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Observational Equality Meets CIC

Löıc Pujet1 and Nicolas Tabareau2

1 University of Stockholm, Sweden
2 Inria, France

Abstract. Equality is at the heart of dependent type theory, as it
plays a fundamental role in specifications and mathematical reasoning.
The standard way to handle it in mainstream proof assistants such as
Agda, Lean or Coq is based on Martin-Löf’s identity type, which comes
straight out of the ’70s—its elegance and simplicity have earned it a long-
standing use, despite a major discrepancy with traditional mathematical
formulations: it does not satisfy any extensionality principles. Recently,
the work on observational equality has regained interest as a new way
to encode equality in proof assistants that support a universe of defini-
tionally proof-irrelevant propositions; however it has yet to be integrated
in any major proof assistant, because it is not fully compatible with an-
other important feature of type theory: indexed inductive types. In this
paper, we propose a systematic integration of indexed inductive types
with an observational equality, and show that this integration can only
be completely satisfactory if the observational equality satisfies the com-
putational rule of Martin-Löf’s identity type. The second contribution
of this paper is a formal proof that this additional computation rule,
although not present in previous works on observational equality, can
be integrated to the system without compromising the decidability of
conversion.

1 Introduction

Equality is a fundamental part of mathematical reasoning and formal specifica-
tion, and it is therefore at the heart of any proof assistant. In Martin-Löf Type
Theory [17], it is expressed with the identity type, which is characterized by two
elegantly simple principles: equality is reflexive, and an equality proof cannot be
told apart from a proof by reflexivity from inside the theory (this is known as
the J rule, or transport). From these two principles, it is possible to show that
the identity type is symmetric, transitive, and even that it satisfies all the laws
of a higher groupoid [9]. This Martin-Löf identity type serves as the base for the
interpretation of equality in the proof assistants Agda, Coq and Lean.

Unfortunately, this alluring formulation suffers from serious drawbacks: it
is impossible to prove extensionality principles for the identity type, and the
uniform definition makes it difficult to integrate types for which the equality
relation is specified ad hoc, such as quotient types. In practice however, quotient
types and extensionality principles are pervasive in mathematics; in particular
the principle of function extensionality—which says that two functions are equal



when they are equal at every point—is taken for granted by most mathematicians
and computer scientists. While it is possible to postulate those extensionality
principles as axioms, this comes at the price of blocking computation for the
transport operator.

In order to improve this sorry state of affairs, the most natural solution is to
go back at the root of the problem and replace the dysfunctional identity type
with a better-behaved alternative, for instance with the observational equality of
[6]. Unlike Martin-Löf’s identity type, the observational equality has a specific
definition for each type former, so that the definition of quotient types becomes
straightforward and extensionality principles can be added without too much
trouble. There is some amount of freedom in the precise implementation of this
idea; in this work we will build upon the recently proposed system CCobs [23].
Thus in CCobs, every type A is equipped with an observational equality t ∼A u,
defined as a proof-irrelevant proposition with a reflexivity proof written refl.
The system also provides a primitive type-casting operator cast A B e t that
can be used to coerce a term t of type A to the type B, given a proof e that
these two types are observationally equal. This type-casting operator can then be
used to derive the J rule for the observational equality, which ensures that it is a
reasonable notion of equality and thus a good candidate for an implementation
in a proof assistant.

But even though the idea has been around for almost two decades, none of
the mainstream proof assistants supports the observational equality as of 2023.
One possible reason is that it is not so easy to integrate it with the sophisticated
type systems of modern proof assistants such as Agda, Coq and Lean, and in
particular with their system of inductive definitions. Thus, the first contribution
of this work is to extend CCobs with the indexed inductive types of Coq and
their computation rules, resulting in a system that we call CICobs. We do this
by exhibiting a general mechanism that distinguishes casts on parameters which
can be propagated in the arguments of constructors, and casts on indices which
are blocked and create new normal forms. Therefore, the indexed inductive types
of CICobs can contain more inhabitants than their counterparts in CIC; they only
coincide when indices are taken in a type with decidable equality (e.g., natural
numbers in the case of vectors). Additionally, in order to properly handle the
propagation of the casts, we give a general account of which equalities can be
deduced from an observational equality between two instances I x⃗ and I y⃗ of the
same inductive type. The correct rule is slightly more subtle than the injectivity
of type formers—in particular, when a parameter of I is not used in the definition
of the constructors of the inductive type, the equality of the two instances does
not imply the equality of the parameter.

Our treatment of indices is based on Fordism, a technique that makes use
of the equality type to reduce indexed inductive definitions to parametrized
definitions. Its usefulness in an observational context has already been noted in
[5], but it should be emphasized that the computational faithfulness of Fordism
crucially relies on the computation rule for transport, which is weakened in the
system of [23]: the encoding of transport via the cast operator does not compute



on reflexivity proofs as well as the eliminator of Martin-Löf’s identity type. More
precisely, in CCobs it is possible to prove that the propositional equality

cast A A (refl A) t ∼A t

is inhabited for any type A, but the equality does not hold definitionally. This
seemingly harmless difference implies that the observational equality of CCobs

cannot be used to encode the indexed definitions of CIC. This issue is well-known,
and previous work [22] introduced an auxiliary equality defined as a quotient
type to recover this computation rule at the cost of the definitional uniqueness
of identity proofs (UIP), in a way that is reminiscent of Swan’s identity type
in cubical type theories [25]. In our new system CICobs, we go a step further
and show that the tension can be fully resolved by using the idea of [4] that
under certain conditions, definitional equalities that hold on closed terms can be
extended to open terms by adding new definitional equations on neutral terms.
Indeed, the failure of the computation rule for transport only occurs on open
terms, since cast computes on types and terms instead of the equality proof. For
instance, in the case of the identity cast on natural numbers it is already true
in CCobs that cast N N (refl N) 32 ≡ 32, and similarly for any closed natural
number—this is a direct consequence of the canonicity theorem proved in [22].
What is missing is the equation cast N N (refl N) n ≡ n when n is a neutral
term, in particular a variable. Thus the problem to be addressed is:

“Can we add those new definitional equations while keeping conversion and
type checking decidable?”

In the case of the type of natural numbers, it is very tempting to transform
this equation into a new reduction rule cast N N e n ⇒ n. However the case
of two neutral types A and B seems more delicate, since the corresponding rule
cast A B e t ⇒ t should fire only when A and B are convertible, and reduction
rules that rely on a conversion premise are still poorly understood [28,1].

Fortunately, this is not the only way to support the desired definitional equal-
ity. Coming back to the case of natural numbers, if n is neutral then neither n
nor cast N N e n will trigger the reduction of an eliminator; therefore the deci-
sion that cast N N e n ≡ n can be deferred to equality checking after reduction,
in the same way that one usually decides η-equality for functions. The second
contribution of this paper is a formal proof that this algorithm does indeed lead
to a sound and complete decision procedure for conversion. The argument is
formalized in Agda, (see Section 8), following previous work on logical rela-
tions [2,22,23].

Related work The first proof assistant to implement an observational equality
was the now-defunct Epigram 2 [19]. Although it did not have a primitive scheme
for inductive definitions à la Coq, Epigram 2 had support for indexed W-types
based on a fancy notion of containers, and its equality type did implement the
computation rule on reflexivity, meaning that the user could use it to encode
indexed definitions using Fordism. The normalization and consistency of Epi-
gram 2 is justified with an inductive-recursive embedding into Agda, but this



embedding does not account for the computation rule on reflexivity, which is
only conjectured not to break normalization and decidability.

In the world of cubical type theories, more attention has been paid to the
definition of general (higher) inductive types [10]. There, the situation is com-
plicated by the fact that transport for the cubical equality does not supports
definitional computation on reflexivity as of today (this is known as the regu-
larity problem), thus the Fordism encoding cannot be used straightforwardly.
Instead, Cavallo and Harper add a fcoe constructor to their indexed inductive
types in order to keep track of the coercions on indices, and they obtain that
an inhabitant of an inductive type in normal form is a chain of fcoe applied to
a canonical constructor. These inductive definitions have been implemented in
Cubical Agda [27] and have been used to develop a sizeable standard library.

2 Observational Equality Meets CIC at Work

The Calculus of Inductive Constructions (CIC), which is the theoretical foun-
dation of the proof assistants Coq and Lean, includes a powerful scheme for
inductive definitions [21]. It supports parameters, indices and recursive defini-
tions, but also more exotic features such as mutually defined or nested families.
The high level of generality of this scheme allows it to subsume types as diverse
as the natural numbers, Σ-types, W -types, and Martin-Löf’s identity type. If we
are to extend Coq with an observational equality, then we need to understand
how it interacts with these inductive definitions, and to devise suitable com-
putation rules. While some of these rules are self-evident, others will turn out
to be more delicate. In order to help the reader build their intuition, we study
the observational version of three common inductive types: lists, Martin-Löf’s
identity type and vectors.

2.1 Lists

We start with a brief look at the datatype of lists parametrized by an arbitrary
type. Its definition in Coq might look something like this:

Inductive list (A:Type) : Type :=
| nil : list A

| cons : A → list A → list A.

The basic rules of the CIC already provide us with an eliminator and computation
rules for this inductive type. In the language of Coq, these are implemented via
a pattern-matching construction (match) and a guarded fixpoint operator (fix)
[11]. But in an observational type theory, we need more than just the rules for
introduction, elimination and computation—every type former should come with
three additional ingredients: a definition of the observational equality between
inhabitants, a definition of the observational equality between two instances of
the type, and computation rules for cast.

There is some leeway for the definition of the observational equality on any
given type. In its original version and most of the subsequent literature, the
observational equality type itself evaluates to a domain-specific equality, meaning



that a proof of equality between two functions is definitionally the same as a
proof of pointwise equality [6,23]. On the other hand, it is possible to implement
an observational type theory in which the equality type does not reduce, but
is instead equipped with primitive operators that can be used to convert (for
instance) a pointwise equality of functions into an equality [7]. In this paper,
we will go with the second approach, as it turns out to be better suited for an
implementation in Coq.

Now, what operators should we add in the case of lists? Obviously, two lists
should be observationally equal if and only if they are either both empty, or have
equal heads and recursively equal tails. But as it turns out, this logical equiva-
lence is already derivable from the induction scheme for lists and the J eliminator
for the observational equality—just like we would prove it in plain intensional
Martin-Löf Type Theory (MLTT). Therefore, we do not need to characterize the
equality between lists any further. This stems from the fact that inductive types
are free algebras, and do not need any sort of quotienting in their construction.
The observational equality between inhabitants of the universe, on the other
hand, does not profit from such an induction principle. Thus we add a new oper-
ator to our theory, which takes an equality between two list types and “projects”
out an equality between the underlying types:

eq−list : list A ∼ list B → A ∼ B.

This principle is necessary, because a proof of equality between listA and
listB should allow us to coerce a list of elements of A into a list of elements
of B, and thus in particular it should allow us to coerce from A to B. Since this
implication is in fact a logical equivalence (the converse direction is provable
from the J eliminator), it does indeed fully determine the observational equality
between list types. Finally, we need to add rules that explain how cast computes
on lists. Unlike the computation rules for the observational equality types, these
are very much necessary, unless we are fine with having stuck computations in
an empty context. Here, there is only one natural choice: casting a constructor
of list A should evaluate to the corresponding constructor of list B.

cast (listA) (listB) e nil ≡ nil

cast (listA) (listB) e (cons a l) ≡ cons (cast A B (eq−list e) a)
(cast (listA) (listB) e l)

Remark that in the case of a non-empty list, we need the eq−list axiom in
order to apply cast to the head of the list. Voilà, this is all it takes for an
observational type theory with lists. With this example under our belt, we now
move on to a more sophisticated example.

2.2 Indices and Fordism

The next layer of complexity offered by the scheme of Coq is indices. Here, the
story gets more complicated, as indexed definitions gain new inhabitants in the
presence of the observational equality. To see this, consider Martin-Löf’s identity
type, which is the prototypical example of an indexed inductive definition:



Inductive Id (A : Type) (x : A) : A → Type := id_refl : Id A x x.

In intensional type theory, it is well-known that this equality type does not satisfy
the principle of function extensionality. But in our observational type theory, it
turns out we can to prove that Martin-Löf’s identity type is logically equivalent
to the observational equality (we can use the cast operator in one direction, and
the induction principle for Id in the other direction). In particular, the principle
of function extensionality is now provable for Id! As convenient as it might sound,
it also implies that we can get an inhabitant of the type Id (N → N) (λn.1 +
n) (λn.n + 1) in the empty context, since the two functions are extensionally
equal. But this inhabitant cannot be definitionally equal to id refl, as the two
functions are not convertible. From this, we deduce that the closed inhabitants
of an indexed inductive type may include more than the canonical ones, i.e.,
those that can be built out of the constructors of the inductive type.

In order to get a better grasp on these noncanonical inhabitants, we can turn
our attention to Fordism. This technique was invented by Coquand for his work
on the proof assistant half in the 1990s, as a way to reduce indexed inductive
types to parametrized inductive types and an equality type. The name Fordism
first appeared in [18], in reference to a famous quote by Henry Ford: “A customer
can have a car painted any color he wants as long as it’s black”. Let us look at
the construction at work on the inductive definition of vectors, which is a little
less barebones than the inductive identity type:

Inductive vec (A:Type) : N → Type :=
| vnil : vec A 0
| vcons : ∀ m, A → vec A m → vec A (S m).

Vectors are basically lists with an additional index that makes their length avail-
able in the type, ensuring that a vector of type vec A n contains n elements. In
order to get the forded version of vectors, we modify their definition so that the
index becomes a parameter, and the two constructors gain a new argument:

Inductive vecF (A:Type) (n : N) : Type :=
| vnilF : n ∼N 0 → vecF A n

| vconsF : ∀ m, A → vecF A m → n ∼N S m → vecF A n.

Remark that a forded empty vector vnilF e can have a priori the type vec A n

for any n, except that e is a witness that n is equal to 0. An empty vector can
have any size you want, as long as it’s zero! The point of Fordism is that the
induction principle of vec can be derived for vecF, by combining the induction
principle provided by the CIC for vecF and the eliminator of the equality:

vec_elim (A : Type) (P : ∀ n : N, vecF A n → Type) :
P 0 (vnilF 0 refl) →
(∀ (m : N) (a : A) (v : vecF A m), P m v → P (S m) (vconsF (S m) m a v refl)) →
∀ (n : N) (v : vecF A n), P n v.

vec_elim A P Pnil Pcons n (vnilF n e) ≡
cast (P 0 (vnilF 0 refl)) (P n (vnilF n e)) (vnilap A e) Pnil.

vec_elim A P Pnil Pcons n (vconsF n m a v e) ≡
cast (P (S m) (vconsF (S m) m a v refl)) (P n (vconsF n m a v e))



(vconsap A m a e v) (Pcons m a v (vec_elim A P Pnil Pcons m v)).

Here, we used implicit arguments for refl and we used two auxiliary definitions
vnilap and vconsap showing that functions preserve equalities. Furthermore, if
the cast operator satisfies the computation rule on reflexivity, then the induction
principle provided by the Fordism transformation satisfies the same computa-
tion rules as the standard induction principle for indexed inductive types. Thus,
Fordism can serve as a recipe for the implementation of indexed inductive types,
as long as we know how to handle parametrized inductive types and have an
equality that computes on reflexivity.

Additionally, this transformation sheds some light on the noncanonical ele-
ments of indexed inductive types: in CIC, the only closed proof of equality is a
proof by reflexivity, thus the inhabitants of vecF A n in the empty context be-
have exactly like the canonical inhabitants of vec A n. But in an observational
type theory, there are many proofs of equality in the empty context (think for
example of a proof of equality between two functions that are not convertible,
but extensionally equal) which give rise to new elements. These elements can
be obtained by casting a canonical inhabitant to a type with a different (but
observationally equal) index, and they cannot be eliminated away in general.3

2.3 Parameters and Equalities

Now that we know how to handle indexed types, we can revisit Martin-Löf’s
identity type, which plays an important role in CIC. After the Fordism transfor-
mation, its definition looks like this:

Inductive IdF (A : Type) (x y : A) : Type := id reflF : x ∼A y → IdF A x y.

As we want to incorporate this type into our observational theory, we apply the
standard recipe: we need a definition of the observational equality between in-
habitants of IdF, a definition of the observational equality between two instances
of IdF, and computation rules for the cast operator. The first one is easy, as
we can prove that any two inhabitants of IdF A x y are equal: by induction, we
only need to prove it for elements of the form id reflF e, with e being a proof
of x ∼A y. But the observational equality is definitionally proof-irrelevant, so
this is true by reflexivity. In other words, the principle of uniqueness of identity
proofs (UIP) is provable for the inductive identity type in observational type
theory, in stark contrast with MLTT or CIC. Thus, we do not need any further
characterization of the observational equality between inhabitants of IdF.

On the other hand, the definition of the observational equality between two
instances of the identity type IdF A x y and IdF A’ x’ y’ makes for another inter-
esting story. From our study of lists, it might be tempting to extrapolate that
an observational equality between two instances of a parametrized inductive

3 In the case of vectors, it is possible to find alternative encodings that do not have
these new canonical elements, because the equality between indices is decidable in the
empty context. However, we aim at a systematic and uniform treatment of indexed
inductive types, so we will not consider this option.



datatype should imply an equality between the parameters, or in the special
case of IdF, that we get the following principle:

IdF A x y ∼ IdF B z w → ∃ (e : A ∼ B), (cast A B e x ∼ z) ∧ (cast A B e y ∼ w)

This means that parametrized inductive definitions are injective functions from
the type of parameters to the universe. Unfortunately, this idea turns out to be
incompatible with the rules of CIC. Indeed, according to these rules the induc-
tive equality Id A x y should live in the lowest universe, since it has only one
constructor with no arguments. But then if A is a large type, we get an injective
function from A into the lowest universe, which is potentially inconsistent—for
instance, consider the following function:

inj (X : Type → Type) := IdF (Type → Type) X X

If the IdF type former is injective, then inj is an injection of Type → Type into
Type, from which we can encode Russell’s paradox and derive an inconsistency
for CIC [20]. Thus, if we really want to have this injectivity of parameters, we
need to modify the rules of our theory so that inductive definitions are only
allowed in a universe that is sufficiently large to accommodate their parameters.
But this is not exactly reasonable: this would mean that we cannot abstract over
the definition of an inductive type using Coq’s sections mechanism, since sec-
tion variables are translated to inductive parameters. In other words, inductive
definitions would only make sense in closed contexts.

In order to avoid such a serious drawback, we will use a completely different
characterization for the observational equality between inductive types. After
all, what do we need these axioms for? The answer is simple: we need some
observational equalities to put in the computation rules for the cast operator.

cast (IdF A x y) (IdF B z w) e (id reflF e’) ≡ ...

For inductive types, these computation rules are very systematic: when cast is
applied to a constructor, then it should naturally reduce to the corresponding
constructor of the target inductive. Thus, we need to produce an inhabitant of
x’ ∼A′ y’ from an inhabitant of x ∼A y. This is a job for the cast operator:

cast (IdF A x y) (IdF B z w) e (id reflF h) ≡ id reflF (cast (x ∼ y) (z ∼ w) ? h).

In order to fill the question mark hole, we need a proof of observational equality
between the two observational equality types. Since all we have is a proof of
equality between IdF A x y and IdF B z w, we need something to extract the de-
sired equality. The injectivity of the inductive types is sufficient for this purpose,
but it is not necessary. Instead, we can go for the bare minimum: an observa-
tional equality between two instances of the same inductive definition should
imply the equality of all their argument contexts, and nothing more. In the case
of the inductive IdF, it means that we get the following projection:

eq−IdF : IdF A x y ∼ IdF B z w → (x ∼ y) ∼ (z ∼ w).

As we will prove in Section 6, this is enough to get an identity type that lives in
the lowest universe without endangering the consistency of the theory.



i, j ∈ N Universe levels
s ::= Ui | Ω Universes
Γ,∆ ::= • | Γ, x : A : s Contexts
t, u,m, n, e, A,B ::= x | s Variables and Universes

| λ(x : A). t | t u | Π
s,s′(x : A). B Dependent products

| ⊥−elim A t | ⊥ Empty type
| t ∼A u | refl t | transport A t B u t′ e Observational equality
| cast A B e t Type cast
| Π

1
ϵ | Π

2
ϵ | Ωext | Πext Properties of Equality

Fig. 1: Syntax for the negative fragment of CICobs[Untyped.agda]

3 CICobs with Martin-Löf’s Computation Rule

At this stage, we have a clear roadmap for our observational type theory with
inductive types: first, we need a system with a cast operator that computes
on proofs by reflexivity. Then, we handle parametrized inductive types with
projection functions for the equality types and computation rules for cast, and
finally, we can take care of indexed inductive types with some syntactic sugar
around the Fordism transformation.

We are now in position to define CICobs, the observational type theory that
will serve as our theoretical framework. It is based on the system CCobs of [23],
but with a few tweaks; the most important one being the additional computation
rule for the cast operator on reflexivity proofs. In this section, we give a brief
presentation of the syntax, typing rules and declarative conversion for the core
of the type theory, with an emphasis on the points that differ from CCobs, before
defining the scheme for inductive definitions in Section 5. All the definitions
in the figures follows closely our Agda formalization. We refer to files in the
formalization as [myFile.agda] .

3.1 The Syntax of CICobs

The syntax of the sorts, contexts, terms and types of CICobs is specified in
Fig. 1. The sorts of our system are divided into a predicative hierarchy (Ui)i∈N
which mirrors the Type hierarchy of Coq, and an impredicative sort Ω of proof-
irrelevant propositions which corresponds to Coq’s SProp. The base types are
the false proposition ⊥, the observational equality t ∼A u and the dependent
function type Πs,s′(x : A). B. For the sake of readability, we will frequently drop
the sort annotations on dependent products when they can be inferred from
the context, and when B does not depend on A, we write A → B instead of
Π(x : A). B. In addition to these basic types, our theory also includes a defini-
tion scheme for indexed inductive types, that can be used to extend the syntax
with new types and terms (cf. Section 5).

Compared to the system CCobs of [23], we add four new primitives Π1
ϵ ,

Π2
ϵ , Ωext and Πext, whose role is to provide the properties of the observational

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Untyped.html
https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.myFolder.myFile.html


Eq-Ω

Γ ⊢ A : Ω Γ ⊢ B : Ω

Γ ⊢ Ωext : (A → B) → (B → A) → A ∼Ω B

Eq-Fun

Γ ⊢ A : s Γ, x : A : s ⊢ B : Ui Γ ⊢ f, g : Π(x : A). B : R(Ui, s)

Γ ⊢ Πext : Π(x : A). f x ∼B g x → f ∼ΠAB g

Eq-Π1

Γ ⊢ A,A′ : s Γ, x : A ⊢ B : s′ Γ, x : A′ ⊢ B′ : s′

Γ ⊢ Π
1
ϵ : Π(x : A). B ∼R(s,s′ ) Π(x : A′). B′ → A′ ∼s A

Eq-Π2

Γ ⊢ A,A′ : s Γ, x : A ⊢ B : s′ Γ, x : A′ ⊢ B′ : s′

Γ ⊢ Π
2
ϵ : Π(e : ).Π(a′ : A′). B[x := cast A′ A (Π1

ϵ e) a′] ∼s′ B′[x := a′]

Fig. 2: CICobs rules for characterizing the observational equality [Typed.agda]

equality which were previously given as computation rules. For instance, in the
system of [23] an equality between two function types evaluates to a Σ-type that
contains equalities of the domain and codomain, while in our new system these
two equalities are obtained by applying Π1

ϵ and Π2
ϵ to the proof of equality

between function types. Replacing computations with these new primitives does
not endanger the computational properties of our theory, since they only ever
produce computationally irrelevant equality proofs. Plus, it results in a more
elegant system that does not need a primitive Σ-type; this way of handling
the properties of the observational equality will be especially convenient when
dealing with inductive definitions, where equalities between types imply complex
telescopes of equalities which would be cumbersome to express with nested Σ-
types.

3.2 The Typing Rules of CICobs

The typing rules of CICobs are based on five judgments:

⊢ Γ Γ is a well-formed context,
Γ ⊢ A : s A is a well-formed type of sort s in Γ,
Γ ⊢ t : A : s t is a term of type A in sort s in Γ,
Γ ⊢ A ≡ B : s A and B are convertible types of sort s in Γ, and
Γ ⊢ t ≡ u : A : s t and u are convertible terms of type A in Γ.

In all the judgments, s denotes either Ui or Ω. Note that since every universe
has a type, the well-formedness judgments for types Γ ⊢ A : s (and convertibility
judgments of types) can be seen as special cases of typing judgments for terms
Γ ⊢ A : s : s′ for a suitable s′ , but we keep the type-level judgments to avoid
writing unnecessarily many sort variables.

The rules for universes, dependent function types, and the empty type are
taken directly from [23], so we only give a brief overview here. The complete set

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Typed.html


of rules is available in [Typed.agda] . We use PTS-style notations [8] to factorize
the impredicative and predicative rules for universes and dependent products:
the formation rule for universes states that both Ui and Ω are inhabitants of a
higher universe, as described by the relations

A(Ui,Uj) := j = i+ 1 A(Ω,Ui) := i = 0.

We allow the formation of dependent products with a domain and a codomain
that have different sorts. If the codomain is a proof-relevant type, then the
dependent product should have a universe level that is the maximum between
the level of the domain and that of the codomain. On the other hand, if the
codomain is a proposition then the result is a proposition regardless of the size
of the domain. This is made formal by using the function R( , ) defined as

R(s,Ω) := Ω R(Ω,Ui) := Ui R(Ui,Uj) := Umax(i,j).

Equality and Type Casts Every proof-relevant type comes equipped with a propo-
sitional binary relation, noted t ∼A u and called the observational equality. This
type has one introduction rule that turns it into a reflexive relation. Of course,
proof-irrelevant types have no use for an observational equality, since any two
inhabitants would always be in relation by reflexivity. The observational equality
is equipped with two elimination principles, which are called transp and cast.
The former is similar to the J eliminator from MLTT, except that it is restricted
to propositional predicates. Elimination into the proof-relevant layer is thus han-
dled by the cast operator, which provides coercions between two observationally
equal types. It might seem less general than the standard J eliminator, but since
equality proofs are definitionally irrelevant, it turns out that a J eliminator for
proof-relevant predicates can be derived from the cast operator.

As we already mentioned, the extensional properties of the observational
equality are given by the primitives Π1

ϵ , Π2
ϵ , Ωext and Πext: rules Eq-Π1 and

Eq-Π2 allow us to deduce the equality of domains and codomains from an equal-
ity between two dependent functions types, rule Eq-Ω provides propositional
extensionality, and rule Eq-Fun provides function extensionality.

3.3 Conversion

The conversion, also called definitional equality, is a judgment that relates the
terms that are interchangeable in typing derivations. The rules that define the
conversion judgment are reproduced in Fig. 3. By definition, conversion is a
reflexive, symmetric and transitive relation. It is also closed under congruence
(e.g. if A ≡ A′ and B ≡ B′ then Π(x : A).B ≡ Π(x : A′).B′), although we did
not reproduce all the corresponding rules in Fig. 3 for the sake of brevity. The
conversion judgment is itself subject to the conversion rule (rule Conv-Conv).

As usual, the conversion relation contains the β-equality for proof-relevant
applications (rule β-conv), and the η-equality of functions4 (rule η-Eq). The

4 The propositional η-equality is actually provable in observational type theory, since
it is a special case of the extensionality of functions. Nevertheless, it is still convenient
to have as a conversion rule, to get a more flexible system.
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Refl
Γ ⊢ t : A : Ui

Γ ⊢ t ≡ t : A : Ui

Sym
Γ ⊢ t ≡ u : A : Ui

Γ ⊢ u ≡ t : A : Ui

Trans
Γ ⊢ t ≡ t

′
: A : Ui Γ ⊢ t

′ ≡ u : A : Ui

Γ ⊢ t ≡ u : A : Ui

η-Eq

Γ ⊢ A : s Γ ⊢ t, u : Π
s,Ui (x : A). B : R(s,Ui) Γ, x : A : s ⊢ t x ≡ u x : B : Ui

Γ ⊢ t ≡ u : Π
s,Ui (x : A). B : R(s,Ui)

Proof-Irr
Γ ⊢ t : A : Ω Γ ⊢ u : A : Ω

Γ ⊢ t ≡ u : A : Ω

Conv-Conv
Γ ⊢ t ≡ u : A : Ui Γ ⊢ A ≡ B : Ui

Γ ⊢ t ≡ u : B : Ui

β-conv
Γ ⊢ A : s Γ, x : A : s ⊢ B : Ui Γ, x : A ⊢ t : B : Ui Γ ⊢ u : A : s

Γ ⊢ (λ(x : A). t) u ≡ t[x := u] : B[x := u] : Ui

Cast-Π
Γ ⊢ A : s Γ ⊢ A

′
: s Γ, x : A ⊢ B : s

′
Γ, x : A

′ ⊢ B
′
: s

′

Γ ⊢ e : Π(x : A). B ∼ Π(x : A
′
). B

′
: Ω Γ ⊢ f : Π(x : A). B a := cast A

′
A (Π

1
ϵ e) a

′

Γ ⊢ cast (Π(x : A). B) (Π(x : A
′
). B

′
) e f ≡

λ(a
′
: A

′
). cast (B[x := a]) (B

′
[x := a

′
]) (Π

2
ϵ e a

′
) (f a)

: Π(x : A
′
). B

′
: R(s,s

′
)

Cast-Refl
Γ ⊢ A ≡ B : s Γ ⊢ e : A ∼s B Γ ⊢ t : A : s

Γ ⊢ cast A B e t ≡ t : B : s

Fig. 3: CICobs Conversion Rules (except congruence rules) [Typed.agda]

rule Proof-Irr reflects the computational irrelevance of the propositions: any
two inhabitants of the same proposition are deemed convertible. Additionally, the
conversion relation also includes the computation rules for the pattern-matching
of inductive constructors that we will define in Section 5.

Then, we have the rules describing the behaviour of the cast operator on
each type. The rule Cast-Π is standard; it says that a cast function evaluates
to a function that casts its argument, applies the original function, and then
casts back the result. Note that this rule needs the two projections Π1

ϵ and
Π2

ϵ to get equality between the domains and the co-domains. Likewise, every
declaration of an inductive type will add a handful of computation rules for the
cast operator. Last but not least, the rule Cast-Refl is the main innovation
of CICobs. It states that cast between convertible types can be simplified away,
regardless of the proof of equality. This rule plays an important role in ensuring
compatibility with the CIC: recall that cast can be used to derive a J eliminator
for the observational equality—then ruleCast-Refl implies that this eliminator
computes on reflexivity proofs, just like the usual eliminator of Martin-Löf’s
inductive equality.

4 Decidability of Conversion
In this section, we show that conversion is decidable in presence of the rule
Cast-Refl for a simplified version of CICobs in which the induction scheme is
reduced to the type of natural numbers. Generally speaking, the main source
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of difficulty for the decidability of conversion in dependent type theory is the
transitivity rule—because of it, we have no guarantee that comparing two terms
structurally is a complete strategy, since transitivity may be used with an arbi-
trary intermediate term at any point. If we want a decision procedure, we need
to replace this transitivity rule with something more algorithmic.

Our aim is thus to define an equivalent presentation of the conversion for
which transitivity is an admissible rule, but is not primitive. This is tradition-
ally achieved by separating the conversion into a notion of weak-head reduction
(Section 4.1) and a notion of conversion on neutral terms and weak-head normal
forms (Section 4.2). In standard CIC, this strategy is sufficient to get canonical
derivations of conversion, for which we have a decision procedure: we check the
existence of a canonical derivation by first reducing terms to their weak-head
normal form, and then comparing their head constructors and making recursive
calls on their arguments. The point of this algorithmic definition of conversion
is to replace the arbitrary transitivity rules with deterministic computations of
weak-head normal forms. Then we can show that transitivity is admissible for
conversion on neutral terms and weak-head normal forms. Naturally, this defi-
nition requires a proof of normalization of well-typed terms.

In the case of CICobs however, the decision procedure for conversion of neu-
tral terms and weak-head normal forms cannot be defined as a straightforward
structural comparison. When the two terms start with cast, there are three rules
that may apply: either congruence of cast, rule Cast-Refl on the left-hand
side, or rule Cast-Refl on the right-hand side. This means that the decision
procedure (Section 4.3) will have to do some backtracking to explore all possi-
ble combinations of congruence of cast and Rule Cast-Refl. Fortunately, the
search space is bounded as every recursive call is done on a smaller argument.

Finally, to conclude on the decidability of conversion, we need to show that
the declarative conversion is equivalent to our algorithmic conversion. For that,
we use the logical relation setting of [2] to guarantee that every term can be
put in weak-head normal form and that algorithmic conversion is complete with
respect to conversion.

Note that our formalized version of CICobs only supports the inductive type
of natural numbers, and not the full scheme from Section 5. This is due to
the setting of the formal proof, which requires the added inductive types to be
explicit because Agda’s check that the logical relation is well-defined makes use
of the strict positivity criterion, which is syntactic and cannot be abstracted
away for a generic definition. Nevertheless, we expect that our formal proof can
be extended to specific inductive types such as lists or Martin-Löf’s identity
type, with methods similar to the ones from [3].

4.1 Reduction to Weak-Head Normal Forms

A notion that plays a central role in our normalization procedure is that of
a weak-head normal form (whnf), which corresponds to a relevant term that
cannot be reduced further (Fig. 4). Weak-head normal forms are either terms
with a constructor in head position, or neutral terms stuck on a variable or



whnf w ::= N | Π(x : A). B | s | N | ⊥ | t ∼A u | λ(x : A). t | 0 | S n
neutral N ::= x | N t | ⊥−elim A e | N−elim P t u N

| cast N B e t | cast N N e t | cast Π
s,s′(x : A). B N e t

| cast N N e N | cast w w′ e t

(where w,w′ ∈ {N,Π
s,s′(x : A). B, s}, hdw ̸= hdw′)

Fig. 4: Weak-head normal and neutral forms [Untyped.agda]

an elimination of a proof of ⊥. In other words, neutral terms are weak-head
normal forms that should not exist in an empty context. In CICobs, inhabitants
of a proof-irrelevant type are never considered as whnf, as there is no notion of
reduction of proof-irrelevant terms.

This notion of neutral terms is standard, but we need to pay a particular
attention to neutral terms for cast. They correspond to all forms of cast for
which there is no attached reduction rule. Because we assume that cast first
evaluates its left type argument, then the second and finally its term argument,
neutral terms of cast occur either when the first type is neutral, or when the first
type is a type constructor and second type is neutral, or when the two types are
the same type constructor, but the argument is neutral. Note that the reduction
rule for casting a function always fires, so there is no associated neutral term
in that case. Finally, casts between two different type constructors are always
considered as stuck terms and should be seen as variant of ⊥−elim A e because
they correspond to casts based on an inconsistent proof of equality, thus similar
to elimination of a proof of ⊥.

At the heart of the decision procedure for conversion, there is a notion of
typed reduction, noted Γ ⊢ t ⇒ u : A. Intuitively, reduction corresponds to an
orientation of the conversion rule in order to provide a rewrite system for which
we can compute normal forms. However, not every conversion corresponds to
a reduction rule: turning Rule Cast-Refl into a reduction rule would spawn
several critical pairs, and even more annoyingly, its convertibility premise would
force us to define reduction mutually with conversion checking. As are not aware
of any framework that properly handles this type of circularity, we will sidestep
the issue by deferring Cast-Refl to conversion checking, where we only have
to deal with neutral terms and weak-head normal forms.

Actually, the purpose of reduction is to compute weak-head normal forms so
that conversion rules that are not part of the reduction have only to be checked
on weak-head normal forms. We do not detail the standard rules for CIC and
focus on the one for cast (Fig. 5). The congruence rule for cast corresponds to
several reduction rules, because we need to be careful to reduce one argument
after the other in order, so that weak-head reduction remains deterministic.
The reduction rules Cast-Zero, Cast-Suc and Cast-Univ correspond to the
rule Cast-Refl where the arguments are instantiated by weak-head normal
forms that are not neutral. Indeed, in that case cast must reduce. Conversion for
cast when one of the scrutinees is neutral is deferred to algorithmic conversion.

https://htmlpreview.github.io/?https://github.com/CoqHott/logrel-mltt/blob/impredicativity-cast-compute-refl/html//Definition.Untyped.html


Cast-Π-red
Γ ⊢ A,A

′
: s Γ, x : A ⊢ B : s

′
Γ, x : A

′ ⊢ B
′
: s

′

Γ ⊢ e : Π(x : A). B ∼ Π(x : A
′
). B

′
: Ω Γ ⊢ f : Π(x : A). B a := cast A

′
A (Π

1
ϵ e) a

′

Γ ⊢ cast (Π(x : A). B) (Π(x : A
′
). B

′
) e f ⇒

λ(a
′
: A

′
). cast B[x := a] B

′
[x := a

′
] (Π

2
ϵ e a

′
) f a

: Π(x : A
′
). B

′

Cast-Zero
Γ ⊢ e : N ∼U0

N : Ω

Γ ⊢ cast N N e 0 ⇒ 0 : N

Cast-Suc
Γ ⊢ e : N ∼U0

N : Ω Γ ⊢ n : N : U0

Γ ⊢ cast N N e (S n) ⇒ S (cast N N e n) : N

Cast-Univ
Γ ⊢ e : s ∼s′ s Γ ⊢ A : s A(s, s

′
)

Γ ⊢ cast s s e A ⇒ A : s

Conv-Red
Γ ⊢ t ⇒ u : A Γ ⊢ A ≡ B : Ui

Γ ⊢ t ⇒ u : B

Cast-subst
Γ ⊢ A ⇒ A

′
: s Γ ⊢ B : s Γ ⊢ e : A ∼s B : Ω Γ ⊢ t : A : s

Γ ⊢ cast A B e t ⇒ cast A
′
B e t : B

Cast-subst-nf
Γ ⊢ A : s whnf A Γ ⊢ B ⇒ B

′
: s Γ ⊢ e : A ∼s B : Ω Γ ⊢ t : A : s

Γ ⊢ cast A B e t ⇒ cast A B
′
e t : B

Cast-subst-nf-nf
Γ ⊢ A,B : s whnf A whnf B Γ ⊢ e : A ∼s B : Ω Γ ⊢ t ⇒ u : A

Γ ⊢ cast A B e t ⇒ cast A B e u : B

Fig. 5: CICobs Reduction Rules (rules for cast) [Typed.agda]

Note that because reduction is typed, we need to be able to change the
type to any convertible one (Rule Conv-Red). Finally, we consider the reflexive
transitive closure of reduction, noted Γ ⊢ t⇒∗ u : A.

4.2 Algorithmic Conversion

Algorithmic conversion (Fig. 6) is defined by comparing weak-normal forms and
interleaving it with reduction. This way, an algorithmic conversion derivation
can be seen as a canonical derivation of declarative conversion, where “transitive
cuts” have been eliminated. It is called algorithmic, because it becomes directed
by the shape of the terms, and the premises of each rule are on smaller terms.
In CIC, it is even the case that at most one rule can be applied, so decidability
of algorithmic conversion is pretty direct. In CICobs however, decidability of
algorithmic conversion is less direct because there are three rules that can be
applied when the head is cast on both side. We come back to this difficulty in
Section 4.3.

The judgment Γ ⊢ t ∼=ne u : A corresponds to a canonical conversion deriva-
tion between two neutral terms t and u at an arbitrary type A while the judgment
Γ ⊢ t ∼= u : A corresponds to a canonical derivation of conversion for terms in
whnf when the type is also in whnf. This can be understood from a bidirec-
tional perspective because comparison of neutral terms infers an arbitrary type,
whereas for other weak-head normal forms, the inferred type is in weak-head
normal form. Bidirectional typing [15,16] is traditionally used in type theory to
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Proof-irr
Γ ⊢ t, u : A : Ω

Γ ⊢ t ∼=ne u : A

Var-refl
Γ ⊢ x : A : Ui

Γ ⊢ x ∼=ne x : A

app-cong
Γ ⊢ t ∼=↓

ne u : Π
s,Ui (x : A). B Γ ⊢ a ∼=↓

b : A

Γ ⊢ t a ∼=ne u b : B[x := a]

Cast-cong
Γ ⊢ A ∼= A

′
: s Γ ⊢ B

′ ∼= B : s Γ ⊢ t ∼=↓
t
′
: A Γ ⊢ e : A ∼s B : Ω

Γ ⊢ e
′
: A

′ ∼s B
′
: Ω neutral (cast A B e t) neutral (cast A

′
B

′
e
′
t
′
)

Γ ⊢ cast A B e t ∼=ne cast A
′
B

′
e
′
t
′
: B

Cast-refl-L
Γ ⊢ A ∼= B : s Γ ⊢ t ∼= u : A Γ ⊢ e : A ∼s B : Ω neutral (cast A B e t) neutralu

Γ ⊢ cast A B e t ∼=ne u : B

Cast-refl-R
Γ ⊢ B ∼= A : s Γ ⊢ t ∼= u : A Γ ⊢ e : A ∼s B : Ω neutral t neutral (cast A B e u)

Γ ⊢ t ∼=ne cast A B e u : A

Ne-whnf
Γ ⊢ t, u : A : Ui whnfA Γ ⊢ t ∼=↓

ne u : A

Γ ⊢ t ∼= u : A

Ne-Red
Γ ⊢ A ⇒∗

B : Ui whnf B Γ ⊢ t ∼=ne u : A

Γ ⊢ t ∼=↓
ne u : B

Whnf-Red
Γ ⊢ A ⇒∗

B : Ui Γ ⊢ t ⇒∗
t
′
: A Γ ⊢ u ⇒∗

u
′
: A

whnf B,whnf t
′
,whnf u

′
Γ ⊢ t

′ ∼= u
′
: B

Γ ⊢ t ∼=↓
u : A

Fig. 6: CICobs Algorithmic Conversion Rules (except congruence rules) [Conver-

sionGen.agda]

provide a canonical typing derivation by splitting the typing judgment into two:
one judgment that infers the type of a term and an other one that checks that the
inferred type of a term is convertible to the type given as input. This allows bidi-
rectional typing to restrict the use of the conversion rule only to well-controlled
places, and thus to provide only canonical derivations. In this presentation, it
should be noticed that neutral terms infers an arbitrary terms (for instance,
the application rule infers the type of the codomain of the function with an
additional substitution) whereas other weak-head normal forms always infer a
type also in weak-head normal form. But the structural rules for conversion cor-
respond to a relational version of the type judgments, so that in some sense
conversion subsumes typing. This means that we need to reflect this important
distinction in the algorithmic conversion because the structural conversion rules
for neutral terms (Γ ⊢ t ∼=ne u : A) will naturally be performed at an arbitrary
type A whereas Γ ⊢ t ∼= u : A is always done at a type A in weak-head normal
form.

Because conversion of whnf must contain conversion of neutrals as a particu-
lar case, we need those two notions to be compatible. To that end, we introduce
two other judgments: Γ ⊢ t ∼=↓

ne u : B means that Γ ⊢ t ∼=ne u : A and B is the
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whnf of A (Rule Ne-Red) and Γ ⊢ t ∼=↓ u : A means that Γ ⊢ t′ ∼=↓ u′ : A′ and
t′, u′ and B are the whnf of t, u and A respectively (Rule Whnf-Red).

Let us now turn to the description of the relation Γ ⊢ t ∼= u : A which
mainly contains congruence rules for weak-head constructors, that are used in
particular to show that reflexivity is admissible. Those congruence rules just
ask for convertibility of each sub-argument, with some sanity conditions on the
leaves, to ensure that only well-typed terms are considered in the conversion
relation. Then, the rule Ne-whnf says that two neutral terms are comparable
as whnf when they are comparable as neutral terms.

The relation Γ ⊢ t ∼=ne u : A contains a first rule to deal with proof-irrelevance
in Ω (Rule Proof-irr). As any term in Ω is neutral, this rule only checks that
the two terms are proofs of the same proposition. The rule for variables (Rule
Var-refl) applies when there is the same variable x on the left and on the
right, and this variable is declared in the local context Γ.

Then, there are four congruence rules to deal with eliminators. An eliminator
is neutral when one of its scrutinees is neutral.The situation for cast is more
complex as there are three different scrutinees (the two types and the term to be
cast) and the whole term is neutral as soon as one of them is neutral. There is
also a last kind of neutrals for cast which corresponds to impossible casts, that
is casts between types with different head constructors. We can actually factorize
all those cases and present only one rule (Cast-cong) that simply asks both
casts to be neutral terms, at the price of a seemingly less accurate system. Indeed,
because we are oblivious to the reason why the casts are neutral, all preconditions
are asking for conversion as weak-head normal form instead of specializing in the
case of neutral terms. However, by inversion on the rule, it is possible to show
that two neutral terms are convertible as whnf if and only if they are convertible
as neutral terms, so in the end this factorized rule is equivalent to a system with
one rule per kind of neutral terms as defined in [Conversion.agda] .

To deal with Cast-Refl, we need to introduce two rules, one for simpli-
fication of cast on the left, and one on the right. This is because we have no
rule for symmetry (to keep the system algorithmic) and symmetry must be an
admissible rule. So the conversion rule is split into the two rules Cast-refl-
L and Cast-refl-R. Again, we use a factorization to get only two rules, not
specializing on the reason why a cast is neutral.

The main point of this algorithmic conversion is that it does not contain
any rule for symmetry or transitivity. This is because they make it very diffi-
cult to prove decidability of conversion. However, we can show that symmetry
([Symmetry.agda]) and transitivity are admissible ([Transitivity.agda]).

4.3 Decidability of Algorithmic Conversion

We now turn to the definition of a decision procedure for the algorithmic conver-
sion [Decidable.agda] . Actually, what we first prove is the decidability of algorith-
mic conversion for two terms t and u, assuming that we know that Γ ⊢ t ∼=ne t : A
and Γ ⊢ u ∼=ne u : A. The fact that algorithmic conversion is reflexive is actu-
ally a consequence of the completeness of algorithmic conversion with respect
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to declarative conversion that will be shown in the next section. The hypothesis
that t and u are in diagonal of the algorithmic conversion contains a lot of in-
formation, because by inversion on the derivations, we can actually recover the
fact that t and u can be reduced to a whnf whose subterms can also be reduced
in whnf, and this again and again up-to getting a deep normal form.

The decidability proof of conversion for MLTT in [2] coarsely amounts to zip-
ping the two reflexivity proofs together, showing that when the two derivations
do not share the exact same structure, then the two terms are not convertible.
This is not the case anymore in presence of the rules Cast-refl-L and Cast-
refl-R and the reasoning cannot stay on the “diagonal” of the algorithmic
conversion. This is not an issue as actually from the fact that Γ ⊢ t ∼=ne t′ : A,
we can deduce that both t and t′ can be put in deep normal form and so some-
how, Γ ⊢ t ∼=ne t′ : A can be used as termination witness in the same way as
Γ ⊢ t ∼=ne t : A.

However, the main difficulty in this new setting is that it is not true anymore
that when the two derivations do not share the exact same structure, then the
two terms are not convertible. Consider for instance cast A B e t against t:
the reflexivity proofs for these two terms cannot share the same structure, yet
they are convertible by Rule Cast-refl-L. In addition, in the more complex
case of cast A B e t against cast A′ B′ e′ t′, there are three cases to consider,
because the last rule to show that they are convertible can be either Cast-
cong, Cast-refl-L or Cast-refl-R. This means in particular that the proof
that two terms are algorithmically convertible is not unique anymore, and the
decidability procedure has to do an arbitrary choice, depending on which order
it tests the three different possibility and backtracks.

The statement of decidability needs to be generalized in the following way.

Theorem 1 (Decidability of algorithmic conversion [Decidable.agda]).
For any natural number n, given two proofs of neutral comparison π : Γ ⊢ t ∼=ne

t′ : A and π′ : ∆ ⊢ u ∼=ne u′ : B such that ⊢ Γ ≡ ∆ and size(π) + size(π′) < n,
knowing whether there exists a type C such that Γ ⊢ t ∼=ne u : C is decidable.

Note that the statement is based on a notion of size of a derivation, noted size,
because the algorithm does recursive calls that are not structurally decreasing.
To conclude on the completeness of algorithmic conversion [Completeness.agda] ,
we reuse the logical relation setting described in [2] for proving strong normal-
ization and decidability of conversion in various type theories, later extended in
[22,23]. We do not detail the definition of the logical relation here as there is not
specific to our system, what is important is it provides the following consequence.

5 Inductive Definitions

On top of the rules from Section 3, CICobs includes a scheme to define proof-
relevant inductive types that is based on the scheme of CIC (as defined in [26]).
Inductive definitions are not manipulated as first class objects: instead, the user
declares all the necessary inductive types using a standard syntax, before starting
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their proof. After each declaration, the theory is automatically extended with
the new type former, inductive constructors, etc.

The syntax for the inductive scheme of CICobs is exactly the same as the
scheme of CIC; the difference lies in the fact that inductive definitions will ad-
ditionally have to generate projections for the observational equality types and
computation rules for the cast operator. We start by explaining how it works
for inductive types without indices, and then we extend it to general indexed
inductive definitions by using the Fordism transformation and some syntactic
sugar. We will spare the reader the added complexity of mutually defined fami-
lies, which is mathematically direct but heavy on notation.

5.1 Inductive Definitions Without Indices

We use a syntax based on the one used by the Coq proof assistant for inductive
definitions. The general form of a non-indexed type looks like this:

Inductive Ind (⃗a : A⃗) : Uℓ :=

| c0 : ∀ (⃗b : B⃗0), Ind a⃗
| ...
| cn : ∀ (⃗b : B⃗n), Ind a⃗

In order to represent arbitrary contexts of parameters more compactly, we used
a vector notation. The parameter (⃗a : A⃗) represents a context of the form a1 :
A1, ..., am : Am where each type may depend on the previous ones. Similarly,
every constructor of the inductive type has a context of arguments, that may
include recursive calls to Ind in strictly positive positions—however we will not
be paying special attention to recursive calls, as their treatment is not affected
by the observational equality. The universe Uℓ must be larger than all the types
that appear in the constructor arguments B⃗i. Inductive definitions in the sort of
propositions Ω are not allowed.

After the user makes such a definition, the system is extended with the new
type former Ind and the inductive constructors c0, ... cn with their prescribed
types. Additionally, CICobs provides two operators match and fix that are used
to define functions out of an inductive definition, following the typing and com-
putation rules described by the [11]. As we explain in Section 2, this elimination
principle is enough to completely determine the observational equality between
any two inhabitants of Ind, thus our system does not provide any additional
rule for this. However, the observational equality between two instances of Ind
does not benefit from any such principle, so we add “projection” operators to
characterize equalities between inductive types:

eq_ci : ∀ (⃗a : A⃗) (⃗a′ : A⃗), Ind a⃗ ∼ Ind a⃗′ → B⃗i [⃗a] ∼ B⃗i [⃗a
′] (∀ i)

The projections eq_ci are generated when the user makes the definition of Ind,
just like the constructors ci. Remark that the codomains of these projections
are equalities between two vectors, which is a notational shorthand for a vector
of equalities. In practice, this means that each eq_ci will be implemented as a
family of projections (eq_ci,j), where each projection depends on the previous



ones. Thus, we get as many projections as there are constructor arguments in
the inductive definition. Finally, we add computation rules for cast:

cast (Ind a⃗) (Ind a⃗′) e (ci b⃗) ≡ ci (cast (B⃗i [⃗a]) (B⃗i [⃗a
′]) (eq_ci a⃗ a⃗′ e) b⃗) (∀ i)

5.2 Deriving a Scheme for Indexed Inductive Types

In order for CICobs to be a proper extension of CIC, we need to extend our scheme
to indexed inductive definitions. These get a bit messier than non-indexed def-
initions, but in fact we already have all the pieces we need: as we saw in Sec-
tion 2.2, the rule Cast-Refl allows us to use the Fordism transformation and
faithfully encode indexed inductive types with parametrized inductive types.
Consequently, we will define the scheme for indexed definitions in terms of the
scheme for non-indexed definitions, using syntactic sugar and elaboration. That
way, the typing and computation rules of CIC that involve indexed inductive
types remain valid in CICobs, but the inductive types and constructors are elab-
orated to their non-indexed counterpart under the hood.

We now explain in detail how this elaboration process works. When the user
defines an indexed inductive type Ind, they are actually defining the forded
version IndF via the scheme for non-indexed definitions:

Inductive Ind (⃗a : A⃗) : ∀ (x⃗ : X⃗), Uℓ :=

| c0 : ∀ (⃗b : B⃗0), Ind a⃗ y⃗0
| ...
| cn : ∀ (⃗b : B⃗n), Ind a⃗ y⃗n

Inductive IndF (⃗a : A⃗) (x⃗ : X⃗) : Uℓ :=

| c0F : ∀ (⃗b : B⃗0), y⃗0 ∼ x⃗ → IndF a⃗ x⃗
| ...
| cnF : ∀ (⃗b : B⃗n), y⃗n ∼ x⃗ → IndF a⃗ x⃗

The scheme generates projections for observational equalities between the con-
structor arguments, including the index equalities y⃗i ∼ x⃗ that are hidden in the
user definition. Then, our system defines Ind and its constructors in terms of
their forded counterparts:

Ind a⃗ x⃗ ≡ IndF a⃗ x⃗ ci b⃗ ≡ ciF b⃗ refl

The pattern matching on inhabitants of the indexed inductive type is elaborated
to a pattern matching on the forded version, by inserting a cast in each branch.
Concretely, consider the following pattern matching on i : Ind a⃗ x⃗:

match i return P with | c0 b⃗ ⇒ t0 | .... | cn b⃗ ⇒ tn end

The return type is P x⃗ i, and thus in the branch for ci b⃗, the term ti provided by
the user has type P y⃗i (ci b⃗). After the elaboration, this branch matches a forded
pattern ciF b⃗ e, and should now return a result of type P x⃗i (ciF b⃗ e). We can
obtain this result by type-casting the user-supplied term ti along the equality
proof e to obtain

cast (P y⃗i (ci b⃗)) (P x⃗i (ciF b⃗ e)) (ap2 P (ciF b⃗ e)) ti

where ap2 is a slight generalization of the proof that function applications pre-
serve equalities. Thanks to the rule Cast-Refl, this elaboration preserves the
computation rule of the pattern-matching for indexed inductive types. Note that



there is nothing special to do for fixpoints, they work out of the box. This con-
cludes the description of our formal system CICobs.

6 Consistency of the Theory

In Section 2 we saw that combining the inductive scheme of CIC with the ob-
servational equality can endanger the consistency of the theory if we are not
careful. In the end, it is possible to fix the issue by picking a better definition
for the observational equality of inductive types, but now we want to make sure
that this new definition will not lead to another inconsistency. To do this, we
build a model of CICobs in set theory, thereby reducing the consistency of our
system to the consistency of ZFC set theory with Grothendieck universes. Our
model is mostly an extension of the one that was presented in [23] to general
inductive definitions, using the interpretation of inductive definitions that was
developed in [26].

6.1 Observational Type Theory in Sets

We work in ZFC set theory with a countable hierarchy of Grothendieck universes
V0,V1,V2, etc. We write Ω := {⊥,⊤} for the lattice of truth values, and given
p ∈ Ω we write val p for the associated set {x ∈ {∗} | p}. Since our goal is to
interpret a dependent type theory, we will need set-theoretic dependent products
and dependent sums. We write the former as (a ∈ A) → (B a), and the latter
as (a ∈ A)× (B a) to distinguish them from their type-theoretic counterparts.

Our model will be based on the types-as-sets interpretation of dependent type
theory [12], according to which contexts are interpreted as sets, types and terms
over a context Γ become sets indexed over the interpretation of Γ, the typing
relation corresponds to set membership, and conversion is interpreted as the set-
theoretic equality. Such models have already been defined for a wide variety of
type theories; of particular interest to us is the model of [26] which supports an
impredicative sort of propositions (interpreted as the lattice of truth values) and
the full scheme of inductive definitions of CIC. Since ZFC set theory is extensional
by nature, this model also validates the principles of function extensionality and
proposition extensionality, which would almost make it a model of CICobs, were
it not for two small issues.

The first issue is the absence of the observational equality and the cast oper-
ator in the model of [26]. We can easily fix this by interpreting the observational
equality as the set-theoretic equality, and cast as the identity function. That
way, cast verifies all the desired equations for trivial reasons, including the rule
Cast-Refl. After all, the model does not differentiate between conversion and
propositional equality!

The second issue is a bit more serious, and deals with the universes. In [26],
the authors directly interpret the type-theoretic universes as the corresponding
Grothendieck universes, which is perfectly fine for CIC. But this does not work
for CICobs, as we would lose the injectivity of dependent products: consider for



J Γ ⊢ Uj Kρ := ⟨ Vj ×Vj , ∅ ⟩
J Γ ⊢ Ω Kρ := ⟨ Ω , ∅ ⟩
J Γ ⊢ Π

Uj ,Uk (x : A). B Kρ := ⟨ (x ∈ fst J Γ ⊢ A Kρ) → fst J Γ, A ⊢ B Kρ,x ,
(J Γ ⊢ A Kρ , λx . J Γ, A ⊢ B Kρ,x) ⟩

J Γ ⊢ Π
Ω,Uj (x : A). B Kρ := ⟨ (x ∈ val J Γ ⊢ A Kρ) → fst J Γ, A ⊢ B Kρ,x ,

(val J Γ ⊢ A Kρ , λx . J Γ, A ⊢ B Kρ,x) ⟩
J Γ ⊢ Ind X⃗ Kρ := ⟨ IndElem J Γ ⊢ X⃗ Kρ , IndLabel J Γ ⊢ X⃗ Kρ ⟩

Fig. 7: Codes for universes, dependent products and inductive types

instance the two types Empty → N and Empty → B. Both are interpreted as a
singleton set, but in CICobs we can prove that they cannot be equal. To recover
this injectivity, we label the sets in the universe with additional information that
indicates how they were built. This way, the type Empty → N is interpreted as a
singleton set and an indication that it is a function type from Empty to N, while
Empty → B has a different label.

6.2 Coinductive Labels for Inductive Types

In this section, we give a proper definition for our labelled universe. The tech-
nique of using labels to build a universe that is generic for sets and ensures
the injectivity of dependent products is a re-reading of the technique of [13].
However, his construction seems difficult to extend with parametrized inductive
types—the use of induction-recursion seems to force us to have the injectivity of
parameters, which we do not want (cf Section 2.3). Therefore we ditch induction-
recursion for a definition that is somewhat more set-theoretic: our interpretation
of the universe Ui is simply Vi ×Vi, meaning that a code in the universe is a
pair of sets. The first set of the pair is the (semantic) type, and the second set
is the label. The “El” function that transforms a code into a type is thus simply
the first projection.

Fig. 7 shows the interpretation for the proof-relevant type formers of CICobs.
The interpretation function that transforms a syntactic object into a semantic
object is written JΓ ⊢ Kρ, where ρ is a set-theoretic function that assigns a set to
every variable of the context Γ. Unsurprisingly, the syntactic universes Ui and Ω

are interpreted as their semantic counterparts, with the default label (the empty
set). Dependent products also are interpreted as their set-theoretic counterparts,
but in that case the label contains the domain and the codomain, ensuring that
two dependent products are not identified unless their domain and codomain are
themselves equal.

The case of the inductive definitions is a bit more involved. Thankfully we
do not need to treat indices, as they are encoded using Fordism (cf Section 5.2).
Thus, we consider a non-indexed inductive definition Ind as in Section 5, with
a vector of parameters A⃗:



Inductive Ind (⃗a : A⃗) : Uℓ :=

| c0 : ∀ (⃗b : B⃗0), Ind a⃗
| ...
| cn : ∀ (⃗b : B⃗n), Ind a⃗

Given any vector X⃗ of elements of the family of sets fst(J A⃗ Kρ), we define
IndElem X⃗ to be the set constructed in [26], which is well-defined if the defi-
nition of Ind is strictly positive and all the the interpretations of the B⃗i are
well-defined. Reproducing their construction in full detail would take us too far
from the scope of this paper, so we will simply mention that it is the initial
algebra of the set-theoretic endofunctor corresponding to Ind evaluated in X⃗.
This gives us the first projection of J Γ ⊢ Ind X⃗ Kρ, and now we need to define
the second projection IndLabel X⃗. Recall from Section 2.3 that we would like the
equality of two instances of Ind to satisfy:

Ind X⃗ ∼ Ind Y⃗ ←→ (B⃗0(X⃗), ..., B⃗n(X⃗)) ∼ (B⃗0(Y⃗ ), ..., B⃗n(Y⃗ )).

In other words, Ind should be determined up to equality by the types of its
constructor arguments. Therefore, it is natural to define its label directly as the
list of these types:

IndLabel X⃗ = (JΓ, A⃗ ⊢ B⃗0K(ρ,X⃗), ..., JΓ, A⃗ ⊢ B⃗nK(ρ,X⃗)).

However, remark that B⃗i may contain a recursive call to Ind, whose interpre-
tation is defined using IndLabel, so this definition is really an equation that we
need to solve. Fortunately, a simple look at the shape of that equation reveals
that it is in fact a definition for an infinite tree whose nodes are labeled with
sets, which we take as our solution. Note that the result is indeed an inhabitant
of Vℓ, since the sets that intervene in its construction (the interpretation of the
types of the constructor arguments and their labels) are all in Vℓ. With this
definition of IndLabel, we get the following property:

Lemma 1. If the inductive definition Ind is strictly positive, JΓ ⊢ X⃗Kρ is well-

defined, and all the JΓ, A⃗ ⊢ B⃗iK(ρ,X⃗) are well-defined, then JΓ ⊢ Ind X⃗Kρ is

well-defined. Furthermore, JΓ ⊢ Ind X⃗Kρ = JΓ ⊢ Ind Y⃗ Kρ is equivalent to

∀i, JΓ, A⃗ ⊢ B⃗iK(ρ,JΓ⊢X⃗Kρ) = JΓ, A⃗ ⊢ B⃗iK(ρ,JΓ⊢Y⃗ Kρ).

6.3 Soundness of the Model

The definition of the observational universe is the only new insight of our con-
struction; the rest follows the strategy laid out in [26]. For the sake of complete-
ness, we give an outline of the definition and of the proof of soundness in this
section.

Ultimately, our model is defined in terms of partial functions from the syntax
to the semantics. We use a function J K that interprets contexts as sets and a
function JΓ ⊢ Kρ that interprets terms and types in context Γ as sets indexed
by ρ ∈ JΓK (Fig. 8). Both functions are mutually defined by recursion on the



J • K := {∅}
J Γ, x : A : Ui K := {(ρ, a) | ρ ∈ J Γ K ∧ a ∈ fst J Γ ⊢ A Kρ}
J Γ, x : A : Ω K := {(ρ, a) | ρ ∈ J Γ K ∧ a ∈ val J Γ ⊢ A Kρ}

J Γ ⊢ x Kρ := ρ(x)
J Γ ⊢ λ(x : F ). t Kρ := (x ∈ fst J Γ ⊢ F Kρ) 7→ (J Γ, F ⊢ t Kρ,x)

J Γ ⊢ t u Kρ := J Γ ⊢ t Kρ(J Γ ⊢ u Kρ)

J Γ ⊢ ci b⃗ Kρ
J Γ ⊢ match t return P with {ci b⃗ ⇒ ti} Kρ

J Γ ⊢ fix f x⃗ := t Kρ

:=
:=
:=

 (as in Lee et al.)

J Γ ⊢ ⊥ Kρ := ⊥
J Γ ⊢ ⊥−elim A t Kρ := undefined

J Γ ⊢ t ∼A u Kρ := ⊤ if J Γ ⊢ t Kρ = J Γ ⊢ u Kρ
⊥ otherwise

J Γ ⊢ cast A B e t Kρ := J Γ ⊢ t Kρ

J Γ ⊢ Π
Uj ,Ω(y : A). B Kρ := ∀x ∈ (fst J Γ ⊢ A Kρ), J Γ, A ⊢ B Kρ,x

J Γ ⊢ Π
Ω,Ω(y : A). B Kρ := ∀x ∈ (val J Γ ⊢ A Kρ), J Γ, A ⊢ B Kρ,x

Fig. 8: Interpretation of contexts and proof-relevant terms of CICobs

raw syntax, and we will then prove that they are total on well-typed terms by
induction on the typing derivations. Variables, lambda-abstractions and applica-
tions are interpreted respectively as projections from the context, set-theoretic
functions and applications. In order to interpret the inductive constructors and
the match and fix operators, we need to develop a proper theory of set-theoretic
induction. Since this part is completely orthogonal to the observational primi-
tives, we deem it out of the scope of this work and we refer the interested reader
to the literature instead. In [26], the authors use induction principles insted of
match and fix, but argue that the two are equivalent. A model directly based
on the latter can be found in [14]. The ⊥ proposition is interpreted as the false
proposition of ZFC, the observational equality as the equality of ZFC, and the
cast operator as the identity function. Finally, the proof-irrelevant dependent
products are interpreted as set-theoretic quantifications. The proofs of propo-
sitions such as transport or Π1

ϵ do not need to be interpreted—after all, the
model is proof-irrelevant.

In order to prove the soundness of our interpretation, we need to extend it to
weakenings and substitutions between contexts. Assume Γ and ∆ are syntactical
contexts, and A and t are syntactical terms. In case J Γ, x : A : s,∆ K and J Γ,∆ K
are well-defined, let πA be the projection:

πA : J Γ, x : A : s,∆ K → J Γ,∆ K (x⃗Γ, xA, x⃗∆) 7→ (x⃗Γ, x⃗∆).

In case J Γ,∆[x := t] K and J Γ, x : A : s,∆ K are well-defined, we define the
function σt by:

σt : J Γ,∆[x := t] K → J Γ, x : A : s,∆ K (x⃗Γ, x⃗∆) 7→ (x⃗Γ, J Γ ⊢ t Kx⃗Γ
, x⃗∆).



Theorem 2 (Soundness of the Standard Model).

1. If ⊢ Γ then J Γ K is defined.
2. If Γ ⊢ A : Ω then J Γ ⊢ A Kρ is a semantic proposition for all ρ ∈ J Γ K.
3. If Γ ⊢ A : Ui then J Γ ⊢ A Kρ is in Vi for all ρ ∈ J Γ K.
4. If Γ ⊢ t : A : Ω then J Γ ⊢ t Kρ ∈ val(J Γ ⊢ A Kρ) for all ρ ∈ J Γ K.
5. If Γ ⊢ t : A : Ui then J Γ ⊢ t Kρ ∈ fst(J Γ ⊢ A Kρ) for all ρ ∈ J Γ K.
6. If Γ ⊢ t ≡ u : A then J Γ ⊢ t Kρ = J Γ ⊢ u Kρ for all ρ ∈ J Γ K.

Since our model interprets the false proposition ⊥ as the empty set, we get a
proof of consistency:

Theorem 3 (Consistency). There are no proofs of ⊥ in the empty context.

Furthermore, by inspecting the normal forms provided by the normalization the-
orem, we note that the only neutral terms in the empty context are stuck casts.
But having a stuck cast requires an equality proof between two incompatible
types, which cannot exist from our definition of the universe. From there, we de-
rive a canonicity theorem for inductive types: all elements of an inductive type
without indices reduce to canonical elements in the empty context.

7 Conclusion and Future Work

We proposed a systematic integration of indexed inductive types with an ob-
servational equality, by defining a notion of observational equality that satisfies
the computational rule of Martin-Löf’s identity type and by using Fordism, a
general technique to faithfully encode indexed inductive types with non-indexed
types and equality. We developed a formal proof that this additional computa-
tion rule, although not present in previous works on observational equality, can
be integrated to the system without compromising the decidability of conver-
sion. This extension of CIC with an observational equality has been implemented
at the top of the Coq proof assistant by using the recently introduced rewrite
rules.

Although the technique has been developed in the setting of CIC and Coq
specifically, there is no obstacle to adapt it to other settings such as Lean or
Agda. Adaption to Lean should be pretty straightforward as it is sharing most
of its metatheory with Coq. A partial version of CICobs could be provided in
Agda with rewrite rules. However, the management of elimination of inductive
types in Agda is not done using an explicit pattern-matching syntax à la Coq,
for which we can define new reduction rules. Instead, functions on inductive types
are defined using case splitting trees and an exhaustivity checker. Therefore, a
proper treatment of CICobs in Agda would require modifications of the case
splitting engine, similarly to what has been done for Cubical Agda [27].

8 Data-Availability Statement

The Agda companion formalization is available both on GitHub and as a long-
term archived artifact [24].

https://github.com/CoqHott/logrel-mltt/tree/impredicativity-cast-compute-refl
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