAmic WEIghted Loss (DYNAWEIL)
function-based approach for neural networks that are used to learn these PDE’s solutions. This a
two-step process: first we train for a few numbers of epochs in a classical way then the dynamic
weighted loss function replaces the classical loss function by leveraging the information from
past training error histories. To validate this method, we carry out numerical experiments with
different neural networks on datasets arising on two different physics: Goldstein equation [1]
and radiative transfer equation [2]. Thus, in order to demonstrate the relevance of this approach,
we provide a comparison among a neural network model using a classical loss function, with
and without hyper parameters optimization, and a dynamic weighted loss function for both
versions.

1 INTRODUCTION

The goal of artificial intelligence (AI) is to imitate human intelligence in computers through a
set of theories and methods. As a branch of artificial intelligence, machine learning (ML) studies
the creation and analysis of statistical algorithms that enable computers to learn from data and
then generalize their ”knowledge” to predict new data. A sub-domain of ML techniques is
Deep Learning (DL) that employs Artificial neural Networks (ANNs) to solve complex tasks.
In DL, multiple layers with nonlinear activation functions are used within the network. Then,
a loss function is defined and by minimizing (or maximizing) it, the unknown parameters of
the network are found. A significant factor in the learning process is the type of loss function.
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Therefore, one way to improve the learning process of neural networks is to define a suitable
loss function. Such a choice arises from the data and problem type at hand.

Data imbalance, usually observed in large-scale data, causes a learning bias towards the
majority of data (dominant samples) and neglecting the minority. This is crucial since rare
events carry a high degree of uncertainty. Thus, training unbiased models from imbalanced data
remains an open problem among researchers.

The multitude of initialization, optimizer, and hyper-parameter combinations makes it im-
possible to identify the optimal choice, even for a given set of tasks. Given how challenging it
can be to choose the most suitable loss function initially, one may wonder if the accuracy of the
network can be improved by changing iteratively the loss function during training process.

To tackle the problem of imbalanced data, a dynamic weight loss is introduced in the lit-
erature. Setting data weights inversely proportional to the data frequency is a popular and
straightforward heuristic technique for balancing loss in the presence of data imbalance [3, 4].
In contrast to the previous research, [5] suggested a novel loss function known as Dynamically
Weighted Balance (DWB) Loss, which could manage the unbalanced data and result in better
calibration performance. The DWB was particularly assessed on hard to train samples.

In [6], the authors presented a dynamic loss function that took into account a time-dependent
weight for every class (of images). In order to emphasize one class after another during training,
the weight assigned to each class fluctuates and shifts within each cycle. They showed that we
demonstrate that this approach leads to better training and test accuracy when the neural net-
work is unable to optimize the standard (static) loss function in the underparametrized regime.
Surprisingly, in the overparametrized regime, it also improved the accuracy of prediction.

Many efforts have been made in the last few years to identify a suitable network substitute for
the physical solvers used to solve problems in solid mechanics, heat transfer, and computational
fluid dynamics (CFD). These networks are ML-substitute of physical solvers based on a set
of partial differential equations (PDEs) with boundary/initial conditions. In most cases, the
geometry is divided into several elements; these elements are distinguished by their associated
nodes. For each node, field/source variables are defined. The output of the network is usually
mapped on the field points. Unsurprisingly, the prediction accuracy for each node may not be
the same compared to other nodes.

To the best of our knowledge, there is no research on dynamic weighted loss function for net-
works of a geometric domain. In this work, we propose a neural network method based on the
DYNAmic WEIghted Loss (DYNAWEIL) function for learning the solutions to PDEs defined
over a geometric domain. This is a two-step process wherein we first train classically for a few
hundred epochs, and then we replace the classical loss function with a dynamic weighted one
by utilizing the historical training error histories. We conduct numerical experiments using var-
ious neural networks on datasets arising from two different physics: radiative transfer equation
and Goldstein equation. Moreover, we present a comparison between a neural network model
using a classical loss function, with and without hyper parameters optimization, and a dynamic
weighted loss function for both versions in order to illustrate the applicability of this approach.
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2 DYNAWEIL ALGORITHM

Training a neural network is principally based on optimization of a loss function defined on
training data label. Its performance can be enhanced by many factors; one of them is the defi-
nition of loss function . In this section, we develop an algorithm based on dynamic a weighted
loss function aggregated on a spatial and temporal domain of a partial differential equation.

Let’s consider a partial differential equation (PDE) as follows:

F (p, y(x, t)) = 0 (1)

where
- p ∈ X ⊂ RN and X is a set of input data p and N is the input data dimension;
- y(x, t) is the solution to the equation (1);
- (x, t) ∈ Ω× T , Ω is a spatial domain and T is a temporal domain.

The equation (1) can be solved using discretized methods such as finite difference or element
method. To simplify the notation, we define the discretized solution as y ∈ Y ⊂ RM where M
is the number of the spatial discretization and Y is the set of discretized solution corresponding
to the input data set X .

The proposed algorithm is compatible with any neural network that is defined on spatial
dataset and can be extended to temporal dataset. In the scope of the work, the algorithm is only
limited to the spatial dataset.

For simplicity, we consider a Multi-Layer Perceptron Neural Network (MLPNN) model
which is a function fw(p) : RN → RM where w is its weights. Hence, the predicted solu-
tion of the network is ŷ(p) = fw(p).

Let’s consider a loss function vector L̄w of the reference and predicted solution y and ŷ
respectively, with a metric ρ. The loss function vector can be written as :

L̄w(p, y) = (ρ(y1(p)− ŷ1(p)), ..., ρ(yM(p)− ŷM(p))),∀p ∈ X ,∀y ∈ Y (2)

where yi(p) = y(p)(xi) and ŷi = fw(p)(xi), i ∈ [1...M ] are the component of the reference
and predicted solution respectively at each discretized spatial coordinate.

Without loss of generality, we consider the following metric: ρ(yi − ŷi) = (yi − ŷi)
2, also

called Squared Error (SE). The associated weighted vector ξ is then defined as a collection of
weights associated to each component of the loss function vector. If ξ = (1, ..., 1), then the
classical Mean Squared Error (MSE) loss function can be written as:

Lw(p, y) =
1

M
ξT L̄w(p, y),∀p ∈ X ,∀y ∈ Y (3)

where ξT is the transpose of ξ.
Now, we can describe the proposed algorithm DYNAWEIL. Let ξ̂ be the maximum of the

absolute error vector of the reference and predicted solution in all training dataset, defined by

ξ̂ = (maxp∈X (|y1(p)− ŷ1(p)|), ...,maxp∈X (|yM(p)− ŷM(p)|)) (4)
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To simplify the notation, we denote ξi as the component of vector ξ̂.
We compute this weighted vector at every certain training’s epoch, called updated epoch.

Then, the weighted loss used to train the neural network associated to MSE loss is defined as
follows:

L̂k
w(p, y) =

1

M
ξ̂T L̄k

w(p, y),∀p ∈ X ,∀y ∈ Y (5)

with k being the epoch index. The loss function is changed (weighted) at each optimization
operation because of the local absolute error changes at each epoch. In the proposed method,
we only update the weight vector ξ̂ at a given frequency. Therefore, between these epoch, the
weighted loss stays the same and is to be minimized.

Before going further, let’s look at how the weighted loss can have an impact on optimization.
At each spatial discretized coordinate, the solution’s local error is used as the weight coefficient
at each loss function vector’s component. The larger the local error is, the more important the
weight will be at this coordinate point. Hence, the loss function vector component where the
weight is important tends to reach a better precision, whereas, for the classical MSE loss, the
local error is equally weighted.

The difference for each MLPNN’s weight component wi,p between epoch k + 1 and k can
be written as:

|wi,k+1 − wi,k| = γ
1

M
|ξT∇L̄k

wi
| ≤ γmaxξi∈ξ(ξi)|∇Lk

wi
| (6)

where γ is the initial learning rate of a given optimizer. This means that, at each update, com-
paring to MSE, the descend amplitude is, at most, of factor maxξi∈ξ(ξi).

For solving the PDE, we seek a solution in the domain under the constraints of either bound-
ary or initial conditions. As for training its solutions, we only need the predicted solutions to
be precise on the unknown parts (i.e. excluding boundary/initial points) of the reference solu-
tion. Taking advantage of this, we can further amplify the weighted vector with the weighted
amplitude a on the coordinate’s unknown solution, hence the weighted vector can be expressed
as follows:

ξ̃ = (ξi1 , ..., ξiK , aξiK+1
, ..., aξiM ) (7)

where ξi1 , ..., ξiK are corresponding to the known components of the reference solutions
(boundary/initial conditions) y and the set {i1, ..., iM} is bijective to the set {1, ...,M}. The
weighted loss function is as the same as in equation (5) with using equation (7).

At each update epoch, comparing to MSE, the weighted loss’s descend amplitude is, at most,
of factor a maxξi∈ξ(ξi). If either weighted amplitude or maximum weighted vector is too large,
the amplified weighted loss may diverge. To avoid this, we normalize the initial learning rate
by the average of the weighted vector and weighted amplitude. For evaluation’s purpose, we
can replace the predicted solution’s boundary/initial point by their reference value.

We can, further, improve the algorithm by updating the amplitude according to the behaviour
of the average weight vector corresponding to the unknown components of the reference solu-
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tion, which is defined as:

ζ =
1

M −K
Σi∈[iK+1,...,iM ](ξi) (8)

We seek to decrease ζ at each update epoch for a given amplitude a. If ζ decreases, we
increase the the amplitude for that the weighted vector of the loss function vector is amplified
at the local error, else we just decrease the amplitude.

The pseudo code of DYNAWEIL is described in algorithm (1).

Algorithm 1 DYNAWEIL
fw ← Initialize model’s hyperparameters
k ← 0
ζ0 ← 0
while k ≤ epoch number do

ξ̂k ← (ξ1, ..., ξM) compute weighted vector
ζk ← compute average weighted vector
if k < update epoch then

ξ̃ ← ξ = (1, ..., 1)
end if
γk = γ
if k ≡ 0 mod update epoch then

γk =
γ
aζk

if a ≤ 0 then
a = 1

end if
if ζk−1 < ζk then

a← a− ςda
else

a← a+ da
end if
if ζk ≤ ε then

break
end if
ξ̃k ← (ξi1 , ..., ξiK , aξiK+1

, ..., aξiM ) amplify weighted vector
end if
L̄k ← compute loss function vector
L̃k ← 1

M
ξ̃Tk L̄k

training fw with weighted loss L̃k

k ← k + 1
end while
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3 NUMERICAL EXPERIMENTS

3.1 Problem statements

3.1.1 Goldstein equation

Any fields dealt with sound such as musics and noises, acoustic problem plays a major role.
For a joyful sound like concerts or opera, one would love to amplify the sound magnitude as
much as one can, however, for noises such as car or plane noises, one is eager to reduce as
much as possible. Concerning plane noises, a famous Goldstein equation [1] is used to model
the sound propagation. A simplification of this model is to solve a 1D harmonic transport
problem with a high variation source function.

The harmonic transport equation is described by the following partial differential equation:

F (p, y(x)) = m
∂y

∂x
− iky(x)− g(x) = 0 (9)

where
- i =

√
−1 ;

- m is mach number which describes the velocity of the propagate wave function;
- k is wave number;
- g is the source function which describes the external force pushing on the wave medium;
- x ∈ [0, 1] is spatial domain;
- y(x = 0) = 0 is the boundary condition.

The discretized solution of the equation (9) is y ∈ CM . It can be written as
yR = (Re(y), Im(y)) ∈ R2M .

We work on the high dimensional input data where m = m(x) ∈ RM and g = g(x) ∈ CM

or gR = (Re(g), Im(g)) ∈ R2M are represented by a parametric Chebeshev polynomial that
vary at each discretized spatial position and the parameter k is fixed. So, the input and output
data are p = (m, gR) ∈ R3M and yR ∈ R2M respectively.

3.1.2 Radiative transfer equation

The steady-state radiative transfer equation for a spectral participative, non-scattering gas is
[2, 7]

∂Iν(r⃗, s⃗)

∂s
= κνIbν (T (r⃗))− κνIν (r⃗, s⃗) (10)

where sub-script ν refers to the spectral dependency of the corresponding variables, s⃗ is the di-
rection along the ray, r⃗ is the spatial coordinate, Iν is the radiative intensity, κν is the absorption
coefficient, T is the temperature, and Ibν is the Planck’s function.

On a diffusive wall (a surface that reflects diffusively) with a known temperature T0, the
boundary condition at a given point r⃗0 is given by
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I0ν (r⃗0, s⃗0) = ενIbν (T0) +
1− εν

π

∫
n⃗.s⃗′<0

Iν (s
′)|n⃗.s⃗′|dΩ′ (11)

where index 0 refers to a location on a boundary where the ray is drawn, n⃗ is the normal
of the boundary, εν is the spectral emissivity of the boundary, s⃗′ is the direction along the
incident/incoming ray and Ω′ is the solid angle corresponding to s⃗′.

By integrating over spectral bands, the hemispherical irradiation on a boundary surface can
be written as:

H =

∫ ∞

0

Hνdν =

∫
n⃗.s⃗′

∫ ∞

0

Iν (s
′)dν|n⃗.s⃗′|dΩ′ (12)

The statistical narrow band (SNB) model with the Curtis-Godson (CG) modification can be
used to calculate the spectral absorption coefficients of participative gases for a given spectral
band. It is outside the scope of this work to discuss the SNB-CG model; interested readers
should consult [8, 9, 10] for further information. Based on SNB-CG model for gases, the
absorption coefficients are functions of temperature (T ), wavenumber (ν), total pressure (p),
and molar fractions of participative gases (xg).

In order to create a reference dataset, the Discrete Transfer Radiation Method (DTRM),
proposed by Lockwood and Shah [11], is used to solve the radiative transfer equation (10) with
its boundary condition (11). For the sake simplicity, a 2D rectangular shape furnace with CO2,
CO, H2O gases is considered. The boundary and the domain are meshed in a Cartesian way. For
this problem, the input parameters are emissivities (ε) and temperature (T0) of the boundary, and
the temperature (T ) of the domain. On the other hand, the output is the hemispherical irradiation
(H) for each boundary point. For nx and ny discretization points on the boundaries, we have
2(nx + ny) boundary points and (nxny) domain points.

3.2 DYNAWEIL’s parameter impacts

In this section, we describe the influence of the DYNAWEIL’s parameters such as update
epoch frequency, amplitude a, amplitude step da, and learning rate γ on the performance of
MLPNN applied on the dataset generated by transport harmonic problem. We adopt the neural
network’s hyper-parameters as shown in Tab. 3’s first column. In this case, we train the neural
network for 100 epochs. Table 1 illustrates the impact of DYNAWEIL’s parameters on Mean
Absolute Error (MAE) and Mean Relative Error (MRE).

For a fixed update epoch of 20 with amplitude step da = 0 and initial learning rate γ = 0.1,
the weighted amplitude a is only changed. It is shown that for the weighted amplitude of 0.1,
the MAE and MRE are smaller than those of others. In general, the smaller or larger weighted
amplitude cannot guarantee a better performance of neural network.

For a fixed update epoch of 20 with amplitude a = 3 and initial learning rate γ = 0.1, the
amplitude da = 2 provides a better neural network’s performance. As in the above observation,
we need to find a suitable amplitude step da for a better neural network’s performance.

For a fixed amplitude a = 3, da = 2 and initial learning rate γ = 0.1, the larger the update
epoch is, the better the neural network’s performance is.
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For a fixed update epoch of 20 with weighted amplitude a = 3 and amplitude step da = 2,
we observe that a smaller or larger learning rate cannot guarantee the better neural network’s
performance. For learning rate of 0.2, it provides a better performance. We can observe that the
change of weighted loss for each update epoch provides a better neural network’s performance.

From this parametric study, it shows that the better neutral network’s performance can be
obtained by choosing the suitable learning rate, weighted amplitude, amplitude step, and a large
enough update epoch.

Table 1: DYNAWEIL’s parametric study

Fixed parameters update epoch = 20 update epoch = 20
da = 0, γ=0.1 a = 3, γ=0.1

Studied parameters amplitude a amplitude step da

Values 0.05 0.1 3 0.1 2 5

MAE 0.014 0.013 0.017 0.017 0.016 0.0167
MRE 11.90 11.23 22.06 21.74 18.80 19.55

Fixed parameters a=3, da = 2, γ=0.1 update epoch=20
a = 3, da=2

Studied parameters update epoch Learning rate γ

Values 3 20 101 0.05 0.2 0.5

MAE 0.017 0.016 0.017 0.022 0.015 0.024
MRE 22.30 20.02 19.15 28.17 16.29 35.14

3.3 Comparison of classical and DYNAWEIL neural network on different physics

This section describes the performance of a neural network model using a classical and
dynamic weighted loss function. For the comparison, we considered also the model with
and without optimized hyper-parameters. A random DYNAWEIL’s parameters are chosen to
demonstrate the capability of this algorithm as shown in Tab. 2.

Table 2: DYANWEIL’s parameters

amplitude a amplitude step da step factor ς update epoch

3 2 0.1 20

First, fully connected neural network’s hyper-parameters are randomly chosen for training
Goldstein and radiative transfer dataset as shown in Tab. 3. Then, we employ hyper-parameter
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searches using optuna [12] to optimize the number of layers, number of nodes for each layer,
training batch-size, and as well as learning rate for the two datasets.

Second, the hyper-parameters and the optimized one are used to train the fully connected
neural network classically and with/without DYNAWEIL. The optimized hyper-parameters are
displayed in the Tab. 3. The neural network performance evaluation are performed on MAE and
MRE, and are shown in Tab. 4.

Table 3: Fully connected neural networks hyper-parameters

Physical problems Goldstein radiative transfer

Hyper-parameters Initial Optimized Initial Optimized

Input dimension 3072 3072 2096 2096
Output dimension 2048 2048 280 280
Epoch 1000 1000 1000 1000
Training samples 1000 1000 1000 1000
Activation function Tanh Tanh Tanh Tanh
Optimizer SGD SGD SGD SGD

#Layer 1 1 1 2
#Layer’s Node 4096 3307 4096 (4046,3538)
Batch sizes 100 50 100 200
Learning rate 0.1 0.15 0.1 0.375

Table 4: Fully connected neural networks performance

Goldstein

Neural network Classic DYNAWEIL

Hyper-parameters Initial Optimized Initial Optimized

MAE 0.0794 0.0301 0.0121 0.0117
MRE 102.364 50.042 7.878 7.171

radiative transfer

Neural networ Classic DYNAWEIL

Hyper-parameters Initial Optimized Initial Optimized

MAE 0.807 0.730 0.732 0.728
MRE 0.662 0.575 0.572 0.570

For Goldstein problem, the classic neural network performance with optimized hyper-parameters
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are improved 2.6 and 2 times better for MAE and MRE, respectively, comparing to another clas-
sical networks with the non-optimized hyper-parameters. Without optimized hyper-parameters,
the performances of the DYNAWEIL neural networks are improved 6.56 and 13 times for MAE
and MRE, respectively, comparing to the performances of the classical networks. Furthermore,
the DYNAWEIL neural network performance, without optimized hyper-parameters, are im-
proved 2.48 and 6.35 times for MAE and MRE respectively comparing to the classical one with
optimized hyper-parameters. As for the DYNAWEIL neural network performance with opti-
mized hyper-parameters are not further improved comparing to that without optimized hyper-
parameters. We conclude, for this problem, that using DYNAWEIL, alone, without optimized
hyper-parameters, can improve the classical neural network performance, even with optimized
hyper-parameters.

For radiative transfer problem, the classic neural network performance with optimized hyper-
parameters are improved 1.1 and 1.16 times for MAE and MRE, respectively, comparing to
the network non-optimized hyper-parameters. As for DYNAWEIL neural networks with and
without optimized hyper-parameters, its performance is as good as the classical neural network
performance with optimized hyper-parameters.

4 CONCLUSION

We proposed a dynamic weighted loss function and its algorithm (DYNAWEIL) to improve
the neural network performance. Two physical problems, Goldstein and radiative transfer equa-
tions were used for generating the datasets. First, DYNAWEIL’s parametric study was per-
formed. We observe that the suitable DYNAWEIL’s parameters can improve neural network
performance. Second, the optimized hyper-parameter searches using optuna for the above
datasets were carried out. Then, we compared different neural network models to see the impact
of the dynamic weighted loss function. We observed that, for a random DYNAWEIL’s parame-
ters, DYNAWEIL neural network performance without optimized hyper-parameters is, at least,
as good as the classical one with optimized hyper-parameters.
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