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Abstract. Data streams produced by mobile devices, such as smart-
phones, offer highly valuable sources of information to build ubiquitous
services. However, the diversity of embedded sensors and the resulting
data deluge makes it impractical to provision such services directly on
mobiles, due to their constrained storage capacity, communication band-
width and processing power. Unfortunately, the improving hardware ca-
pabilities of devices are unlikely to resolve these structural issues. We,
therefore, believe that mobile data management systems should, instead,
handle data streams efficiently and compactly, to provision services di-
rectly at the edge, while accounting for the limits of existing assets and
network infrastructures. This paper introduces the FLI framework, which
leverages a piece-wise linear approximation technique to capture compact
representations of data streams in mobile devices. Our experiments, per-
formed on Android and iOS devices, show that FLI outperforms the state
of the art both in memory footprint and I/O throughput. Our Flutter
implementation of FLI can store stream datasets in mobile devices, which
is a prerequisite to processing big data from ubiquitous devices in situ.

1 Introduction

With the advent of smartphones and more generally the Internet of Things
(IoT), ubiquitous devices are mainstream in our societies and widely deployed at
the edge of networks. Such constrained devices are not only consuming data and
services, such as content streaming, restaurant recommendations or more gener-
ally Location-Based Services (LBSs), but are also key producers of data streams
by leveraging a wide variety of embedded sensors that capture the surround-
ing environment of end-users, including their daily routines. The data deluge
generated by a connected user is potentially tremendous: according to prelim-
inary experiments, a smartphone can generate approximately 2 pairs of Global
Positioning System (GPS) samples and 476 triplets of accelerometer samples
per second, resulting in more than 172,800 location and 41,126,400 acceleration
samples daily.

In this context, the storage and processing of such data streams in mobile
devices are challenges that cannot only be addressed by assuming that the hard-
ware capabilities will keep increasing. In particular, sustainability issues call for
increasing the lifespan of legacy devices, thus postponing their replacement. This
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implies that software-defined solutions are required to leverage the shortenings
of hardware resources.

This paper, therefore, demonstrates that modeling data streams successfully
address these device-level storage & processing challenges. More specifically, to
address the storage challenge, we introduce Fast Linear Interpolation (FLI): a
novel algorithm leveraging a Piece-wise Linear Approximation (PLA) technique
to model and store data streams under memory constraints. Figure 1 illustrates
FLI’s behavior: to capture the trajectory displayed on Fig. 1a, FLI does not store
raw data samples (Fig. 1b & 1d) but, instead, models their evolution as linear
interpolations (Fig. 1c & 1e) —thus offering a much bigger storage capacity at
the cost of a controlled approximation error.

(a) Cabspotting mobility trace of
user 0.

(b) Raw longitude
trace for user 0.

(c) Modeled longi-
tude with FLI.

(d) Raw latitude
trace for user 0.

(e) Modeled lati-
tude with FLI.

Fig. 1. FLI compacts any location stream as a sequence of segments.

In the following, we first discuss the related works (Sec. 2), before diving
into the details of FLI (Sec. 3). We then present our experimental setup (Sec. 4)
and the results we obtained (Sec. 5) Finally, we discuss the limitations of our
approach (Sec. 6), before concluding (Sec. 7).

2 Related Work

Overcoming the memory constraints of mobile devices to store data streams
usually implies the integration of efficient temporal databases. To take the ex-
ample of Android: few databases are available, such as SQLite and its derivative
Drift [7], the cloud-supported Firebase [21], the NoSQL hive, and Object-
Box [9]. The situation is similar on iOS.

Relational databases (e.g., SQL) are typically designed for OnLine Transac-
tional Processing (OLTP) and OnLine Analytical Processing (OLAP) workloads,
which widely differ from time-series workloads. In the latter, reads are mostly
contiguous (as opposed to the random-read tendency of OLTP); writes are most
often inserts (not updates) and typically target the most recent time ranges.
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OLAP is designed to store big data workloads to compute analytical statis-
tics, while not putting the emphasis on read or write performances. Finally, in
temporal workloads, it is unlikely to process writes & reads in the same single
transaction [22].

Time series databases (TSDB). Despite these deep differences, several rela-
tional databases offer support for temporal data with industry-ready performance—
e.g., TimescaleDB [13] is a middleware that exposes temporal functionali-
ties atop a relational PostgreSQL foundation. InfluxDB [14] is one of the
most widely used temporal databases. Unfortunately, when facing memory con-
straints, its retention policy prevents the storage from scaling in time: the oldest
samples are dumped to make room for the new ones. Furthermore, on mobile,
memory shortages often cause the operating system to kill the TSDB process to
free the memory, which is opposed to the very concept of in-memory databases.

Moving objects databases (MOD). Location data storage is an issue that has
also been studied in the MOD community, where a central authority merges
trajectory data from several sensors in real-time. To optimize storage and com-
munication costs, it does not store the raw location data, but rather trajectory
approximations. Linear Dead Reckoning (LDR) [24] limits data exchange be-
tween sensors and server by sending new location samples only when a prede-
fined accuracy bound ϵ (in meters) is exceeded. A mobility prediction vector is
additionally shared every time a location sample is sent. Even so, this class of
solutions requires temporarily storing modeled locations to ensure they fit the ϵ
bound and exclusively focuses on modeling location data streams, while we aim
at storing any type of real-valued stream.

Modeling data streams. While being discrete, the streams sampled by sensors
represent inherently continuous signals. Data modeling does not only allow im-
portant memory consumption gains, but also flattens sensors’ noise, and enables
extrapolation between measurements. In particular, Piece-wise Linear Approx-
imation (PLA) is used to model the data as successive affine functions. An
intuitive way to do linear approximation is to apply a bottom-up segmentation:
each pair of consecutive points is connected by interpolations; the less signifi-
cant contiguous interpolations are merged, as long as the obtained interpolations
introduce no error above a given threshold. The bottom-up approach has low
complexity, but usually requires an offline approach to consider all the points
at once. The Sliding Window And Bottom-up (SWAB) algorithm [15], however,
is an online approach that uses a sliding window to buffer the latest samples
on which a bottom-up approach is applied. emSWAB [6] improves the sliding
window by adding several samples at the same time instead of one. Instead of
interpolation, linear regression can also be used to model the samples reported
by IoT sensors [12]. For example, Greycat [17] adopts polynomial regressions
with higher degrees to further compress the data. Unfortunately, none of those
works have been implemented on mobile devices to date.

Sprintz [8] proposes a mobile lossless compression scheme for multi-modal
integer data streams, along with a comparison of other compression algorithms.
They target streaming of the compressed data to a centralized location from
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IoT devices with minimal resources. This work is orthogonal to ours, as FLI
intends to model floating-point unimodal streams on one’s devices for further
local computation, instead of streaming it to a third-party server.

Closer to our work, FSW [16] and the ShrinkingCone algorithm [10] at-
tempt to maximize the length of a segment while satisfying a given error thresh-
old, using the same property used in FLI. FSW is not a streaming algorithm as
it considers the dataset as a whole, and does not support insertion. The Shrink-
ingCone algorithm is a streaming greedy algorithm designed to approximate an
index, mapping keys to positions: it only considers monotonic increasing func-
tions and can produce disjoints segments. FLI models non-monotonic functions
in a streaming fashion, while providing joint segments.

Limitations. To the best of our knowledge, state-of-the-art storage solutions
for unbounded data streams either require storing raw data samples or triggering
a posteriori data computations, which makes them unsuitable for mobile devices.

3 Storing Data Streams in the Small

3.1 Leveraging Piecewise Linear Approximations

To overcome the memory constraint of mobile devices, we claim that efficient
temporal storage solutions must be ported onto ubiquitous environments. In
particular, we advocate the use of data modeling, such as Piece-wise Linear Ap-
proximation (PLA) [15,12] or Greycat [17], to increase the storage capacity
of mobile devices. Therefore, we introduce FLI, a time series modeling algo-
rithm based on an iterative and continuous PLA to store approximate models of
data streams on memory-constrained devices, instead of storing all the raw data
samples as state-of-the-art temporal databases do. FLI models one-dimensional
points (or samples) p as piece-wise linear segments (or interpolations) s. It en-
forces the following invariant: all samples modeled by an interpolation maintain
an error below the configuration parameter ϵ. Its data structure D is composed
of i) a list of selected historical points P, ii) the latest segment’s gradient αM ,
and iii) the two bounding gradients αmin and αmax used for insertion:

D = (P, αM , αmin, αmax) , s.t.

P = [. . . , pi, pi+1, . . . , pM ] ⊂ R2 & (αM , αmin, αmax) ∈ R3

Historical segments are captured as tuples of consecutive samples: si =
[pi, pi+1]. The latest interpolation sM takes the last inserted sample pM as its
origin and the gradient αM as its slope, as depicted in Fig. 2. We first present how
observed points are inserted, before explaining how reading a value is performed.

3.2 Inserting Data Samples

Data samples are inserted sequentially: the current interpolation is adjusted to fit
new samples until it cannot satisfy the invariant. Upon insertion of a new sample



Compact Storage of Data Streams in Mobile Devices 5

tM tlast

xM

xlast

ε

ε

αmin αM αmax

~sM

Fig. 2. A new FLI interpolation sM begins with 2 samples: the point pM = (tM , xM )
as origin, and the latest sample plast = (tlast, xlast) as slope αM . 2 bounding gradients
αmin and αmax are derived from ϵ, and used to assert if future inserts fit sM .

p, the slope α of the segment [pM , p] is compared to the interval [αmin, αmax]. If
it falls within (cf. Fig. 3), p is added to the current interpolation: αmin and αmax

are updated to encompass p, αM is updated to α (for reading), and the previous
sample is dropped. If p is outside the interval (cf. Fig. 4), a new interpolation
begins from the 2 last points.

tM tlast t
xM

xlast <ε

αmin α αmax

(a) Gradient α of sample p remains
within [αmin, αmax].

tM tlast

xM

xlast

αM

(b) αM , αmin & αmax are updated
to include p in the current model.

Fig. 3. When a new sample fits within [αmin, αmax], it is added to the current model
by updating αmin and αmax.αM is also updated for read queries (see Alg. 1).

The value of ϵ has an important impact on the performances of FLI. If ϵ
is too small, none of the inserted samples fits the current model at that time,
thus initiating a new model each time. In that case, there will be one model per
sample, imposing an important memory overhead. The resulting model overfits
the data. On the other hand, if ϵ is too large, then all the inserted samples fit,
and a single model is kept. While it is the best case memory-wise, the resulting
model simply connects the first and last point and underfits the data.

As long as the newly inserted data samples fit the existing model, the memory
footprint of FLI remains unchanged. This potentially unlimited storage capacity
makes FLI a key asset for mobile devices, for example drastically increasing the
storage capacity for user mobility traces. While FLI is designed for the modeling
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tM tlast t
xM

xlast

x
> ε

α<αmin

(a) Error of p = (t, x) exceeds ϵ.

tM tlast

xM

xlast

(b) A new model is created from the
last 2 points.

Fig. 4. When an error > ϵ is reported, a new model is created using plast as pM .

of univariate data streams, it straight-forwardly generalizes to multivariate data
streams by combining several instances of FLI. We, therefore, claim that the use
of FLI alleviates the memory constraint of mobile devices, hence opening new
opportunities to process unbounded data streams locally.

3.3 Reading Data Streams

In FLI, reading a value at time t is achieved by estimating its image using the
appropriate interpolation, as is shown in Algorithm 1. If t is ulterior or equal to
tM , the current interpolation sM is used (line 3), defined by pM = (tM , xM ) and
αM . When t is anterior to tM , FLI reconstructs the interpolation si in charge of
approximating t by picking 2 consecutive points from P (lines 5–6). In practice,
the segment is found with a dichotomy search, as P stores points in insertion
order. Using that model, the interpolation of t is computed on line 7.

Algorithm 1 Approximate read implemented by FLI

Require: D = (P, αM , αmin, αmax)
1: function Read(t ∈ R)
2: if tM ≤ t then
3: return αM × (t− tM ) + xM

4: end if
5: select i s.t. ((ti, xi) , (ti+1, xi+1)) ∈ P ∧ ti ≤ t < ti+1

6: αi ← (xi+1 − xi) / (ti+1 − ti)
7: return αi × (t− ti) + xi

8: end function

4 Experimental Setup

4.1 Key Performance Metrics

We consider state-of-the-art system metrics to evaluate the performance of FLI:
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Memory footprint. The key objective of FLI is to reduce the memory footprint
required to store an unbounded stream of samples. We explore two metrics: (i)
the number of 64-bit variables required by the model and (ii) the size of the
model in the device memory. To do so, we compare the size of the persistent file
with the size of the vanilla SQLite database file. We consider the number of
64-bit variables as a device-agnostic estimation of the model footprint.

I/O throughput. Another key system metric is the I/O throughput of the tem-
poral databases. In particular, we measure how many write and read operations
can be performed per second (IOPS).

4.2 Input Datasets & ϵ Tuning

FLI is data-agnostic: any data stream can be modeled using it (cf. Section 5.4).
However, the ϵ parameter depends on the underlying data distribution. In the
following, we propose a protocol to tune an ϵ value according to the modeled data
stream. We use mobility traces as a representative example of data streams that
can be stored and processed by modern mobile devices. In particular, we believe
that mobility traces are a good candidate for FLI as the storage of sampled
user locations may require a lot of storage space. A mobility trace is defined
as an ordered sequence T of pairs (t, g) where t is a timestamp and g is a
geolocation sample, a latitude-longitude pair for example. The trace is ordered
in chronological order and we assume that reported timestamps are unique.

Location datasets. Cabspotting [19] is a mobility dataset of 536 taxis in
the San Francisco Bay Area. The data was collected during a month and is
composed of 11 million records, for a total of 388MB. PrivaMov [18] is a
multi-sensors mobility dataset gathered during 15 months by 100 users around
the city of Lyon, France. We use the full GPS dataset, which includes 156 million
records, totaling 7.2GB. Compared to Cabspotting, PrivaMov is a highly-
dense mobility dataset.

ϵ tuning. The choice of an ϵ value is of major importance and plays a cen-
tral role in FLI’s performances: a poorly-chosen value has a strong impact on
FLI’s underlying segments, either degrading modeled data quality or filling stor-
age space up excessively. To find a compromise between the two, since the ϵ
value is highly correlated to the modeled data, one has to know the data; more
specifically, we advise studying data variation between consecutive values.

For example, in the context of location data, Fig. 5 characterizes—as a Cu-
mulative Distribution Function (CDF)—the evolution of longitude and latitude
samples for all the traces stored in the Cabspotting and PrivaMov datasets.
In particular, we plot the CDF of the drift d observed between 2 consecutive
values (x1, y1) and (x2, y2), which we compute as d = |(y2 − y1)/(x2 − x1)|. One
can observe that Cabspotting and PrivaMov datasets report on a drift lower
than 1×10−4 and 2×10−5 for 90% of the values, respectively. Furthermore, due
to the high density of locations captured by PrivaMov, half of the drifts are
equal to 0, meaning several consecutive longitudes or latitudes are unchanged.

This preliminary analysis of both datasets highlights that mobility traces are
highly relevant data streams for FLI, and demonstrates ϵ = 10−3 is a conservative
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(a) CDF of Cabspotting locations’
drifts.
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(b) CDF of PrivaMov locations’
drifts.

Fig. 5. Cumulative Distribution Function (CDF) of latitude and longitude drifts of
successive location samples in Cabspotting and PrivaMov datasets. One can observe
that, from one location sample to the next, latitude or longitude deviations are small.

choice to model location data. To automate the tuning of ϵ, FLI comes with a
script that takes a sample input to report on candidate ϵ values to capture 90%,
95% and 99% of the sampled data. The following sections will focus on the
evaluation of FLI on those datasets to study the benefits of adopting FLI to
capture real-world metrics in mobile devices.

4.3 Storage Competitors

SQLite is the state-of-the-art solution to persist and query large volumes of
data on Android devices. SQLite provides a lightweight relational database
management system. SQLite is not a temporal database, but is a convenient
and standard way to store samples persistently on a mobile device. Insertions
are atomic, so one may batch them to avoid one memory access per insertion.

Sliding-Window And Bottom-up (SWAB) [15] is a linear interpolation model.
As FLI, the samples are represented by a list of linear models. In particular, read-
ing a sample is achieved by iteratively going through the list of models until the
corresponding one is found and then used to estimate the requested value. The
bottom-up approach of SWAB starts by connecting every pair of consecutive
samples and then iterates by merging the less significant pair of contiguous in-
terpolations. This process is repeated until no more pairs can be merged without
introducing an error higher than ϵ. Contrarily to FLI, this bottom-up approach
is an offline one, requiring all the samples to be known. SWAB extends the
bottom-up approach by buffering samples in a sliding window. New samples are
inserted in the sliding window and then modeled using a bottom-up approach:
whenever the window is full, the oldest model is kept and the captured samples
are removed from the buffer.

One could expect that the bottom-up approach delivers more accurate models
than the greedy FLI, even resulting in a slight reduction in the number of models
and faster readings. On the other hand, sample insertion is more expensive than
FLI due to the execution of the bottom-up approach when storing samples. Like
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FLI, SWAB ensures that reading stored samples is at most ϵ away from the exact
values.

Greycat [17] aims at compressing even further the data by not limiting
itself to linear models. Greycat also models the samples as a list of models,
but these models are polynomials. The samples are read the same way.

When inserting a sample, it first checks if it fits the model. If so, then nothing
needs to be done. Otherwise, unlike FLI and SWAB which directly initiate a new
model, Greycat tries to increase the degree of the polynomial to make it fit the
new sample. To do so, Greycat first regenerates d+ 1 samples in the interval
covered by the current model, where d is the degree of the current model. Then,
a polynomial regression of degree d + 1 is computed on those points along the
new one. If the resulting regression reports an error lower than ϵ

2d+1 , then the
model is kept, otherwise, the process is repeated by incrementing the degree until
either a fitting model is found or a maximum degree is reached. If the maximum
degree is reached, the former model is stored and a new model is initiated. The
resulting model is quite compact, and thus faster to read, but at the expense of
an important insertion cost.

Unlike FLI and SWAB, there can be errors higher than ϵ for the inserted sam-
ples, as the errors are not computed on raw samples but on generated ones, which
may not coincide. Furthermore, the use of higher-degree polynomials makes the
implementation subject to overflow: to alleviate this effect, the inserted values
are normalized.

4.4 Experimental Settings

For experiments with univariate data streams—i.e. memory and throughput
benchmarks—we set ϵ = 10−2. The random samples used in those experiments
follow a uniform distribution in [−1,000; 1,000]: it is very unlikely to have two
successive samples with a difference lower than ϵ, hence reflecting the worst case
conditions for FLI. For experiments on location data, and unless said otherwise,
we set ϵ = 10−3 for FLI, SWAB and Greycat. For Greycat, the maximum de-
gree for the polynomials is set to 14. The experiments evaluating the throughput
were repeated 4 times each and the average is taken as the standard deviation
was low. All the other experiments are deterministic and performed once.

4.5 Implementation Details

We implemented FLI using the Flutter Software Development Kit (SDK) [11].
Flutter is Google’s UI toolkit, based on the Dart programming language, that can
be used to develop natively compiled apps for Android, iOS, web and desktop
platforms (as long as the project’s dependencies implement cross-compilation
to all considered platforms). Our implementation includes FLI and its storage
competitors.This implementation is publicly available [3].

For our experiments, we also implemented several mobile applications based
on this library. To demonstrate its capability of operating across multiple en-
vironments (models, operating systems, processors, memory capacities, storage
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capacities), all our benchmark applications were successfully installed and ex-
ecuted in the devices listed in Table 1. Unless mentioned otherwise, the host
device for the experiments is the Fairphone 3.

Table 1. Mobile devices used in the experiments.

Model OS CPU Cores RAM Storage

LenovoMotoZ Android 8 Snapdragon 820 4 4GB 32GB
Fairphone 3 Android 11 Snapdragon 632 8 4GB 64GB
Pixel 7Pro Android 13 GoogleTensorG2 8 12GB 128GB
iPhone 12 iOS 15.1.1 A14Bionic 6 4GB 64GB
iPhone 14Plus iOS 16.0.1 A15Bionic 6 6GB 128GB

5 Experimental Results

In this section, we evaluate our implementation of FLI on Android and iOS
to show how it enables efficient data stream storage on mobile devices.We first
perform several benchmarks (memory, throughput & stability), before evaluating
the performance of FLI beyond location streams. Finally, we perform a Point Of
Interest (POI) mining experiment directly on mobile devices, thus showcasing
how FLI enables in-situ big data processing.

5.1 Memory Benchmark

As there is no temporal database (e.g. InfluxDB), available on Android, we
compare FLI’s performances with SQLite, the only database natively available
on Android.

Synthetic data. 2 identical operations are performed with SQLite and FLI:
(i) the incremental insertion of random samples and (ii) the incremental insertion
of constant samples. The memory footprint of both solutions on disk is compared
when storing timestamped values. As FLI models the inserted samples, random
values are the worst-case scenario it can face, while inserting constant values
represents the ideal one. One million samples are stored and, for every 10,000
insertion, the size of the file associated with the storage solution is saved. The
experiments are done with a publicly available application [4].

Fig. 6 depicts the memory footprint of both approaches. On the one hand, the
size of the SQLite file grows linearly with the number of inserted samples, no
matter the nature (random or constant) of the samples. On the other hand, the
FLI size grows linearly with random values, while the size is constant for constant
values. In particular, for the constant values, the required size is negligible. The
difference between vanilla SQLite and FLI is explained by the way the model
is stored: while SQLite optimizes the way the raw data is stored, FLI is an
in-memory stream storage solution, which naively stores coefficients in a text
file. Using more efficient storage would further shrink the difference between
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the two. As expected, the memory footprint of a data stream storage solution
outperforms the one of a vanilla SQLite database in the case of stable values.
While random and constant values are extreme cases, in practice data streams
produced by ubiquitous devices exhibit a behavior between the two scenarios
which allows FLI to lower the memory required to store those data streams.
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n 1e6
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Fig. 6. Inserting 1M samples, random (R) or
constant (C), in SQLite and FLI.
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Fig. 7. Memory gain distribution
when storing Cabspotting with FLI.

GPS data. We use FLI to store latitudes and longitudes of the entire Cab-
spotting dataset (388MB) in memory, using both ϵ = 10−3 and ϵ = 2 × 10−3

(representing an accuracy of approximately a hundred meters). For each user,
we compute the gain of memory storage as a percentage, compared to storing
the raw traces. Fig. 7 reports on the gain distribution as a CDF along with the
average gain on the entire dataset. Most of the user traces largely benefit from
using FLI, and FLI provides an overall gain of 21% (307MB) for ϵ = 10−3 on
the entire dataset, and a gain of 47.9% (202MB) for ϵ = 2× 10−3.

Additionally, we also compare SQLite and FLI to store the entire Priva-
mov dataset (7.2GB). In this context, FLI only requires 25MB (gain of 99.65%)
compared to more than 5GB (gain of 30.56%) for SQLite, despite the naive
storage scheme used by FLI. Furthermore, with smartphones featuring limited
RAM (cf. Table 1) and not allocating the whole of it to a single application,
FLI enables loading complete datasets in memory to be processed: on mobile
devices, loading the raw Privamov dataset in memory crashes the application
(due to out-of-memory errors), while FLI succeeds in fitting the full dataset into
RAM. This capability is particularly interesting to enable the deployment of
data stream processing tasks on mobile devices that do not incur any processing
overhead.

5.2 Throughput Benchmark

We compare FLI with its competitors among the temporal databases: SWAB
and Greycat. We study the throughput of each approach in terms of IOPS.
Insertion speed is computed by inserting 1M random samples (that is each of
these solutions’ worst-case scenario). For the reads, we also incrementally insert
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1M samples before querying 10K random samples among the inserted ones.
Greycat is an exception: due to its long insertion time (Sect. 4.3), we only
insert 10K random values and those values are then queried. Our experiment is
done using a publicly available application [5].

Fig. 8 depicts the throughput of the approaches for sequential insertions and
random reads. On the one hand, FLI drastically outperforms its competitors for
the insertions: it provides a speed-up from × 133 against SWAB up to × 3,505
against Greycat. The insertion scheme of FLI is fast as it relies on a few
parameters. On the other hand, Greycat relies on a costly procedure when a
sample is inserted: it tries to increase the degree of the current model until it
fits with the new point or until a maximum degree is reached. Greycat aims
at computing a model as compact as possible, which is not the best choice for
fast online insertions.
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Fig. 8. Throughput for insertions and reads using FLI, SWAB, and Greycat (log
scale). FLI drastically outperforms its competitors for insertions and reads.

For the reads (Fig. 8b), FLI also outperforms SWAB. Our investigation re-
ports that FLI largely benefits from its dichotomy lookup inside the time index
(see Alg. 1), compared to SWAB, which scans the list of models sequentially
until the correct time index is found. SWAB reads have a complexity linear in
the size of the list, while FLI has a logarithmic one. Greycat has the same
approach as SWAB and this is why it is not represented in the results: with only
10K insertions instead of 1M , its list of models is significantly smaller compared
to the others, making the comparison unfair. Nevertheless, we expect Greycat
to have a better throughput as its model list shall be shorter.

Note that those results have been obtained with the worst-case: random
samples. Similarly, unfit for FLI are periodical signals, such as raw audio: our
tests show a memory usage similar to random noise. Because FLI leverages linear
interpolations, it performs best with signals that have a linear shape (e.g. GPS,
accelerometer). We expect SWAB to store fewer models than FLI thanks to its
sliding window, resulting in faster reads. However, the throughput obtained for
FLI is minimal and FLI is an order of magnitude faster than SWAB for insertions,
so it does not make a significant difference. We can conclude that FLI is the best
solution for storing large streams of data samples on mobile devices.
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5.3 Stability Benchmark

We further explore the capability of FLI to capture stable models that group as
many data samples as possible for the longest possible durations. Fig. 9 reports
on the time and the number of samples covered by the models of FLI for the
Cabspotting and PrivaMov datasets. One can observe that the stability of
FLI depends on the density of the considered datasets. While FLI only captures
at most 4 samples for 90% of the models stored in Cabspotting (Fig. 9a), it
reaches up to 2,841 samples in the context of PrivaMov (Fig. 9c), which samples
GPS locations at a higher frequency than Cabspotting. This is confirmed
by Fig. 9b and 9d, which report a time coverage of 202ms and 3,602ms for
90% of FLI models in Cabspotting and PrivaMov, respectively. Given that
PrivaMov is a larger dataset than Cabspotting (7.2GB vs. 388MB), one can
conclude that FLI succeeds to scale with the volume of data to be stored.
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Fig. 9. Stability of the FLI models on PrivaMov & Cabspotting with ϵ = 10−3.

5.4 Beyond Location Streams

In this paper, FLI was mainly tested against location streams, but our proposal
efficiently approximates any type of signal that varies mostly linearly: times-
tamps, accelerations, temperature, pressure, humidity, light, proximity, air qual-
ity, etc. This makes FLI a valuable candidate in ubiquitous contexts, as many
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physical quantities captured by e.g. IoT sensors have a piecewise linear behavior.
To showcase different scenarios, we benchmark the storage of timestamps and
heartbeat data using FLI. In both cases, we use our ϵ-tuning script to capture
the most appropriate value to store the data with a reduced error.

Storing timestamps. In all the previous experiments, the timestamps were not
modeled by FLI, as we expect the user to query the time at which she is inter-
ested in the samples. However, it is straightforward to store irregular timestamps
using FLI: we store couples (i, ti) with ti being the ith inserted timestamp. The
nature of the timestamps makes them a good candidate for modeling, as inser-
tion rates are generally fixed, or vary linearly. To assess the efficiency of FLI for
storing timestamps, we stored all the timestamps of the user 1 of the Priva-
Mov dataset with ϵ = 1—i.e., we tolerate an error of one second per estimate.
The 4,341,716 timestamps were stored using 26,862 models for a total of 80,592
floats and an overall gain of 98%, with a mean average error (MAE) of 0.246
second. Hence, not only does the use of FLI result in drastic memory savings,
but it also provides accurate estimations.

Storing heartbeat pulses. We downloaded pulse-to-pulse intervals, which oscil-
late between 500 and 1, 100ms and are reported as the time duration between
cardiac pulses to the timestamp of the original pulse, from a Polar Ignite 2 [20]
smartwatch, gathering 28,294,762 samples covering the 12 months of 2023, as a
file of 259.1MB. Using FLI to model this dataset with an accuracy of ϵ = 100
reports on a non-negligible storage space gain of 26.44%, with a mean error of
22.74 milliseconds. FLI is thus a suitable solution to store data streams produced
by various sensors of wearable and mobile devices, which could find application
in e.g. human context recognition [23].

6 Threats to Validity

While FLI enables processing big data in the small by allowing local data storage,
our results might be threatened by some variables we considered.

The hardware threats relate to the classes of constrained devices we consid-
ered. In particular, we focused on the specific case of smartphones, which is the
most commonly deployed mobile device in the wild. To limit the bias introduced
by a given hardware configuration, we deployed FLI on both recent Android and
iOS smartphones for most of the reported experiments, while we also considered
the impact of hardware configurations on the reported performances.

Another potential bias relates to the mobility datasets we considered in the
context of this paper. To limit this threat, we evaluated our solutions on two
established mobility datasets, Cabspotting and PrivaMov, which exhibit dif-
ferent characteristics. Yet, we could further explore the impact of these charac-
teristics (sampling frequency, number of participants, duration and scales of the
mobility traces). Beyond mobility datasets, we could consider the evaluation of
other IoT data streams, such as air quality metrics, to assess the capability of
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FLI to handle a wide diversity of data streams. To mitigate this threat, we re-
ported on the storage of timestamps and heartbeats in addition to 2-dimensional
locations.

Although FLI increases storage capacity through data modeling, it might still
reach the storage limit of its host device if using a constant ϵ parameter (which
drives the compression rate). To address this issue, we could dynamically adapt
data compression to fit a storage size constraint. Toward this end, An et al. [1]
propose an interesting time-aware adaptive compression rate, based on the claim
that data importance varies with its age.

Our implementations of FLI may suffer from software bugs that affect the
reported performances. To limit this threat, we make the code of our libraries
and applications freely available to encourage the reproducibility of our results
and share the implementation decisions we took as part of the current imple-
mentation.

Finally, our results might strongly depend on the parameters we pick to
evaluate our contributions. While FLI performances (gain, memory footprint)
vary depending on the value of the ϵ parameter, we considered a sensitive analysis
of this parameter and we propose a default value ϵ = 10−3 that delivers a
minimum memory gain that limits the modeling error.

7 Conclusion

Mobile devices are incredible producers of data streams, which are often for-
warded to remote third-party services for storage and processing. This data
processing pattern might be the source of privacy breaches, as the raw data may
leak sensitive personal information. Furthermore, the volume of data to be pro-
cessed may require huge storage capacity, from mobile devices to remote servers,
and network capacity to deal with the increasing number of devices deployed in
the wild.

To better deal with the deluge of sensor data streams continuously generated
by ubiquitous devices, we proposed FLI that unlocks in situ data management
strategies by enabling the storage of unbounded data streams. FLI comes as an
open library that can be deployed on any mobile device to store multivariate
data streams, like mobility traces, 3D accelerations, or air quality metrics.

Our extensive evaluations, based on real mobile applications available for
Android and iOS, highlight that FLI drastically outperforms its competitors
in terms of insertion throughput—FLI is more than 130 times faster than the
traditional SWAB—and read throughput—FLI reads 1,800 times faster than
SWAB. Beyond its relevant performances for mobile devices, we also show that
the integration of FLI paves the way for the deployment of big data processing
tasks on mobile devices, hence addressing the above privacy, network and storage
issues in a single solution.
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A Methodological Transparency & Reproducibility
Appendix

A.1 Tools setup

Our benchmarking applications are developed with Flutter, an open-source frame-
work by Google for building multi-platform applications (installation instruc-
tions: https://docs.flutter.dev/get-started/install); we used Flutter version 3.3.4:
to ensure you are using the correct version, check the flutter --version com-
mand output:

user@computer:~$ flutter --version

Flutter 3.3.4 • channel stable • https://github.com/flutter/flutter.git

Framework • revision eb6d86ee27 • 2022-10-04 22:31:45 -0700

Engine • revision c08d7d5efc

Tools • Dart 2.18.2 • DevTools 2.15.0

To run the applications, you can use smartphones (i.e. real Android or
iPhone devices) or emulators, though performances will be poorer with the lat-
ter. In both cases, you will need to install the Android Studio IDE: https:
//developer.android.com/studio.

If you own an Android smartphone, it can be used to test our applications:
you need to plug it into your computer using USB and set up development
mode: https://developer.android.com/studio/run/device. Otherwise, An-
droid Studio contains the Android emulator component: if you need to set up
one emulator, instructions can be found here: https://developer.android.
com/studio/run/emulator.

In both situations, your device should appear in the adb devices command
output:

user@computer:~$ adb devices

List of devices attached

13241JEC208547 device

A.2 Applications

Results and figures presented in this paper were obtained using four experimental
applications:

– Accelerometer [2]

– Benchmarking memory space [4]

– Benchmarking throughput [5]

https://docs.flutter.dev/get-started/install
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/device
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator


Compact Storage of Data Streams in Mobile Devices 19

TemporalBDDFlutter (installation time: 2 minutes, run experiment dura-
tion: 2 minutes)

The core library of our contribution, temporalbddflutter includes all classes
used to model data; this package also includes a toy application modeling ac-
celerometer data with FLI in real-time.

To run the experiment, click the “Launch XP: no movement” button (and do
not move your phone if it is a physical device). This will start listening to your
device’s accelerometer and store its values in FLI models. The “no movement”
part of this experiment shows that FLI saves memory space by modeling data
instead of storing discrete records, providing an important space gain. You can
also try the “move” experiment while moving your phone around: you will see
that size gain is lower than the previous experiment, due to data randomness.
This experiment has values count and time bounds to stop it automatically after
10k inserted values or 2 elapsed minutes, depending on which limit is reached
first.

Benchmarking memory space (installation time: 2 minutes; run experiment
duration: 5 minutes)

This application allows comparing data sizes of random or constant values,
using an SQLite database or a FLI model.

This application allows you to store 1 million values in the phone’s memory,
using either random or constant values, and either using SQLite or FLI; once an
experiment is finished, you can read the size of the file in which values are stored.
It demonstrates that FLI modeling performances are approximately the same as
SQLite regarding random values, but are superior while storing constant values.

Results obtained by this benchmark are reported in Figure 6.

Benchmarking throughput (installation time: 2 minutes; run experiment
duration: 10 minutes)

This application allows comparing speeds of inserting or reading values, using
FLI, SWAB or Greycat modeling.

Results obtained by this benchmark are reported in Figure 8.
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