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Abstract: Previous works on location and location-scale mixtures of nor-
mals have shown different upper bounds on the posterior rates of contrac-
tion, either in a density estimation context or in nonlinear regression. In
both cases, the observations were assumed not too spread by considering
either the true density has light tails or the regression function has com-
pact support. It has been conjectured that in a situation where the data
are diffuse, location-scale mixtures may benefit from allowing a spatially
varying order of approximation. Here we test the argument on the mean
regression with normal errors and random design model. Although we can-
not invalidate the conjecture due to the lack of lower bound, we find slower
upper bounds for location-scale mixtures, even under heavy tails assump-
tions on the design distribution. However, the proofs suggest to introduce
hybrid location-scale mixtures for which faster upper bounds are derived.
Finally, we show that all tails assumptions on the design distribution can be
released at the price of making the prior distribution covariate dependent.
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1. Introduction

Nonparametric mixtures models are highly popular in the Bayesian nonpara-
metric literature, due to both their reknown flexibility and relative easiness of
implementation, see Hjort et al. (2010) for a review. They have been used in
particular for density estimation, clustering and classification and recently non-
parametric mixtures models have also been proposed in nonlinear regression
models, see for instance de Jonge and van Zanten (2010); Wolpert, Clyde and
Tu (2011); Naulet and Barat (2015).

Letting E denote the set of all d × d positive definite real matrices and
ϕΣ(x) := exp(−1

2x
TΣ−1x) for all x ∈ Rd

fM,Σ(x) =

∫
Rd

det(Σ)−
q
2ϕΣ(x− μ) dM(μ), (1)
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while a location-scale mixture has the form

fM (x) =

∫
E×Rd

det(Σ)−
q
2ϕΣ(x− μ) dM(Σ, μ). (2)

In the context of density estimation q = 1 in equations (1) and (2) and M
is a probability measure so that fM,Σ and fΣ are proper density functions. In
nonlinear regression q can be arbitrary and M is a signed measure.

Location and location-scale mixtures of normals are used in the Bayesian
nonparametric literature to model smooth curves, typically probability densities,
by putting a prior on the mixing distribution M , and on Σ for location mixtures
(1). The most popular prior distributions on M are either finite with unknown
number of components, as in Kruijer, Rousseau and van der Vaart (2010) and
the reknown Dirichlet Process (Ferguson, 1973) or some of its extensions. In
both cases M is discrete almost surely.

There is now a large literature on posterior concentration rates for nonpara-
metric mixtures models, initiated by Ghosal and van der Vaart (2001, 2007a)
and improved by Kruijer, Rousseau and van der Vaart (2010); Shen, Tokdar
and Ghosal (2013); Scricciolo (2014) in the context of density estimation with
location mixtures of normals. Canale and De Blasi (2017) studied location-scale
mixtures of normal distributions, still in density estimation. Regarding non-
linear regression, location mixtures models have been investigated in de Jonge
and van Zanten (2010) and location-scale mixtures models in Naulet and Barat
(2015), both in the context of the Gaussian mean regression with fixed design.

In Kruijer, Rousseau and van der Vaart (2010) and later on in Shen, Tokdar
and Ghosal (2013); Scricciolo (2014) it was proved that location mixtures of
normals distributions lead to adaptive (nearly) optimal posterior concentration
rates (for L1 metrics) over collections of β-Hölder types functional classes, in
the context of density estimation for independently and identically distributed
random variables. Contrarywise, in Canale and De Blasi (2017), suboptimal
posterior concentration rates are derived for location-scale mixtures of normals
and the authors obtain rates that are at best n−β/(2β+d+1) up to a logn term
in place of n−β/(2β+d). These results are obtained under strong assumptions on
the tail of the true density f0, since it is assumed that f0(x) � e−c|x|τ when x
goes to infinity, for some positive c, τ .

The same phenomenon is observed in the nonlinear regression model with
normal errors and covariates lying in a compact set. While the optimal rate
n−2β/(2β+d) (up to power of logn) with respect to the empirical L2 metric is
found by de Jonge and van Zanten (2010) using location mixtures, Naulet and
Barat (2015) were only able to find the slower n−2β/(2β+d+1) for location-scale
mixtures. In both cases the design lives on [0, 1]d.

In density estimation, it is well known that the optimal rates with respect
to L1 metric depend heavily on the nature of the assumptions made on the
tails of f0, see for instance Juditsky et al. (2004); Reynaud-Bouret, Rivoirard
and Tuleau-Malot (2011); Goldenshluger and Lepski (2014). In particular, the
optimal rate is n−2β/(2β+d) only under some tail assumptions, and deteriorates
to 1 gradually as the tails of the density become heavier. In Canale and De Blasi
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(2017), the authors suggest that location-scale mixtures could perform better
than location mixtures if the true density f0 is heavy tailed, since it may benefit
from approximating f0 differently in zones of dense data than in zones of sparse
data.

There is currently, however, one strong limitation in understanding the ro-
bustness to tails of mixtures of normals in density estimation. The proofs to
rates of contraction involve approximating the true density f0 by a convex and
finite mixture in terms of Kullback-Leibler divergence. Although approximation
with non convex mixtures is rather easy, the convexity constraint is painful and
is dealt by imposing non classical smoothness assumptions, such as requiring
that log f0 is locally β-Hölder instead of requiring f0 β-Hölder or Besov. This
seemingly innocuous fact has deep consequences. In Bochkina and Rousseau
(2016), almost no tail assumption (but a moment of order strictly greater than
2 for F0) is needed to achieve the minimax rate n−β/(2β+1), for estimating densi-
ties on R+ using mixtures of Gamma distributions. Thus, some nonexplicit tail
assumptions must be hidden behind the β-Hölder assumption on log f0, which
blurs the understanding of the robustness of mixtures of normals to tails.

Instead of challenging the problem of approximating a given density by a con-
vex finite mixture with respect to KL divergence, we propose to test the intuition
of Canale and De Blasi (2017) on the mean regression problem with normal er-
rors, since the same difference in the rates between location and location-scale
mixtures of normals has been observed by Naulet and Barat (2015) when mea-
suring the contraction rates with respect to the empirical L2 distance of the
covariates. Our goal is to understand if location-scale mixtures of normals can
benefit from a varying order of approximation of the true regression function
f0, where the order vary according to the density of the observations. Hence,
we study the use of mixtures models in the nonparametric regression models

Yi = f(Xi) + εi, εi
i.i.d∼ N(0, s2), i = 1, . . . , n,

X1, . . . , Xn
i.i.d∼ Q0, f ∈ L2(Q0),

(3)

where L2(Q0) stand for space of (equivalence classes of) functions that are
square integrable with respect to Q0 and the spreadness of the data is controlled
by the design distribution and written as

∫
Rd ‖x‖p dQ0(x). The parameter is f

with prior distribution denoted by Π. We assume that s is known and s = 1,
which is just a matter of convenience for proofs. All the results of the paper can
be translated to the case s unknown using the same methodology as Salomond
(2013) or Naulet and Barat (2015).

Our aim is to study posterior concentration rates around the true regression
function f0 defined by sequences εn converging to zero with n and such that

Π
(
n−1∑n

i=1 |f(xi)− f0(xi)|2 ≤ ε2n | yn,xn
)
= 1 + op(1), (4)

under the model f0 for both location and location-scale mixtures of normals.
By analogy to the case of density estimation of Reynaud-Bouret, Rivoirard
and Tuleau-Malot (2011) and Goldenshluger and Lepski (2014) we assume that
f0 ∈ L1 and belongs to a Hölder ball with smoothness β.
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We show in Section 2, that in most cases the bounds found on ε2n in equa-
tion (4) for location mixtures are better than the bounds for location-scale
mixtures. Unless p goes to infinity, the posterior concentration rates are not as
good as the minimax rate n−2β/(2β+d), obtained in the context of a design on
[0, 1]d. This rate is suboptimal for light tail design points, since in this case the
minimax posterior concentration rate is given by n−2β/(2β+d). To improve on
this bound we propose a version of location-scale mixtures models, which we
call the hybrid location-scale mixtures, and we show that this nonparametric
mixture model leads to better bounds than location mixtures (and thus than
location-scale mixtures). All these results are up to logn terms and are summa-
rized in Table 1 which displays the value r defined by ε2n = n−r.

Finally, we draw the attention of the reader to the fact that all the results in
this paper are only upper bounds on the rates of contraction. In absence of cor-
responding lower bounds, no one should use these results to conclude definitively
on the performance of each mixtures over β-Hölder balls. The computation of
lower bounds on the rate of contraction for mixture priors is still an open ques-
tion today. However, in the case p > 2β for hybrid mixture and p → ∞ for
location mixture, the minimax rates are known to be n−2β/(2β+d) thus we can
conclude about the optimality of these mixtures in that cases. To our knowledge,
in all other cases no minimax lower bound are known.

Table 1

Summary of posterior rates of convergence for different types of mixtures. The rates are
understood to be in the form ε2n = n−r, up to powers of logn factors, where r is given
below. here κ > 0 is a parameter that depends on the prior and can be made equal to 1.

0 < p < 2d p ≥ 2d

0 < p ≤ 2β p > 2β 0 < p ≤ 2β p > 2β

Location
2β

2β +max(κ, β + d)

2β

2β +max(κ, d+ 2dβ/p)

Location-scale
2β

2β +max(β + d, 2βd/p) + κ

2β

2β + d+ κ

2β

2β +max(β + d, 2βd/p) + κ

2β

2β + d+ κ

Hybrid
2β

2β +max(κ,min(β + d, 2βd/p))

2β

2β +max(κ, d)

2β

2β +max(κ,min(β + d, 2βd/p))

2β

2β +max(κ, d)

The main results with the description of the three types of prior models and
the associated posterior concentration rates are presented in Section 2. Proofs
are presented in Section 3 and some technical lemma are proved in the appendix.

1.1. Notations

In the sequel we use repeatedly the following notations.

• We call Pf (· | X) the distribution of the random variable Y | X under the
model (3), associated with the regression function f . Given (X1, . . . , Xn),
Pn
f (· | X1, . . . , Xn) stands for the distribution of the vector (Y1, . . . , Yn)

of independent random variables Yj ∼ Pf (· | Xj). Also, for any random
variable Z with distribution P , and any function g, Pg(Z) denote the
expectation of g(Z).
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• For any a > 0, we let SGa(a) denote the symmetric Gamma distribution
with parameter a; that isX ∼ SGa(a) has the distribution of the difference
of two independent Gamma random variables with parameters (a, 1).

• For any finite positive measure α on the measurable space (X,X ), let
Πα denote the symmetric Gamma process distribution with parameter α
(Wolpert, Clyde and Tu, 2011; Naulet and Barat, 2015); that is, M ∼
Πα is a random signed measure on (X,X ) such that far any disjoints
B1, . . . , Bk ∈ X the random variables M(B1), . . . ,M(Bk) are independent
with distributions SGa(α(Bi)), i = 1, . . . , k.

• For all k = (k1, . . . , kd) ∈ Nd and all x = (x1, . . . , xd) ∈ Rd we write
|k| := k1 + · · · + kd, k! := k1! . . . kd!, and xk := xk1

1 . . . xkd

d . Moreover, for
all f : Rd → R with continuous p-th order derivatives at x ∈ Rd we write

Dkf(x) :=
∂|k|f

∂xk1
1 . . . ∂xkd

d

(x), |k| ≤ p.

• For any β > 0, we let Cβ denote the Hölder space of order β; that is the set
of all functions f : Rd → R such that ‖f‖Cβ := max|k|≤p supx∈Rd |Dk(x)|+
max|k|=p supx �=y |Dk(x)−Dk(y)|/|x−y|β−p is finite, where p is the largest
integer strictly smaller than β.

• We denote by ‖ · ‖ the standard euclidean norm on Rd, and, for any
x, y ∈ Rd, xy is the standard inner product. For any d× d matrix A with
real eigenvalues, we denote λ1(A) ≥ . . . λd(A) its eigenvalues in decreas-
ing order, ‖A‖ := supx �=0 ‖Ax‖/‖x‖ its spectral norm, and ‖A‖max :=
maxi,j |Ai,j |, where Aij are the entries of A.

• Throughout the paper C denotes a generic constant, not necessarily the
same everywhere. Inequalities up to a generic constant are denoted by �
and �.

2. Posterior convergence rates for Symmetric Gamma mixtures

In this section we present the main results of the paper. We first present the three
types of priors that are studied; i.e. location mixtures, location-scale mixtures
and hybrid location-scale mixtures and for each of these families of priors we
provide the associated posterior concentration rates.

Recall that we consider observations (Yi, Xi)
n
i=1 independent and identically

distributed according to model (3) and we note yn = (Y1, · · · , Yn) and xn =
(X1, · · · , Xn). We denote the prior and the posterior distribution on f by Π(·)
and Π(· | yn,xn) respectively.

2.1. Families of priors

In this section we present three variants of mixture models as defined in equa-
tion (1) or equation (2).
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2.1.1. Location mixtures of normals

A symmetric Gamma process location mixture of normals prior Π is the distri-
bution of the random function f(x) :=

∫
ϕΣ(x − μ) dM(μ) where Σ ∼ GΣ and

M ∼ Πα, with α a finite positive measure on Rd, and GΣ a probability measure
on E .

We restrict our discussion to priors for which the following conditions are
verified. We assume that there are positive constants a1, a2, a3, b1, b2, b3, b4 and
κ > 0 such that GΣ satisfies for all x ≥ 1 and all t ∈ (0, 1)

GΣ (Σ : λ1(Σ) > x) � exp(−a1x
b1) (5)

GΣ (Σ : λd(Σ) < 1/x) � exp(−a2x
b2) (6)

GΣ

(
x−1 ≤ λi(Σ

−1) ≤ x−1(1 + t), 1 ≤ i ≤ d
)
� x−b3tb4 exp(−a3x

−κ/2). (7)

We let α := αGμ for a positive constant α > 0 and Gμ a probability distribution
on Rd. We assume that there are positive constants b5, b6 such that Gμ satisfies
for all x ∈ Rd

Gμ (‖μ− x‖ ≤ t) � tb5(1 + ‖x‖)−b6 , ∀t ∈ (0, 1). (8)

The heavy tail condition on Gμ is required to adapt to potential heavy tails of
Q0.

2.1.2. Location-scale mixtures of normals

A symmetric Gamma process location-scale mixture of normals prior Π is the
distribution of the random function f(x) :=

∫
ϕΣ(x− μ) dM(Σ, μ) where M ∼

Πα, with α a finite positive measure on E ×Rd. Hence in this model the prior is
entirely defined by Πα with α a measure on E × Rd, while in Section 2.1.1 the
prior isdefined by Πα ×GΣ, with α a measure on Rd. To simplify notations we
keep πα for both types of priors and the context will make clear which prior is
refered to.

We restrict our discussion to priors for which α := αGΣ × Gμ, with α > 0
and GΣ, Gμ satisfying the same assumptions as in Section 2.1.1.

2.1.3. Hybrid location-scale mixtures of normals

By hybrid location-scale mixture of normals, we mean the distribution Π of the
random function f(x) :=

∫
ϕΣ(x− μ) dM(Σ, μ), where

M ∼ Πα, α = αPΣ ×Gμ, α > 0,

PΣ ∼ ΠΣ.

and Gμ a probability measure satisfying equation (8). Here ΠΣ is a prior dis-
tribution on the space of probability measures on E (endowed with Borel σ-
algebra). We now formulate conditions on ΠΣ that are the random analoguous
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to equations (5) and (6). For the same constants a1, a2, b1, b2 as in Section 2.1.1,
we consider the existence of positive constants a4, a5 such that ΠΣ satisfies for
x > 0 large enough

ΠΣ

(
PΣ : PΣ(λ1(Σ) > x) ≥ exp(−a1x

b1/2)
)
� exp(−a4x

b1), (9)

ΠΣ

(
PΣ : PΣ(λd(Σ) < 1/x) ≥ exp(−a2x

b2/2)
)
� exp(−a5x

b2). (10)

For any j, u ≥ 0, let Ej,u := {Σ ∈ E : ∀i : 22j ≤ λi(Σ
−1) ≤ 22j(1 + 2−u)}. As

a replacement of equation (7), we assume that for all β > 0 there are constants
a6, b7 and κ∗ such that for any positive integer J large enough

ΠΣ

(⋂J
j=0{PΣ : PΣ(Ej,Jβ) ≥ 2−J}

)
� exp(−a6J

b72Jκ
∗
). (11)

Equations (9) to (11) are rather restrictive and it is not clear a priori whether
or not such distribution exists. For example, if PΣ is chosen to be almost-surely
equal to GΣ satisfying equations (5) to (7), then equation (11) is not satisfied.
However, we now show that under conditions on the base measure, ΠΣ can be
chosen as a Dirichlet Process, hereafter refered to as DP.

We recall that if ΠΣ is a Dirichlet Process distribution with base measure
αΣGΣ(·) on E (Ferguson, 1973), then PΣ ∼ ΠΣ is a random probability measure
on E such that for any Borel measurable partition A1, . . . , Ak of E , the joint
distribution PΣ(A1), . . . , PΣ(Ak) is the k-variate Dirichlet distribution with pa-
rameters αΣGΣ(A1), . . . , αΣGΣ(Ak).

Proposition 1. Let αΣ > 0, GΣ a probability measure on E satisfying equa-
tions (5) to (7), and ΠΣ be a Dirichlet Process with base measure αΣGΣ(·).
Then ΠΣ satisfies equations (9) to (11) with constants a4 = a1/2, a5 = a2,
b7 = 0, κ∗ = κ and a constant a6 > 0 eventually depending on β.

Proof. We first prove equation (9). It follows from the definition of the DP that
PΣ(Σ : λ1(Σ) > x) has Beta distribution with parameters αΣGΣ(Σ : λ1(Σ) >
x) and αΣ[1−GΣ(Σ : λ1(Σ) > x)], then by Markov’s inequality

ΠΣ

(
PΣ : PΣ(Σ : λ1(Σ) > x) ≥ t

)
≤ GΣ(Σ : λ1(Σ) > x)

t
.

Choosing t = exp(−a1x
b1/2) and using equations (5) to (7) leads to (9). The

same steps withGΣ(Σ : λd(Σ) < 1/x) give the proof of equation (10). It remains
to prove equation (11). For all β ≥ 1 the sets Ej,Jβ , j = 0, . . . , J are disjoint.

Set Ec
Jβ :=

⋂J
j=0 Ec

j,Jβ , where Ec
j,Jβ are the complement of the sets Ej,Jβ . If

αΣGΣ(Ec
Jβ) ≤ 1 let EJ+1,Jβ = Ec

Jβ and N = 1; otherwise split Ec
Jβ into N > 1

disjoint subsets Ec
1,Jβ , . . . Ec

N,Jβ such that exp(−2Jκ) ≤ αΣGΣ(Ec
k,Jβ) ≤ 1 for all

k = 1, . . . , N and set EJ+1,Jβ = Ec
1,Jβ , EJ+2,Jβ = Ec

2,Jβ , . . . , EJ+N,Jβ = Ec
N,Jβ

(since GΣ(E) = 1 this can be done with a number N independent of J). For J
large enough, acting as in Ghosal, Ghosh and van der Vaart (2000, lemma 6.1),
it follows

ΠΣ

(
PΣ : PΣ(Ej,Jβ) ≥ 2−J ∀ 0 ≤ j ≤ J

)
≥ Γ(αΣ)2

−J(J+N)∏J+N
j=0 Γ(αΣGΣ(Ej,Jβ))

.
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Also, αΣGΣ(Ej,Jβ) ≤ 1 implies Γ(αΣGΣ(Ej,Jβ)) ≤ 1/(αΣGΣ(Ej,Jβ)), hence

ΠΣ

(
PΣ : PΣ(Ej,Jβ) ≥ 2−J ∀ 0 ≤ j ≤ J

)
≥ Γ(αΣ)α

J+N+1
Σ 2−J(J+N)

J+N∏
j=0

GΣ(Ej,Jβ).

Since N does not depend on J , one can find a constant C > 0 such that

ΠΣ

(
PΣ : PΣ(Ej,Jβ) ≥ 2−J ∀ 0 ≤ j ≤ J

)
≥ Γ(αΣ) exp

⎧⎨⎩−CJ2 +

J∑
j=0

logGΣ(Ej,Jβ) +
J+N∑
j=J+1

logGΣ(Ej,Jβ)

⎫⎬⎭ .

By construction, the second sum in the rhs of the last equation is lower bounded
by −N2Jκ, whereas if GΣ satisfies equations (5) to (7), the first sum is lower
bounded by −C ′2Jκ for a constant C ′ > 0 eventually depending on β.

Another example that can satisfy equations (9) to (11) is to consider for PΣ

a finite mixture with unknown number of components. For instance,

PΣ =
J∑

j=1

pjδΣj , J ∼ 1 + P(αΣ), Σj
iid∼ GΣ.

This example behaves very similarly to the Dirichlet process. Note that instead
of a Poisson random variable, some distribution with exponential tails like the
Geometric distribution also satisfies equations (5) to (7). For the two previous
examples, draws from ΠΣ are almost-surely purely atomic measures. We don’t
know any example of prior distribution ΠΣ such that PΣ ∼ ΠΣ is not almost-
surely purely atomic and ΠΣ satisfies equation (11). A distinctive feature of
previous examples is that a priori the probability of having two (or more) com-
ponents of the mixture sharing the same covariance matrix is positive, a fact
which is not true when PΣ is not atomic. We believe this property is the funda-
mental reason why the rates are improved compared to location-scale mixtures.
Inspection of proofs in the present paper shows that, to improve the rates, it
is sufficient that a priori, the probability of having more than (logM)u distinct
dilation matrices on any subset of M components of the mixture goes to zero
fast enough for some u > 0 when M → ∞.

Note that this is the same idea as the prior defined by equation (2.2) in
Ghosal and van der Vaart (2001) in the context of density estimation for super-
smooth densities with light tails. It is also worth mentioning that when ΠΣ is a
Dirichlet Process, hybrid location-scale mixtures are closely related to the well-
known Hierarchical Dirichlet Processes (Teh et al., 2006), because of the close
relationship between Dirichlet Processes and (symmetric) Gamma Processes.
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2.1.4. Discussion of the assumptions on GΣ

Notice that the often used inverse Wishart distribution for GΣ does not satisfy
equation (5). However we can weaken equation (5) by using the same refinement
as in Canale and De Blasi (2017); Naulet and Barat (2015) and thus obtain the
same rates for the inverse-Wishart prior by using the square-root technique from
Lijoi, Prünster and Walker (2005). The approach to rates used here is standard
and involves two parts, showing the prior puts enough probability mass on
certain Kullback-Leibler neighborhoods, and showing the existence of sequence
of sets Fn capturing the essential of the prior mass and having metric entropy
not growing too fast as n → ∞. Equations (5) and (6) are only involved in the
construction of Fn, while equation (7) occurs in the proof the Kullback-Leibler
condition, which is the essential part to understand the impact of tail conditions.
The current article focus on the approximation theory needed to prove the
Kullback-Leibler condition, thus we voluntary use stronger assumptions than
needed to construct Fn, to not complicate the proofs unnecessarily. However,
this won’t change the bounds on the rate found in this paper.

A typical example of probability distribution satisfying equations (5) to (7) is
the inverse-Gaussian distribution when d = 1. For arbitrary d, Barndorff-Nielsen
et al. (1982) propose an interesting generalization of the inverse-Gaussian, whose
density is given by

gΣ(Σ;λ,A,B) :=
(detΣ)λ−

d+1
2

H(λ,A,B)
exp

{
−1

2

(
tr(AΣ) + tr(BΣ−1)

)}
1E(Σ), (12)

where (λ,A,B) ∈ R× E × E and H(λ,A,B) is a normalizing constant that can
be expressed in term of a matrix Bessel function of the second kind. Then, we
have the following proposition.

Proposition 2. The distribution GΣ whose the density is given in equation (12)
satisfies equations (5) to (7) with κ = 2.

Proof. We first prove that GΣ satisfies equation (6). Let ν1 ≥ max(−2λ, d− 1).
From the definition of gΣ, we have that

GΣ(Σ : λd(Σ) < 1/x)

=

∫
E

1(λd(Σ) < 1/x) gΣ(Σ)dΣ

�
∫
E
det(Σ)λ+

ν1
2 e−

1
2 tr(AΣ) det(Σ)−

ν1+d+1
2 e−

1
2 tr(BΣ−1) 1(λd(Σ) < 1/x) dΣ

�
∫
E
det(Σ)−

ν1+d+1
2 e−

1
2 tr(BΣ−1) 1(λd(Σ) < 1/x) dΣ.

Then, GΣ satisfies the same bound (up to a constant) as the inverse-Wishart
distribution with ν1 degrees of freedom and scale matrix B. Thus equation (6)
follows from (Shen, Tokdar and Ghosal, 2013, Lemma 1).
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Similarly, with ν2 ≥ max(2λ, d− 1), we find that

GΣ(Σ : λ1(Σ) > x) �
∫
E
det(Σ)

ν2−d−1
2 e−

1
2 tr(AΣ) 1(λ1(Σ) > x) dΣ.

Then, GΣ satisfies the same bound (up to constant) as the Wishart distribution
with ν2 degrees of freedom and scale matrix A−1. Thus equation (5) follows
from a straightforward argument using the relationship between Wishart and
inverse-Wishart distribution.

It remains to prove equation (7), but this follows from (Shen, Tokdar and
Ghosal, 2013, Lemma 1) using the fact that GΣ behave like an inverse-Wishart
distribution for small λ1(Σ).

As mentioned in Shen, Tokdar and Ghosal (2013), the choice of GΣ is crucial
because the value of κ influences the bounds on the posterior rates of contrac-
tion. The smaller κ is, the better the bounds are. The example of equation (12)
satisfies κ = 2. It is possible to achieve κ = 1 using a prior on diagonal ma-
trices Σ = diag(σ2

1 , . . . , σ
2
d), where σ1, . . . , σd are independent inverse-Gaussian

random variables.

2.2. Posterior concentration rates under mixtures priors

We let Π(· | yn,xn) denote the posterior distribution of f ∼ Π based on n
observations (X1, Y1), . . . , (Xn, Yn) modelled as in Section 1. Let (εn)n≥1 be a
sequence of positive numbers with limn εn = 0, and dn denote the empirical L2

distance, that is dn(f, g)
2 = n−1

∑n
i=1 |f(Xi)− g(Xi)|2. The following theorem

is proved in Section 3.

Theorem 1. Consider the model (3), and assume that f0 ∈ L1 ∩ Cβ and
Q0‖X‖p < +∞. Then there exist constants C > 0 and t > 0 depending only on
f0 and Q0 such that

• If the prior Π is a symmetric Gamma location mixture of normals as
defined in Section 2.1.1

Π
(
dn(f, f0)

2 > Cn− 2β
2β+max(κ,β+d) (logn)t | yn,xn

)
= op(1)

when 0 < p ≤ 2d, and

Π
(
dn(f, f0)

2 > Cn− 2β
2β+max(κ,d+2βd/p) (logn)t | yn,xn

)
= op(1)

when p > 2d.
• If the prior Π is a symmetric Gamma location-scale mixture of normals

defined in Section 2.1.2

Π
(
dn(f, f0)

2 > Cn− 2β
2β+min(β+d,2βd/p)+κ (logn)t | yn,xn

)
= op(1)
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when 0 < p ≤ 2β, and

Π
(
dn(f, f0)

2 > Cn− 2β
2β+d+κ (logn)t | yn,xn

)
= op(1),

when p > 2β.
• If the prior Π is a hybrid symmetric Gamma location-scale mixture of

normals defined in Section 2.1.3

Π
(
dn(f, f0)

2 > Cn− 2β
2β+max(κ∗,min(β+d,2βd/p)) (logn)t | yn,xn

)
= op(1),

when 0 < p ≤ 2β, and

Π
(
dn(f, f0)

2 > Cn− 2β
2β+max(κ∗,d) (log n)t | yn,xn

)
= op(1),

when p > 2β.

The upper bounds on the rates in the previous paragraph are no longer valid
when p = 0. Indeed the constant C > 0 depends on p and might not be definite
if p = 0 ; the reason is to be found in the fact that C heavily depends on the
ability of the prior to draw mixture component in regions of observed data, which
remains concentrated near the origin when p > 0. In Section 2.3, we overcome
this issue by making the prior covariate dependent; this allows to derive rates
under the assumption p = 0 (no tail assumption).

2.3. Relaxing the tail assumption: covariate dependent prior for
location mixtures

Although the rates derived in Section 2.2 do not depend on p > 0 when p is
small, the assumption Q0‖X‖p < +∞ is crucial in proving the Kullback-Leibler
condition. Indeed, this condition ensures that the covariates belong to a set Xn

which is not too large, which allows us to bound from below the prior mass of
Kullback-Leibler neighbourhoods of the true distribution. Surprisingly, it seems
very difficult to get rid of this assumption without and covariate dependent prior,
while making the prior covariates dependent allows to drop all tail conditions on
Q0. Doing so, we can adapt to the tail behaviour of Q0, as shown in the following
theorem, which is an adaptation of the general theorems of Ghosal and van der
Vaart (2007b). For convenience, in the sequel we drop out the superscript n and
we write x, y for xn, yn, respectively. For ε > 0 and any subset A of a metric
space equipped with metric d, we let N(ε, A, d) denote the ε-covering number of
A, i.e. N(ε, A, d) is the smallest number of balls of radius ε needed to cover A.

Theorem 2. Let Πx be a prior distribution that depends on the covariate vector
x, 0 < c2 < 1/4 and εn → 0 with nε2n → ∞. Suppose that Fn ⊆ F is such that
Qn

0Πx(Fc
n) � exp(−1

2 (1+2c2)nε
2
n) and logN(εn/18,Fn, dn) ≤ nε2n/4 for n large

enough. If there exists M0 > 0 such that

Qn
0

(
Πx(f : dn(f, f0) ≤ εn) ≤ M0 exp(−c2nε

2
n)
)
= o(1),

then there exists M > 0 such that Πx(f : dn(f, f0) > Mεn | y,x) = op(1).
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The proof of the previous theorem is to be found in Section 5. We apply Theo-
rem 2 to symmetric Gamma process location mixture of normals in the following
way. Let Qn

x = n−1
∑n

i=1 δxi denote the empirical measure of the covariate vec-
tor x. Given a probability density function g, we let Gx the probability measure
which density is z �→

∫
g(z − x) dQn

x(x).

Corollary 1. Consider the model (3) and assume that f0 ∈ L1 ∩ Cβ. Let Πx

be the distribution of the random function f(x) :=
∫
ϕΣ(x − μ) dM(μ), where

Σ ∼ GΣ and M ∼ Πα with α = αGx for some α > 0. Assume that GΣ

satisfies equations (5) to (7) and g is continuous at zero with g(0) > 0. Then
there exists t > 0 such that Πx(f : dn(f, f0) > Mεn | y,x) = op(1) with

ε2n � n− 2β
2β+max(κ,β+d) (logn)t.

The proof of Corollary 1 is given in Appendix B. Obviously, Theorem 2 can
also be applied to symmetric Gamma process location-scale and hybrid mixtures

following the same path as in Corollary 1, giving rates n− 2β
3β+d+κ (logn)t for

location-scale mixtures and n− 2β
2β+max(β+d,κ∗) (logn)t for hybrid mixtures.

3. Proofs

To prove Theorem 1 we follow the lines of Ghosal, Ghosh and van der Vaart
(2000); Ghosal and van der Vaart (2001, 2007a). Namely we need to verify the
following three conditions

• Kullback-Leibler condition : For a constant 0 < c2 < 1/4,

Π(KL(f0, εn)) ≥ e−c2nε
2
n , (13)

where

KL(f0, εn) :=

{
f :

1

2

∫
|f0(x)− f(x)|2 dQ0(x) ≤ ε2n

}
.

• Sieve condition : There exists Fn ⊂ F such that

Π(Fc
n) ≤ e−

1
2 (1+2c2)nε

2
n (14)

• Tests : Let logN(εn/18,Fn, dn) be the logarithm of the covering number
of Fn with radius εn/18 in the dn(·, ·) metric.

logN(εn/18,Fn, dn) ≤
nε2n
4

. (15)

The Kullback-Leibler condition is proved by defining an approximation of f
by a discrete mixture under weak tail conditions. Although the general idea is
close to Kruijer, Rousseau and van der Vaart (2010) or Scricciolo (2014), the
construction remains quite different to be able to handle various tail behaviours.
This is detailed in the following section.
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3.1. More notations

Here we define a few more notations that are used in the proof, but were not
necessary to state the main theorems of the paper.

• For 1 ≤ p < ∞ we let Lp be the space of function for which the norm
‖f‖pp :=

∫
|f(x)|p dx is finite; and by L∞ we mean the space of functions

for which ‖f‖∞ := supx∈Rd |f(x)| is finite. For 0 ≤ p, q ≤ ∞ and functions
f ∈ Lp, g ∈ Lq, we write f ∗g the convolution of f and g, that is f ∗g(x) :=∫
f(x − y)g(y) dy for all x ∈ Rd. Moreover, we’ll use repeatedly Young’s

inequality which state that ‖f ∗g‖r ≤ ‖f‖p‖g‖q, with 1/p+1/q = 1/r+1.

• If f ∈ L1, then we define f̂ as the (L1) Fourier transform of f ; that is

f̂(ξ) :=
∫
f(x)e−iξx dx for all ξ ∈ Rd. Moreover, if f̂ ∈ L1, then the inverse

Fourier transform is well-defined and f(x) = (2π)−d
∫
f̂(ξ)eixξ dξ. Also, we

denote by S the Schwartz space; that is the space of infinitely differentiable
functions f : Rd → R for which supx∈Rd |xkDlf(x)| < +∞ for all k, l ∈ Nd.
Then S ⊂ L1, and it is well known that the Fourier transform maps S
onto itself, thus the Fourier transform is always invertible on S.

3.2. Approximation theory

To describe the approximation of f0 by a finite mixture, we first define a few
notations. Let �̂ : R → R be a symmetric C∞ function that equals 1 on [−1, 1]
and 0 outside R\[−2, 2]; the existence of such function is classical. Define χ̂ :

Rd → R such that χ̂(ξ) =
∏d

i=1 �̂(ξi) for all ξ ∈ Rd. For any σ > 0 we use the
shortened notation χ̂σ(ξ) := χ̂(2σξ), and χσ will stand for the inverse Fourier
transform of χ̂σ. Define η as the function which L1 Fourier transform satisfies
η̂(ξ) = χ̂(ξ)/ϕ̂(ξ) for all ξ ∈ [−2, 2]d and η̂(ξ) = 0 elsewhere. For two positive
real numbers h and σ, we define the kernel Kh,σ : Rd × Rd → R such that

Kh,σ(x, y) :=
hd

σd

∑
k∈Zd

ϕ

(
x− hσk

σ

)
η

(
y − hσk

σ

)
, ∀(x, y) ∈ Rd × Rd.

For a measurable function f we introduce the operator associated with the ker-
nel :Kh,σf(x) =

∫
Kh,σ(x, y)f(y) dy. The functionKh,σf will play the role of an

approximation for the function f , and we will evaluate how this approximation
becomes close to f given h and σ sufficiently close to zero.

More precisely, we will prove that, when choosing h appropriately, f0 can be
approximated by Kh,σ(χσ ∗ f0) to the order σβ . Moreover Kh,σ(χσ ∗ f0) can be
written as

∑
k∈Zd ukϕσ2I(x−μk), where uk = (hd/σd)

∫
η(y/σ−hk)χσ∗f0(y)dy.

Note that by symmetry of �̂, the coefficients uk are always real valued when f0
takes value in R. In a second step we approximate Kh,σ(χσ ∗ f0) by a truncated
version of it, retaining only the k’s such that |uk| is large enough and ‖μk‖
not too large. In the case of location-scale and hybrid location-scale mixture we
consider a modification of this approximation to better control the number of
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components for which σ needs to be small. We believe that these constructions
have interest in themselves. In particular they shed light on the relations between
mixtures of normals and wavelet approximations.

These approximation properties are presented in the following two Lemmas
which are proved in Appendix A:

Lemma 1. There is C > 0 depending only on β such that for any f0 ∈ L1 ∩ Cβ

and any σ > 0 we have |χσ ∗ f0(x)− f0(x)| ≤ C‖f‖Cβσβ for all x ∈ Rd.

Lemma 2. Let fσ := χσ ∗ f0 and h ≤ 1. Then there are universal constants
C, c > 0 such that |Kh,σfσ(x)−fσ(x)| ≤ C‖f0‖1σ−d exp(−ch−2) for all x ∈ Rd.

We now present the approximation schemes in the context of location mix-
tures.

3.3. Construction of the approximation under location mixtures

Let 0 < σ ≤ 1 and c0 > 0 be a constant. Define hσ > 0 such that hσ

√
log σ−1 :=

c0. Then combining the results of Lemma 1 and Lemma 2 we can conclude that
if c0 is chosen small enough, then |Khσ,σ(χσ ∗ f0)(x) − f0(x)| � σβ . Now we
define the coefficients uk, k ∈ Zd so that

Khσ,σ(χσ ∗ f0)(x) =:
∑
k∈Zd

uk ϕσ2I(x− μk), ∀k ∈ Zd,

where μk := hσσk for all k ∈ Zd. Let define

Λσ :=
{
k ∈ Zd : |uk| > σβ , ‖μk‖ ≤ σ−2β/p + σ

√
2(β + d) log σ−1

}
,

Uσ := {Σ ∈ E : σ−2 ≤ λi(Σ
−1) ≤ σ−2(1 + σβ+d) i = 1, . . . , d}, and for all

k ∈ Λσ let define Vk := {μ ∈ Rd : ‖μ − μk‖ ≤ σβ+1} and V = ∪k∈ΛσVk. We
also denote

Mσ :=

{
M signed measure on Rd :

∀k ∈ Λσ : |M(Vk)− uk| ≤ σβ ,
|M |(V c) ≤ σβ

}
,

and for any M ∈ Mσ and Σ ∈ Uσ, we write fM,Σ(x) :=
∫
ϕΣ(x− μ) dM(μ).

Proposition 3. For σ > 0 small enough, it holds

|Λσ| � min(σ−(β+d), h−d
σ σ−(2β/p+1)d).

Proof. Because there is a separation of hσσ between two consecutive μk, it
is clear that |Λσ| � h−d

σ σ−(2β/p+1)d when σ is small enough. Moreover, from
Proposition 9 we have the following estimate.

‖f0‖1σ−d �
∑
k∈Zd

|uk| ≥
∑
k∈Λσ

|uk| ≥ σβ |Λσ|.
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Proposition 4. For all x ∈ Rd, all σ > 0 small enough, all Σ ∈ Uσ and all
M ∈ Mσ it holds |fM,Σ(x)− f0(x)| � 1.

Proof. We have that |fM,Σ(x) − f0(x)| ≤ |fM,Σ(x)| + ‖f0‖∞. But, with I ≡
I(x) := {k ∈ Zd : ‖x− μk‖ ≤ 2σ}, we can write

fM,Σ(x) =
∑

k∈Λσ∩I

∫
Vk

ϕΣ(x− μ) dM(μ) +
∑

k∈Λσ∩Ic

∫
Vk

ϕσ2I(x− μ) dM(μ)

+
∑

k∈Λσ∩Ic

∫
Vk

[ϕΣ(x− μ)− ϕσ2I(x− μ)] dM(μ) +

∫
V c

ϕΣ(x− μ) dM(μ).

(16)

Clearly the last term of this last expression is bounded above by ‖ϕ‖∞σβ .
For the second term, we have for any μ ∈ Vk with k ∈ Ic that ‖x − μ‖ ≥
‖x−μk‖−‖μ−μk‖ ≥ ‖x−μk‖/2. Then the second term of the rhs of equation (16)
is bounded above by

sup
k∈Λσ∩Ic

|M |(Vk)
∑
k∈Zd

ϕσ2I(‖x− hσσk‖/2).

Proceeding as in the proof of Lemma 8, we deduce that the series in the last ex-
pression is bounded above by a constant times h−d

σ , whereas |M |(Vk) ≤ |M(Vk)−
uk|+ |uk| � σβ + hd

σ‖f0‖∞ by Proposition 9. Therefore the second term of the
rhs in equation (16) is bounded by a constant when σ is small enough. Regard-
ing the first term in equation (16), it is bounded by ‖ϕ‖∞|I| supk∈Λσ

|M |(Vk),
which is in turn bounded by a constant by the same argument as previously. By
Propositions 9 and 11, the remaining term is bounded by

sup
Σ∈Uσ

‖I − σ2Σ−1‖
∑

k∈Λσ∩Ic

|M |(Vk)

� σβ+d
∑

k∈Λσ∩Ic

|M(Vk)− uk|+ σβ+d
∑

k∈Λσ∩Ic

|uk|

� σ2β+d|Λσ|+ σβ ,

which is in turn bounded by a multiple constant of σβ by Proposition 3.

Proposition 5. For all σ > 0 small enough, all x ∈ Rd with ‖x‖ ≤ σ−2β/p, all
Σ ∈ Uσ and all M ∈ Mσ it holds |fM,Σ(x)− f0(x)| � h−2d

σ σβ.

Proof. We define Aσ(β) :=
√
2 log |Λσ|+ 2(β + d) log σ−1. Then for any M ∈

Mσ, letting J ≡ J (x) := {k ∈ Zd : ‖x− μk‖ ≤ 2σAσ(β)}, we may write

fM,Σ(x)−Khσ ,σ(χσ ∗f0)(x) =
∑

k∈Λσ∩J

∫
Vk

[ϕΣ(x− μ)− ϕσ2I(x− μk)] dM(μ)

+
∑

k∈Λσ∩J
[M(Vk)− uk]ϕσ2I(x− μk) +

∑
k∈Λσ∩J c

∫
Vk

ϕΣ(x− μ) dM(μ)
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−
∑

k∈Λσ∩J c

uk ϕσ2I(x− μk)−
∑
k∈Λc

σ

uk ϕσ2I(x− μk) +

∫
V c

ϕΣ(x− μ) dM(μ)

:= r1(x) + r2(x) + r3(x) + r4(x) + r5(x) + r6(x). (17)

With the same argument as in Proposition 3, we deduce that |J | � h−d
σ Aσ(β)

d.

The same proposition implies Aσ(β) �
√
log σ−1. From the proof of Proposi-

tion 4, we have |M |(Vk) � σβ + hd
σ‖f0‖∞ for all k ∈ Λσ and all M ∈ Mσ, it

follows from Proposition 11 that |r1(x)| � Aσ(β)
dσβ+d. From the definition of

Mσ, it comes |r2(x)| ≤ ‖ϕ‖∞|J |σβ � ‖ϕ‖∞Aσ(β)
dh−d

σ σβ . Using the definition
of ϕΣ, whenever Σ ∈ Uσ we can write that

ϕΣ(x) = exp

{
− 1

2σ2
‖x‖2 + 1

2
xT [σ−2I − Σ−1]x

}
≤ exp

{
− 1

2σ2
‖x‖2 + 1

2
‖Σ−1 − σ2I‖‖x‖2

}
≤ exp

{
− 1

2σ2
(1− σβ+2)‖x‖2

}
,

where the second line follows from Cauchy-Schwarz inequality, and the last line
by the definition of Uσ. Moreover, when k ∈ Λσ ∩ J c and μ ∈ Vk, it holds
‖x−μ‖ ≥ ‖x−μk‖−‖μ−μk‖ ≥ σAσ(β)/

√
1− σβ+2 for σ small enough. There-

fore, |r3(x)| � exp(−1
2Aσ(β)

2)|Λσ| � σβ+d. With the same argument, Proposi-
tion 9 and Young’s inequality we get |r4(x)| � ‖χσ ∗f0‖∞ exp(−2Aσ(β)

2)|Λσ| ≤
‖χ‖1‖f0‖∞σβ . Regarding r5, we rewrite Λc

σ = Λc
1 ∪ Λc

2, with Λc
1 := {k ∈ Zd :

|uk| ≤ σβ} and Λc
2 := {k ∈ Zd : ‖μk‖ > σ−2β/p + σ

√
2(β + d) log σ−1}. Then,

|r5(x)| ≤
∑
k∈Λc

1

|uk|ϕσ2I(x− μk) +
∑
k∈Λc

2

|uk|ϕσ2I(x− μk)

≤ σβ sup
x∈Rd

∑
k∈Zd

ϕσ2I(x− μk) +
∑
k∈Λc

2

|uk|ϕσ2I(x− μk). (18)

The first term of the rhs of equation (18) is bounded by a multiple constant of
h−d
σ σβ , with the same argument as in the proof of Lemma 8. By definition of Λc

2,
‖x − μk‖ ≥ σ

√
2(β + d) log σ−1 when k ∈ Λc

2 and ‖x‖ ≤ σ−2β/p. This implies,
together with Proposition 9 and Young’s inequality, that the second term of the
rhs of equation (18) is bounded by a constant multiple of σβ+d

∑
k∈Zd |uk| �

‖χσ ∗ f0‖1σβ ≤ ‖χ‖1‖f0‖1σβ for all ‖x‖ ≤ σ−2β/p. Finally, we have the trivial
bound |r6(x)| ≤ ‖ϕ‖∞|M |(V c) ≤ ‖ϕ‖∞σβ .

3.4. Construction of the approximation under location-scale and
hybrid location-scale mixtures

Let σ0 := 1 and define recursively σj+1 := σj/2 for any j ≥ 0. Let Δ0 :=
f0 − χσ0 ∗ f0, and define recursively Δj+1 := Δj − χσj+1 ∗Δj , for any j ≥ 0.
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The general idea of the construction is that supx∈Rd |Δj(x)| � σβ
j , as shown

in Proposition 10 in appendix, and that similarly to wavelet decomposition, we
approximate a function f0 Hölder β by

f1 := K0(χσ0 ∗ f0) +
J∑

j=1

Kj(χσj ∗Δj−1).

where J ≥ 1 is a large enough integer, hJ := c0J
−1/2 for a small enough constant

c0 > 0, and Kj := KhJ ,σj . By induction, we get that Δj = Δ0−
∑j−1

l=0 χσl+1
∗Δl.

It follows,

f1 − f0 = K0(χσ0 ∗ f0)− f0 +

J∑
j=1

Kj(χσj ∗Δj−1)

= ΔJ +K0(χσ0 ∗ f0)− χσ0 ∗ f0 +
J∑

j=1

[
Kj(χσj ∗Δj−1)− χσj ∗Δj−1

]
.

Therefore, from Lemma 2, Proposition 10 and Young’s inequality, the error of
approximating f0 by f1 when c0 is small enough is

|f1(x)− f0(x)|

≤ |ΔJ |+ |K0(χσ0 ∗ f0)− χσ0 ∗ f0|+
J∑

j=1

|Kj(χσj ∗Δj−1)− χσj ∗Δj−1|

� ‖f0‖Cβσβ
J + ‖f0‖1σ−d

0 e−ch−2
J + e−ch−2

J

J∑
j=1

‖Δj−1‖1σ−d
j

� ‖f0‖Cβσβ
J + ‖f0‖1e−ch−2

J + ‖f0‖1e−ch−2
J

J∑
j=1

2j

� ‖f0‖Cβσβ
J + ‖f0‖1(1 + 2J)e−ch−2

J � σβ
J .

The reason for considering different scale parameters in the construction, is
to deal with fat tail, the heuristic being that in the tails we do not require
as precise an approximation as in the center. In particular small values of j
will be used to estimate the function far off in the tails. To formalize this, we
define Aj := {x ∈ Rd : ‖x‖ ≤ 22β(J−j)/p}, for all j = 0, . . . J . We also define
IJ := {x ∈ Rd : ‖x‖ ≤ 1}, and for all j = 0, . . . , J − 1 we set Ij := Aj\Aj+1.
Notice that by definition of Kj , we can write,

K0(χσ0 ∗ f0)(x) =:
∑
k∈Zd

u0k ϕσ2
0I
(x− hJσ0k)

Kj(χσj ∗Δj−1)(x) =:
∑
k∈Zd

ujk ϕσ2
j I
(x− hJσjk), ∀j ≥ 1.
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To ease notation, we define μjk := hJσjk for all j ≥ 0 and all k ∈ Zd. In the
sequel we shall need the following subset of indexes,

ΛJ :=

{
(j, k) ∈ {0, . . . , J} × Zd :

|ujk| > σβ
J ,

‖μjk‖ ≤ 2
2β
p (J−j) +σj

√
2(β+ d) log σ−1

J

}
.

We prove below that we can approximate f1 by a finite mixture corresponding
to retaining only the components associated to indices in ΛJ and that we can

bound the cardinality of ΛJ by O(J log Jσ
−2β/p
J )

To any (j, k) ∈ ΛJ we associate Ujk := {Σ ∈ E : σ−2
j ≤ λi(Σ

−1) ≤ σ−2
j (1 +

σβ+d
J ), i = 1, . . . d}, Vjk := {μ ∈ Rd : ‖μ−μjk‖ ≤ σjσ

β
J} and Wjk := Ujk×Vjk.

We denote by M the set of signed measures M on E ×Rd such that |M(Wjk)−
ujk| ≤ σβ

J for all (j, k) ∈ ΛJ , and |M |(W c) ≤ σβ
J , where W c is the relative

complement of the union of all Wjk for (j, k) ∈ ΛJ . For any M ∈ M, we write

fM (x) :=

∫
ϕΣ(x− μ) dM(Σ, μ).

In Proposition 6 we control the cardinality of ΛJ while in Proposition 8 we
control the error between fM and f1 on the decreasing sequence of balls Aj .
Proposition 7 provides a crude uniform upper bound on fM and f0.

Proposition 6. There is a constant C > 0 depending only on f0 and Q0 such

that |ΛJ | ≤ Cmin[σ
−(β+d)
J , Jd/2σ

−2dβ/p
J ] if p ≤ 2β, and |ΛJ | ≤ CJd/2σ−d

J if
p > 2β.

Proof. First notice that because of Propositions 9 and 10, we always have the
bound

‖f0‖1σ−d
J � ‖f0‖1

J∑
j=0

σ−d
j ≥

J∑
j=0

∑
k∈Zd

|ujk| ≥
∑

(j,k)∈ΛJ

|ujk| ≥ σβ
J |ΛJ |. (19)

We define B :=
√

2(β + d) log 2, so that
√

2(β + d) log σ−1
J = B

√
J . Now con-

sider those indexes j with 22β(J−j)/p ≤ σjB
√
J . An elementary computation

shows that there are at most a multiple constant of such indexes for J large
enough. Therefore, recalling that there is a separation of hJσj between two
consecutive μjk,

|ΛJ | �
J∑

j=0

(
22β(J−j)/p

hJσj

)d

+ sup
j

(
2σjB

√
J

hJσj

)d

� h−d
J σ

−2dβ/p
J

J∑
j=0

2−jd( 2β
p −1) + Jd. (20)

Because hJ

√
J � 1 by definition, and if p ≤ 2β, the result follows from the last

equation and equation (19). If p > 2β, the reasoning is the same as in the first
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part, but we can rewrite in this situation the equation (20) as

|ΛJ | � h−d
J σ−d

J

J∑
j=0

2d(j−J)(1− 2β
p ) + Jd.

Since p > 2β, the conclusion is immediate.

Proposition 7. For all x ∈ Rd, all J > 0 large enough and all M ∈ M, it
holds |fM (x)− f0(x)| � J .

Proof. Let I ≡ I(x) := {(j, k) ∈ {0, . . . , J} × Zd : ‖x − μjk‖ ≤ σj}. Then the
proof is almost identical to Proposition 4. It suffices to notice that for J large
enough:

• |M |(Wjk) ≤ |M(Wjk)−ujk|+ |ujk| is always bounded above by a multiple
constant of h−d

J , because of the definition of M, of Propositions 9 and 10.

• ‖x− μ‖ > (1− σβ
J )‖x− μjk‖ whenever (Σ, μ) ∈ Wjk and (j, k) ∈ ΛJ ∩ Ic.

• |I| � Jh−1
J .

Proposition 8. If f0 ∈ Cβ, for all J > 0 large enough, all 0 ≤ j ≤ J , all
x ∈ Aj and all M ∈ M, it holds |fM (x)− f0(x)| � J1+dσβ

j .

The proof of Proposition 8 is given in Appendix C.

4. Proof of Theorem 1

As mentioned earlier, the proof of Theorem 1 boils down to verifying conditions
(13), (14) and (15) for the three types of priors.

4.1. Location mixtures

4.1.1. Kullback-Leibler condition for location mixtures

In this Section we verify condition (13) in the case of a location mixture prior,
using the results of Section 3.3. We use the notations Λσ, Uσ, Mσ and fM,Σ

defined in Section 3.3.
By Chebychev inequality, we have

Q0

(
‖X‖ > σ2β/p

)
≤ σ2β

∫
Rd

‖x‖pdQ0(x).

Then by bringing together results from Propositions 4 and 5, we can find a
constant C > 0 such that for all M ∈ Mσ and all Σ ∈ Uσ∫

|fM,Σ(x)− f0(x)|2 dQ0(x) ≤ sup
‖x‖≤σ−2β/p

|fM,Σ(x)− f0(x)|2

+ sup
‖x‖>σ−2β/p

|fM,Σ(x)− f0(x)|2 Q0

(
‖X‖ > σ2β/p

)
≤ Cσ2β(log σ−1)2d.
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By equation (7), we have GΣ(Uσ) � σ−2b3σb4(β+d) exp(−a3σ
−κ). Moreover,

there is a separation of at least hσσ between two consecutive μk and hσσ � σ,
thus all the Vk with k ∈ Λσ are disjoint. By assumptions on Gμ (see equa-
tion (8)), αk := αGμ(Vk) � σb5(β+1)(1+ ‖μk‖)−b6 for all k ∈ Λσ. We also define
αc := α(V c). For σ small enough, there is a constant C ′ > 0 not depending on σ
such that αc > C ′. Moreover, since α has finite variation we can assume without
loss of generality that C ′ ≤ αc ≤ 1, otherwise we split V c into disjoint parts,
each of them having α-measure smaller than one. With ε2n := Cσ2β(log σ−1)2d,
using that Γ(α) ≤ 2αα−1 for α ≤ 1, it follows from Proposition 12 the lower
bound

Π(KL(f0, εn)) ≥ GΣ(Uσ)Πα(Mσ)

� σ−2b3+b4(β+d)e−a3σ
−κ σβ

3eΓ(αc)

∏
k∈Λσ

(
σβe−2|uk|

3eΓ(αk)

)

� exp

{
−K|Λσ| log σ−1 − a3σ

−κ − 2
∑
k∈Λσ

|uk| −
∑
k∈Λσ

log
1

αk

}

� exp

{
−K|Λσ| log σ−1 −Kσ−max(κ,d) −

∑
k∈Λσ

log
1

αk

}
,

for a generic constant K > 0. From the definition of αk, it holds∑
k∈Λσ

log
1

αk
� |Λσ| log σ−1 +

∑
k∈Λσ

log (1 + ‖μk‖) ,

when σ is small enough. Also,

∑
k∈Λσ

log (1 + ‖μk‖)

=
∑
k∈Λσ

log (1 + ‖μk‖) 1{‖μk‖ ≤ 1}+
∑
k∈Λσ

log (1 + ‖μk‖) 1{‖μk‖ > 1}

≤ |{k ∈ Λσ : ‖μk‖ ≤ 1}|+ |Λσ| log 2 +
∑
k∈Λσ

log ‖μk‖

� h−d
σ σ−d + |Λσ|

2β

p
log σ−1 � |Λσ| log σ−1 + h−d

σ σ−d.

Because |Λσ| > σ−d for σ small enough (see Proposition 3), it follows from all
of the above the existence of a constant K ′ > 0, depending only on f , ϕ and Π,
such that

Π(KL(f0, εn)) ≥ exp
{
−K ′ max(σ−max(κ,d), |Λσ| log σ−1)

}
≥ exp

{
−K ′ max(σ−κ, |Λσ| log σ−1)

}
.



Posterior concentration rates for mixtures of Gaussians 4085

Then for appropriate constants C ′′′, t > 0, as a consequence of Proposition 3,
we can have Π(KL(f0, εn)) ≥ e−c2nε

2
n if

ε2n =

{
C ′′′n− 2β

2β+max(κ,β+d) (logn)t 0 < p ≤ 2d,

C ′′′n− 2β
2β+max(κ,d+2dβ/p) (logn)t p > 2d.

4.1.2. Sieve construction for location mixtures

We construct the following sequence of subsets of F , also called a sieve. With
the notation fM,Σ(x) :=

∫
ϕΣ(x− μ) dM(μ),

Fn(H, ε) :=

⎧⎨⎩f = fM,Σ :
M =

∑∞
i=1 uiδμi , ∀j : n−1/b2 ≤ λj(Σ) ≤ n1/b1∑∞

i=1 |ui| ≤ n,
∑∞

i=1 |ui| 1{|ui| ≤ n−1} ≤ ε
|{i : |ui| > n−1}| ≤ Hnε2/ logn

⎫⎬⎭.

The next two lemmas show that Fn(H, ε) defined as above satisfies all the
condition stated in equations (14) and (15) if H and δ are chosen small enough.

Lemma 3. Let x = (x1, . . . , xn) ∈ Rd×n be arbitrary and dn be the empirical
L2-distance associated with x. Then for any n−1/2 < εn ≤ 1, 0 < H ≤ 1 and
n sufficiently large there is a constant C > 0 not depending on n such that
logN(εn,Fn(H, εn), dn) ≤ CHnε2n.

Proof. We write Fn ≡ Fn(H, εn) to ease notations. The proof is based on argu-
ments from Shen, Tokdar and Ghosal (2013), it uses the fact that the covering
number N(εn,Fn, dn) is the minimal cardinality of an εn-net over (Fn, dn). We
recall that (Fn, dn) has εn-net Fn,ε, if for any f ∈ Fn we have m ∈ Fn,ε such
that dn(f,m) < εn. Let Sn :=

⋃n
i=1{x ∈ Rd : ‖x − xi‖2 ≤ 4n1/b1 log n},

Rn := {μ ∈ Rd : μ = kn−(3/2+b−1
2 )d−1/2, k ∈ Zd, μ ∈ Sn}, On be a

n−(1+2b−1
1 +2b−1

2 )εn-net of the group of d× d orthogonal matrices equipped with
spectral norm ‖ · ‖, and,

Qn :=

⎧⎨⎩Σ ∈ E :

Σ = PTDP, P ∈ On, D = diag(λ1, . . . , λd),

∀j : λj = n−1/b2(1 + n−(1+b−1
1 +b−1

2 )εn)
k, k ∈ N

∀j : n−1/b2 ≤ λj ≤ n1/b1 .

⎫⎬⎭.

Then we define the following finite subset of Fn(H, ε).

Fn,ε :=

⎧⎨⎩f = fM,Σ :
M =

∑
i∈I uiδμi , |I| ≤ Hnε2n/ logn,

∀i ∈ I : μi ∈ Rn, Σ ∈ Qn,
∑

i∈I |ui| ≤ n,
∀i ∈ I : ui = kn−3/2H−1, k ∈ Z

⎫⎬⎭.

We claim that there is a constant δ > 0 such that Fn,ε is a δεn-net over (Fn, dn).
Indeed, let f ∈ Fn be arbitrary, so that f =

∑∞
i=1 ui ϕΣ(· − μi). We define

J := N ∪ {∞}, K := {i : |ui| > n−1}, and L := {i : μi ∈ Sn}. Now choose
I = J ∩ K ∩ L, and notice that |I| ≤ |K| ≤ Hnε2n/ logn. Hence we can pick a
m ∈ Fn,ε with m(x) =

∑
i∈I u′

i ϕΣ′(x− μ′
i). Moreover, for any j = 1, . . . , n
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|f(xj)−m(xj)| ≤
∑

J∩Kc

|ui|ϕΣ(xj − μi) +
∑

J∩K∩Lc

|ui|ϕΣ(xj − μi)

+
∑
i∈I

|ui||ϕΣ(xj − μi)− ϕΣ′(xj − μ′
i)|+

∑
i∈I

|ui − u′
i|ϕΣ′(xj − μ′

i).

The first term in the rhs of the last equation is bounded above by εn. Regarding
the second term, for any i ∈ Lc we have (xj − μi)

TΣ−1(xj − μi) > 4 logn
for all j = 1, . . . , n. Then the second term is bounded by |K|n exp(−2 log n) ≤
Hε2n/ logn ≤ εn for n large enough. Clearly, we can always choose m ∈ Fn,ε with

|ui − u′
i| ≤ n−3/2H−1 and ‖μi − μ′

i‖ ≤ n−(3/2−b−1
2 ) for all i ∈ I. Furthermore,

we claim that Σ′ can be chosen so that ‖I − Σ′Σ−1‖ ≤ n−(1+b−1
1 +b−1

2 )εn. If so,
Proposition 11 implies

|f(xj)−m(xj)|
≤ 2εn +

∑
i∈I

|ui − u′
i|+

∑
i∈I

|ui||ϕΣ(xj − μi)− ϕΣ′(xj − μ′
i)|

� εn +
∑
i∈I

|ui − u′
i|+

∑
i∈I

|ui|
λ1(Σ

′)

λd(Σ′)
‖I − Σ′Σ−1‖+

∑
i∈I

|ui|
‖μi − μ′

i‖
λd(Σ′)

� εn,

for all j = 1, . . . , n. Therefore dn(f,m) � εn, and the claim is proved. A straight-
forward computation shows that we can find constants 0 < c0, c1 < ∞ such that
|Rn| ≤ nc0 and |Qn| ≤ nc1 , then

logN(δεn,Fn, dn) ≤ |I| log
( n

n−3/2
× nc0

)
+ log (nc1) � Hnε2n,

when n is large enough. In view of the previous computations, it is clear that δ
can be chosen to be δ = 1.

It remains to prove that for any Σ ∈ E with n−1/b2 ≤ λj(Σ) ≤ n−1/b1

we can find Σ′ ∈ Qn such that ‖I − Σ′Σ−1‖ ≤ n−(1+b−1
1 +b−1

2 )εn. Let Σ =
PTDP be the spectral decomposition of Σ. There is Σ′ = P ′TD′P ′ in Qn with

‖P − P ′‖ ≤ n−(1+2b−1
1 +2b−1

2 )εn and 1 ≤ λj(Σ
′)/λj(Σ) ≤ 1 + n−(1+b−1

1 +b−2
2 )εn.

Writing Σ̃ := P ′TDP ′, we get the bound

‖I − Σ′Σ−1‖(1 + ‖I − Σ̃Σ−1‖).

The first term of the rhs is bounded by n−(1+b−1
1 +b−1

2 )εn because I − Σ′Σ̃−1 =
P ′T (I −D′D−1)P ′. Regarding the second term, we have I − Σ̃Σ−1 = P ′T (B −
DBD−1)P for B := P ′PT − I. Then ‖I − Σ̃Σ−1‖ ≤ ‖B − DBD−1‖ ≤
d‖B‖max

λ1(Σ)
λd(Σ) , where

‖B‖max ≤ ‖B‖ ≤ ‖P − P ′‖ ≤ n−(1+2b−1
1 +2b−1

2 )εn.

Lemma 4. Assume that there is n0 ∈ N, and 0 < γ1 ≤ γ2 < 1 such that
n−γ2/2 ≤ εn ≤ n−γ1/2 for all n ≥ n0. Then Π(Fn(H, εn)

c) � exp(−H
4 (1 −

γ2)nε
2
n) for all n ≥ n0.



Posterior concentration rates for mixtures of Gaussians 4087

Proof. We use the fact that M ∼ Πα is almost surely purely-atomic (Kingman,
1992)). Then from the definition of Fn it follows

Π(Fc
n) ≤ dGΣ(Σ : λd(Σ) < n−1/b2) + dGΣ(Σ : λ1(Σ) > n1/b1)

+ Πα

(∑∞
i=1 |ui| > n

)
+Πα

(∑∞
i=1 |ui| 1{|ui| ≤ n−1} > εn

)
+Πα

(
|{i : |ui| > n−1}| > Hnε2n/ logn

)
.

We bound each of the terms as follows. By assumption the first two terms are
bounded by d(e−a1n + e−a2n). Notice that

∑∞
i=1 |ui| = |M |, where |M | denote

the total variation of the measure M . Since by definition we have M
d
= M1−M2,

with M1,M2 independent Gamma random measures with same base measure
α(·), it follows that |Q| has the distribution of a Gamma random variable with
shape parameter 2α. Then by Markov’s inequality,

Πα

(∑∞
i=1 |ui| > n

)
= Πα

(
e

1
2 |M | > e

1
2n
)
≤ 22αe−

1
2n.

Also, by the superposition theorem (Kingman, 1992, section 2), for any M ∼ Πα

we have M
d
= M3 +M4, where M3 and M4 are independent random measures

with total variation |M3| and |M4| having Laplace transforms (for all t ∈ R for
which the integrals in the expressions converge)

Eet|M3| := exp

{
2α

∫ ∞

1/n

(etx − 1)x−1e−x dx

}
,

Eet|M4| := exp

{
2α

∫ 1/n

0

(etx − 1)x−1e−x dx

}
.

M3 and M4 are almost-surely purely atomic, M3 has only jumps greater than
1/n (almost surely) which number is distributed according to a Poisson dis-
tribution with intensity 2αE1(n

−1), where E1 denotes the exponential integral

E1 function: E1(x) =
∫∞
x

e−t

t dt. Likewise, M4 has only jumps smaller or equal
to 1/n (almost-surely) which number is almost-surely infinite. Recalling that
E1(x) = γ+log(1/x)+o(1) for x small, it holds 2αγ ≤ 2αE1(1/n) ≤ 6α logn ≤
xn for n sufficiently large, with xn := Hnε2n/ logn. Thus using Chernoff’s bound
on Poisson distribution, we get

Πα

(
|{i : |ui| > n−1}| > Hnε2n/ logn

)
≤ e−2αE1(1/n)

(e2αE1(1/n))
xn

xxn
n

≤ exp

{
−1

2
xn log xn

}
.

But, log xn = logn + logH − 2 log ε−1
n − log logn ≥ (1 − γ2) log n + logH −

log logn ≥ 1
2 (1− γ2) log n for large n. Therefore, as n → ∞

Πα

(
|{i : |ui| > n−1}| > Hnε2n/ logn

)
≤ exp

{
−H

4
(1− γ2)nε

2
n

}
.



4088 Z. Naulet and J. Rousseau

Finally, we use again Markov’s inequality to get

Πα

(∑∞
i=1 |ui| 1{|ui| ≤ n−1} > εn

)
= Πα

(
enεn|M4| > enε

2
n

)
≤ e−nε2n exp

{
2α

∫ 1/n

0

(enεnx − 1)x−1e−x dx

}
.

But for x ∈ (0, 1/n), we have enεnx − 1 ≤ n(enεnδn − 1)x, thus the integral in
the previous expression is bounded by 2α(eεn − 1), which is in turn bounded by
2α(e− 1) because εn ≤ 1 if n ≥ n0.

4.2. Location-scale mixtures

4.2.1. Kullback-Leibler condition

We use the notations M, ΛJ , Ij , . . . defined in the Section 3.4. By Chebychev
inequality, we have Q0(‖X‖ > ζj) ≤ ζ−p

j Q0‖X‖p. Therefore, bringing together
results from Propositions 7 and 8,∫

|fM (x)− f0(x)|2 dQ0(x)

=

J∑
j=0

∫
Ij

|fM (x)− f0(x)|2 dQ0(x) +

∫
Ac

0

|fM (x)− f(x)|2 dQ0(x)

� J3
J∑

j=0

σ2β
j Q0(Ij) + J3Q0(A

c
0).

Then we can find a constant C > 0 such that
∫
|fM (x) − f0(x)|2 dQ0(x) ≤

CJ4σ2β
J for all M ∈ M and J large enough.

By equation (7), we have GΣ(Ujk) � σ−2b3
j σ

b4(β+d)
J exp(−a3σ

−κ
j ) for all

j = 0, . . . J . Moreover, there is a separation of hJσj between two consecutive μjk

and hJσj � σj , thus all the Wjk with (j, k) ∈ ΛJ are disjoint. By equation (8),

we have αjk := αGΣ(Ujk)Gμ(Vjk) � σb5−2b3
j σ

b5β+b4(β+d)
J exp(−a3σ

−κ
j )(1 +

‖μjk‖)−b6 for all (j, k) ∈ ΛJ . We also define αc := α(W c). For J large enough,
there is a constant C ′ > 0 not depending on J such that αc > C ′. More-
over, since α has finite variation we can assume without loss of generality that
C ′ ≤ αc ≤ 1, otherwise we split W c into disjoint parts, each of them having
α-measure smaller than one. With ε2n := CJ4σ2β

J , using that Γ(α) ≤ 2αα−1 for
α ≤ 1 and M ⊂ KL(f0, εn), it follows the lower bound

Π(KL(f0, εn)) ≥
σβ
J

3eΓ(αc)

∏
(j,k)∈ΛJ

(
σβ
Je

−2|ujk|

3eΓ(αjk)

)
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≥ σβ
J

3eΓ(αc)

∏
(j,k)∈ΛJ

exp

{
−2|ujk| − β log σ−1

J + log
1

6e
+ (αjk − 1) logαjk

}
≥ exp

{
−KJ |ΛJ | − 2

∑
(j,k)∈ΛJ

|ujk| −
∑

(j,k)∈ΛJ
logα−1

jk

}
,

(21)

for a constant K > 0 depending only on C and β. We now evaluate the sums
involved in the rhs of equation (21). As before, be have that

∑
(j,k)∈ΛJ

|ujk| ≤
4‖f0‖1σ−d

J (see for instance the proof of Proposition 8). Act as in Section 4.1.1
to find that ∑

(j,k)∈ΛJ

logα−1
jk � J |ΛJ |+ J1+d/2σ−d

J + |ΛJ |σ−κ
J .

The term proportional to |ΛJ |σ−κ
J is entirely responsible for the bad rates in

location-scale mixtures, and the aim of the hybridation of next section is to get
rid of it. For a constant K ′ > 0,

Π(KL(f0, εn)) ≥ exp
{
−K ′ max(|ΛJ |σ−κ

J , J1+d/2σ−d
J )
}
.

Then for appropriate constants C ′, t > 0 we can have Π(KL(f0, εn)) ≥ e−c2nε
2
n if

ε2n =

{
C ′n− 2β

2β+min(β+d,2βd/p)+κ (log n)t, p ≤ 2β,

C ′n− 2β
2β+d+κ (logn)t, p > 2β.

4.2.2. Sieve construction

Using the notation fM (x) :=
∫
ϕΣ(x− μ) dM(Σ, μ), we construct the following

sieve.

Fn(H, ε) :=

⎧⎨⎩f = fM :

M =
∑∞

i=1 uiδΣi,μi ,
∑∞

i=1 |ui| ≤ n,
∑∞

i=1 |ui| 1{|ui| ≤ n−1} ≤ ε,∑∞
i=1 |ui| 1{λd(Σi) < n−1/b2} ≤ ε,

∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} ≤ ε

|{i : |ui| > n−1, ∀j : n−1/b2 ≤ λj(Σi) ≤ n1/b1}| ≤ Hnε2/ logn,

⎫⎬⎭. (22)

Lemma 5. Let x = (x1, . . . , xn) ∈ Rn be arbitrary and dn be the empirical
L2-distance associated with x. Then for any n−1/2 < εn ≤ 1, 0 < H ≤ 1 and
n sufficiently large there is a constant C > 0 not depending on n such that
logN(εn,Fn(H, εn), dn) ≤ CHnε2n.

Proof. The proof is almost identical to Lemma 3.

Lemma 6. Assume that there is n0 ∈ N, and 0 < γ1 ≤ γ2 < 1 such that
n−γ2/2 ≤ εn ≤ n−γ1/2 for all n ≥ n0. Then Π(Fn(H, εn)

c) � exp(−H
4 (1 −

γ2)nε
2
n) for all n ≥ n0.
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Proof. We first write the estimate

Π(Fc
n) ≤ Πα

(∑∞
i=1 |ui| > n

)
+Πα

(∑∞
i=1 |ui| 1{λd(Σi) < n−1/b2} > εn

)
+Πα

(∑∞
i=1 |ui| 1{|ui| ≤ n−1} > εn

)
+Πα

(∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} > εn

)
+Πα

(
|{i : |ui| > n−1, ∀j : n−1/b2 < λj(Σi) ≤ n1/b1}| > Hnε2n/ logn

)
.

The first, third and last terms in the rhs above obeys the same bounds as in
the proof of Lemma 4, using the same arguments. The two remaining terms
are bounded using the same trick. For instance, note that the random variable
U :=

∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} has Gamma distribution with parameters

(2α(An), 1), where An := {(Σ, μ) : λ1(Σ) > n1/b1}. For n large, by assumptions
on GΣ, it holds α(An) � εn. Then by Chebychev inequality, for n large enough

Πα

(∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} > εn

)
≤ Pr(U − EU > εn − EU)

≤ Pr(U − EU > εn/2)

≤ 16ε−2
n α(An)

2. (23)

The conclusion follows from the assumptions on GΣ which imply α(An) =
αGΣ(Σ : λ1(Σ) > n1/b1) � exp(−a1n). The other term is left to the reader.

4.3. Hybrid location-scale mixtures

Obviously, given the definition of a hybrid mixture (see Section 4.3), most of
the proof is redundant with the location-scale case, and in the sequel we deal
only with the parts that differ.

4.3.1. Kullback-leibler condition

LetM ≡ M(β, J, f,ΛJ) be the set of signed measures constructed in Section 3.4.
For any integer J > 0 let ΩJ be the event

ΩJ :=
{
PΣ : PΣ(Ej,Jβ) ≥ 2−J ∀ 0 ≤ j ≤ J

}
.

Then with arguments and constant C > 0 from Section 4.2.1, letting ε2n :=

CJ4σ2β
J , we have

Π(KL(f0, εn)) ≥ Π(M) ≥ Π(M | ΩJ)ΠΣ(ΩJ).

But by equation (11) there are constants a6, b7, κ
∗ eventually depending on β

such that ΠΣ(ΩJ) � exp(−a6J
b72Jκ

∗
) and on ΩJ it holds

α(Wjk) = αPΣ(Uj)Gμ(Vjk) ≥ α2−JGμ(Vjk),
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for all (j, k) ∈ ΛJ . Then act as in equation (21) to find a constant K > 0 such
that (recalling that σJ = 2−J)

Π(KL(f0, εn)) � exp
{
−Kmax(Jb7σ−κ∗

J , J1+d/2σ−d
J )−KJ |ΛJ |

}
.

Because of Proposition 6 we can have Π(KL(f0, εn)) ≥ e−c2nε
2
n if for appro-

priate constants C ′, t > 0

ε2n =

{
C ′n− 2β

2β+max(κ∗,min(β+d,2βd/p) p ≤ 2β,

C ′n− 2β
2β+max(κ∗,d) (logn)t p > 2β.

4.3.2. Sieve construction

We use the same sieve Fn(H, ε) as in equation (22). The definition of Fn(j, ε) is
independent of Π thus the conclusion of Lemma 3 holds for hybrid location-scale
mixtures. It remains to show that Π(Fn(H, ε)c) ≤ exp(−2c2nε

2
n), which is the

object of the next lemma.

Lemma 7. Assume that there is n0 ∈ N, and 0 < γ1 ≤ γ2 < 1 such that
n−γ2/2 ≤ εn ≤ n−γ1/2 for all n ≥ n0. Then there is a constant a constant
γ2 < γ < 1 such that Π(Fn(H, εn)

c) � exp(−H
4 (1− γ)nε2n) for all n ≥ n0.

Proof. We proceed as in the proof of Lemma 6. Following the same steps, we
deduce that it is sufficient to prove that

Πα

(∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} > εn

)
� e−2c2n,

Πα

(∑∞
i=1 |ui| 1{λd(Σi) < n−1/b2} > εn

)
� e−2c2n.

Since the proofs are almost identical for the two previous conditions, we only
prove the first and leave the second to the reader. Notice that by equation (23)
we have

Πα

(∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} > εn

∣∣∣ PΣ

)
≤ 16αε−2

n PΣ(Σ : λ1(Σ) > n1/b1)2.

Letting Ω := {PΣ : PΣ(λ1(Σ) > n1/b1) < exp(−a1n/2)}, with a slight abuse of
notation, it follows from equation (9)

Πα

(∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} > εn

)
≤ Πα

(∑∞
i=1 |ui| 1{λ1(Σi) > n1/b1} > εn

∣∣∣ Ω)+ΠΣ(Ω
c)

� ε−2
n exp(−a1n) + exp(−a4n).
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5. Proof of Theorem 2

The proof follows the same lines as Ghosal and van der Vaart (2007b) with
additional cares. The first step consists on rewriting expectation of the posterior
distribution as follows. Let (φn(· | ·))n≥0 be a sequence of test functions such
that for n large enough

Qn
0 [P

n
0 [φn(y | x) | x]] � N(ε/18,Fn, dn) exp

(
−nε2n

2

)
,

sup
{f :dn(f,f0)≥17εn/18}∩Fn

Qn
0

[
Pn
f [1− φn(y | x)] | x

]
� exp

(
−nε2n

2

)
.

The existence of such test functions is standard and follows for instance from
Birgé (2006, proposition 4), or Ghosal and van der Vaart (2007b, section 7.7).
From here, we bound the posterior distribution in a standard fashion,

Qn
0 [P

n
0 [Πx({f : dn(f, f0) > εn} | y,x) | x]] ≤ Qn

0 [P
n
0 [Πx(Fc

n | y,x) | x]]
+Qn

0 [P
n
0 [Π({f : dn(f, f0) > εn} ∩ Fn | y,x) | x]].

So that,

Qn
0 [P

n
0 [Πx({f : dn(f, f0) > εn} | y,x) | x]] ≤ Qn

0 [P
n
0 [Πx(Fc

n | y,x) | x]]
+Qn

0 [P
n
0 [φn(y | x)Πx({f : dn(f, f0) > εn} ∩ Fn | y,x) | x]]

+Qn
0

[
Pn
0

[(
1− φn(y | x)

)
Πx({f : dn(f, f0) > εn} ∩ Fn | y,x) | x

]]
.

(24)

Now, to any x ∈ Rd×n, we associate the events

En(x) :=

{
y ∈ Rn :

∫
F

n∏
i=1

pf (xi, yi)

pf0(xi, yi)
dΠx(f) ≥ exp

(
−(1 + 4c2)

nε2n
4

)}
.

(25)
and we define

Ẽn =
{
x : Πx

(
{f : dn(f, f0) ≤ εn} ≥ δ0 exp(−c2nε

2
n)}
)}

.

By assumption Qn
0 (Ẽ

c
n) = o(1). Consider the first term of the rhs of equa-

tion (24). We can rewrite,

Qn
0 [P

n
0 [Πx(Fc

n | y,x) | x]]

≤ e
1
4 (4c2+1)nε2n

δ0

∫
Rd×n

1Ẽn

∫
En(x)

∫
Fc

n

n∏
i=1

pf (xi, yi)

pf0(xi, yi)
dΠx(f)dP

n
0 (y | x)dQn

0 (x)

+

∫
Rd×n

1Ẽn

∫
En(x)c

dPn
0 (y | x)dQn

0 (x) +Qn
0 (Ẽ

c
n)
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=
e

1
4 (4c2+1)nε2n

δ0

∫
Rd×n

∫
Fc

n

∫
En(x)

dPn(y | x)dΠx(f)dQ
n
0 (x)

+

∫
Rd×n

1Ẽn

∫
En(x)c

dPn
0 (y | x)dQn

0 (x) + o(1)

≤ e
1
4 (4c2+1)nε2n

δ0

∫
Rd×n

Πx(Fc
n) dQ

n
0 (x)

+

∫
Rd×n

1Ẽn

∫
En(x)c

dPn
0 (y | x)dQn

0 (x) + o(1),

where the third line follows from Fubini’s theorem. The same reasoning applies
to the other terms of equation (24), using the test functions introduced above
and 0 < c2 < 1/4. Hence the theorem is proved if we show that∫

Rd×n

1Ẽn

∫
En(x)c

dPn
0 (y | x)dQn

0 (x) = o(1).

Moreover Ghosal and van der Vaart (2007b, Lemma 10) implies that on Ẽn

Pn
0

(∫
F

n∏
i=1

pf (xi, Yi)

pf0(xi, Yi)
dΠx(f) < δ0 exp

(
−1

4
(1 + 4c2)ε

2
n

) ∣∣∣∣∣ x
)

≤ 1

nε2n
,

which terminates the proof.

Appendix A: Proofs of Lemma 1 and 2 and some technical results
on the kernels

A.1. Proof of Lemma 1

Clearly, ‖χσ ∗ f‖1 ≤ ‖χσ‖1‖f‖1 by Young’s inequality, so that χσ ∗ f ∈ L1 and
̂(χσ ∗ f)(ξ) = χ̂σ(ξ)f̂(ξ), showing that the support of the Fourier transform of

χσ ∗ f is included in [−1/σ, 1/σ]d. Moreover, using again Young’s inequality we
get that ‖χσ ∗ f‖∞ ≤ ‖χσ‖1‖f‖∞, thus χσ ∗ f ∈ L∞.

By construction of χ̂, it follows by integrating by parts that for any q ∈ Nd

we have (−i)|q|uqχ(u) = (2π)−d
∫
Dqχ̂(ξ)eiξudξ. Clearly χ̂ is Schwartz, hence

by Fourier inversion we have that

(−i)|q|
∫

uqχ(u)e−iξudu = Dqχ̂(ξ), ∀ξ ∈ Rd.

But, by construction χ̂(0) = 1, and for any q ∈ Nd with |q| ≥ 1 we have
Dqχ̂(0) = 0. It follows that

∫
χ(u)du = 1, and

∫
uqχ(u)du = 0 for any |q| ≥ 1.

Whence, letting m be the largest integer smaller than β, and using Taylor’s
formula with exact remainder term
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χσ ∗ f(x)− f(x)

=

∫
χσ(y) [f(x− y)− f(x)] dy =

∫
χ(y) [f(x− σy)− f(x)] dy

=
∑

1≤|k|≤m−1

(−σ)|k|

k!

∫
ukχ(u) du

+
∑

|k|=m

m(−σ)m

k!

∫
ykχ(y)

∫ 1

0

(1− u)m−1Dkf(x− σuy) dudy

=
∑

|k|=m

m(−σ)m

k!

∫
ykχ(y)

∫ 1

0

(1− u)m−1
[
Dkf(x− σuy)−Dkf(x)

]
dudy.

Therefore, because f ∈ Cβ ,

|χσ ∗ f(x)− f(x)|

≤ σm
∑

|k|=m

m

k!

∫
|ykχ(y)|

∫ 1

0

(1− u)m−1|Dkf(x− σuy)−Dkf(x)| dudy

≤ ‖f‖Cβσβ
∑

|k|=m

m

k!

∫
|ykχ(y)| dy

∫ 1

0

(1− u)m−1 du.

A.2. Proof of Lemma 2

We mostly follow the proof of Hangelbroek and Ron (2010, proposition 1). Writ-
ing,

Kh,σfσ(x) =

∫
hd

σd

∑
k∈Zd

ϕ

(
x− hσk

σ

)
η

(
y − hσk

σ

)
fσ(y) dy

=
hd

σd

∑
k∈Zd

ϕ

(
x− hσk

σ

)∫
η

(
y − hσk

σ

)
fσ(y) dy

=
hd

(2π)d

∑
k∈Zd

ϕ

(
x− hσk

σ

)∫
η̂(σξ)f̂σ(ξ)e

ihσξk dξ

=

∫
η̂(σξ)f̂σ(ξ)

hd

(2π)d

∑
k∈Zd

ϕ

(
x− hσk

σ

)
eihσξk dξ.

Then we can invoke the Poisson summation formula (Härdle et al., 1998, theo-
rem 4.1), which is obviously valid for ϕ, and

∑
k∈Zd

ϕ

(
x− hσk

σ

)
eihσξk =

1

hd

∑
m∈Zd

ϕ̂

(
σξ +

2πm

h

)
ei(σξ+

2πm
h )x/σ.
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Therefore, recalling that f̂σ is supported on [−1/σ, 1/σ]d and χ̂ equals 1 on
[−1, 1]d,

Kh,σfσ(x) =
1

(2π)d

∫
χ̂(σξ)f̂σ(ξ)

∑
m∈Zd

ϕ̂(σξ + 2πm/h)

ϕ̂(σξ)
ei(σξ+

2πm
h )x/σ dξ

= fσ(x) +
1

(2π)d

∑
m∈Zd\{0}

∫
f̂σ(ξ)

ϕ̂(σξ + 2πm/h)

ϕ̂(σξ)
ei(σξ+

2πm
h )x/σ dξ.

It follows that,

|Kh,σfσ(x)− fσ(x)| ≤
1

(2π)d
‖f̂σ‖1 sup

ξ∈[−1,1]d

∑
m∈Zd\{0}

∣∣∣∣ ϕ̂(ξ + 2πm/h)

ϕ̂(ξ)

∣∣∣∣ .
Now, ‖f̂σ‖1 ≤ 2σ−d‖f̂σ‖∞ ≤ 2σ−d‖fσ‖1 ≤ 2σ−d‖χσ‖1‖f‖1, which is finite
by assumption. Recalling that by assumption ϕ̂ is Gaussian, it follows for all
ξ ∈ [−1, 1]d and all h ≤ 1,∑

m∈Zd\{0}

∣∣∣∣ ϕ̂(ξ + 2πm/h)

ϕ̂(ξ)

∣∣∣∣ ≤ ∑
m∈Zd\{0}

exp

{
−1

2
‖ξ + 2πm/h‖2 + 1

2
‖ξ‖2

}

≤
∑

m∈Zd\{0}
exp

{
−2π2

h2

(
1− h

2π‖m‖

)
‖m‖2

}
.

This concludes the proof of the lemma.

A.3. Some other technical results on Kh,σ

Lemma 8. There is a universal constant C > 0 such that for all x ∈ Rd, all
0 < h ≤ 1 and all σ > 0,

∑
k∈Zd |η((x− hσk)/σ)| ≤ Ch−d. Moreover, η ∈ S.

Proof. We first prove that η ∈ S. Obviously ϕ̂ ∈ S, and therefore so is η̂. Since
the Fourier transform and the inverse Fourier transform are continuous mapping
of S onto itself, it is immediate that η ∈ S.

We finish the proof by remarking that x �→
∑

k∈Zd |η((x−hσk)/σ)| is periodic
with period hσ, hence it suffices to check that it is bounded for x ∈ [0, hσ]d. If
x ∈ [0, hσ]d, then ‖x− hσk‖ ≥ hσ‖k‖/2 for any ‖k‖ ≥ 2, so that∑

k∈Zd

|η((x− hσk)/σ)| ≤ 3 sup
u∈Rd

|η(u)|+
∑

‖k‖≥2

|η((x− hσk)/σ)|.

Because η ∈ S, we can find a constant B > 0 such that

sup
x∈Rd

(1 + ‖x‖)d+1|η(x)| ≤ B.

Therefore, ∑
k∈Zd

|η((x− hσk)/σ)| ≤ 3‖η‖∞ +B
∑

‖k‖≥2

(1 + h‖k‖/2)−2

≤ 3‖η‖∞ +B(4h−1)d,
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which concludes the proof of the first assertion with C := 3‖η‖∞+4dB, because
of the assumption h ≤ 1.

The following Lemma gives some control on the coefficients of f on η.

Proposition 9. Let 0 < h ≤ 1 and ak(f) := (h/σ)d
∫
η((y − hσk)/σ)f(y) dy

for all k ∈ Zd. Then there are universal constants C,C ′ > 0, depending only
on ϕ, such that

∑
k∈Zd |ak(f)| ≤ C‖f‖1σ−d, and |ak(f)| ≤ C ′‖f‖∞hd for all

k ∈ Zd.

Proof. For the first assertion of the proposition, we write,

∑
k∈Zd

|ak(f)| ≤
hd

σd

∑
k∈Zd

∫
|f(y)||η((y − hσk)/σ)| dy

≤ σ−d‖f‖1 sup
y∈Rd

hd
∑
k∈Z

|η((y − hσk)/σ)|,

and the conclusion follows from Lemma 8. The proof of the second assertion is
simpler. Indeed,

|ak(f)| ≤
hd

σd

∫
|f(y)||η((y − hσk)/σ)| dy ≤ hd‖f‖∞

∫
|η(u)| du,

where the last integral is bounded because η ∈ S by Lemma 8.

Appendix B: Proof of Corollary 1

Take Fn as in Section 4.1.2. Then by Lemma 3 we have logN(εn/18,Fn, dn) ≤
nε2n/4 for H chosen small enough. As for Qn

0Πx(Fc
n), it is immediate from the

proof of Lemma 4 that Qn
0Πx(Fc

n) � exp(−1
2 (1+2c2)nε

2
n) for some c2 > 0 when

ε2n is as in the corollary. Hence to apply Theorem 2 it remains to prove that

Qn
0

(
Πx(f : dn(f, f0) ≤ εn) ≤ δ0 exp(−c2nε

2
n)
)
= o(1).

To do so, let x = (x1, . . . , xn) ∈ Rd×n arbitrary, σ > 0 and hσ

√
log σ−1 := c0

for a constant c0 > 0 small enough. Recall that from Lemma 1 and 2 we have
‖Khσ,σ(χσ ∗ f0) − f0‖∞ � σβ , where Khσ,σ(χσ ∗ f0)(z) :=

∑
k∈Zd uk ϕσ2I(z −

hσσk). Define Sn(x) :=
⋃n

i=1{z ∈ Rd : ‖z − xi‖ ≤ σ
√
2(β + d) log σ−1} and

Λ(x) := {k ∈ Zd : |uk| > σβ , hσσk ∈ Sn(x)}.

Also define Uσ := {σ′ : σ ≤ σ′ ≤ σ(1 + σβ)}, and for all k ∈ Λ(x) define
Vk := {μ : ‖μ− hσσk‖ ≤ σβ+d}. We denote by Mσ the set of signed measures
M on Rd such that |M(Vk) − uk| ≤ σβ for all k ∈ Λ(x) and |M |(V c) ≤ σβ ,
where V c is the relative complement of the union of all Vk for k ∈ Λ(x). For any
M ∈ Mσ, we write fM,σ(z) :=

∫
ϕσ2I(z − μ) dM(μ). Act as in Proposition 5

to find that dn(fM,σ, f0) ≤ Ch−2
σ σβ for any M ∈ Mσ, with a constant C > 0
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not depending on x, M and σ. By construction of Sn(x), for all k ∈ Λ(x) there
is at least one xi such that ‖hσσk − xi‖ ≤ σ

√
2(β + d) log σ−1. Then for any

k ∈ Λ(x), because g(0) > 0 and g is continuous at zero,

αGx(Vk) ≥ n−1

∫
‖z−hσσk‖≤σ

g(z − xi) dz ≥ Cn−1σd.

The constants C > 0 in the previous equation does not depend on x nor σ nor
n. Remarking that |Λ(x)| � σ−(β+d) independently of x (see Proposition 3) and
letting εn = C ′h−2

σ σβ we can mimic the steps of Section 4.1.1 to find that

Πx(f : dn(f, f0) ≤ ε) � exp
{
−C ′′|Λ(x)| log σ−1 − C ′′|Λ(x)| log n

}
� exp(−c2nε

2
n),

for a constant C ′′ > 0 not depending on x and ε2n defined in the corollary. Hence

inf
x

Πx(f : dn(f, f0) ≤ εn) ≥ δ0 exp(−c2nε
2
n)

Appendix C: Some technical results on the construction of the
approximation in the case of location-scale mixtures

Proposition 10. Let f0 ∈ Cβ. For any j ≥ 0, we have |Δj(x)| ≤ C‖f0‖Cβσβ
j ,

with the same constant C > 0 as in Lemma 1. Moreover, ‖Δj‖1 ≤ 2‖f0‖1 for
all j ≥ 0.

Proof. Notice that ‖Δj+1‖1 ≤ ‖Δj‖1 + ‖χσj+1 ∗ Δj‖ ≤ (1 + ‖χ‖1)‖Δj‖1, by
Young’s inequality. Since f0 ∈ L1, this implies Δj ∈ L1 for all j ≥ 0. Since

Δ̂j+1(ξ) = Δ̂j(ξ)−χ̂σj+1(ξ)Δ̂j(ξ), we get Δ̂j(ξ) = f̂0(ξ)
∏j

l=1 (1− χσl
(ξ)), by in-

duction. Because σj+1 = σj/2, and by construction of χσl
we have χ̂σm(ξ)χ̂σl

(ξ)

= χ̂σm(ξ) for any m > l, hence the last equation can be rewritten as Δ̂j(ξ) =

f̂0(ξ)(1 − χ̂σj (ξ)). Then we deduce that Δj = f0 − χσj ∗ f0. By Lemma 1, this

implies that |Δj(x)| ≤ C‖f0‖Cβσβ
j . From the same estimate, it is clear that

‖Δj‖1 ≤ ‖f0‖1 + ‖χσj ∗ f0‖1 ≤ 2‖f0‖1.

C.1. Proof of Proposition 8

Let define A(β, J) := (2 log |ΛJ | + 2β log σ−1
J )1/2 and J ≡ J (x) := {(j, k) ∈

{0, . . . , J} × Zd : ‖x− μjk‖ ≤ 4A(β, J)σj}. For any M ∈ M we can write

fM (x)− f0(x) =
∑

(j,k)∈ΛJ∩J

∫
Wjk

[
ϕΣ(x− μ)− ϕσ2

j I
(x− μjk)

]
dM(Σ, μ)

+
∑

(j,k)∈ΛJ∩J
[M(Wjk)− ujk]ϕσ2

j I
(x−μjk)+

∑
(j,k)∈ΛJ∩J c

∫
Wjk

ϕΣ(x−μ) dM(Σ, μ)

−
∑

(j,k)∈ΛJ∩J c

ujk ϕσ2
j I
(x− μjk)−

∑
(j,k)/∈ΛJ

ujk ϕσ2
j I
(x− μjk)
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+

∫
W c

ϕΣ(x− μ) dM(σ, μ)

:= r1(x) + r2(x) + r3(x) + r4(x) + r5(x) + r6(x).

The proof follows similar steps as the proof of Proposition 5. From the definition
of A(β, J) and Proposition 6, we deduce that A(β, J) �

√
J for J large enough.

Also, there is a separation of hJσj between two consecutive μjk. Then there are
no more than 16A(β, J)σj/(hJσj) = 16A(β, J)h−1

J distinct values of μjk in an

interval of length 8A(β, J)σj . Thus the bound |ΛJ ∩J | � (J+1)A(β, J)dh−d
J �

J1+d holds. It follows from Proposition 11 that |r1(x)| � |ΛJ ∩ J |σβ+d
J �

J1+dσβ+d
J . Obviously, |r2(x)| ≤ ‖ϕ‖∞|ΛJ ∩ J |σβ

J � J1+dσβ
J . Acting as in the

proof of Proposition 5, we get for any Σ ∈ Ujk that

ϕΣ(x) ≤ exp

{
− 1

2σ2
j

(1− σ2
jσ

β
J )‖x‖2

}
.

Whenever (j, k) ∈ ΛJ ∩ J c and (Σ, μ) ∈ Wjk we have ‖μ − μjk‖ ≤ σjA(β, J)
for J large enough. Then ‖x − μ‖ ≥ 3A(β, J)σj ≥ σjA(β, J)/(1 − σ2

jσ
2
J)

1/2

for J large. Therefore, |r3(x)| � exp(−1
2A(β, J)

2)|ΛJ | ≤ σβ
J . With the same

reasoning we get |r4(x)| � ‖f0‖∞σβ
J . Regarding r6, we have the obvious bound

|r6(x)| ≤ ‖ϕ‖∞σβ
J . The r5 term is more subtle and constitutes the remainder

of the proof. Let Λc := {(j, k) ∈ {0, . . . , J} × Zd : |ujk| ≤ σβ
J} and Kj := {k ∈

Zd : ‖μjk‖ > 22β(J−j)/p + σj

√
2(β + d) log σ−1

J }. Recall that Aj := {x ∈ Rd :

‖x‖ ≤ 22β(J−j)/p}. Assuming that x ∈ Aq for some 0 ≤ q ≤ J , we can bound
r5(x) as follows,

|r5(x)| ≤
∑

(j,k)∈Λc

|ujk|ϕσ2
j I
(x− μjk)

+
∑
j≤q

∑
k∈Kj

|ujk|ϕσ2
j I
(x− μjk) +

∑
j>q

∑
k∈Kj

|ujk|ϕσ2
j I
(x− μjk), (26)

where the third term of the rhs does not exist if q = J . The first term of the rhs
of equation (26) is bounded by σβ

J supx∈Rd

∑J
j=0

∑
k∈Zd ϕσ2

j I
(x− μjk), which is

in turn bounded by a constant multiple of J1+d/2σβ
J (see for instance the proof

of Lemma 8). Because of Propositions 9 and 10, when x ∈ Aq we always have∑
j≤q

∑
k∈Kj

|ujk|ϕσ2
j I
(x− μjk) ≤ sup

j≤q
k∈Kj

ϕσ2
j I
(x− μjk)

∑
j≤J

∑
k∈Zd

|ujk|

≤ σβ+d
J

∑
j≤J

2‖f0‖1σ−d
j � σβ

J .

Regarding the second term of the rhs of equation (26), we introduce the sets of

indexes Lj ≡ Lj(x) := {k ∈ Kj : ‖x− μjk‖ ≤ σj

√
2(β + d) log σ−1

J }. Then, we
can split again the sum as
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j>q

∑
k∈Kj

ujk ϕσ2
j I
(x− μjk)

=
∑
j>q

∑
k/∈Lj

ujk ϕσ2
j I
(x− μjk) +

∑
j>q

∑
k∈Lj

ujk ϕσ2
j I
(x− μjk).

With exactly the same reasoning as before, we get that the first sum of the rhs of
the last expression is bounded above by a multiple constant of σβ

J . Concerning
the second term, for any j ≥ 1 we get from Propositions 9 and 10, together
with the definition of ujk, that |ujk| � ‖f‖Cβσβ

j . Since there is hJσj separation

between two consecutive μjk, we deduce that |Lj | � h−d
J [2(β + 1) log σ−1

J ]d/2.
Therefore, for J large enough and x ∈ Aq with 0 ≤ q ≤ J ,

|r5(x)| � σβ
J + h−d

J [2(β + 1) log σ−1
J ]d/2

∑
j>q

σβ
j � Jdσβ

q .

The conclusion of the proposition follows by combining all the preceding points.

Appendix D: Elementary results

Proposition 11. Let ϕΣ(x) = exp(−1
2x

TΣ−1x) for x ∈ Rd and ξ ∈ E. Then,
for all μ1, μ2 ∈ Rd, and all Σ1,Σ2 ∈ E

sup
x∈Rd

|ϕΣ1(x− μ1)− ϕΣ2(x− μ2)| �
‖μ1 − μ2‖
λd(Σ2)

+
λ1(Σ2)

λd(Σ2)
‖I − Σ2Σ

−1
1 ‖.

Proof. Using the triangle inequality, we write

|ϕΣ1(x− μ1)− ϕΣ2(x− μ2)|
≤ |ϕΣ2(x− μ1)− ϕΣ2(x− μ2)|+ |ϕΣ1(x− μ2)− ϕΣ2(x− μ2)| . (27)

We start with a bound on the second term of rhs of equation (27). For any
x ∈ Rd, assume first that xTΣ−1

1 x > xTΣ−1
2 x, then by a Taylor expansion of

exp(−u) around u = xTΣ−1
1 x,

ϕΣ1(x) = ϕΣ2(x)− ϕΣ2(x)

∫ xT (Σ−1
1 −Σ−1

2 )x

0

exp(−t)[xT (Σ−1
1 − Σ−1

2 )x− t] dt.

Hence,

|ϕΣ1(x)− ϕΣ2(x)| ≤ ϕΣ2(x)|xT (Σ−1
1 − Σ−1

2 )x| ≤ ‖Σ−1
1 − Σ−1

2 ‖‖x‖2ϕΣ2(x).

Note that Σ−1
2 is positive-definite and symmetric, hence Σ−1

2 = QTDQ for
some diagonal matrix D and an orthogonal matrix Q. It follows ‖x‖2ϕΣ2(x) =
‖QTQx‖2 exp(−(Qx)TD(Qx)) and thus,

sup
x∈Rd

‖x‖2ϕΣ2(x) = sup
x∈Rd

‖x‖2 exp(−xTDx)

≤ d sup
x∈R

x2 exp

(
−λd(Σ

−1
2 )

2
x2

)
≤ 2de−1

λd(Σ
−1
2 )

.
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The conclusion follows because ‖Σ−1
1 − Σ−1

2 ‖ ≤ ‖Σ−1
2 ‖‖I − Σ2Σ

−1
1 ‖ ≤

λ1(Σ
−1
2 )‖I − Σ2Σ

−1
1 ‖. The case xTΣ−1

1 x < xTΣ−1
2 x is handled similarly, while

xTΣ−1
1 x = xTΣ−1

2 x is trivial. The first term of equation (27) is bounded simi-
larly.

Proposition 12. Let X ∼ SGa(α, 1), with 0 < α ≤ 1. Then for any x ∈ R and

any 0 < δ ≤ 1/2 we have Pr{|X − x| ≤ δ} ≥ δe−2|x|

3eΓ(α) .

Proof. Assume for instance that x ≥ 0. Recalling that X is distributed as the
difference of two independent Ga(α, 1) distributed random variables, it follows

Pr{|X − x| ≤ δ} ≥ 1

Γ(α)

∫ ∞

0

yα−1e−y 1

Γ(α)

∫ x+y+δ

x+y

zα−1e−z dz dy.

Because α ≤ 1, the mapping z �→ zα−1e−z is monotonically decreasing on R+,
then the last integral in the rhs of the previous equation is lower bounded by
δ(x+ y + δ)α−1e−(x+y+δ) ≥ δe−2(x+y+δ). Then

Pr{|X − x| ≤ δ} ≥ δe−2(x+δ)

Γ(α)2

∫ ∞

0

yα−1e−3y dy ≥ 3−αe−2(x+δ)

Γ(α)
δ ≥ δe−2|x|

3eΓ(α)
.

The proof when x < 0 is obvious.
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