High resolution analysis of carbonaceous texture within **lenticular** microstructure from **Archean** chert (**SPF-FQ**) of the Pilbara Craton (Western Australia)

Coutant Maxime, Lepot, K., Fadel, A., Addad, A., Javaux, E.J.,

3.46 Ga Apex Chert (Western Australia)

Stratiform chert

Filamenteous microfossil

Cell lumina

3.46 Ga Apex Chert (Western Australia)

Stratiform chert

Filamenteous microfossil

Cell lumina

3.46 Ga Apex Chert (Western Australia)

Brasier et al., 2005, 2015 Wacey et al., 2016, 2019

3.46 Ga Apex Chert (Western Australia)

Brasier et al., 2005, 2015 Wacey et al., 2016, 2019

3.46 Ga Apex Chert (Western Australia)

Schopf & Packer, 1987 Schopf, 1993, 2006, 2007 Schopf & Kudryavtsev 2012 Schopf *et al.,* 2017 Brasier et al., 2005, 2015 Wacey et al., 2016, 2019

3.4 Ga Strelley Pool Chert – 3.0 Ga Farrel Quartzite

Sandstones – Volcaniclastic – Basalt Massive black chert (>95% Qz) Carbonaceous matter, pyrites, oxides, sulfides

• <100 μ m length - <50 μ m width – ovoid to circular

- <100 μ m length <50 μ m width ovoid to circular
- Acid-resistent \rightarrow cohesive palynomorph

Coutant *et al.,* in prep.

Sugitani *et al.,* 2015a

Equatorial Central body ± Wall? ± C-particles + reticulation ± vesicles ± euhedral Qz

view

 \bullet

Polar view

Coutant et al., adapted from Sugitani et al., 2018

 $<100 \,\mu\text{m}$ length - $<50 \,\mu\text{m}$ width – ovoid to circular

- Acid-resistent \rightarrow cohesive palynomorph ullet
 - 'Central body' CM (partly) filled C-granules and/or silica

Sugitani et al., 2015a

Coutant et al., adapted from Sugitani et al., 2018

- <100 μ m length <50 μ m width ovoid to circular
- Acid-resistent \rightarrow cohesive palynomorph
 - 'Central body' CM (partly) filled C-granules and/or silica
- 'Flange' reticulated network of CM

Coutant et al., in prep.

Sugitani *et al.,* 2015a

1.9 Ga Gunflint Formation μ fossils

G. grandis

Barghoorn & Tyler, 1965

H. macroreticulata

3.4 Ga SPF – Chain of Lenses

Sugitani et al., 2015a

Specific to Archean rocks
Mutiple shapes + chained specimens
Best candidates for the oldest µfossil

Different types of Lenses - Shapes gradation?

Granular

Biogenicity?

10µm

μ to nano Petrography – Qz-CM / Ultrastructure

Received: 20 October 2021 Revised: 4 May 2022 Accepted: 20 May 2022

DOI: 10.1111/gbi.12506

ORIGINAL ARTICLE

ebiology of WILEY

Distinguishing cellular from abiotic spheroidal microstructures in the ca. 3.4 Ga Strelley Pool Formation

Maxime Coutant^{1,2} | Kevin Lepot^{1,3} | Alexandre Fadel⁴ | Ahmed Addad⁴ | Elodie Richard⁵ | David Troadec⁶ | Sandra Ventalon¹ | Kenichiro Sugitani⁷ | Emmanuelle J. Javaux² high-res petrography methods used to distinguish abiotic spheroids in the SPF rocks <u>also</u> hosting lenses

Blue : between grains + continuous= ? biotic Pink/Yellow : inside grains + coalescence = ? abiotic

Coutant *et al.,* 2022

(a)

TEM - DF

µPetrography – Quartz-CM relationship

- Often larger crystals in vesicles (TEM-Sugitani et al., 2015a)
- CM at Qz boundaries only = no cross-cutting structure

µPetrography – Quartz-CM relationship

- Often larger crystals in vesicles (TEM-Sugitani et al., 2015a)
- CM at Qz boundaries only = no cross-cutting structure

Coutant et al., in prep

TL: Surface

Length = 21.90 µm

 $10 \mu m$

Length = 21.90 µm

TL: 5µm under surface

Granular/Sub hollow

C-granules → Central body – no walled structures

Coutant *et al.,* in prep

TL: Surface

Length = 21.90 µm

Length = 21.90 µm

TL: 5µm under surface

Granular/Sub hollow

- C-granules → Central body no walled structures
- Outline reticulated CM \rightarrow Flange

(Coutant et al., in prep) STEM BF $C \rightarrow White$

Coutant et al., in prep

TL: Surface

Length = 21.90 um

Length = 21.90 un

TL: 5µm under surface

Granular/Sub hollow

- Outline reticulated CM \rightarrow Flange
- No <u>cross-cutting</u> structures *≠* abiotic spheres

(Coutant et al., in prep)

Granular/Sub hollow

- Nanopores inside C granules
- **Pyrobitumen** ?

nanoPetrography – Ultrastructure1,9 Ga Gunflint FormationMicrofossilQuartz Grain(Canada)

Nanopores in CM and Qz grains

Infiltration of exogenous soluble CM (pyrobitumen)
 → Multiple generation of CM

nanoPetrography – Ultrastructure1,9 Ga Gunflint FormationMicrofossilQuartz Grain(Canada)

Nanopores in CM and Qz grains

Infiltration of exogenous soluble CM (pyrobitumen)

Pyrobitumen may infills µfossils as well as biomorphs

μPetrography – 3D CLSM 488nm Fluo+Refl

- Likely continuous wall
- Folding of the wall taphonomy ? = <u>Biogenic</u> ?

<u>Hollow</u>

- Walls (sub)continuous
- CM @ Qz boundaries only
- Folding
- No <u>cross-cutting</u> structure

Consistent with µfossils

No porosity in carbon structure ≠ from granular specimens (C-granules)

Take-home messages

Morphological gradient

Granular

- No walled structures
- Nanopores inside granules (*in situ* bitumen or kerogen)
- CM mobilization?

> Abiotic?

Hollow

- Evidence of walled structures
- Folded wall (taphonomy)
 No porosity (biopolymers)

Biotic?

Sub-Hollow vesicles = crystallization from amorphous phase within the CM impregnated microstructures

10µm

What's next?

- Investigation of additional specimens required?
- In situ mass spectrometry is the next step, new features → Stay tuned !

Thank you for your attention

Acknowledgements :

Supervisors

E.J. Javaux

K. Lepot

Litge université Early Life
Log
Log
Log
Log
Log
Le

Other collaborators

A. Fadel – A. Addad – M. van Zuilen – E. Richard – C. Spriet – T. Bance – S. Ventalon