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Abstract—We consider clustering issues where the available
attributes can be divided into various independent groups that
frequently offer complimentary information. We concentrate on
real-world applications in this paper where a single instance can
be represented by a number of heterogeneous features. As was
performed successfully in the prior work of clustering on a single
view dataset by using barycentric coordinate(BC) representation,
and also a recent KMeans-based multi-view clustering RMKMC
which proposed that the weights of views can be auto-updated
by introducing a hyperparameter γ, we further propose a novel
approach of multi-view clustering BCmvlearn by combining
these two approaches to reduce complexity without sacrificing
clustering quality. In addition, the vector form of the original
dataset not being absolutely necessary due to the distance-based
property of the BC representation, a variant application of multi-
modal clustering is also achievable.

Index Terms—multi-view clustering, barycentric coordinate

I. INTRODUCTION

In the field of unsupervised machine learning, clustering is
the process of dividing objects into several groups (clusters)
based on their similarities, without prior knowledge of group
assignments. The goal of clustering is to group similar objects
into the same cluster and separate dissimilar objects into
different clusters. The main applications are exploratory data
analysis, pattern recognition, and dimensionality reduction
[1]. Over the past years, a number of clustering approaches
have been proposed (see [2], [3] for a review of the main
approaches). Among them, the adaptations of KMeans [4],
such as Fuzzy clustering [5], Genetic K-means [6] and the
adaptations of spectral clustering [7] such as SSC [8], LRR
[9] are very popular. These approaches have proven to be
effective in different fields, inspiring researchers to explore
the possibility of extending them to a wider range of tasks,
such as multi-view data analysis.

This work was funded through the ANR project Pro-Text (project N°
ANR-18-CE23-0024-01). More details are available at: https://pro-text.huma-
num.fr/le-projet/

Multi-view clustering refers to the problem of grouping
objects based on multiple sets of features to integrate these
different views to uncover the intrinsic clustering structure
[10]. Imagine an object in front of you that can be observed
from different perspectives, each providing a different set
of information (a view). Another example could be news
articles described in multiple languages, where each language
represents a different view. By analyzing multi-view data, we
can obtain more complementary information about the object
and facilitate a better understanding of ensemble diversity [11].
Traditional unsupervised learning, which relies on a single
view, may miss out on important information that can be used
to optimize the clustering effect through multi-view clustering.
Recent surveys in the field of multi-view clustering have noted
the emergence of various approaches [12]–[14]. However, de-
spite the advancements in multi-view clustering algorithms, the
majority of existing methods struggle with either scalability
for large-scale multi-view datasets or limitations in handling
a significant number of views.

Inspired by the success of clustering on single-view datasets
using the barycentric coordinate representation [15], we pro-
pose a novel approach to multi-view clustering by extending
this method. The barycentric coordinate formalism simplifies
the representation of objects by using weighted averages of
a subset of these objects. The weights are computed from
the similarities between objects, which uniquely determine the
location of the objects within the representation space. This
reduces the computational complexity in time and space, a
bottleneck of many popular multi-view clustering algorithms.
Barycentric coordinates offer several advantages over other
forms of point representation, including ease of computation,
robustness and stability [16]. In addition, we adapt the frame-
work of RMKMC [17] to automatically update the importance
of each view, which is often not addressed in other approaches,
or they only use a user-defined weight as a hyperparameter.
The proposed approach allows multimodal clustering scenarios



without the need for the original dataset to be in vector
form, as the barycentric coordinate formalism only requires
similarities between objects. This approach also allows for the
consideration of multiple similarity measures across different
views, increasing its applicability to a wide range of data types
and modalities.

In the remainder of this paper, we introduce the barycentric
coordinate formalism and present a short review on multi-
view clustering in Section II. We then present the proposed
approach, BCmvlearn, in Section III. We detail and discuss the
experimental results and application to multi-modal clustering
in Section IV, before concluding in Section V.

II. RELATED WORK

A. Barycentric coordinate (BC) representation
Barycentric coordinates [16] of a point in a simplex, such

as a triangle or a tetrahedron, are a set of values (λ1, ..., λn)
that represents the point’s relative position within the simplex.
These coordinates can be used to define any point within the
simplex in terms of a linear combination of the simplex’s
vertices (P1, ..., Pn). According to a proposal in [15], a
representation space can be defined by selecting a subset of
P ”support points” from a dataset (X) as a virtual space of
dimension P-1. Any item in the dataset can be expressed using
its Barycentric Coordinates (BCs) in this space, represented by
the equation:

xn =

p∑
p=1

βn
p s

p with
p∑

p=1

βp = 1. (1)

Here, sp stands for the vector representation of support point p.
However, in real-world applications, it may not always be pos-
sible to express the data, including the support points, in vector
form. Nevertheless, this vector representation is not essential
for computing the coordinates βn

p . Instead, a dissimilarity
measure that computes the distance between each data item
and the support points can be used. This measure d defines
the vector space of the data, whether known or unknown,
and must possess properties similar to those of an euclidean
distance. In order to obtain the coordinates βn

p of an object
xn, with respect to the system of support points, considering
the following P × P matrix: A = (Ai,j), 1 ≤ i, j ≤ P , which
contains the differences between the pairwise dissimilarity of
all the support points and the first support point only:

A =

d(s1, s1)− d(s2, s1) ... d(s1, sP )− d(s2, sP )
... ... ...

d(s1, s1)− d(sP , s1) ... d(s1, sP )− d(sP , sP )
1 ... 1

 (2)

The barycentric coordinates βn with size P×1 is as solution
of the following linear system:

A ∗ βn = Mn => βn = A−1 ∗Mn (3)

with Mn =


d(xn, s1)− d(xn, s2)

...
d(xn, s1)− d(xn, sP )

1



Based on this formalism, a relational K-means clustering
algorithm using the BC representation has been proposed in
[15]. The equation for computing the distance between an
object xn and a cluster center µk by using their respective
coordinates is as follows:

d2(xn, µk) = −1

2
(βn − βk)T ∗Ds ∗ (βn − βk), (4)

where Ds is the dissimilarity matrix between the support
points. The center updates are computed as the arithmetic
mean of the barycentric coordinates of the cluster’s members.
The experiment conducted on single-view datasets showed
that this algorithm has a linear time and memory complexity,
without a significant loss of quality when compared to state-
of-the-art algorithms.

B. Multi-view clustering

There are several well-known multi-view clustering al-
gorithms, such as the Co-EM based framework for multi-
view clustering, mvKMeans [18]. This algorithm adapts the
traditional K-Means clustering algorithm to handle two condi-
tionally independent views of a dataset. As a result, multi-view
K-Means clustering outperforms its single-view counterpart
when applied to a concatenated version of the two views of
data. It works by iteratively performing the maximization and
expectation steps of a traditional EM algorithm in one view
and then using the computed hidden variables as input for the
maximization step in another view. Another similar algorithm,
mvSphKMeans, also computes the objective optimization and
makes assignments using cosine distance rather than Euclidean
distance. This method is effective when the various data
views are conditionally independent and when the collection
contains properties of two different data types. However, it is
limited to only two views. The Co-training Method for Multi-
View Spectral Clustering, mvSpecClus [19] is a multi-view
clustering technique that applies the concept of co-training
to multi-view spectral clustering. It uses spectral clustering
on different views to obtain the discriminative eigenvectors
of each view, which are then used to iteratively modify the
graph structure of each view. The goal is to ensure consistency
in the relationships between pairs of points across all views.
This means that if two points are assigned to the same cluster
in one view, they should in the same cluster in all views.
A similar version of this method, Co-regularized Multi-View
Spectral Clustering, mvCRSpecClus [20] employs a pairwise
co-regularization scheme to encourage similarities of examples
in the new format to be similar across all perspectives.
However, both methods are based on spectral clustering and
may result in significant computational time loss.

Previous algorithms do not account for the effect of the
view’s weight α on the minimization objective function. This
motivates the search for multi-view clustering methods that
take into account the weight’s influence on the clustering
results. There are several methods that address this issue,
such as Collaborative Fuzzy Clustering [21], where the weight
α represents the collaboration between two views, and the
goal is to find a structure that is common to all views. It



works by analyzing different subsets and sharing knowledge of
local partition matrices. Similarly, Collaborative Non-negative
Matrix Factorization (NMF) [22] divides the objective function
into two parts. The first part minimizes the approximation error
between the original data and the reconstructed matrix based
on the cluster structure, and the second part minimizes the
distance between the unit of each view of the dataset and the
cluster centers of each local NMF view. Fuzzy Clustering in
Parallel Universes [23] also aims to use the weight α to denote
the contribution of each view, with a smaller value indicating
less influence on the objective function minimization. These
methods are preferable in real-world applications as they do
not treat all views as equally important.

In the previously mentioned methods, the value of α is user-
specified, but in unsupervised learning contexts, determining
the importance of a view or the degree of collaboration
between multiple views can be challenging. To address this
issue, the Robust Multi-View K-means Clustering (RMKMC)
[17] method has been developed. It automatically updates the
weight α and is regulated by a parameter γ to control the
weights distribution. The objective function changes when
the clustering indicator matrix is used, it now consists of
minimizing the weighted sum of the distance between each
data item and the cluster center. Given that there are four
self-parameters that need to be optimized, the method can
determine the optimal value for the final parameter at each iter-
ation until convergence. The outcome shows that it performs
well in comparison to other multi-view clustering methods.
The proposed BC system-based algorithm aims to achieve an
equivalent or better result with less time and memory use by
using the framework of this method.

III. PROPOSED APPROACH

We propose a new approach for multi-view clustering using
the barycentric clustering (BC) representation. In this method,
each data item is represented as a BC (as defined in Equation
1) and the distances between the cluster centers and data items
are computed with Equation 2. The objective function for this
approach is defined as follows:

J = min
µ(v),G,α(v)

V∑
v=1

(α(v))γ
N∑

n=1

d2((xn)(v), µ(v)GT
n )

= min
(βµ)(v),G,α(v)

− 1

2

V∑
v=1

(α(v))γH(v),

(5)

where H(v) =
∑N

n=1 Φ
T
nD

(v)
s Φn with Φn = (βn)(v) −

(βµ)(v)GT
n and βµ ∈ RP×K represents the BC of all

the centers µ. With respect to that,
∑V

v=1 α
(v) = 1 and∑K

k=1 Gnk = 1, where G ∈ RN×K is a binary cluster
indicator matrix which indicate the membership of each data
point to a specific cluster. Based on the idea of [17], the
optimization of objective function could be divided into 3
parts. At each step, we suppose that the two other parts are
already optimized.

A. Optimization

1) Updating (βµ)(v) by calculating the partial derivative of
J with respect to C(v), then zeroing the derivative result.

(βµ)(v) =

N∑
n=1

(βn)(v)(

N∑
n=1

GT
nGn)

−1 (6)

2) Updating G, once we obtained (βµ)(v), we only need
to calculate the distance matrix of the weighted sum of
each view

i = argmin
k∈1,...,K

{
−1

2

V∑
v=1

(α(v))γΨT
kD

(v)
s Ψk

}
(7)

With Ψk = (βn)(v) − (βµ)
(v)
k the difference between

data item n and cluster center k in view v, so that
∀n ∈ {1, ..., N}, Gni = 1 and Gnj = 0 where
j ∈ {1, ..., k}, i ̸= j

3) Updating α(v), we use Lagrange multiplier λ to solve
the following function :

L(α(v), λ) =

V∑
v=1

(α(v))γH(v) − λ(

V∑
v=1

(α(v))γ − 1)

Computing the partial derivative of L with respect to
α(v) and λ, then zeroing the derivative result.

α(v) =
(γH(v))

1
1−γ∑V

v=1(γ(H
(v))

1
1−γ

(8)

B. Algorithm

It is now straightforward to implement the proposed ap-
proach. The process begins by projecting each data item into
the Barycentric Coordinate (BC) subspace, which is created
using a set of support points selected from the data. Next,
the BC βk of each cluster center µk are initialized randomly.
Then, the cluster indicator matrix G is computed and each
view is given equal weight. These three components are then
iteratively updated through optimization until the objective
function converges. A detailed description of the algorithm
can be found in Algorithm 1.

To further improve the proposed approach, we incorporate
the KMeans++ algorithm [24] which upgrades the K-Means
initialization process by strategically selecting initial centers. It
selects the first center at random from data items, then chooses
subsequent centers using a weighted probability distribution
based on the distance to the nearest center already chosen.
This process continues until K centers are selected.

In our implementation, we modify the KMeans++ algorithm
by using the barycentric distance computation to determine
the closest data point. We refer to this modified method as
BCmvlearn++. By combining the benefits of the KMeans++
initialization with the barycentric distance computation, we
expect to achieve improved clustering results.



Algorithm 1: BCmvlearn

Data: Subsets of patterns X1, ..., X(v), P,K
Liste of dissimilarity metrics [d1, .., d(v)]
Result: Global cluster indicator matrix G
Choose randomly P support points (always the same
data item in each view)

for i in 1, ..., v do
Use d(i) to calculate dissimilarity matrix O(i)

between data items and support points.
Extract dissimilarity matrix between support points
D

(i)
s from O(i).

Calculate new representation β(i) of X(i) in BC
system by (3).

end
Initialize K centers as µ(v) from β(i)

Initialize α(i) = 1
v , ∀i ∈ [1, ..., v].

Set common cluster indicator matrix G by µ(v).
nb iter ← 1
while Not converge do

Update cluster centers µ(i) of each view by (6),
∀i ∈ [1, ..., v].

Update cluster indicator G with help of (7)
Calculate H(i), ∀i ∈ [1, ..., v].
Update α(i) by (8), ∀i ∈ [1, ..., v] .
nb iter ← nb iter + 1

end

IV. EXPERIMENT

To mitigate the impact of redundant variables on the ex-
perimental results, we will follow the same setup as outlined
in [17]. We standardize the dataset for each type of feature
by ensuring that all values fall within a specific range of
[-1,1]. To evaluate the quality of the results, we use the
Adjusted Rand Index (ARI) [25] and Normalized Mutual
Information (NMI) [26] as external indices and the Davies
Bouldin index (DBI) [27] and Silhouette index (SI) [28]
as internal indices. Additionally, we also consider the time
complexity of the algorithms. A higher value of all the metrics,
except DBI, indicates a better result. Since the initialization of
the algorithms is crucial for their performance, we run each
technique 20 times and report the average performance.

A. Dataset description

We used 10 real-world multi-view datasets in our experi-
ments. For a summary of each dataset, refer to Tab. I.

• MSRCv1 [29]: The 240 images and 9 object classes
in the MSRCv1 dataset from Microsoft Research in
Cambridge have coarse pixel-wise labels.

• SensITVehicle [30]: Dataset collected from package LIB-
SVM, which contains 78,823 objects, the first 50 features
are acoustic, while the rest are seismic. Extract randomly
300 data items (100 per class) following [17].

• Movies [31]: Comprising 617 movies across 17 labels
with keywords and actors of the same movies.

• Caltech101-7/Caltech101-20 [32]: Caltech-101 is com-
posed of image objects belonging to 101 classes, by
extracting different features (GABOR, WM, CENTRIST,
HOG, GIST, LBP) of images into 6 views. And extract
the 7/20 more popular classes for test.

• 100-leaves [33]: 100 categories of leaves images (16
items per class) are described by 3 features. For each
feature, a 64 element vector is given per data item of
leaf. These vectors are taken as a contiguous descriptors
(for shape) or histograms (for texture and margin).

• Handwritten [33]: Handwritten dataset is made up of
characteristics of handwritten numbers (from ”0” to ”9”)
that were taken from a set of Dutch utility maps. A total
of 2,000 patterns have been scanned as binary pictures,
200 patterns per class. There are totally 6 caracteristic
features, such as FOU, FAC, KAR, PIX, ZER, MOR.

• Waveform [33]: 3 classes of waves with 40 attributes,
the latter 19 attributes are all noise attributes.

• Small-NUS/Small-Reuters : The Reuters [33] dataset
includes 18758 items containing features of documents
written in English and their translations in 5 languages,
across 6 categories. The NUS-WIDE [34] dataset includes
30000 images with six types of low-level features ex-
tracted from them. To reduce their size, we use subsets
of these datasets already used in a previous study. [35]

TABLE I
DATASETS SUMMARY

Datasets name Nb data Nb cluster Nb view Nb feature per view
MSRCv1 210 7 5 [24, 576, 512, 256, 254]

SensITVehicle 300 3 2 [50,50]
Movies 617 17 2 [1878, 1398]

Caltech101-7 1474 7 6 [48, 40, 254, 1984, 512, 928]
Small-Reuters 1500 6 5 [21531, 24892, 34251, 15506, 11547]

100-leaves 1599 100 3 [64, 64, 64]
Handwritten 2000 10 6 [76, 216, 64, 240, 47, 6]
Small-NUS 2000 31 5 [65, 226, 145, 74, 129]

Caltech101-20 2386 20 6 [48, 40, 254, 1984, 512, 928]
Waveform 5000 3 2 [21, 19]

B. Parameter analysis

In our approach, there are two hyper-parameters: the number
of support points, denoted as nb SP , and γ which controls
the weight of each view. Due to space limitations, we only
present the parameter analysis results of BCmvlearn, which
are similar as with BCmvlearn++. In theory, the optimal
choice of nb SP for a single-view dataset is the number of
dimensions plus one in the representation space. However,
according to a study [15], the internal and external quality
indices are not significantly affected by nb SP on single-
view datasets. Based on this result, we conducted a similar
experiment on multi-view datasets by varying nb SP from
10 to 200. As shown in Fig. 1, the influence of the number of
support points is similar for both single-view and multi-view
datasets: increasing the number of support points usually does
not increase significantly the quality of the output, but does
increase the computation time. For γ, we varied it from 0.2
to 2, increasing by 0.2 at each step. According to the results



Fig. 1. Effect of the number of support points on the clustering quality and computational time in BCmvlearn.

Fig. 2. Effect of the γ values on the clustering quality and computational time in BCmvlearn.

in Fig. 2, we found that when γ varies from 0.9 to 1.1, the
external index decreases while the internal index increases.
However, there is not much change in other intervals. Consid-
ering that the decrease of the external index in most datasets is
relatively larger than the increase of the internal index, we set
in the following experiments the parameter values to nb SP
= 30 and γ = 0.5 to balance both aspects as much as possible.

C. Clustering Algorithm Performance

In this experiment, we aim to evaluate the overall perfor-
mance of BCmvlearn and BCmvlearn++ against multi-view
clustering algorithms as outlined in Section II-B. Detailed
results for each dataset can be found in Tab. II to Tab. VI.

The experimental results show that BCmvlearn and
BCmvlearn++ exhibit superior performance to mvKMeans and
mvSphKMeans in terms of mean external quality, as shown
in Figure 3. In addition, these approaches are comparable to
the performance of RMKMC, mvSpecClus and mvCRSpec-
Clus. While BCmvlearn++ may be slightly less efficient than
BCmvlearn in terms of external indices, it performs well in
terms of average internal quality, as shown in Figure 4. In fact,
it outperforms both BCmvlearn and RMKMC in this respect,
although it may not be as robust as mvKMeans or mvSphK-
Means. However, it is still much better than mvSpecClus and
mvCRSpecClus.

Furthermore, the proposed approaches offer significant com-
putational advantages over RMKMC, mvSpecClus and mvCR-
SpecClus, as shown in Figure 5, due to the BC representation.
Although mvKMeans and mvSphKMeans are fast algorithms,
they can only handle two views and were therefore only tested
on three datasets, unlike the other algorithms. To further assess
the performance of the proposed algorithms, we performed a
Nemenyi statistical test [36] on the average rank of the effect
of each algorithm on different datasets. The results show that
BCmvlearn and BCmvlearn++ consistently rank comparable
to the other algorithms.

In summary, the experimental results show that the proposed
approaches, BCmvlearn and BCmvlearn++, have comparable
or superior performance to RMKMC, mvSpecClus and mvCR-
SpecClus, while offering faster processing times. In addition,
they outperform mvKMeans and mvSphKMeans in terms of
external indices and are not limited by the number of views.
These results suggest that BCmvlearn and BCmvlearn++ could
be effective tools for solving multi-view clustering problems.

D. Application on multi-modal clustering

One of the key advantages of our approach, with the BC
representation, is its ability is to handle not only vectorial data
but also data with unknown vectorial representations such as
images, text, and more. As long as the distance between data
items can be computed, they can be projected into the BC



TABLE II
ARI RESULTS OF EACH ALGORITHM ON DIFFERENT DATASETS

Dataset BCmvlearn BCmvlearn++ RMKMC mvKMeans mvSphKMeans mvSpecClus mvCRSpecClus
mean std mean std mean std mean std mean std mean std mean std

MSRCv1 0.54 0.05 0.525 0.05 0.5949 0.04 - - - - 0.6216 0.03 0.4591 0.04
SensITVehicle 0.2923 0.01 0.285 0.02 0.3003 0.03 0.3098 0.0 0.3349 0.02 0.2577 0.0 0.3551 0.0

Movies 0.0404 0.01 0.0005 0.0 0.037 0.01 0.001 0.0 0.0009 0.0 0.1143 0.01 0.0771 0.01
Caltech101-7 0.375 0.03 0.4284 0.09 0.3902 0.04 - - - - 0.3212 0.05 0.2737 0.0
Small-Reuters 0.1974 0.04 -0.0007 0.0 0.2362 0.04 - - - - 0.2737 0.01 0.2336 0.0

100-leaves 0.6491 0.03 0.2667 0.11 0.3225 0.13 - - - - 0.7548 0.02 0.713 0.02
Handwritten 0.5908 0.06 0.5494 0.04 0.6838 0.08 - - - - 0.8496 0.0 0.7235 0.0
Small-NUS 0.0372 0.0 0.0366 0.0 0.0435 0.0 - - - - 0.049 0.0 0.0404 0.0

Caltech101-20 0.2938 0.02 0.4 0.05 0.3907 0.05 - - - - 0.2923 0.01 0.2738 0.01
Waveform 0.2658 0.05 0.2515 0.0 0.262 0.04 0.2599 0.01 0.2627 0.01 0.1243 0.0 0.25 0.0

Mean 0.3282 0.03 0.2742 0.04 0.3261 0.05 0.1902 0.0 0.1995 0.01 0.3658 0.01 0.3399 0.01

TABLE III
NMI RESULTS OF EACH ALGORITHM ON DIFFERENT DATASETS

Dataset BCmvlearn BCmvlearn++ RMKMC mvKMeans mvSphKMeans mvSpecClus mvCRSpecClus
mean std mean std mean std mean std mean std mean std mean std

MSRCv1 0.6453 0.04 0.6288 0.04 0.6793 0.03 - - - - 0.7006 0.02 0.5941 0.02
SensITVehicle 0.2966 0.03 0.2868 0.02 0.3047 0.01 0.2963 0.01 0.3281 0.01 0.2497 0.0 0.3325 0.0

Movies 0.1918 0.02 0.0519 0.01 0.1678 0.02 0.0241 0.03 0.0345 0.02 0.2759 0.01 0.253 0.01
Caltech101-7 0.5363 0.02 0.5506 0.04 0.5684 0.03 - - - - 0.5043 0.02 0.4626 0.01
Small-Reuters 0.2581 0.03 0.0058 0.0 0.2922 0.03 - - - - 0.3061 0.01 0.282 0.0

100-leaves 0.8924 0.01 0.7313 0.12 0.7499 0.1 - - - - 0.9251 0.01 0.8983 0.01
Handwritten 0.7025 0.04 0.6774 0.02 0.7686 0.05 - - - - 0.8588 0.0 0.7896 0.0
Small-NUS 0.1826 0.0 0.1787 0.0 0.189 0.0 - - - - 0.19 0.0 0.1753 0.0

Caltech101-20 0.5769 0.01 0.5976 0.01 0.6454 0.02 - - - - 0.6017 0.01 0.559 0.01
Waveform 0.3714 0.03 0.3639 0.0 0.3648 0.01 0.3649 0.0 0.3735 0.0 0.1308 0.0 0.368 0.0

Mean 0.4654 0.02 0.4073 0.03 0.473 0.03 0.2284 0.01 0.2454 0.01 0.4743 0.01 0.4714 0.01

TABLE IV
TIME LOSS OF EACH ALGORITHM ON DIFFERENT DATASETS

Dataset BCmvlearn BCmvlearn++ RMKMC mvKMeans mvSphKMeans mvSpecClus mvCRSpecClus
mean std mean std mean std mean std mean std mean std mean std

MSRCv1 0.3149 0.08 0.3784 0.06 1.2784 0.6 - - - - 3.0422 0.76 0.5734 0.08
SensITVehicle 0.1 0.03 0.1143 0.03 0.2115 0.07 0.0078 0.0 0.0083 0.0 0.5901 0.17 0.1647 0.01

Movies 1.4289 0.32 0.431 0.1 6.0721 1.47 1.6289 0.09 3.0745 1.06 18.4848 5.2 3.2225 0.43
Caltech101-7 4.4249 1.64 5.6106 1.77 21.0537 4.26 - - - - 127.852 5.07 22.0369 0.6
Small-Reuters 9.2546 1.19 9.0282 3.57 1207.1476 243.29 - - - - 944.6798 71.76 1093.8278 62.82

100-leaves 35.6309 5.91 51.3801 23.76 350.3398 573.56 - - - - 145.8762 18.1 37.5597 15.28
Handwritten 15.3088 4.85 19.4362 7.52 17.3569 5.98 - - - - 184.7781 4.43 12.6909 0.19
Small-NUS 35.1765 11.32 37.7945 9.83 73.3589 19.06 - - - - 211.3438 113.3 23.0451 5.76

Caltech101-20 32.944 6.57 35.8318 10.29 135.8155 43.39 - - - - 457.246 17.62 66.9648 4.38
Waveform 2.8044 0.69 2.1922 0.61 10.9507 5.31 0.0403 0.0 0.1669 0.15 394.1557 19.76 37.2147 3.5

Mean 13.7388 3.26 16.2197 5.75 182.3585 89.7 0.559 0.03 1.0832 0.4 248.8049 25.62 129.73 9.3

TABLE V
DBI RESULTS OF EACH ALGORITHM ON DIFFERENT DATASETS

Dataset BCmvlearn BCmvlearn++ RMKMC mvKMeans mvSphKMeans mvSpecClus mvCRSpecClus
mean std mean std mean std mean std mean std mean std mean std

MSRCv1 2.5285 0.15 2.5174 0.13 2.6613 0.11 - - - - 2.7412 0.07 2.8363 0.05
SensITVehicle 3.4565 0.37 3.4609 0.3 3.1228 0.26 2.6621 0.04 2.7684 0.06 6.106 0.0 3.1559 0.04

Movies 5.2645 0.26 0.9252 0.33 7.1921 0.19 2.1065 0.54 2.4949 0.84 6.7152 0.07 7.0752 0.07
Caltech101-7 3.379 0.22 3.3332 0.25 3.4424 0.33 - - - - 3.6727 0.04 3.6878 0.04
Small-Reuters 8.1208 1.05 0.8006 0.05 8.8358 0.8 - - - - 8.6107 0.35 9.1911 0.01

100-leaves 2.7526 0.05 2.0742 0.12 2.8396 0.19 - - - - 2.8385 0.06 3.2164 0.09
Handwritten 2.4176 0.06 2.4273 0.06 2.785 0.09 - - - - 3.2954 0.0 2.8141 0.0
Small-NUS 5.2833 0.17 4.9599 0.23 5.3473 0.16 - - - - 6.1699 0.16 6.7317 0.12

Caltech101-20 3.7223 0.15 3.3995 0.21 3.5603 0.15 - - - - 3.859 0.06 4.0833 0.14
Waveform 29.366 1.79 28.7558 0.11 27.8142 0.81 17.5773 0.47 16.6202 0.28 38.6312 0.42 28.5766 0.05

Mean 6.6291 0.43 5.2654 0.18 6.7601 0.31 7.4486 0.35 7.2945 0.39 8.264 0.12 7.1368 0.06



TABLE VI
SI RESULTS OF EACH ALGORITHM ON DIFFERENT DATASETS

Dataset BCmvlearn BCmvlearn++ RMKMC mvKMeans mvSphKMeans mvSpecClus mvCRSpecClus
mean std mean std mean std mean std mean std mean std mean std

MSRCv1 0.0718 0.01 0.07 0.01 0.0729 0.01 - - - - 0.0586 0.0 0.0477 0.0
SensITVehicle 0.1158 0.02 0.1126 0.02 0.1508 0.02 0.1558 0.0 0.1207 0.02 0.0969 0.0 0.1185 0.0

Movies -0.1106 0.06 -0.0583 0.06 -0.0864 0.01 0.1038 0.02 0.0637 0.01 -0.1033 0.01 -0.0889 0.01
Caltech101-7 0.0537 0.01 0.0625 0.02 0.0531 0.01 - - - - 0.0328 0.02 0.0201 0.0
Small-Reuters -0.1024 0.01 0.0938 0.02 -0.1012 0.0 - - - - -0.0993 0.0 -0.1007 0.0

100-leaves -0.0071 0.01 -0.1433 0.09 -0.0186 0.04 - - - - 0.0041 0.0 -0.0196 0.01
Handwritten 0.126 0.01 0.125 0.01 0.1151 0.01 - - - - 0.1123 0.0 0.1079 0.0
Small-NUS -0.0527 0.0 -0.0695 0.0 -0.0784 0.01 - - - - -0.0946 0.0 -0.0816 0.0

Caltech101-20 0.0156 0.01 0.0203 0.01 0.0315 0.01 - - - - -0.0207 0.01 -0.0185 0.0
Waveform 0.0999 0.01 0.1025 0.0 0.1049 0.01 0.1104 0.0 0.1101 0.0 -0.0102 0.0 0.1133 0.0

Mean 0.021 0.02 0.0316 0.02 0.0244 0.01 0.1233 0.01 0.0982 0.01 -0.0023 0.0 0.0098 0.0

Fig. 3. Mean external quality (ARI and NMI) for each algorithm.

Fig. 4. Mean normalized internal quality (DBI and SI) for each algorithm.
Note that a small values of DBI indicates a good clustering result.

space. This flexibility allows our approach to work on multi-
modal datasets as well.

As an example of a dataset that can be analysed with
our approach, IEMOCAP [37] consists of 151 videos of
recorded dialogues, with 2 speakers per session for a total
of 302 videos across the dataset. Each segment is annotated
for the presence of 9 emotions (angry, excited, fear, sad,
surprised, frustrated, happy, disappointed and neutral). With
different feature extractors, three modalities could be obtained
to represent the textual, audio and visual information.

Fig. 5. Mean normalized time loss for each algorithm.

Different distance metrics can be used to compare the data
items: the Euclidean distance (ED) for the audio information
and the Image Euclidean distance (IMED) for the visual infor-
mation. For textual information, the cosine distance (CosD) is
a popular choice, but it doesn’t satisfy the triangle inequality.
We therefore propose the use of another distance (CosED)
which aims to convert CosD to ED [38], where CosED is
equal to

√
2− 2CosD.

Fig. 6. External quality of BCmvlearn and BCmvlearn++ on IEMOCAP
datasets (multi-modal) by using different combinations of distance metrics.

To showcase the impact of different distance measures, we



applied CosED and CosD on the textual modality and IMED
on the images, in addition to using ED on all modalities as
a comparison. Fig. 6 shows that our approach performs better
on multi-modal datasets when adapted distance metrics are
used on different modalities, indicating the effectiveness of
our approach with different similarity measures.

V. CONCLUSION

In conclusion, this paper presents a novel multi-view clus-
tering approach called BCmvlearn, which uses the barycentric
coordinate representation. By projecting the original data
points into a barycentric space and optimising the prototypes
of each cluster based on a common cluster indicator, this
approach reduces dimensionality and discovers a consensus
model, enabling multi-view clustering. The results show that
the proposed approach is stable, converges to a solution in
a reasonable number of iterations, and is competitive with
other state-of-the-art multi-view algorithms in terms of quality
and time complexity. The slight discrepancy between the
external and internal quality of BCmvlearn and BCmvlearn++
suggests that BCmvlearn++ is more effective for the com-
putation of homogeneous clusters, while BCmvlearn is more
suitable when the clustering results need to match external
labels. Furthermore, the proposed approach can accommodate
different types of distance metrics, making it a promising tool
for multi-modal clustering applications. In the future, our goal
is to extend the approach to handle dynamic multi-view data
streams for even greater real-world applicability.
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