N
N

N

HAL

open science

People counting using IR-UWB radar sensors and
machine learning techniques

Ange Joel Nounga Njanda, Jocelyn Edinio Zacko Gbadoubissa, Emanuel
Radoi, Ado Adamou Abba Ari, Roua Youssef, Aminou Halidou

» To cite this version:

Ange Joel Nounga Njanda, Jocelyn Edinio Zacko Gbadoubissa, Emanuel Radoi, Ado Adamou Abba
Ari, Roua Youssef, et al.. People counting using IR-UWB radar sensors and machine learning tech-
niques. Systems and Soft Computing, 2024, 6, pp.200095. 10.1016/j.sasc.2024.200095 . hal-04536063

HAL Id: hal-04536063
https://hal.science/hal-04536063

Submitted on 7 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04536063
https://hal.archives-ouvertes.fr

Systems and Soft Computing 6 (2024) 200095

journal homepage: www.elsevier.com/locate/soft-computing-letters

Contents lists available at ScienceDirect

Systems and Soft Computing

People counting using IR-UWB radar sensors and machine learning

techniques

Ange Joel Nounga Njanda ?, Jocelyn Edinio Zacko Gbadoubissa ?, Emanuel Radoi **,
Ado Adamou Abba Ari “%¢, Roua Youssef®, Aminou Halidou "8

a African Institute for Mathematical Sciences, Crystal Garden, 608, Limbé, Cameroon

b Univ Brest, Lab-STICC, UMR CNRS 6285, CS 93837, 6 Avenue Le Gorgeu, 29238, Brest Cedex 3, France

¢ LaRI Lab, University of Maroua, 814, Maroua, Cameroon

4 DAVID Lab, Universite Paris Saclay, University of Versailles Saint-Quentin-en-Yvelines, 45 Avenue Etats-Unis, 78035, Versailles cedex, France
¢ CREATIVE, Institute of Fine Arts and Innovation, University of Garoua, 346, Garoua, Cameroon

f Department of Computer Science, Faculty of Science, University of Yaoundé I, 337, Yaoundé, Cameroon

8 Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, 524, Johannesburg, South Africa

ARTICLE INFO ABSTRACT

Keywords:
Multi-human detection
Machine learning
Ultra-wideband radar
Feature engineering
Wavelet transform

This study aims to detect and count people using impulse radio ultra-wideband radar and machine learning
algorithms. However, the data quality, difficulty distinguishing human signals from noise and clutter, and
instances where human presence is not detected make it challenging to count multiple humans. To overcome
these challenges, we apply wavelet transformation to reduce signal size and use simple moving averages
to eliminate noise. Next, we create features based on statistical and entropic properties of the signal and

apply several classification algorithms, including ANN, Random Forest, KNN, XGBOOST, and multiple linear
regression, to predict the number of people present. Our findings reveal that using the ANN classifier
with the Daubechies 4 (db4) wavelet provides better results than other classifiers, with an accuracy rate
of 99%. Additionally, filtering the data improves accuracy, and labeling the data after extracting essential
characteristics significantly improves the model’s accuracy.

1. Introduction
1.1. Background

Ultra-wideband radar systems attracted much attention in the scien-
tific and commercial fields due to their remarkable advantages resulting
from their notable wide bandwidth, good penetration, multipath immu-
nity, and resolution [1,2]. Indeed, the impulse radio ultrawide band
(IR-UWB) [3] has become a popular technology mainly due to the
widespread deployment of Wireless Local/Personal/Body Area Net-
works (WLAN/WPAN, WBAN) and to the emergence of the Internet of
Things (IoT) [4] and smart factories (Industry 4.0) [5]. IR-UWB has no
harmful effect on the human body and employs extremely short pulses
with a low-power level [6], which makes it possible to operate in a
large part of the radio spectrum without disturbing the narrowband
systems working in different frequency bands. Other benefits of this
technology are its robustness in harsh environments, high precision
ranging, low power consumption and high penetration capabilities.
No particular pulse shape or modulation format is required; the only
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constraints related to the power spectral density masks are defined by
the regulatory bodies.

IR-UWB sensors, their associated signals and information processing
algorithms are successfully used in many applications, like indoor
and machine-to-machine communications [7], detection and localiza-
tion [8], human gait analysis [9], through-the-wall vital sign detec-
tion [10]. We are interested in human detection using machine-learning
techniques. The detection refers to determining whether a specific
object class instance is present in a given image (or signal) [11]. The
human detection task involves locating all instances of persons present
in an image (or signal) while producing as few false detections as
possible [12]. The applications of human detection include activity
recognition, people counting, real-time occupancy, etc. [1,2,13].

People counting refers to enumerating people in a defined location,
and its various models can be grouped as device-based and device-
free. The device-based scenarios require individuals to wear specific
sensor devices, which will help to count the number of people accu-
rately. Therefore, their performance depends strongly on the ability
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and willingness of individuals to wear the sensor devices. In contrast,
device-free systems consist of indoor sensors, whose inputs are analyzed
to count people present in a specific location.

Our study relies on IR-UWB radar data to focus on device-free multi-
human detection for people counting. The analysis of the backscattered
IR-UWB signals enables us to discriminate those reflected by people
from those reflected by artificial objects (clutter) and noise. This anal-
ysis remains a significant challenge since, depending on the coverage
zone and its population density, the following issues may arise [14]:
multipath signals are detected like backscattered signals from humans
in densely populated areas, some signals reflected by humans are not
detected in large areas where people are widely dispersed, and it can
be difficult in some cases to separate human signals from noise and
clutter.

The IR-UWB-based multi-human detection is often flawed by multi-
ple false alarms due to the multipath components and the background
clutter. Some proposed Constant False Alarm Rate (CFAR) algorithms
achieved a few improvements [15]. Nevertheless, these models cannot
be considered entirely reliable for real-life scenarios, as they suffer from
the minimum required separation distance between humans (30 cm)
and the number of false alarms generated [15].

1.2. Related work

Several research studies focusing on the people detection and count-
ing have already been carried out. Most of them are interested in
applying signal processing and using machine learning techniques to
detect and count people. S. Chang et al. [16] introduced a version of
CLEAN algorithm to detect the presence of a walking human in an
urban environment populated by other moving objects such as cars and
trucks. Their work uses parameters such as signal amplitude, Root Mean
Square (RMS) range and speed characteristics to distinguish humans
from other objects. The authors in [17] proposed a combination of the
human kinetic Thalman model and a detector to better characterize the
target and improve the signal-to-noise ratio as well as the detection
probability.

Other related works leverage machine learning techniques to per-
form multi-human detection. In [18], people detection and tracking in
a video stream obtained from a fixed or moving camera was proposed.
V. Nogueira et al. [19] performed people counting using a neural
network model with input data from RGB cameras. In [20], the authors
used closed-circuit television (CCTV) footage to enumerate people in a
region of interest (ROI) and eliminate those in the non-interest region.
They propose a gap regularizer combined with a deep convolutional
neural model to predict the number of people in the region of interest.
The performance metrics used for prediction are the mean absolute
error (MAE) and the root-mean-square error (RMSE). L Wang et al.
proposed in [21] a multiscale attention network based on spatial po-
sition to capture the useful information needed for people counting. To
count people in dense environments, the research work [22] suggested
a multi-segment analysis. The first segment fetches information related
to the density of the local (or global) space. A feature enhancement
segment helps to refine local and global contextual features and, finally,
the fusion segment is used to merge density-specific features. The
authors in [23,24] proposed a learning algorithm based on Riemannian
manifolds with Support Vector Machine (SVM), RandomForest and Ad-
aboost classifiers for pedestrian detection. C.Wang et al. [25] performed
people counting in a dense environment using a deep convolutional
neural network trained with images.

Machine learning techniques are extensively used in signal process-
ing for various applications ranging from signal detection to people
counting. One can use wavelet entropy to extract meaningful features
from those signals and then apply a machine-learning model to learn
these features. Wavelet entropy is widely used for signal processing
and analysis that involves decomposing a signal into wavelet coeffi-
cients and calculating entropy measures based on these coefficients.
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This approach has been applied in various fields, including biomed-
ical signal analysis, financial time series analysis, image processing,
and speech recognition. Using the continuous wavelet transform and
spectral entropy measurement, the research work presented in [26]
provides fast detection of whale vocalizations in the presence of noise.
D. Dwivedi et al. [27] used wavelet space for identifying groundwater
source boundaries to interpret potential field anomalies in the geo-
physical framework. In [28] presents a quantitative analysis of the
brain’s electrical multifrequency signals. The authors applied an orthog-
onal discrete wavelet to extract wavelet entropy features. I. Wijayanto
et al. [29] proposed a random forest classification of epileptic elec-
troencephalography signals using a feature extraction method based
on wavelet energy calculation. The wavelet packet decomposition can
be combined with a hybrid convolutional long-term memory neural
network model to examine the central effects of transcutaneous electro-
acupuncture stimulation (TEAS) at different frequencies on the brain,
as presented in [30]. [31] introduces a timely monitoring of chatters
in industrial production by analyzing the characteristics of chatters’
sound signals via spectral analysis and the wavelet packet transform.
Finally, in [32], wavelet analysis was applied to examine the dominant
periodicity in annual rainfalls of a given region.

1.3. Research contributions

Our proposal aims to enhance the accuracy of people counting
by utilizing a combination of ultra-wideband pulse radars, signal pro-
cessing tools, statistics, and machine learning techniques. We use the
wavelet transform method to extract valuable information from re-
flected signals and reduce signal size, enabling faster and more efficient
processing. Our approach also involves the application of advanced
entropy and statistical measures to create salient signal features. More-
over, we have also implemented various data labeling strategies to
further improve the accuracy of people counting.

1.4. Organization of the work

The rest of the paper is divided into three main sections. First, in
Section 2, we give a comprehensive description of our contributions.
This includes presenting the model architecture and describing each
layer of the proposed model. Second, Section 3 covers the model
evaluation. Finally, we conclude the work in Section 4.

2. Proposed model for improved detection

This section discusses the proposed model for improved multi-
human detection. This work proposes a three-layer model for people
counting using data measured by an impulse radio ultra-wideband
radar. As shown in Fig. 1, the first layer performs a dimensionality
reduction via a discrete wavelet transform. At the second layer, the
resulting approximate coefficients undergo another transformation in
the feature engineering layer, which reduces the input IR-UWB signal to
a few but relevant features. The second layer of our model uses statistics
and wavelet entropy to extract new features. The features generated
(refer to Table 1) are used as input for machine-learning models in the
third layer. In Section 3, we evaluate the efficiency of these features
using well-known machine-learning algorithms.

2.1. Dimensionality reduction with wavelet transform

The wavelet transform is based on introducing new basis functions
that can be expanded or compressed to capture a signal’s low and
high-frequency components. These components are determined by the
wavelet scaling parameter [33,34]. Any signal x(f) € L%*(R) can be
represented as a wavelet expansion, as shown in Eq. (1), using the
mother wavelet ¢ : R — C. Factors such as the number of vanishing
moments and wavelet compactness are considered when choosing the
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Table 1
Features extracted from a ith wavelet transformed signal.

Systems and Soft Computing 6 (2024) 200095

Signal min u o2 Median

Quartile Third-quartile €

" " ) ) " )
Si X X %3 X4 Xs

” ” ” ” ”
X, X, x 10 X 11

X7 8 9

5i(T0, T1y - - -3 Tn)

Discrete Wavelet Transformation I

5i(20, 215 - -5 TR)

Feature engineerin_q] Statistics ]

L Entropies l

" " " "
87 (g, 21, .., Ty)

’Muchme Learning for Classification

!

Yi

Fig. 1. Flow diagram of the proposed model.

mother wavelet. For our application, we found that the Daubechies
mother wavelet with four vanishing moments (db4) is the most suit-
able. This wavelet is optimized to provide the most compact support
for this degree of regularity. It is worth mentioning that this mother
wavelet has been used in similar applications in the past [35].
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2.2. Statistics-based features

Considering only the signal amplitude as a feature for the classifi-
cation may lead to poor performance on unseen datasets. Therefore,
we exploit its statistical properties in addition to the signal amplitude.
Signal statistics provide us with a substantial amount of useful infor-
mation for the classification. The statistical measures like maximum
(max), minimum (min), mean (x) and variance (¢2) of the signal help
to quantify signal behavior. The statistical mean u gives the central
tendency of the signal data. It is often used for noise removal. The
metrics max, min and u operate on the signal amplitude, while &>
capture its power characteristic.

2.3. Wavelet entropy-based features

The entropy of the approximated coefficient s/ is computed to
extract the quantity of information within the signal. It describes the
uncertain distribution and complexity characteristics, which may quan-
titatively refer to the internal information characteristics contained in
the signal. The wavelet entropy metric that we make use of in this work
combines the wavelet transform and entropy to estimate the degree of
uncertainly of a signal with a high time-frequency resolution [36-38].
For the three wavelet-based entropy measures considered in this project
(Shannon, Renyi and Tsallis), we define the probability P, as in (3).

Ey

i
5

E,

Pls)] = €)

where E; and Eg are the energies of the ith raw s; and wavelet
transformed s/, resi)ectively. The variable x]' denotes the ith generated
features from s/, as shown in Fig. 1 and Table 1.

The Shannon entropy is the commonly used entropy measure [36—
39]. This entropy measure provides the variability associated with dif-
ferent frequency bands [38]. The expression of Shannon wavelet-based
entropy is given by (4).

£,(s)) = —Pls]1log(P[s]]) “@

Rényi entropy can be seen as a generalization of the Shannon
entropy. Renyi wavelet-based entropy of order 0 < a < oo is defined
in (5).

1
1-a

)

€,(s) = log (P*[s;1)

Tsallis wavelet-based entropy, given in (6), is a generalized form
of Boltzmann-Gibbs entropy.Tsallis wavelet entropy can reduce the
harmful effect of wavelet folding on the accuracy of feature extraction
and extract the feature of power system transient signal accurately
[38,39]. It could explain some anomalous phenomena, including the
complexity of non-additive systems, which cannot be explained by the
theory of expensive entropy [38].

1
y—1

log (1= P[s]]) (6)

E,(S; )=
3. Model evaluation and discussion
3.1. Data description

The dataset used in this work and the corresponding acquisition
methodology are provided in [40]. It comprises at least 376000 reflected
signals from 0 to 20 individuals. The data cover three scenarios, includ-
ing 0-20 people randomly walking in a constrained area with densities
of 3 (scenario 1) and 4 (scenario 2) persons per square meter and up to
15 people standing in a queue with a mean distance of 10 centimetres
(scenario 3).

8000 radar signals were collected during each scenario, with 200
received signals recorded for each measurement. Each signal sample
contains 1280 sampling points representing the 5 meters’ detection
range (spatial resolution of 0.0039 m). A total of 248000 radar signals
were generated in the first and second scenarios and 128000 radar
signals in scenario 3.

3.2. Machine learning models

In this section, we will provide a brief overview of the machine
learning algorithms used in our analysis. The models we used include
decision trees, random forests, eXtreme Gradient Boosting (XGBoost),
k-nearest neighbors (KNN), multiple linear regression, and artificial
neural networks (ANN).

The decision tree learning is a recursive partitioning of the feature
space based on criteria to create a tree structure. It involves selecting
the best splits, creating child nodes, and assigning predictions to the
leaf nodes. Predictions are made by traversing the tree based on input
features, and pruning can be applied to avoid overfitting.

Decision trees are beneficial because they are straightforward, con-
cise, sensitive to context, and flexible [41]. They allow different at-
tributes to be conditional on the outcomes of earlier tests. Decision
tree-based models can easily handle continuous and discrete attributes,
making them highly adaptable [42].
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Fig. 2. Architecture of an Artificial Neural Network with three hidden layers.

Random Forest is an ensemble learning method that combines the
predictions of multiple decision trees to make more accurate predic-
tions [43]. Randomly sampling data and features reduces overfitting
and improves generalization performance. Each decision tree is trained
on a subset of the training data and features. At each split node, a
random subset of features is considered.

The eXtreme Gradient Boosting (XGBoost) is a machine learning
framework that uses Boosting Tree models [44,45]. It is known for
its high performance, scalability, and ability to handle various data
types and sizes. The mathematical formulation of XGBoost involves
defining an objective function, which consists of a loss function and
a regularization term, to be optimized. The algorithm then updates the
model at each iteration [45].

The K-nearest neighbors (KNN) algorithm is a popular and straight-
forward supervised learning method for predicting qualitative and
quantitative variables. It is a non-parametric technique that relies on
the similarity between input and known labeled data to make pre-
dictions. This method is commonly used in data mining and pattern
recognition for classification purposes [46-48]. Before applying the
algorithm, it is necessary to determine the number of nearest neighbors,
k.

A multiple linear regression model is a statistical method used
for data with multiple predictor variables (y,,...,y;,...,y,) and one
outcome (x;;,...,X;.,¥;), for i = 1,2,...,n units of observation [49].
The model aims to find the relationship between multiple independent
variables x; and a single dependent variable y;. This relationship is
expressed in (7), where each §; represents the impact of an independent
variable on the dependent variable, the constant term f, is called the
“y-intercept”, and e; denotes the difference between the predicted value
7; and the actual value y;. The objective of the model is to estimate the
p; parameters so that the sum of the squared errors e; is minimized.

Vi =Po+ Bixiy + Poxip + P3xiz + o + Bxiy + ey )

An Artificial Neural Network (ANN) is a mathematical model mim-
ing biological neural networks [50]. It comprises interconnected neu-
rons grouped into three categories of layers: input layer, hidden layers,
and output layer (as shown in Fig. 2). Its activation functions con-
vert input features into outputs, introducing non-linearity into the
network [51,52]. GELU and Softmax are commonly used activation
functions. The ANN optimizers adjust the model weights by minimizing
the error or loss function. Gradient Descent, Adam, and RMSprop are
widely used optimizers.

3.3. Evaluation metrics

This section will present the different metrics used to evaluate
machine learning models in our work. These include Mean Square Error
(MSE), Coefficient of Determination (R?), Accuracy, Confusion Matrix,
Precision, Recall, and Area Under the ROC Curve (AUC-ROC) [53,54].

MSE measures how well the regression line fits the data and accu-
rately makes predictions. R?> measures the accuracy of our model in

Systems and Soft Computing 6 (2024) 200095

Table 2
Random forest model.
Number of trees Accuracy Wavelet
100 72.3% Daubechies 4
Table 3
Xgboost model.
Number of trees Accuracy Wavelet
150 72.3% Daubechies 4

predicting a dependent variable. Accuracy provides a general measure
of how well the model is performing. A good accuracy score should
be above 80%. Precision is the ratio of correctly predicted positive
examples divided by the total number of predicted positive examples.
The Confusion Matrix compares the observed and predicted values in
a tabular visualization, providing a more complete perspective than
just observing the accuracy. Recall indicates the number of correct
positive predictions made out of all positive predictions that could have
been made. The AU-ROC metric evaluates how well the model can
distinguish between the two classes. It assumes values between 0 and
1, where 0 is the worst result and 1 is the best result.

3.4. Feature engineering results

Based on the model architecture shown in Fig. 1 and thanks to
Python libraries such as PyWavelets, Sklearn and TensorFlow, we per-
formed feature extraction on the IR-UWB radar data obtained from
Scenario 3. This involved extracting statistical and entropy features,
resulting in a total of 11 features. These features were then used
to apply machine learning algorithms for predicting the number of
individuals present in each reflected signal.

The selected graph displays the various box sizes for each scenario,
indicating the differences between the subgroups within each scenario.
In addition, it is obvious that the upper quartile amplitude of the
entropies features (see Fig. 4(a)) decreases as the number of people in
the scenario increases. The statistical features are shown in Fig. 3(a).
The upper-quartile amplitude of scenarios with 3 and 9 people is
observed to be greater than that of other scenarios. This suggests that
statistical features can effectively differentiate between scenarios with
3 and 9 people from other scenarios.

However, it is challenging to distinguish between scenarios with 3
and 9 people using only statistical features. To overcome this, we com-
bine entropy-based features with statistical ones to improve prediction
and better distinguish between different scenarios.

3.5. Models evaluation results

In this section, we will present the results obtained by different
models in the case of the third scenario. We will plot the signals
obtained during the recordings containing one person, five persons and
12 persons as presented in Fig. 5 below.

Fig. 5 shows the reflected signals from the different recordings. We
have the reflected signal in each image and the processed reflected
signal. We have performed a simple moving average to reduce the noise
and smooth the amplitude of the reflected signals obtained. In addition,
we split the data into 80% training and 20% testing sets and present
the results below.

Fig. 6 indicates that the model’s accuracy improves slightly with
filtered data (72.3%) compared to raw data (70.85%). The details of
the model are defined by the Tables 2 and 3.

The K-nearest neighbors with 7 Neighbors give an accuracy of
51.57%, and the coefficient of determination of Multiple linear re-
gression is 45%. Despite data processing and feature engineering tech-
niques, the models have difficulty approaching an accuracy of 84%.
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Table 4

Sets of labels created with different labeling strategies.
Labeling 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#1 11 1 1 5 5 5 9 9 9 12 12 12 15 15
#2 11 1 4 4 4 7 7 7 10 10 10 13 13 15
#3 2 2 2 3 5 6 7 8 9 10 11 12 12 14 14

This may be due to the quality of the data or a defect in the sensor
during measurement. We also notice from Fig. 6 that it is difficult for
the models to make a difference between the reflected signal containing
1 person and that containing 2 people. Therefore, we will apply a
labeling technique to improve the performance of the models.

3.6. Models evaluation results with the labeling technique

Due to the low data quality, it is challenging to differentiate be-
tween signals corresponding to one and two people respectively. This
is the reason why we implement a labeling technique during the feature
engineering process. Labeling enables us to group signals within ranges
and is essential for accurately identifying reflected signals reflected by
individuals. For example, we can gather reflected signals from 1 to 3
people within the group label 1. Then, we train and test the models
with the modified data to identify the range in which a signal falls.
The process ensures that if a signal contains multiple people, we can
accurately identify and label each individual. In other words, if a signal
is classified as one person, it may contain 1, 2 or 3 people, giving us a
more reliable model.

We apply different labeling strategies, which are described as fol-
lows. The reflected signals containing 2, 3, and 4 people are labeled as
signals containing one person, then signals 6, 7, and 8 are labeled as
signals containing 5 people, 10 to 9, then 11, 13 to 12 and 14 to 15
people. This labeling leads to five new labels: 1, 5, 9, 12,15. Table 4
contains the various labels. The confusion matrix obtained after these
labeling techniques is presented in Fig. 7 below.

The Table 5 shows how accurate the model is with the new labels.
That also says much about the data and the importance of good
preprocessing techniques. Now, we offer the possibility of providing
a detection margin that improves the model’s accuracy. Compared
with other works tackling the same problem, we noticed in [40] that
the maximum precision obtained is 97%. The overall precision of the
models is not specified in this work. However, the work in [6,55,56]
is based more on a statistical study, and the detection of individuals
needs to present a clear classification case compared to that which we
propose. We summarize the results obtained by the XGBOOST and KNN
model in the Tables 6, 7.

The results of the Multiple Linear Regression model are as follows:
the coefficient of determination is 71.47%, the mean square error is
5.33, the mean absolute error is 5.33, and the root mean square error
is 2.31. In the Tables 5,6, 7,8, Time represents the execution time of
a single sample and the RAM values inserted take into account the
model’s training process.

In comparison to similar studies such as [6,40,55,56], it was found
that the highest precision achieved was 97%. It is important to note that
KNN, XGBOOST, and Multiple Linear Regression were not utilized for
classification in these studies. However, our XGBOOST model yielded
a higher accuracy rate.

3.7. Performance of the artificial neural network model

The architecture of our ANN model used consists of 3 hidden layers
of 512 units and 3 dropout layers to eliminate overfitting with a
probability greater than 0.5. The activation function used on each layer
is the GELU function, and the output layer uses the softmax function.
Nadam algorithm is used as an optimizer.

The predicted result is a vector of size 16, which contains prob-
ability values. Before the performance analysis, we transform these
probabilities to binary. We define a threshold, then set to 1 all the
probabilities bigger than the threshold and 0 otherwise. The results of
different metrics are presented in Table 8.

When simulated on Google Colab, our model requires an estimated
RAM (Random Access Memory) capacity of 8 GB and an estimated
model runtime of 60 h, taking into account the training process of the
model, the execution time of a sample is evaluated at 3800 ms (ms).
Compared to other proposed models, our ANN classifier provides better
accuracy and higher prediction rates of the different classes. Thus, the
closest reported research using the same dataset [40] relies on the
curvelet transform to extract hybrid features, resulting in an accuracy
of 97.8% and 98.7% obtained with Neural Networks and random forest
classifiers, respectively.

4. Conclusion

This paper presents an enhanced performance detection system
which combines signal processing tools with machine learning tech-
niques for people counting using IR-UWB radar. The proposed system
performs the discrete wavelet transform of IR-UWB reflected signals to
decrease their dimensions, while keeping the salient information. Then,
we consider entropy and statistical measures from the transformed
signals to extract relevant features that enable more accurate machine
learning models in counting the number of people present in the region
of interest. We finally improve the classification results by utilizing data
labeling methods tailored to our use case.

Our sample dataset consists of 15 individuals who were waiting
in line (queuing). After applying the moving average to eliminate
noise and clutter from the signal, we extract 11 features from the
discrete wavelet transform of the IR-UWB received signal. These fea-
tures include 8 statistical features and 3 entropy features. We then
use 5 classifiers to predict the number of present people. The counting
accuracy is more significant than 99% with the ANN model. In addition,
the impact of the moving average on the signal is proven by showing
a slight improvement in counting accuracy by the classifier compared
to the case where it is not applied. The standard machine learning
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Table 5

Random forest model after labeling technique.

Labeling Number of trees Accuracy Wavelet RAM Time

#1 95.44%

#2 100 98.98% Daubechies 4 3.3 GB 3900 ms

#3 86.26%

Table 6

XGBOOST model result.

Labeling Number of trees Accuracy Wavelet RAM Time

Without 72.3%

#1 95.39% .

© 150 08.61% Daubechies 4 3.3 GB 3950 ms

#3 86.27%
Table 7
KNN model result.
Labeling Number of neighbors Accuracy Wavelet RAM Time
Without 51.57%
#1 69.3% .
W 7 00.22% Daubechies 4 3.3 GB 3800 ms
#3 86.28%
Table 8
Performance results of the ANN model.
Epochs Accuracy Loss Auc Precision Recall TP FN Time RAM
5000 x 5 99.35% 0.1084 99.98% 91.04% 98.59% 32776 3224 2500 ms 8 GB

models perform poorly despite feature engineering, partly due to data References

quality or IR-UWB radar data acquisition. We encountered difficulty
distinguishing between scenarios with a difference of one person, so
we improved the model’s accuracy with some labeling techniques. As
future work, we plan to test the same strategy in other scenarios to
validate the performance of the proposed method. We also plan to
observe how the model behaves when new environmental factors are
added, in terms of accuracy and computation time.
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