N

N

Mopsa-C: Improved Verification for C Programs, Simple
Validation of Correctness Witnesses (Competition
Contribution)

Raphaél Monat, Marco Milanese, Francesco Parolini, Jéréme Boillot,
Abdelraouf Ouadjaout, Antoine Miné

» To cite this version:

Raphaél Monat, Marco Milanese, Francesco Parolini, Jéréme Boillot, Abdelraouf Ouadjaout, et al..
Mopsa-C: Improved Verification for C Programs, Simple Validation of Correctness Witnesses (Com-
petition Contribution). Tools and Algorithms for the Construction and Analysis of Systems. TACAS
2024, Apr 2024, Luxembourg City, Luxembourg. pp.387 - 392, 10.1007/978-3-031-57256-2_ 26 . hal-
04536418

HAL Id: hal-04536418
https://hal.science/hal-04536418

Submitted on 8 Apr 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04536418
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Check for
updates

Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses
(Competition Contribution)

Raphaél Monat! ®)®* Marco Milanese?®, Francesco Parolini?,
Jérome Boillot3®, Abdelraouf Ouadjaout*®, and Antoine Miné?

1 Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
raphael .monat@inria.fr
2 LIP6, Sorbonne Université, F-75005 Paris, France
3 Ecole Normale Supérieure, Université PSL, F-75005 Paris, France
4 Grenoble, France

Abstract. We present advances we brought to Mopsa for SV-Comp
2024. We significantly improved the precision of our verifier in the pres-
ence of dynamic memory allocation, library calls such as memset, goto-
based loops, and integer abstractions. We introduced a witness validator
for correctness witnesses. Thanks to these improvements, Mopsa won SV-
Comp’s SoftwareSystems category by a large margin, scoring 2.5 times
more points than the silver medalist, Bubaak-SpLit.

Keywords: Static Analysis - Abstract Interpretation - Competition on
Software Verification - SV-Comp.

1 Verification Approach: the Mopsa platform

Mopsa is an open-source static analysis platform relying on abstract interpreta-
tion [6]. The implementation of Mopsa aims at exploring new perspectives for
the design of static analyzers. Journault et al. [8] describe the core Mopsa prin-
ciples, and Monat [12, Chapter 3| provides an in-depth introduction to Mopsa’s
design. The C analysis which we rely on for this competition is based on the work
of Ouadjaout and Miné [16]; it proceeds by induction on the syntax, is fully
context- and flow-sensitive, and committed to be sound. This is the second time
Mopsa participates in SV-Comp [15]. We have brought precision improvements,
described below; they have proved decisive for the SoftwareSystems category.

Dynamic memory allocation precision improvements. Mopsa relies on
the recency abstraction [1] to handle dynamic allocation. For each allocation site,
this abstraction keeps the last allocated block separated from the others, the
latter being summarized into a single, weak memory block. Allocation sites are
customizable [14], they are usually based on a program location. However, this
summarization can be detrimental to precision. We implemented an alternative
abstraction that keeps memory blocks separated during loop unrolling. This

* Jury member

© The Author(s) 2024
B. Finkbeiner and L. Kovacs (Eds.): TACAS 2024, LNCS 14572, pp. 387-392, 2024.
https://doi.org/10.1007/978-3-031-57256-2_26

mailto:raphael.monat@inria.fr
https://orcid.org/0000-0001-8487-0326
https://orcid.org/0000-0002-6215-7359
https://orcid.org/0009-0001-7286-337X
https://orcid.org/0000-0001-7248-5914
https://orcid.org/0000-0002-6375-3179
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_26&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

388 R. Monat et al.

enhancement, combined with targeted loop unrolling helped us verify more tasks,
including 246 from the uthash categories. Specifically, we proved correct half the
tasks of uthash-NoQverflow category, which are out of reach of the other verifiers.

Integer abstractions. Mopsa only supported convex representations of inte-
ger sets, such as intervals. As such, it was impossible to precisely represent cases
where © € [—10,10] and = # 0. We have resolved this issue by adding an ex-
cluded set domain, which tracks a set of values a given variable cannot take. We
have also implemented the symbolic rewriting domain of Boillot and Feret [4],
which simplifies arithmetic expressions with overflows into simpler ones. This
new implementation has been written in 1,200 lines of OCaml code.

Improved precision for goto-based loops. Since the analyzer iterates on the
syntax of the program, goto statements require the usage of flows tokens [12] and
a special fixpoint iteration scheme. We added support for a decreasing iteration
pass, which allows to recover some precision after the generalization performed
by the widening operator. In addition, we added a syntactical loop rewriting
pass which turns few special goto patterns into equivalent while loops which are
analyzed more precisely.

Precise stub initialization. Ouadjaout and Miné [16] implemented a stub
language and its interpretation for the C standard library in Mopsa. Contiguous
region initialization through functions such as memset were not handled precisely
by our implementation of the cells domain [11], mainly to be scalable. We im-
proved the domain to handle region initialization up to a given bound, and NULL
pointer synthesis from a contiguous block of 0 bytes.

Other improvements. Some SV-Comp programs have specific symbolic ar-
gument initialization performed by client code, with variable parameters on the
maximal size of all symbolic arguments. We have thus extended Mopsa to handle
a wide range of parameters for symbolic argument initialization, matching those
found in SV-Comp programs. We also rely on the flambda optimizer for OCaml,
which brings more than a 15% performance improvements.

2 Software Architecture: the SV-Comp driver

By default, the C analysis of Mopsa detects all the runtime errors that may hap-
pen in the analyzed program, while SV-Comp tasks focus on a specific property
at a time. We thus rely on an SV-Comp specific driver. It takes as input the
task description (program, property, data model). It runs increasingly precise C
analyses defined in Mopsa until the property of interest is proved or the most
precise analysis is reached (or the resources are exhausted). Each analysis result
is postprocessed by the driver to check if the property is proved.

An analysis configuration defines the set of domains used, and their parame-
ters allowing modifications of the precision-efficiency ratio. A breakdown of the
results is shown in Fig. 1. This year, we use five configurations. Conf. 1 relies on
intervals and cells [11]. Conf. 2 additionally enables the string length domain [9],
the excluded powerset domain, and congruences. It performs decreasing itera-
tions for goto statements, unrolls the first 10 iterations of loops, enables the

Mopsa-C: Improved Verification, Simple Witness Validation 389

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005)

Fig.1. Max. Conf. i represents the sequence of increasingly precise analyses from
Conf. 1 up to Conf. i. Max. Conf. 2 is able to prove 780 tasks correct in addition to the
6995 proved by conf. 1, although 717 tasks reach the resource limits when analyzed by
Conf. 1 and 2 (349 more than by Conf. 1 alone). There are 25885 tasks in total, and
17851 correctness tasks. Mopsa can only prove program correctness for now (68% of
the tasks); it yields “unknown” when unable to prove a program correct.

enhanced memory allocation abstraction, and the more precise evaluation of
stubs. Conf. 3 adds a polyhedra abstract domain, relying on a static packing
to scale [7]. This includes tracking numerical relations between string lengths
and scalar variables. A pointer sentinel domain is added to symbolically track
the position of the first NULL value of a pointer array. Decreasing iterations are
also enabled for/while loops, and the first 15 iterations of loops are unrolled.
Conf. 4 adds the symbolic rewriting domain of Boillot and Feret [4]. Loop un-
rolling is extended to 60 iterations. Conf. 5 performs a fully relational analysis
of the analyzed program without packing.

Witness Validation. We extended our driver to support the witness validation
phase of SV-Comp: we inject loop invariants of a witness, encoded as assertions
into the original program. We then check that this patched program is correct.
This approach is similar to Metaval’s [3], but we used the new YAML format. The
work of Saan et al. [22] is more involved: it leverages the witness to guide their
analysis and yields precision improvements, compared to their bare analysis.

3 Strengths and Weaknesses

Mopsa participated in the following categories, targeting C programs: Reach-
Safety, MemSafety, NoOverflows and SoftwareSystems. It did not compete in
the termination category and cannot precisely analyze concurrency-related veri-
fication tasks. The highlight of this year’s participation is Mopsa’s gold medal in
the SoftwareSystems track, focusing on verifying real software systems. Mopsa
scored 2.5 times more points than the second tool, Bubaak-SpLit [5]. Figure 2
breaks down the results of Mopsa in the subcategories of the SoftwareSystems
track, highlighting our progress, and the best results obtained by this year’s
verifiers. An overview of results can be found in the competition report [2].

Strengths. Mopsa is quite scalable: our cheapest configuration is able to analyze
a given program within the allocated resource budget in 98.6% of the cases. In
addition, Mopsa is the only verifier of 2023 and 2024 able to gain points in the
DDLL category, corresponding to large instances of instrumented Linux drivers.

390 R. Monat et al.

Category Prop. [tasks| Mopsa’23 Mopsa’24 Best score (2024)

AWS R 197 32 36 137 Symbiotic

coreutils M 140 0 0 0o _

coreutils N 30 0 4 4 Mopsa

BusyBox N 54 4 8 8 Mopsa

DDL R 2442 3174 3476 3476 Mopsa

DDLL R 8 10 14 14 Mopsa

DDL M 141 0 8 71 Bubaak-SpLit

other R 22 0 10 10 Mopsa

other M 34 0 12 12 Mopsa

uthash R 138 0 192 228 Bubaak*, Symbiotic
uthash M 138 0 96 204 Bubaak*, Symbiotic
uthash N 114 0 204 204 Mopsa

Fig. 2. Mopsa’s improvements for subcategories of the SoftwareSystems track. Property
is either ReachSafety, MemSafety or NoOverflow. The last three columns show the
score of Mopsa submitted last year, this year, and the best score reached by a verifier.

Mopsa is committed to being sound. Thanks to this, we have been able to fix 20
mislabeled verdicts this year, mainly in the DDL category (DeviceDriversLinuz).

‘Weaknesses. Mopsa can only prove programs correct for now, and is currently
unable to provide counterexamples otherwise. We plan to leverage the recent
work of Milanese and Miné [10] to address this issue. Our SV-Comp driver cur-
rently tries a fixed sequence of increasingly precise configurations. We plan to
reuse information between the different analyses of the sequence, and automati-
cally adapt the options of Mopsa to the analyzed program (similar to Goblint’s
autotuning [21]). Our analysis is not competitive enough in the tracks besides
SoftwareSystems: we plan to add new array abstractions as well as a partitioning
mechanism. We also noted that Mopsa is imprecise on longjmp, following the
addition of recent benchmarks from Schwarz et al. [23] to SV-Comp.

Methodology. We finish this section by explaining how we worked to im-
prove Mopsa this year. We focused on the most important subcategories of Soft-
wareSystems. We encountered a few runtime errors in our analysis: we used
automated testcase reduction [18] to pinpoint these issues and fix them. We in-
vestigated several timeouts in the DeviceDriversLinuz-Large (DDLL) category,
by using standard profiling tools (such as perf), but also by profiling which
parts of a given program took long to analyze through custom plugins. The rest
of the work consisted in performing manual inspection of some tasks to see how
we could improve precision. We started by choosing tasks solved by competing
tools relying on similar approaches, starting from Goblint [20, 21, 19].

4 Software Project and Contributors

Mopsa is available on Gitlab [17], and released under an GNU LGPL v3 license.
Mopsa was originally developed at LIP6, Sorbonne Université following an ERC
Consolidator Grant award to Antoine Miné. Mopsa is now additionally developed
in other places, including Inria, ENS Airbus, and Nomadic Labs. The people who
improved Mopsa for SV-Comp 2024 are the authors of this paper.

Mopsa-C: Improved Verification, Simple Witness Validation 391

Data-Availability Statement. The exact version of Mopsa and the driver
that participated in SV-Comp 2024 are available as a Zenodo archive [13].

Bibliography

(1]

2]
13]

14]

5]
[6]

7]

18]

19]
[10]
[11]

[12]

[13]

[14]

[15]

Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated stor-
age. In: SAS, Lecture Notes in Computer Science, vol. 4134, pp. 221-239,
Springer (2006)

Beyer, D.: State of the art in software verification and witness validation:
SV-COMP 2024. In: Proc. TACAS, LNCS , Springer (2024)

Beyer, D., Spiessl, M.: Metaval: Witness validation via verification. In: CAV
(2), Lecture Notes in Computer Science, vol. 12225, pp. 165-177, Springer
(2020)

Boillot, J., Feret, J.: Symbolic transformation of expressions in modular
arithmetic. In: SAS, Lecture Notes in Computer Science, vol. 14284, pp.
84-113, Springer (2023)

Chalupa, M., Richter, C.: BUBAAK-SPLIT: Split what you cannot verify
(competition contribution). In: Proc. TACAS, LNCS , Springer (2024)
Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL, pp. 238-252 (1977)

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: Combination of abstractions in the Astrée static analyzer. In:
ASTAN, pp. 272-300 (2006)

Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of
reusable abstract domains for a multilingual static analyzer. In: VSTTE,
pp. 1-18 (2019)

Journault, M., Miné, A., Ouadjaout, A.: Modular static analysis of string
manipulations in C programs. In: SAS, pp. 243-262 (2018)

Milanese, M., Miné, A.: Generation of Violation Witnesses by Under-
Approximating Abstract Interpretation. In: VMCALI, Springer (2024)
Miné, A.: Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In: LCTES (2006)

Monat, R.: Static Type and Value Analysis by Abstract Interpretation of
Python Programs with Native C Libraries. Ph.D. thesis, Sorbonne Univer-
sité, France (2021)

Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné, A.:
Mopsa at sv-comp 2024 (Nov 2023), https://doi.org/10.5281/zenodo.
10198570

Monat, R., Ouadjaout, A., Miné, A.: Value and allocation sensitivity in
static python analyses. In: SOAP@QPLDI, pp. 8-13, ACM (2020)

Monat, R., Ouadjaout, A., Miné, A.: Mopsa-c: Modular domains and re-
lational abstract interpretation for C programs (competition contribution).
In: TACAS (2), Lecture Notes in Computer Science, vol. 13994, pp. 565-570,
Springer (2023)

https://doi.org/10.5281/zenodo.10198570
https://doi.org/10.5281/zenodo.10198570
https://doi.org/10.5281/zenodo.10198570
https://doi.org/10.5281/zenodo.10198570

392 R. Monat et al.

[16] Ouadjaout, A., Miné, A.: A library modeling language for the static analysis
of C programs. In: SAS, pp. 223-247 (2020)

[17] Ouadjaout, A., Monat, R., Miné, A., Journault, M.: Mopsa (2022), URL
https://gitlab.com/mopsa/mopsa-analyzer

[18] Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case
reduction for C compiler bugs. In: PLDI, pp. 335-346, ACM (2012)

[19] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S., Voj-
dani, V., Seidl, H.: GOBLINT: Abstract interpretation for memory safety and
termination (competition contribution). In: Proc. TACAS, LNCS , Springer
(2024)

[20] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani,
V.: Goblint: Thread-modular abstract interpretation using side-effecting
constraints - (competition contribution). In: TACAS (2021)

[21] Saan, S., Schwarz, M., Erhard, J., Pietsch, M., Seidl, H., Tilscher, S., Vo-
jdani, V.: GOBLINT: Autotuning thread-modular abstract interpretation
(competition contribution). In: Proc. TACAS (2), LNCS , Springer (2023)

[22] Saan, S., Schwarz, M., Erhard, J., Seidl, H., Tilscher, S., Vojdani, V.: Cor-
rectness witness validation by abstract interpretation. In: VCMAI, LNCS |
Springer (2024)

[23] Schwarz, M., Erhard, J., Vojdani, V., Saan, S., Seidl, H.: When long jumps
fall short: Control-flow tracking and misuse detection for non-local jumps
in C. In: SOAP@PLDI, pp. 20-26, ACM (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://gitlab.com/mopsa/mopsa-analyzer
http://creativecommons.org/licenses/by/4.0/

	Mopsa-C: Improved Verification for C Programs, Simple Validation of Correctness Witnesses (Competition Contribution)

