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FINITE SUMS INVOLVING TRIGONOMETRIC
FUNCTIONS AND SPECIAL POLYNOMIALS:

ANALYSIS OF GENERATING FUNCTIONS AND
p-ADIC INTEGRALS

Neslihan Kilar∗, Abdelmejid Bayad and Yilmaz Simsek

By using trigonometric and generating functions, some formulas and rela-

tions involving sums of powers of consecutive positive integers and certain

combinatorial sums are derived. By applying the derivative operator to some

certain families of special functions and finite sums involving trigonometric

functions, many novel relations related to the special numbers and polynomi-

als are obtained. Moreover, by applying p-adic integrals to these finite sums,

some p-adic integral representations of trigonometric functions are found.

1. INTRODUCTION

Special polynomials and special functions related to finite sums involving
trigonometric functions have been used in many different areas such as analytic
number theory, Fourier analysis, combinatorial analysis, engineering, mathemati-
cal physics, and many other sciences. Sums of powers of integers have also been
used in many areas. Moreover, these types of sums have important applications and
properties that make them useful in a variety of areas of mathematics. For example,
sums of powers are related to the Diophantine equations, many special numbers and
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polynomials. One of them is the well-known Faulhabers formula, which expresses
power sums as polynomials whose coefficients include the Bernoulli numbers. More-
over, these types of sums can be used in the theory of the Dedekind sums, the Hardy
sums, the character sums, the Kloosterman sums, and other special sums.

Our motivation of this paper is to give not only formulas and relations for
finite sums involving some of trigonometric functions, consecutive positive integers,
and combinatorial sums, but also p-adic integral formulas for some of trigonometric
functions. The other motivation is to give identities and formulas involving both
sums of powers of positive integers and finite sums with the trigonometric functions.
These results are related to the Bernoulli numbers and polynomials, the Euler
numbers and polynomials, the Stirling numbers, the Catalan numbers, the array
polynomials, and combinatorial numbers.

Throughout this paper, we use the following notations and definitions:

Let N, Z, R and C denote the set of natural numbers, the set of integers,
the set of real numbers and the set of complex numbers, respectively, and also
N0 = N ∪ {0}, i2 = −1. We also use the following notations:

0n =

{
1, (n = 0)
0, (n ∈ N)

and (
λ

n

)
=
λ (λ− 1) (λ− 2) . . . (λ− n+ 1)

n!
,

where
(
λ
0

)
= 0 and n ∈ N, λ ∈ C (cf. [43]).

The Bernoulli polynomials B
(r)
n (y) of order r are defined by

(1)

(
ω

eω − 1

)r
eyω =

∞∑
n=0

B(r)
n (y)

ωn

n!
,

where |ω| < 2π and r ∈ Z (r ≥ 0, r < 0) (cf. [2], [3], [7], [16], [17], [37], [40], [42],
[43]; and references therein).

Substituting y = 0 into (1), we get

B(r)
n (0) = B(r)

n ,

which denotes the Bernoulli numbers of order r.

Moreover, the Bernoulli polynomials Bn (y) and the Bernoulli numbers Bn
are given by

B(1)
n (y) = Bn (y) and B(1)

n = Bn.

The Euler polynomials E
(r)
n (y) of order r are defined by

(2)

(
2

eω + 1

)r
eyω =

∞∑
n=0

E(r)
n (y)

ωn

n!
,
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where |ω| < π and r ∈ Z (r ≥ 0, r < 0) (cf. [3], [7], [16], [17], [37], [40], [42], [43];
and references therein).

Substituting y = 0 into (2), we have

E(r)
n (0) = E(r)

n ,

which denotes the Euler numbers of order r.

When r = 1 in (2) and the above equation, the Euler polynomials En (y) and
the Euler numbers En are given by

E(1)
n (y) = En (y) and E(1)

n = En.

The Catalan numbers Cn are defined by

1−
√

1− 4ω

2ω
=

∞∑
n=0

Cnω
n,

where 0 < |ω| ≤ 1
4 and C0 = 1. From the above generating function, we have

(3) Cn =
1

n+ 1

(
2n

n

)
(cf. [29], [30], [35], [41], [43]).

The Stirling numbers of the second kind are defined by

(4)
(eω − 1)

k

k!
=

∞∑
n=0

S2 (n, k)
ωn

n!

(cf. [2], [7], [43]).

By using (2) and (4), we have

E(r)
n (y) =

n∑
j=0

(
n

j

)
yn−j

j∑
m=0

(−1)
m

(
r +m− 1

m

)
2−mm!S2 (j,m)

(cf. [43, Eq. (52)]).

The array polynomials are defined by

(5)
(eω − 1)

k!

k

eyω =

∞∑
n=0

Snk (y)
ωn

n!

(cf. [2], [4], [6], [33], [34], [38]).

From (5), we get

Snk (y) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
(y + j)

n
,
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and for k > n,
Snk (y) = 0

and also S0
0 (y) = Snn (y) = 1, Sn0 (y) = yn (cf. [2], [4], [6], [33], [34]).

One can easily see from (5) that

Snk (0) = S2 (n, k) .

The combinatorial numbers y1 (n, k;λ) are defined by

(6)
(λeω + 1)

k!

k

=

∞∑
n=0

y1 (n, k;λ)
ωn

n!
,

where k ∈ N0 and λ ∈ C (cf. [37, Eq. (8)]). The numbers y1 (n, k;λ), which have
many applications, are also called Simsek numbers (see [9]; also [24], [38]).

By using (6), we get

(7) y1 (n, k;λ) =
1

k!

k∑
j=0

(
k

j

)
jnλj

(cf. [37, Eq. (9)]).

The numbers B(n; k) are defined by

(8) B(n; k) =

k∑
j=0

(
k

j

)
jn

with

B(n; k) =
dn

dωn
(eω + 1)

k |ω=0

(cf. [13]).

By using (7) and (8), we have

(9) B(n; k) = k!y1 (n, k; 1)

(cf. [37, Eq. (10)]).

The results of this paper are briefly summarized as follows:

In Section 2, by applying derivative operator to the some trigonometric iden-
tities, we give many new and interesting formulas, including the Bernoulli numbers
and polynomials, the Euler numbers and polynomials, the Stirling numbers, the
Catalan numbers, the array polynomials, and combinatorial numbers. Moreover,
by using trigonometric relations, we give some finite sums of trigonometric func-
tions.

In Section 3, by applying the p-adic integrals, which are the Volkenborn
integral and the fermionic integral, to some trigonometric relations, we give some
finite sums and p-adic integral formulas of the trigonometric functions.
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In Section 4, we give some explicit formulas and relations in terms of the
Bernoulli polynomials and numbers for the sums of powers of consecutive positive
integers.

In Section 5, we give some observations and comments on our results.

2. APPLYING DERIVATIVE OPERATOR TO THE
TRIGONOMETRIC FUNCTIONS AND SUMS

In this section, by applying the derivative operator to some trigonometric
functions and combinatorial sums, we obtain many identities and relations for some
special numbers and polynomials including the numbers y1 (n, k;λ), the Catalan
numbers, the Stirling numbers, the Bernoulli numbers and polynomials, the Euler
polynomials, and the array polynomials.

Theorem 1. Let m, r ∈ N0. Then we have

Sm2r

(
1− 2r

2

)
+ Sm2r

(
−2r + 1

2

)
=

(1 + (−1)
m

)

(2r + 1)!2m

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

m+1
.(10)

Proof. Differentiating both sides of the well-known identity with respect to ω,

e−iω( 2r+1
2 ) (eiω − 1

)2r+1
=

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)(
eiω( 2j+1

2 ) − e−iω( 2j+1
2 )
)

(cf. [3], [16]), we have

d

dω

{
e−iω( 2r+1

2 ) (eiω − 1
)2r+1

}
=

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
d

dω

{
eiω( 2j+1

2 ) − e−iω( 2j+1
2 )
}
.

Thus

(2r + 1)
(
eiω − 1

)2r
e−iω( 2r+1

2 ) (eiω + 1
)

=

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

(
eiω( 2j+1

2 ) + e−iω( 2j+1
2 )
)
.(11)

Combining the above equation with (5), we get

∞∑
m=0

Sm2r

(
−2r + 1

2

)
(iω)

m

m!
+

∞∑
m=0

Sm2r

(
−2r + 1

2

)
(iω)

m

m!

=
1

(2r + 1)!

∞∑
m=0

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

m+1
(1 + (−1)

m
)

2m
(iω)

m

m!
.
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Comparing the coefficients of (iω)m

m! on both sides of the above equation, we arrive
at the desired result.

If m is replaced by 2m+ 1, then Theorem 1 reduces to the following result:

Corollary 1. Let r,m ∈ N0. Then we have

S2m+1
2r

(
1− 2r

2

)
= −S2m+1

2r

(
−2r + 1

2

)
.

Replacing m by 2m in Theorem 1, we have the following result:

Corollary 2. Let m, r ∈ N0. Then we have

S2m
2r

(
1− 2r

2

)
+ S2m

2r

(
−2r + 1

2

)
=

21−2m

(2r + 1)!

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

2m+1
.(12)

Combining (11) with the following identity

(13) cos (ω) =
eiω + e−iω

2
,

we obtain

(2r + 1)
(
eiω − 1

)2r
e−iω( 2r+1

2 ) (eiω + 1
)

(14)

= 2

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1) cos

(
ω

(
2j + 1

2

))
.

Combining the above equation with (5), we get

∞∑
m=0

Sm2r

(
1− 2r

2

)
(iω)

m

m!
+

∞∑
m=0

Sm2r

(
−2r + 1

2

)
(iω)

m

m!

=
2

(2r + 1)!

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

∞∑
m=0

(−1)
m

(2j + 1)
2m

22m

ω2m

(2m)!
.

Comparing the coefficients of ω2m

(2m)! on both sides of the above equation, after some

elementary calculations, we also arrive at the Corollary 2.

Theorem 2. Let m, r ∈ N0. Then we have

m∑
j=0

(
m

j

)
S2 (j, 2r)E

(−1)
m−j

(
−2r + 1

2

)

=
(1 + (−1)

m
)

2m+1 (2r + 1)!

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

m+1
.(15)
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Proof. Combining (11) with (2) and (4), we have

(2r + 1)!

∞∑
m=0

S2 (m, 2r)
(iω)

m

m!

∞∑
m=0

E(−1)
m

(
−2r + 1

2

)
(iω)

m

m!

=

∞∑
m=0

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

m+1
(1 + (−1)

m
)

2m+1

(iω)
m

m!
.

Therefore

(2r + 1)!

∞∑
m=0

m∑
j=0

(
m

j

)
S2 (j, 2r)E

(−1)
m−j

(
−2r + 1

2

)
(iω)

m

m!

=

∞∑
m=0

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

m+1
(1 + (−1)

m
)

2m+1

(iω)
m

m!
.

Comparing the coefficients of (iω)m

m! on both sides of the above equation, we arrive
at the desired result.

If m is replaced by 2m+ 1, then Eq. (15) reduces to the following corollary:

Corollary 3. Let m, r ∈ N0. Then we have

2m+1∑
j=0

(
2m+ 1

j

)
S2 (j, 2r)E

(−1)
2m+1−j

(
−2r + 1

2

)
= 0.

If m is replaced by 2m, then (15) reduces to the following corollary:

Corollary 4. Let m, r ∈ N0. Then we have

2m∑
j=0

(
2m

j

)
S2 (j, 2r)E

(−1)
2m−j

(
−2r + 1

2

)

=
1

22m (2r + 1)!

r∑
j=0

(−1)
r+j

(
2r + 1

r − j

)
(2j + 1)

2m+1
.(16)

Combining (16) with (12) yields the following result:

Corollary 5. Let m, r ∈ N0. Then we have

S2m
2r

(
1− 2r

2

)
+ S2m

2r

(
−2r + 1

2

)
= 2

2m∑
j=0

(
2m

j

)
S2 (j, 2r)E

(−1)
2m−j

(
−2r + 1

2

)
.

Theorem 3. Let m, r ∈ N. Then we have

Sm2r−1 (1)− (−1)
r
rm+1

(r!)
2

=

r∑
j=1

(−1)
j+r

(
2r

r − j

)
(2j)

m

(2r)!

(
2rE(−1)

m

(
r − j

2j

)
+ jmB

(−1)
m−1

(
r − j

2j

))
.
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Proof. Using (13) and the following trigonometric identities(
2 sin

(ω
2

))2r

=

(
2r

r

)
+ 2

r∑
j=1

(−1)
j

(
2r

r − j

)
cos (jω) ,

(cf. [3, Eq. (3.1.10)]), and

(17) sin (ω) =
eiω − e−iω

2i
,

we have

(
eiω − 1

)2r
= (−1)

r

(
2r

r

)
eiωr +

r∑
j=1

(−1)
j+r

(
2r

r − j

)
eiωr

(
eiωj + e−iωj

)
.

Differentiating both sides of the above equation with respect to ω, after some
calculations, we get

2reiω
(
eiω − 1

)2r−1 − (−1)
r

(
2r

r

)
reiωr

=

r∑
j=1

(−1)
j+r

(
2r

r − j

)(
reiωr

(
eiωj + e−iωj

)
+ jeiωr

(
eiωj − e−iωj

))
.

Combining the above equation with (1), (2) and (5), we get

(2r)!

∞∑
m=0

Sm2r−1 (1)
(iω)

m

m!
−
(

2r

r

)
(−1)

r
∞∑
m=0

rm+1 (iω)
m

m!

=

∞∑
m=0

r∑
j=1

(−1)
j+r

(
2r

r − j

)
(2j)

m

×
(

2rE(−1)
m

(
r − j

2j

)
+ jmB

(−1)
m−1

(
r − j

2j

))
(iω)

m

m!
.

Comparing the coefficients of (iω)m

m! on both sides of the above equation, we arrive
at the desired result.

Theorem 4. Let r ∈ N and m ∈ N0. Then we have

(18) y1 (m, 2r; 1) =
(r + 1)rmCr

(2r)!
+

2

(2r)!

r∑
j=1

(
2r

r − j

)
(2j)

m
E(−1)
m

(
r − j

2j

)
.

Proof. Combining the following identity

(19)
(
eiω + 1

)2r
=

(
2r

r

)
eiωr +

r∑
j=1

(
2r

r − j

)
eiωr

(
eiωj + e−iωj

)
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(cf. [16]), with (2) and (6), we get

(2r)!

∞∑
m=0

y1 (m, 2r; 1)
(iω)

m

m!
= (r + 1)Cr

∞∑
m=0

rm
(iω)

m

m!

+2

r∑
j=1

(
2r

r − j

) ∞∑
m=0

(2j)
m
E(−1)
m

(
r − j

2j

)
(iω)

m

m!
.

Comparing the coefficients of (iω)m

m! on both sides of the above equation, we arrive
at the desired result.

Theorem 5. Let m, r ∈ N. Then we have

E(2r)
m (r) +

r∑
j=1

(
2r
r−j
)(

2r
r

) (E(2r)
m (r + j) + E(2r)

m (r − j)
)

= 0.

Proof. By using (19), we get

1 =

(
2r

r

)
eiωr

(eiω + 1)
2r +

r∑
j=1

(
2r

r − j

)
eiωr

(
eiωj + e−iωj

(eiω + 1)
2r

)
.

Combining the above equation with (2), we obtain

1 =

(
2r
r

)
4r

∞∑
m=0

E(2r)
m (r)

(iω)
m

m!
+

r∑
j=1

(
2r

r − j

) ∞∑
m=0

(
E

(2r)
m (r + j) + E

(2r)
m (r − j)

4r

)
(iω)

m

m!
.

Comparing the coefficients of (iω)m

m! on both sides of the above equation, we arrive
the desired result.

Theorem 6. Let m ∈ N0 and r ∈ N. Then we have

(20)

r∑
j=1

(
2r

r − j

) m∑
k=0

(
m

k

)
rm−kjk

(
1 + (−1)

k
)

= (2r)!y1 (m, 2r; 1)− rm (2r)!

(r!)
2 .

Proof. By using (6) and (19), we get

(2r)!

∞∑
m=0

y1 (m, 2r; 1)
(iω)

m

m!
=

(
2r

r

) ∞∑
m=0

rm
(iω)

m

m!
+

r∑
j=1

(
2r

r − j

) ∞∑
m=0

rm
(iω)

m

m!

×

( ∞∑
m=0

jm
(iω)

m

m!
+

∞∑
m=0

(−j)m (iω)
m

m!

)
.



10 Neslihan Kilar, Abdelmejid Bayad and Yilmaz Simsek

Thus

(2r)!

∞∑
m=0

y1 (m, 2r; 1)
(iω)

m

m!
=

(
2r

r

) ∞∑
m=0

rm
(iω)

m

m!

+

r∑
j=1

(
2r

r − j

) ∞∑
m=0

m∑
k=0

(
m

k

)
rm−kjk

(iω)
m

m!

+

r∑
j=1

(
2r

r − j

) ∞∑
m=0

m∑
k=0

(−1)
k

(
m

k

)
rm−kjk

(iω)
m

m!
.

Comparing the coefficients of (iω)m

m! on both sides of the above equation, we arrive
at the desired result.

Combining (20) with (3) and (9), we have the following corollary:

Corollary 6. Let m ∈ N0 and r ∈ N. Then we have

B (m; 2r)− (r + 1) rmCn =

r∑
j=1

(
2r

r − j

) m∑
k=0

(
m

k

)
rm−kjk

(
1 + (−1)

k
)
.

Theorem 7. Let m, r ∈ N0. Then we have

y1 (m, 2r + 1; 1) =
2

(2r + 1)!

r∑
j=0

(
2r + 1

r − j

)
(2j + 1)

m
E(−1)
m

(
r − j
2j + 1

)
.

Proof. By using (13) and the following trigonometric identity

(21) (2 cos (ω))
2r+1

= 2

r∑
j=0

(
2r + 1

r − j

)
cos ((2j + 1)ω)

(cf. [3, Eq. (3.1.13)]), we have

(
e2iω + 1

)2r+1
=

r∑
j=0

(
2r + 1

r − j

)
e2iω(r−j)

(
e2iω(2j+1) + 1

)
.

Combining the above equation with (2) and (6), we get

(2r + 1)!

∞∑
m=0

y1 (m, 2r + 1; 1)
(2iω)

m

m!

= 2

r∑
j=0

(
2r + 1

r − j

) ∞∑
m=0

(2j + 1)
m
E(−1)
m

(
r − j
2j + 1

)
(2iω)

m

m!
.

Comparing the coefficients of (2iω)m

m! on both sides of the above equation, we arrive
at the desired result.
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2.1 Some finite sums including trigonometric functions

Here, by using some trigonometric identities, we obtain some finite sums and
formulas, including trigonometric functions.

By using Theorem 8.30 in [1, Eqs. (10) and (14)], for every x 6= kπ with
k ∈ N, we have

n∑
j=1

ei(2j−1)x = e−ix
n∑
j=1

e2ijx =
sin (nx)

sin (x)
einx.

By taking real and imaginary parts of the above equation, we get the following
results:

(22)
n∑
j=1

sin ((2j − 1)ω) =
sin2 (nω)

sin (ω)

and

(23)

n∑
j=1

cos ((2j − 1)ω) =
sin (2nω)

2 sin (ω)
,

where n ∈ N (cf. [1, Eqs. (15) and (16)]; see also [10, Eqs. (1.11) and (1.15)]).

Differentiating both sides of Eq. (22) with respect to ω, we have

n∑
j=1

d

dω
{sin ((2j − 1)ω)} =

d

dω

{
sin2 (nω)

sin (ω)

}
.

After some elementary calculations, we get

n∑
j=1

(2j − 1) cos ((2j − 1)ω) =
2n sin (nω) cos (nω)

sin (ω)
− sin2 (nω) cot (ω)

sin (ω)
.

Combining the above equation with (22) and (23), we obtain

n∑
j=1

(2j − 1) cos ((2j − 1)ω) = 2n

n∑
j=1

cos ((2j − 1)ω)− cot (ω)

n∑
j=1

sin ((2j − 1)ω) .

After some elementary calculations in the above equation, for n ∈ N, we have

(24)

n∑
j=1

(2n− 2j + 1) cos ((2j − 1)ω) = cot (ω)

n∑
j=1

sin ((2j − 1)ω) .

By combining (22) with (23), we also get

n∑
j=1

(cos ((2j − 1)ω) sin (nω)− cos (nω) sin ((2j − 1)ω)) = 0.
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Using the above equation, we have the following well-known result:

n∑
j=1

sin ((n− 2j + 1)ω) = 0.

3. p-ADIC INTEGRALS FORMULAS INCLUDING
TRIGONOMETRIC FUNCTIONS

In this section, by using p-adic integrals and their integral equations, we give
some formulas and finite sums including the trigonometric functions.

In order to give these results, we need the following notations, definitions,
and properties of p-adic integrals, which have many applications in mathematics
and mathematical physics.

Let p be a prime integer and Zp denote the set of p-adic integers. Let K
be a field with a complete valuation and C1 (Zp → K) be a set of continuously
differentiable functions. That is,{

g : Zp → K : g(u) is differentiable and
d

du
{g (u)} is continuous

}
.

Further, let k be residue class field of K. If char (k) = p then

E =
{
x ∈ K : |x| < p

1
1−p

}
and if char (k) = 0 then

E = {x ∈ K : x < 1}
(cf. [31]).

The integral equation for the Volkenborn integral (or the bosonic p-adic in-
tegral) on Zp is given by∫

Zp

g (u+ n) dµ1 (u) =

∫
Zp

g (u) dµ1 (u) +

n−1∑
k=0

g′ (k) ,

where

g′ (k) =
d

du
{g (u)} |u=k

(cf. [31]; see also [19], [40]).

The Volkenborn integral is related to the trigonometric functions. The Volken-
born integral for the cosine function is given as follows:∫

Zp

cos (βu) dµ1 (u) =
β sin (β)

2 (1− cos (β))

=
β

2
cot

(
β

2

)
,(25)
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where β ∈ E with β 6= 0 and p 6= 2 (cf. [31, p. 172]; see also [21], [40]).

The Volkenborn integral for the sine function is given as follows:

(26)

∫
Zp

sin (βu) dµ1 (u) = −β
2
,

where β ∈ E (cf. [31, p. 170]; see also [21], [40]).

The integral equation for the fermionic p-adic integral on Zp is given by∫
Zp

g (u+ n) dµ−1 (u) + (−1)n+1

∫
Zp

g (u) dµ−1 (u) = 2

n−1∑
k=0

(−1)n−1−kg (k) ,

where n ∈ N (cf. [19], [20], [21], [40]).

The fermionic p-adic integral is related to the trigonometric functions, which
are given as follows:

(27)

∫
Zp

cos (βu) dµ−1 (u) = 1,

where β ∈ E with β 6= 0 and p 6= 2, also

(28)

∫
Zp

sin (βu) dµ−1 (u) = − sin (β)

cos (β) + 1

(cf. [19], [20], [21], [40]).

Now, using the above properties and relations of the p-adic integrals, we give
some formulas related to the trigonometric functions and finite sums.

Theorem 8. Let n ∈ N. Then we have

n∑
j=1

∫
Zp

sin ((2j − 1)ω) cot (ω) dµ1 (ω) =
1

2

n∑
j=1

(2n− 2j + 1) (2j − 1) cot

(
2j − 1

2

)
.

Proof. By applying the Volkenborn integral to Eq. (24), we get

n∑
j=1

(2n− 2j + 1)

∫
Zp

cos ((2j − 1)ω) dµ1 (ω) =

n∑
j=1

∫
Zp

sin ((2j − 1)ω) cot (ω) dµ1 (ω) .

Combining the above equation with (25), we obtain

1

2

n∑
j=1

(2n− 2j + 1) (2j − 1) cot

(
2j − 1

2

)
=

n∑
j=1

∫
Zp

sin ((2j − 1)ω) cot (ω) dµ1 (ω) .

Thus, the proof of the theorem is completed.
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Theorem 9. Let n ∈ N. Then we have∫
Zp

sin2 (nω)

sin (ω)
dµ1 (ω) = −n

2

2
.

Proof. By applying the Volkenborn integral to Eq. (22), we have

n∑
j=1

∫
Zp

sin ((2j − 1)ω) dµ1 (ω) =

∫
Zp

sin2 (nω)

sin (ω)
dµ1 (ω) .

Combining the above equation with (26), we get

n∑
j=1

(1− 2j)

2
=

∫
Zp

sin2 (nω)

sin (ω)
dµ1 (ω) .

Thus, ∫
Zp

sin2 (nω)

sin (ω)
dµ1 (ω) = −n

2

2
.

Therefore, the proof of the theorem is completed.

Theorem 10. Let n ∈ N. Then we have∫
Zp

sin (2nω)

sin (ω)
dµ1 (ω) =

n∑
j=1

(2j − 1) cot

(
2j − 1

2

)
.

Proof. By applying the Volkenborn integral to Eq. (23), we have

n∑
j=1

∫
Zp

cos ((2j − 1)ω) dµ1 (ω) =

∫
Zp

sin (2nω)

2 sin (ω)
dµ1 (ω) .

Combining the above equation with (25), we get

n∑
j=1

(2j − 1) cot

(
2j − 1

2

)
=

∫
Zp

sin (2nω)

sin (ω)
dµ1 (ω) .

Thus, we arrive at the desired result.

Theorem 11. Let n ∈ N. Then we have

n∑
j=1

∫
Zp

sin ((2j − 1)ω) cot (ω) dµ−1 (ω) = n2.
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Proof. By applying the fermionic p-adic integral to Eq. (24), we get

n∑
j=1

(2n− 2j + 1)

∫
Zp

cos ((2j − 1)ω) dµ−1 (ω) =

n∑
j=1

∫
Zp

sin ((2j − 1)ω) cot (ω) dµ−1 (ω) .

Combining the above equation with (27), we obtain

n∑
j=1

(2n− 2j + 1) =

n∑
j=1

∫
Zp

sin ((2j − 1)ω) cot (ω) dµ−1 (ω) .

Hence
n∑
j=1

∫
Zp

sin ((2j − 1)ω) cot (ω) dµ−1 (ω) = n2.

Therefore, the proof of the theorem is completed.

Theorem 12. Let n ∈ N. Then we have∫
Zp

sin2 (nω)

sin (ω)
dµ−1 (ω) = −

n∑
j=1

tan

(
2j − 1

2

)
.

Proof. By applying the fermionic p-adic integral to Eq. (22), we have

n∑
j=1

∫
Zp

sin ((2j − 1)ω) dµ−1 (ω) =

∫
Zp

sin2 (nω)

sin (ω)
dµ−1 (ω) .

Combining the above equation with (28), we get

−
n∑
j=1

sin (2j − 1)

cos (2j − 1) + 1
=

∫
Zp

sin2 (nω)

sin (ω)
dµ−1 (ω) .

After some elementary calculations, we arrive at the desired result.

Theorem 13. Let n ∈ N. Then we have∫
Zp

sin (2nω)

sin (ω)
dµ−1 (ω) = 2n.

Proof. By applying the fermionic p-adic integral to Eq. (23), we have

n∑
j=1

∫
Zp

cos ((2j − 1)ω) dµ−1 (ω) =

∫
Zp

sin (2nω)

2 sin (ω)
dµ−1 (ω) .
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Combining the above equation with (27), after some calculations, we obtain

1

2

∫
Zp

sin (2nω)

sin (ω)
dµ−1 (ω) = n.

Thus, we arrive at the desired result.

4. EXPLICIT FORMULAS FOR THE SUMS OF POWERS OF
CONSECUTIVE POSITIVE INTEGERS DERIVED FROM FINITE

SUMS INVOLVING TRIGONOMETRIC FUNCTIONS

In this section, using finite sums involving trigonometric functions, we give
interesting new calculation formulas, especially on the sum of the powers of consec-
utive positive integers. The sum of the powers of the positive integers was started to
be studied with the finding of the numbers. Especially, the most important calcula-
tion formulas were given by the famous German mathematician Johann Faulhaber
at the beginning of the 17th century, and these are still called Faulhaber formulas
today. The well-known Faulhaber’s formula is given as follows:

(29)

n−1∑
j=1

jm =
Bm+1(n)−Bm+1

m+ 1
,

where m ∈ N.

In [12], Gou and Shen studied on the following sums of powers of odd integers:

n∑
j=1

(2j − 1)
2k−1

and

n∑
j=1

(2j − 1)
2k
.

They gave the following formulas for these sums:

n∑
j=1

(2j − 1)
2k−1

= n2
k∑
j=1

cjn
2k−2j

and

n∑
j=1

(2j − 1)
2k

= n(2n− 1)(2n+ 1)

k∑
j=1

dj (2n− 1)
k−j

(2n+ 1)
k−j

,

where cj and dj (j = 1, 2, ..., k) are undetermined constants (cf. [12, Eqs. (1.8)
and (1.9)]). They also found some recurrence relations for cj and dj .

We give the following explicit and novel formulas in terms of the Bernoulli
polynomials and numbers for the sums of powers of consecutive positive integers:
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Theorem 14. Let m ∈ N0 and n ∈ N. Then we have

(30)

n∑
j=1

(2j − 1)
2m

=
22mB2m+1

(
2n+1

2

)
2m+ 1

.

Proof. By using (23), we have

(31) 2

n∑
j=1

∞∑
m=0

(−1)
m

(2j − 1)
2m ω2m

(2m)!
=
e(2n+1)iω − e(1−2n)iω

e2iω − 1
.

Combining the above equation with (1), we get

2

n∑
j=1

∞∑
m=0

(−1)
m

(2j − 1)
2m ω2m

(2m)!

=

∞∑
m=0

1

m+ 1

(
Bm+1

(
2n+ 1

2

)
−Bm+1

(
1− 2n

2

))
(2iω)

m

m!
.

Thus,

2

n∑
j=1

∞∑
m=0

(−1)
m

(2j − 1)
2m ω2m

(2m)!

=

∞∑
m=0

1

2m+ 1

(
B2m+1

(
2n+ 1

2

)
−B2m+1

(
1− 2n

2

))
(2i)

2m ω2m

(2m)!

+

∞∑
m=0

1

2m+ 2

(
B2m+2

(
2n+ 1

2

)
−B2m+2

(
1− 2n

2

))
(2i)

2m+1 ω2m+1

(2m+ 1)!
.

By comparing the coefficients of the same powers of variable ω on both sides of the
above equation, we have the following results:

(32)

n∑
j=1

(2j − 1)
2m

=
22m−1

2m+ 1

(
B2m+1

(
2n+ 1

2

)
−B2m+1

(
1− 2n

2

))

and

B2m+2

(
2n+ 1

2

)
= B2m+2

(
1− 2n

2

)
.

Combining (32) with the following well-known identity,

Bk (1− x) = (−1)kBk (x) ,

we arrive at the desired result.
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Theorem 15. Let n ∈ N and m ∈ N0. Then we have

(1 + (−1)
m

)

n∑
j=1

(2n− 2j + 1) (2j − 1)
m

=

n∑
j=1

[m
2 ]∑

k=0

(
m

2k

)
B2kB

(−1)
m−2k

(
−1

2

)
2m+1 (2j − 1)

m−2k+1
.

Proof. Combining (24) with (13), (17) and the following well-known identity

(33) ω cot(ω) =

∞∑
m=0

(−1)
m

22mB2m
ω2m

(2m)!
,

we have

1

2

n∑
j=1

(2n− 2j + 1)
(
eiω(2j−1) + e−iω(2j−1)

)
=

1

2iω

n∑
j=1

e−iω(2j−1)
(
e2iω(2j−1) − 1

) ∞∑
m=0

(−1)
m

22mB2m
ω2m

(2m)!
.

Substituting (1) into the above equation, after some calculations, we get

∞∑
m=0

n∑
j=1

(2n− 2j + 1) (1 + (−1)
m

) (2j − 1)
m
im
ωm

m!

=

n∑
j=1

∞∑
m=0

[m
2 ]∑

k=0

(
m

2k

)
B

(−1)
m−2k

(
−1

2

)
(4j − 2)

m−2k+1
im−2k (−1)

k
22kB2k

ωm

m!
.

Comparing the coefficients of ωm

m! on both sides of the above equation, after some
elementary calculations, we arrive at the desired result.

Lemma 1. Let m ∈ N0 and n ∈ N. Then we have

n∑
j=1

(2j − 1)
2m

=

m∑
k=0

n∑
j=1

(
2m

2k

)
22kn2k−1 (2j − 1)

2m−2k+1
B2k

(2m− 2k + 1)
.

Proof. By combining (22) with (23), we have

n∑
j=1

cos ((2j − 1)ω) = cot (nω)

n∑
j=1

sin ((2j − 1)ω) .

From the above equation, we have

∞∑
m=0

n∑
j=1

(−1)
m

(2j − 1)
2m ω2m

(2m)!
= cot (nω)

∞∑
m=0

n∑
j=1

(−1)
m

(2j − 1)
2m+1 ω2m+1

(2m+ 1)!
.
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Substituting (33) into the above equation, after some calculations, we obtain

∞∑
m=0

n∑
j=1

(−1)
m

(2j − 1)
2m ω2m

(2m)!

=

∞∑
m=0

m∑
k=0

n∑
j=1

(−1)m22kn2k−1 (2j − 1)
2m−2k+1

B2k

(2k)! (2m− 2k + 1)!
ω2m.

Comparing the coefficients of ω2m on both sides of the above equation, after some
calculations, we arrive at the desired result.

Using (31), we get

2

n∑
j=1

∞∑
m=0

(−1)
m

(2j − 1)
2m ω2m

(2m)!
=

1

2iω

∞∑
m=0

Bm
(2iω)

m

m!

∞∑
m=0

(2n+ 1)
m (iω)

m

m!

− 1

2iω

∞∑
m=0

Bm
(2iω)

m

m!

∞∑
m=0

(1− 2n)
m (iω)

m

m!
.

Thus,

n∑
j=1

∞∑
m=0

(−1)
m

(2j − 1)
2m ω2m

(2m)!
=

∞∑
m=0

m+1∑
k=0

(
m+ 1

k

)
2m−k−1

m+ 1

×
(

(2n+ 1)
k − (1− 2n)

k
)
Bm+1−k

(iω)
m

m!
.

By comparing the coefficients of the same powers of variable ω on both sides of the
above equation, after some elementary algebraic computations, we get the following
lemmas:

Lemma 2. Let m ∈ N0 and n ∈ N. Then we have

n∑
j=1

(2j − 1)
2m

=

2m+1∑
k=0

(
2m+ 1

k

)
22m−k−1

2m+ 1

(
(2n+ 1)

k − (1− 2n)
k
)
B2m+1−k.

Lemma 3. Let m ∈ N0 and n ∈ N. Then we have

2m+2∑
k=0

(
2m+ 2

k

)
2−k

(
(2n+ 1)

k − (1− 2n)
k
)
B2m+2−k = 0.

Combining Theorem 14 with Lemma 1 and Lemma 2, we get the following
results including the Bernoulli numbers and polynomials:

Corollary 7. Let m ∈ N0 and n ∈ N. Then we have

2m+1∑
k=0

(
2m+ 1

k

)
2−k−1

2m+ 1

(
(2n+ 1)

k − (1− 2n)
k
)
B2m+1−k =

B2m+1

(
2n+1

2

)
2m+ 1

,
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m∑
k=0

n∑
j=1

(
2m

2k

)
22k−2mn2k−1 (2j − 1)

2m−2k+1
B2k

(2m− 2k + 1)
=
B2m+1

(
2n+1

2

)
2m+ 1

,

and

2m+1∑
k=0

(
2m+ 1

k

)
22m−k−1

2m+ 1

(
(2n+ 1)

k − (1− 2n)
k
)
B2m+1−k

=

m∑
k=0

n∑
j=1

(
2m

2k

)
22kn2k−1 (2j − 1)

2m−2k+1
B2k

(2m− 2k + 1)
.

Theorem 16. Let m ∈ N0 and n ∈ N. Then we have

(34)

n∑
j=1

(2j − 1)
m

= 2m
m∑
j=0

(
m

j

)
nj+1B

(−1)
j Bm−j

(
1

2

)
.

Proof. By combining the Euler’s formula with (22) and (23), we get

n∑
j=1

e(2j−1)iω =
sin (nω)

sin (ω)
einω.

Thus,
n∑
j=1

∞∑
m=0

(2j − 1)
m (iω)

m

m!
=
eiω
(
e2inω − 1

)
e2iω − 1

.

Combining the above equation with (1), we have

n∑
j=1

∞∑
m=0

(2j − 1)
m (iω)

m

m!
= n

∞∑
m=0

B(−1)
m

(2inω)
m

m!

∞∑
m=0

Bm

(
1

2

)
(2iω)

m

m!
.

Hence,

n∑
j=1

∞∑
m=0

(2j − 1)
m (iω)

m

m!
=

∞∑
m=0

m∑
j=0

(
m

j

)
2mnj+1B

(−1)
j Bm−j

(
1

2

)
(iω)

m

m!
.

Comparing the coefficients of (iω)m

m! on both sides of the above equation, we arrive
at the desired result.

Now we give some special cases of Eq. (34).

When m = 1 in (34), we have the following well-known sum:

n∑
j=1

(2j − 1) = n2,

for detail, see OEIS A000290 also [11].
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When m = 2 in (34), we have the following well-known sum:

n∑
j=1

(2j − 1)
2

=
n
(
4n2 − 1

)
3

,

for detail, see OEIS A000447 also [11].

Substituting m = 3 into (34), we have the following well-known sum:

n∑
j=1

(2j − 1)
3

= n2
(
2n2 − 1

)
,

for detail, see OEIS A002593 also [11].

By using (34), we have

n∑
j=1

m∑
k=0

(−1)m−k
(
m

k

)
2kjk = 2m

m∑
j=0

(
m

j

)
nj+1B

(−1)
j Bm−j

(
1

2

)
.

Combining the above equation with (29), we get the following finite sum:

(−1)mn+

m∑
k=1

(−1)m−k
(
m

k

)
2k
(
Bk+1 (n+ 1)−Bk+1

k + 1

)

= 2m
m∑
j=0

(
m

j

)
nj+1B

(−1)
j Bm−j

(
1

2

)
.

Hence, we arrive at the following corollary:

Corollary 8. Let m,n ∈ N. Then we have

(−1)mn+

m∑
k=1

(−1)m−k
(
m

k

)
2k
(
Bk+1 (n+ 1)−Bk+1

k + 1

)

= 2m
m∑
j=0

(
m

j

)
nj+1B

(−1)
j Bm−j

(
1

2

)
.

Replacing m by 2m in (34), and combining final equation with (30), we have
the following corollary:

Corollary 9. Let m ∈ N0 and n ∈ N. Then we have

2m∑
j=0

(
2m

j

)
nj+1B

(−1)
j B2m−j

(
1

2

)
=
B2m+1

(
2n+1

2

)
2m+ 1

.

Theorem 17. Let m ∈ N0 and n ∈ N. Then we have

n∑
j=1

(2j − 1)
2m+1

= (2m+ 1)

m∑
k=0

k∑
j=0

(
2k

2j

)(
2m

2k

)
n2k+24m−kB2m−2k

(
1
2

)
(2j + 1) (2k − 2j + 1)

.
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Proof. By using (22) and (1), we have

n∑
j=1

∞∑
m=0

(−1)
m

(2j − 1)
2m+1 ω2m+1

(2m+ 1)!

=

∞∑
m=0

(−1)
m (nω)2m+1

(2m+ 1)!

∞∑
m=0

(−1)
m
n2m+1 ω2m

(2m+ 1)!

∞∑
m=0

Bm

(
1

2

)
(2iω)

m

m!
.

Therefore,

n∑
j=1

∞∑
m=0

(−1)
m

(2j − 1)
2m+1 ω2m+1

(2m+ 1)!

=

∞∑
m=0

[m
2 ]∑

k=0

k∑
j=0

(−1)
k
n2k+2 (2i)

m−2k
Bm−2k

(
1
2

)
(2j + 1)! (2k − 2j + 1)! (m− 2k)!

ωm+1.

By comparing the coefficients of the same powers of variable ω on both sides of the
above equation, we get

(−1)
m

(2m+ 1)!

n∑
j=1

(2j − 1)
2m+1

=

m∑
k=0

k∑
j=0

(−1)
m
n2k+222m−2kB2m−2k

(
1
2

)
(2j + 1)! (2k − 2j + 1)! (2m− 2k)!

.

Thus, the proof of the theorem is completed.

5. CONCLUSIONS

In this paper, many new and interesting formulas and relations were given
using special functions, trigonometric functions, and some finite sums. These for-
mulas and relations also included well-known numbers and polynomials. Some of
these were given as follows: the Bernoulli numbers and polynomials, the Euler
numbers and polynomials, the Stirling numbers, the Catalan numbers, the array
polynomials and combinatorial numbers, certain finite sums. In addition to these,
new formulas on the sum of powers of positive integers, called Faulhaber formulas,
were given by the famous German mathematician Johann Faulhaber in the early
17th century. A few new calculation formulas associated with the Faulhaber for-
mulas were also given, especially for the sum of the powers of consecutive positive
integers. Furthermore, integral representations, containing the Volkenborn integral
and the fermionic p-adic integral, were given for the trigonometric functions and
sums. Moreover, our future studies will be investigate relations between the sums of
the powers of consecutive positive integers, certain family of finite sums related to
trigonometric functions, the Dedekind sums, the Hardy sums, the character sums,
and the Kloosterman sums.
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