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Abstract
Heterostructured nanomaterials exhibit pronounced potential in environmental science, including the water 
purification, pollutant monitoring, and environmental remediation. Especially, their application through advanced oxidation 
processes has been found capable and adaptable in waste water treatment. In semiconductor photocatalysts, metal sulfides 
are the leading materials. However, for further modifications, the progresses on specific materials need to be 
overviewed. Among metal sulfides, nickel sulfides are the emerging semiconductors due to relatively narrow band 
gaps, high thermal and chemical stability, and cost effectiveness. The aim of the present review is to conduct a 
thorough analysis and summary of recent progress in the application of nickel sulfide-based heterostructures in water 
decontamination. Initially, the review introduces the emerging needs of the materials for environment following the 
characteristics features of metal sulfides with empha-sis on nickel sulfides. Subsequently, synthesis strategies and 
structural properties of nickel sulfide (NiS and  NiS2)-based photocatalysts are discussed. Herein, controlled synthesis 
procedures to influence their active structure, compositions, shape, and size for the enhanced photocatalytic 
performances are also considered. Furthermore, there is discussion on heterostructures formed by metal modification, 
metal oxides, and carbon hybridized nanocomposites. In the continuation, the modified characteristics are investigated 
which favors the photocatalytic processes for degradation of organic contami-nations in water. The overall study 
highlights significant improvements in degradation efficiency of hetero-interfaced NiS and  NiS2 photocatalysts towards 
organics that are comparable to expensive noble-metal photocatalysts. Finally, we also added a little on prospects for 
future advancement of nickel sulfide-based photocatalysts for applications in sustainable environmental remediation.
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Introduction

The accelerated rates of industrialization all over the world 
and over population are the two major sources of several 
kinds of contaminants in water that are deteriorating the 
environment (Kummu et al. 2016; Lichtfouse et al. 2021; 
Izzudin et al. 2021). As per European Community (EC) 
and the United States Environmental Protection Agency 
(USEPA), organic pollutants include different halogenated 

pesticides, fertilizers, and biphenyls, monocyclic and pol-
ynuclear aliphatic or aromatic compounds, halogenated 
ethers, and phthalate acid esters along with some miscellane-
ous compounds (Wild and Jones 1991). In the contaminated 
wastewater treatment, some suitable methods are adsorp-
tion, membrane technologies, coagulation, and photocata-
lytic degradation (Kumar et al. 2019b; Akshatha et al. 2020; 
Alrobei et al. 2021). In this regard, photocatalysis has been 
intensely researched and widely applied in several areas 
including solar energy utilization, water splitting, medical 
and health care, pollutant degradation, and environmental 
governance (Anwer et al. 2019). This technology is driven 
by solar energy wherein simple operation, mild reaction 
conditions, and producing no secondary pollution make it 
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an effective strategy to solve global problems (Meng et al. 
2019; Dhiman et al. 2022).

The photocatalysis process is a sort of advanced oxidative 
processes where a semiconductor material absorbs light of 
energy equal to or greater than its band gap energy, leading 
excitations of electrons from valence band to the conduction 
band (Soltani et al. 2012; Sharma et al. 2022). The generated 
electron–hole  (e−/h+) pairs further produce different free 
radicals like hydroxyl, superoxide anion radicals in the reac-
tion system to redox to activate the adsorbed compounds on 
the surface of the photocatalyst (Sharma et al. 2021b). Thus, 
photo-induced degradation of the organic compounds with 
the help of photo-chemically active semiconductor materi-
als is one of the most interesting topics of environmental 
and global management (Adhikari et al. 2013). Therefore, 
the development of photocatalysts is the efficient strategy to 
overcome the issues of industrial wastewater remediation 
and energy crisis (Kumar et al. 2019a; Gan et al. 2021).

In advanced oxidation process, the frequently reported 
materials are transition metal oxides (Okpara et al. 2023), 
nitrides (Luo et al. 2023), carbides (Mabuea et al. 2022), 
phosphides (Han et al. 2021), sulfides (Wu et al. 2022), and 
selenides (Nawaz et al. 2023). Especially, the metal sulfides 
have emerged as promising candidates for water purification-
relevant applications. In the metal sulfides,  MoS2, CdS, SnS, 
and NiS are the frequently studied ones (Mishra and Chun 
2015; Ong et al. 2016; Li et al. 2018; Wang et al. 2018; Mit-
tal et al. 2019; Sharma et al. 2021a; Kumari et al. 2021; Passi 
and Pal 2021). Among the metal sulfides, nickel sulfides 
have attracted the attention due to ease of fabrication, low 
cost, and low toxicity and have widespread applications in 
environmental science (Wang et al. 2007).

These metal sulfides due to their narrow band gaps have 
capability to absorb in visible light regions and therefore 
have applied in the photocatalytic reactions extensively 
(Lopes et al. 2021). Further, the heterostructure interfaces 
of nickel sulfides with different materials like metal oxides, 
sulfides, and carbon-based structures improves the photo-
catalytic activity performances (Zhang et al. 2012; Wang 
et al. 2018; Zhao et al. 2019). Nickel sulfides exhibit low 

band gap value compared to tradition semiconductors such 
as  TiO2, ZnO,  SnO2, and  CeO2 (Rajamanickam et al. 2015). 
A properly matched p–n junction formation can significantly 
induce electric field at the interfaces, which in turn expands 
spectral response range and efficient generation, separation, 
and transference of the photoexcited charge carriers (Qian 
et al. 2018). However, there are a number of articles pub-
lished on transition metal-based catalysts, but the main focus 
lies on electrochemical energy storage and photocatalysis 
with an emphasize on the catalyst synthesis methods, char-
acterization techniques, morphology, and structure control. 
Despite the progress in heterogeneous catalysis for water 
purification, specially the study on nickel metal sulfide-
based photocatalysis is still in its infancy, and the applica-
tion in heterogeneous catalysis to treat contaminated water 
has never been reviewed till now.

The present review article emphasized on synthesis 
strategies and developments in characteristic properties for 
nickel sulfide and the assisted materials. In the modifica-
tion pathways, special attention has been given on the het-
erostructures with metals, metal oxides, metal sulfides, and 
different carbon-based materials (Fig. 1). Finally, the nickel 
sulfide heterostructured materials are discussed scientifically 
for the photocatalytic applications towards decontamination 
of various organic pollutants for environmental remediation.

Properties of NiS and  NiS2 semiconductors

Transition metal sulfides have been reported to exhibit 
diverse stoichiometries compositions and structure mor-
phologies. This is ascribed to the hybridizing of 3 s and 3p 
orbitals with the 3d orbitals that stabilize adjacent six cati-
ons and arranged in a trigonal–pyramidal configuration. The 
S–S bonds resulting in molecular anions and large dipole 
moments of the anions support the formation of layered 
structures (Rao and Pisharody 1976). In this regard, nickel 
sulfides reported generally in literature with the stoichio-
metries  Ni3S2,  Ni3S4, NiS,  Ni7S6,  Ni9S8,  NiS2, α-NiS, β-NiS, 
α/β-NiS composite, and structures of mixed phases with the 

Fig. 1  A general layout of 
nickel sulfide heterostructures, 
properties, and synthesis strate-
gies



films and nanosheets, nanospheres, nanotubes, nanorods, 
nanowires, and nanoplate-like (Dong et al. 2011; Zhou et al. 
2013; Li et al. 2014, 2020; Tang et al. 2015; Shi et al. 2019; 
Shombe et al. 2020). Among the variety of nickel sulfide 
phases, most of the phases are found at lower temperatures. 
Out of the different nickel sulfide phases, two important ones 
are (i) low-temperature rhombohedral phase β-NiS and (ii) 
high-temperature hexagonal α-NiS phase. Each phase of 
nickel sulfide has its own physical and chemical proper-
ties and is useful when applied in particular field (Zheng 
et al. 2019). The synthesis of nickel sulfide nanocrystals 
with particular structural features for specific applications 
is very challenging. However, synthesis of phase selective 
materials enables the researchers to investigate the phase-
dependent properties and extend the applicability of the 
respective materials and also provides new paths to design 
novel highly photoactive nanomaterials (Lim et al. 2006). It 
is well-known that the composition, phase, morphology, and 
size of any material are largely decided by the fabrication 
reaction kinetics and the related thermodynamics (Huang 
et al. 2015). Therefore, the structural characteristics of the 
synthesized material are probably altered by the control of 
experimental conditions. In addition, to synthesize nickel 
sulfide with specific structure and phase, understanding of 
the influencing factors for the crystal formation is necessary. 
The most important differences among the various classes 
of nickel sulfides are the stoichiometric ratios of nickel and 
sulfur and the different oxidation states of sulfur and nickel 
 (S2−,  S2

2−,  Ni2+, and  Ni3+) (Rhodes et al. 2017). It is docu-
mented that there are several factors which effect the compo-
sition and phase of the synthesized nickel sulfides (Manjuna-
tha et al. 2020). The reactivity and concentration of the used 
precursors, solvent and its pH, reaction temperature, sources 
of nickel and sulfur, organic ligands, and reaction rate are 
the main decisive factors for the phase selective preparation 
of nickel sulfide materials (Hu et al. 2022a).

The fractal geometry-nickel sulfide dendritic structures 
were developed via chemical vapor deposition method 
(Shriber et al. 2022), and the growth mechanism of the 
crystals was examined. Different compositions were found 
during the nucleation including various stoichiometries of 
 Ni0.96S (hexagonal phase),  Ni0.99S (hexagonal phase),  NiXS6 
(monoclinic phase),  (Ni7S6)3.25 (orthorhombic phase), and, 
finally, the  Ni3S2 in rhombohedral phase were identified. 
The α-NiS is reported as the metastable phase at ambient 
conditions and gets transformed into the more stable β-NiS 
phase at lower temperatures exhibiting rhombohedral struc-
ture (Yousfi et al. 2010). Investigations of transformation 
mechanisms revealed that change in temperature and the sul-
fur content in the α- NiS significantly changes the structural 
transformation route. Also, the structural properties of nickel 
sulfide are determined by the source of sulfur taken in the 
reaction. Cubic polydymite  (Ni3S4) were obtained 
(Balayeva 

et al. 2017) when  Na2S was used as the source of sulfur (S), 
exploiting 0.5 M of nickel precursor in 24 h reaction time. 
On the other hand, when thiourea was used as S-resource, 
rhombohedral NiS nanocrystals were fabricated. A phase 
transition–orthorhombic  Ni7S6 nanocrystals were observed 
when vacuum annealing was done for 8 h at 180 °C.

The structural composition can be varied by altering the 
atomic ratios of the precursors used for Ni and S respec-
tively. For example, when various 2:1, 3:1, 1:2, and 1:3 
atomic ratios of Ni and S were used to synthesize nickel 
sulfides (Khan et al. 2021), the corresponding crystal struc-
ture and phases were verified in the XRD patterns as shown 
in Fig. 2a. The fabricated samples were indexed to dif-
fraction peaks at (002), (102), (101), (200), (110), (201), 
and (112) planes which supported the formation of NiS 
nanocrystals phase. Another work investigated the effect of 
reaction temperature on the phase compositions and reported 
that sulfur-rich nickel sulfides are obtained at higher tem-
peratures (Gou et al. 2017). At 160 °C, the diffraction peaks 
were ascribed to the pure NiS rhombohedral phase, while 
mixed phases of cubic  Ni3S4 and rhombohedral NiS were 
obtained at 180 and 200 °C, respectively (Fig. 2b).

Regulation of reactivity of precursors and ratio of metal 
ions to the sulfur source is also an important parameter. 
Sulfur-rich phases were obtained when weaker C─S bonds 
were present in the sulfur source (Rhodes et al. 2017), due 
to which more active sulfur species are released to react with 
metal ions and produce sulfur-rich sulfide product. In addi-
tion to it, there are some strategies which focus on the pro-
duction of sulfur-deficient nickel sulfides. For instance, vari-
ation in the amount of coordination agent (Hu et al. 2022b) 
transformed the β-NiS/α-NiS/Ni3S4 composition to β-NiS/
α-NiS and finally to pure β-NiS. Another work (Hu et al. 
2022a) reported the effect of solvent pH and found lower pH 
values suitable for S-rich sulfides. When 1 M HCl was used 
as the solvent, bulk structured pure  NiS2 phase was obtained, 
while layered structures of β-NiS were obtained with 2 M 
KOH solution as the solvent. Such types of observations 
are also supported with the DFT analysis. In acidic condi-
tions, S atoms become more competitive for the Ni atoms as 
compared to the alkaline medium since the distance between 
the associated atoms is lesser, and the involved atoms can 
approach more easily. Moreover, the content of sulfur to 
nickel influences the association of the different atoms and, 
hence, the bond length between the atoms (Hu et al. 2022a). 
Therefore, the morphology and the respective structures are 
also altered. Figure 2c shows the correlation between the 
S -content and Ni-S bond distance and the obtained struc-
tures. The rate of feeding the starting materials during the 
synthesis introduces in homogeneity into the material. In a 
report, the effect of different feeding rates of the precursors 
was explained (Chandra Patel et al. 2021). It was observed 
that  NiS2 is favored only at low feeding rates since relative 



amount of the  NiS2 phase goes on decreasing with increase 
in the flow rates from 5 to 15 ml/min and becomes absent at 
20 ml/min flow rate (Fig. 2d). On the other hand, at the flow 
rate of 10 ml/min, maximum content of α-NiS was obtained. 
Thus, it is concluded that the rate of adding the precursors 
greatly affects the existence of phases in nickel sulfides.

Nickel sulfide composites with other metal sulfides have 
been reported that successfully form heterojunctions of 
the two materials and allow sufficient band offset for elec-
tron–hole separation (Zhao et al. 2022; Yendrapati et al. 
2022). ZnS/NixSy heterojunctions were obtained via one-
pot synthesis and exhibited proper band alignment (Khan 
et al. 2020). The band structures and electron density of 

states for NiS and  NiS2 were investigated with the theoretical 
DFT study as shown in Fig. 3a–e. Using the calculated posi-
tions for NiS and  NiS2 Fermi levels as well as a Schottky-
type junction with downward band bending was generated 
(Fig. 3e).

Synthesis strategies of nickel sulfide‑based 
photocatalysts

The nickel sulfide network is highly interesting owing to the 
numerous phases that it exhibits; including β-Ni3S2,  Ni3S4, 
α-  Ni3+xS2,  Ni4S3+x,  Ni9S8,  Ni7S6,  Ni6S5,  NiS2, and α-NiS, 

(a) (b)

(c) (d)
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Fig. 2  a XRD spectra of the synthesize nickel sulfides at different 
atomic ratios of Ni and S (1:1, 2:1, 3:1, 1:2, and 1:3). Reprinted with 
permission from ref. (Khan et al. 2021). Copyright 2021 Elsevier. b 
Effect of temperature (160, 180, and 200 °C) on the different phase 
ratios of nickel sulfides. Reprinted with permission from ref. (Gou 
et al. 2017). Copyright 2017 Elsevier. c Correlation of the S- content 

and Ni-S bond distance obtained from (Materials Project (https:// 
mater ialsp roject. org/)). Reprinted with permission from ref. (Hu et al. 
2022a). Copyright 2022 Elsevier. d Effect of feeding rates of the Ni 
and S precursors on the existence of nickel sulfide phases. Reprinted 
with permission from ref. (Chandra Patel et  al. 2021). Copyright 
2021  Elsevier

https://materialsproject.org/
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β- NiS (Emadi et al. 2017). Since, in the present article, 
we are dealing especially with NiS and  NiS2, various syn-
thesis methods and the resulting morphologies are listed 
in Table 1. The constituent elements itself declare that the 
preparation of nickel sulfide materials are affected by Ni 
precursor and sulfur source than the conditions being used 
in their respective synthesis procedures. The most promi-
nent nickel salts that are used in the preparations of NiS or 
 NiS2 are nickel (II) nitrate, nickel (II) chloride, and nickel 
(II) acetate tetrahydrate. For sulfur source, the widely used
are ammonium sulfide, sodium sulfide, and thiourea. Other
important matter of synthesis is the procedure or method
adopted to get the desired Ni sulfide.

NiS‑based photocatalysts

NiS is reported to possess two phases: (i) hexagonal and (ii) 
rhombohedral phase (Sun 2003; Ghezelbash et al. 2004). 
The synthesized phase and the corresponding morphology 
of sample are largely determined by the precursor used, 
reaction route, or method selected along with the synthe-
sis conditions employed. For example, NiS with β-phase 
and nanoflakes morphology was obtained (Zhao et  al. 
2009) when reaction was carried out for 12 h, while NPs 

morphology instead of nanoflakes were obtained for the 
reaction time of up to 3 h. Pristine NiS can be prepared 
via solvothermal approach using nickel nitrate as Ni source 
and thiourea  (CH4N2S) as the sulfur source in ethylene gly-
col solvent. Literature reveals that during the synthesis of 
nickel sulfides, obtaining single phase of either β-NiS or 
α-NiS is difficult task. Generally, the formation of mixed 
phases is obtained in case of NiS. Up to date various synthe-
sis methods have been utilized to prepare controlled phases 
of nickel sulfides including solvothermal, microwave, and 
hot injection method (Idris et al. 2011; Yang et al. 2014; 
Karthikeyan et al. 2015). NiS preparation using square pla-
nar nickel bis (dithiocarbonate) complexes [Ni(S2CNR2)2] 
exhibited α-NiS to β-NiS with phase transformation at high 
temperature of 280 °C (Roffey et al. 2016). Band gaps for 
NiS can be tuned by adjusting the temperature and changing 
capping agents such as citric acid, polyvinylpyrrolidone, and 
β-cyclodextrin (Molla et al. 2016). Similarly, another study 
reported α and β phases of NiS synthesized by green syn-
thesis protocol using water and ethanol under solvothermal 
conditions (Muniyappa et al. 2022). When the precursors 
of (Ni  (CH3COO)2⋅4H2O,  (NH2)2CS, and  NaC12H25SO4) 
were dissolved in pure ethanol, α-NiS was obtained whereas 
β-NiS phase was observed with 1:2 ratio of ethanol to water.

Fig. 3  Electron density of states (DOS) projected onto each layer of 
a c-NiS, b a-NiS c c-NiS2, and d a-NiS2 with a c-ZnS (1 1 0) sur-
face. Note that VBMs of ZnS locate at a 1.80, b 1.27 eV, c 0.91, and 
d 0.50  eV below the Fermi level. e Band diagram drawn using the 

valence band level of ZnS relative to Fermi level from DFT simula-
tions and measured band edges of NiS. Reprinted with permission 
from ref. (Khan et al. 2020).  Copyright 2020 Elsevier



A solvothermal technique is well known to achieve the 
nanostructures of different dimensions with controlled mor-
phologies. Recently, multicomponent sulfides materials are 
receiving tremendous attention owing to their excellent opti-
cal properties and adjustable band gaps (Su et al. 2019). A 
one-pot solvothermal method was used to synthesize NiS/
Mn0.3Cd0.7S with p–n heterojunctions (Han et al. 2020). 
The NiS nanoclusters were highly dispersed onto surface 
of  Mn0.3Cd0.7S nanorods. Heterostructured composites of 
NiS with metal organic framework (MOF) have been pre-
pared by the deposition of NiS on NU-1000, Zr (IV)-based 
MOF scaffold with the bis (N, N′-di-tert-butylacetamidinato) 
nickel- (II) and  H2S as the nickel and sulfur sources, respec-
tively (Peters et al. 2016). A unique, one step method is 
reported in which MOF based on MIL-101 (Fe/Ni) was 
used as metallic source and calcined in the presence of 
 Na2S to prepare the NiS/γ-Fe2O3/C type-II heterojunction 
(Rashid et al. 2021). The MIL-101 (Fe/Ni) was used as a 

sacrificial template. Loading NiS on graphite-like carbon 
nitride (g-C3N4) nanosheets is also an effective strategy to 
prepare NiS heterojunctions. This can be achieved either 
directly loading or some intermediaries. The strategy using 
intermediary compounds has advantages over direct load-
ing method involving (i) more efficient contact is possible 
between NiS and  C3N4 nanosheets and (ii) proper orientation 
of the co-catalyst takes place due to the introduction of inter-
mediaries. This reason may be the proper d-spacings existing 
in the intermediary material corresponding to both the spe-
cies going to form heterojunctions.  CuWO4 was used as the 
intermediaries to prepare NiS/g-C3N4 photocatalyst (g-C3N4/
NiS-W) (Xue et al. 2021). The overall synthesis procedure 
followed is depicted in Fig. 4a with the help of a schematic 
diagram. Moreover, carbon nanotubes (CNTs) consisting 
of cylindrical tubes are also considered as potential materi-
als in forming nickel sulfide heterojunctions and utilized in 
several fields (Wang et al. 2019). Apart from these,  MoS2 is 

Table 1  Synthesis method, morphology, and precursors used for the preparation of nickel sulfides and their heterostructures

Catalyst Nickel precursor Sulfur source Synthesis method Morphology Reference

NiS Ni(NO3)2⋅xH2O C12H25SH Thermolytic decomposi-
tion (190 °C, 5 h)

Nanorods (Ghezelbash et al. 2004)

NiS and  NiS2 Ni(NO3)3 Na2S2O3 Hydrothermal (180 °C, 
12 h)

Hollow microspheres (Luo et al. 2017)

α/β-NiS Ni(CH3COO)2.4H2O Thiourea Solvothermal (200 °C, 
8 h)

Elongated oval-shaped 
particles

(Muniyappa et al. 2022)

CuS-NiS-TiO2 Ni(NO3)2·6H2O Thiourea Hydrothermal (160 °C, 
12 h)

Microspheres (Wang et al. 2014)

ZnO/NiS@NiO/rGO Ni(CH3COO)2·4H2O CH4N2S Solvothermal (150 °C, 
4 h)

Nanoparticles (Liu and Li 2021)

NiS/rGO NiCl2.6H2O Na2S Hydrothermal (170 °C, 
5 h)

Nanoparticles (Arumugam et al. 2020)

Ni(OH)2/NiSx/BiVO4 Ni(NO3)3 Na2S Precipitation (-) Nanoparticles (Huang et al. 2022)
NiS/CdS Ni(NO3)2·6H2O Thiourea Solvothermal (150 °C, 

12 h)
Nanoparticles and 

flower
(Liu et al. 2021)

AC-NiS/CoS NiCl2·6H2O Na2S Precipitation (-) Spherical-nanosheets (Artagan et al. 2021)
NiS2/g-C3N4 NiCl2·6H2O Thiourea Hydrothermal (120 °C, 

24 h)
Nanosheet dispersed 

quantum dots
(Qin et al. 2020)

β-NiS/  ZnIn2S4 NiC4H6O4.4H2O Thiourea Solvothermal (180 °C, 
4 h)

Nanosheets (Ding et al. 2021)

NiS/NU-1000 (MOF) Bis(N,N′-ditert-
butylacetamidinato) 
nickel(II)

nickel(II) sulfide Atomic layer deposition 
(120 °C, 5 min)

– (Peters et al. 2016)

NiS-CuO@  ZnFe2O4 Ni(NO3)2.2H2O Na2S Chemical bath deposi-
tion (-)

Nanoarrays (Chen et al. 2020b)

CoNiSx-C3N4 Ni(NO3)2·6H2O Thiourea Thermal polymerization 
and Hydrothermal 
(120 °C, 5 h)

Polyhedrons and nano-
particles

(Jiang et al. 2019)

NiS/CuInS2/NiO Ni(CH3COO)2·4H2O C2H5NS Successive ionic layer 
adsorption and reac-
tion (25 °C)

Nanosheets (Liu and Zhou 2020)

Ni3S2-NiS2-g-C3N4 Ni(OAc)2 CH3CSNH2 Hydrothermal (130 °C, 
12 h)

Particles distributed 
over  C3N4

(Xi et al. 2022)



also a low-cost and attractive material that when integrated 
with nickel sulfides that exhibited enhanced photocatalytic 
reactions. NiS-MoS2/CNTs/g-C3N4 composite was synthe-
sized by hydrothermal and polymerization treatment (Zhang 
et al. 2018b). Nickel (II) acetate tetra hydrate was used as 
the source of  Ni2+ ions and NiS was generated by the reac-
tion between nickel ions and thiourea. Firstly, Ni-CNTs/g-
C3N4 was prepared via thermal polymerization and after that 
ammonium molybdate was used as the source of molyb-
denum followed by a hydrothermal treatment (Fig. 4b) to 
construct  NiS2-MoS2/CNTs/g-C3N4. Layered double-metal 
hydroxides (LDHs) also act as good catalytic supports for 
NiS photocatalyst. NiS nanoparticles were decorated over 
pre-prepared 2D hexagonal nanoflakes by the precipitation 
method. Figure 4d shows the diagram illustrating the proce-
dure for preparing MgAl-LDH/NiS heterostructure (Chen 
et al. 2020a). It is well known that the efficiency of a catalyst 
in any application is closely determined by the constitution 
as well as their morphological characteristics. The porous 
sponge-like structures provide a number of active sites, 
confinement effect, high surface area, and sufficient mass 
transfer and also prevent catalyst agglomeration (Peng et al. 
2016; Li et al. 2019). A highly active carbon cloth decorated 
with  NiSx-MoO2 nano-sponge was prepared and exhibited 
excellent electrocatalytic activity (Wang et al. 2020a). The 

synthesis involved a two-step electro-deposition and was fol-
lowed by vulcanization.  NiSx were grown directly on to the 
surface of  MoO2, and the coating process was eliminated in 
this synthesis route (Fig. 4c).

NiS2‑based photocatalysts

NiS2 exist in two main phases, cubic and triclinic (Luo 
et al. 2017). Several heterostructure composites photocata-
lysts based on  NiS2 of various morphologies have been 
fabricated. A heterostructure of  NiS2 QDs with g-C3N4 
using  NiCl2 and thiourea as Ni and S source respectively 
was fabricated. In the QDs-NiS2/g-C3N4 heterojunction, 
 NiS2 was obtained with 200 plane having 0.20 interpla-
nar spacing (Qin et al. 2020). In the other study, a hol-
low  NiS2 microspheres were synthesized by hydrothermal 
approach, and after annealing the prepared  NiS2 under 
mixed atmosphere  (H2 and Ar) conditions, mesoporous 
NiS was obtained by the reduction (Luo et al. 2017). The 
hollow microsphere structures of respective NiS and  NiS2 
possessed large surface sites, which improved the photo-
catalytic activity properties (Fig. 5a–h).  NiS2 applicability 
as photocatalyst is limited due to its low charge transfer 
and high aggregation. To overcome these limitations, 
 NiS2 is employed with other semiconductors materials. 

(a) (b)

(c) (d)

Fig. 4  Synthesis process of a g-C3N4/NiS-W. Reprinted with permis-
sion from (Xue et  al. 2021) Copyright 2020 Elsevier. b NiS-MoS2/
CNTs/g-C3N4 hybrid. Reprinted with permission from ref. (Zhang 
et al. 2018b).  Copyright 2018 Elsevier. c  NiSx-MoO2/CC. Reprinted 

with permission from ref. (Wang et al. 2020a). Copyright 2020 Else-
vier. d MgAl-LDH/NiS heterostructures. Reprinted with permission 
from ref. (Chen et al. 2020a). Copyright 2019 Elsevier



Although metal-associated materials are originated with 
high activity, research view is towards metal-free materials 
to avoid secondary environmental issues. In this regard, 
carbon nitride found an advanced material which pos-
sesses not only good electrical properties but also remark-
able photostability. Hybrid interface of g-C3N4 with  NiS2 
improve the charge transfer, but the aggregation of the 
 NiS2 particles is achieved by the adoption of some suit-
able synthetic routes. A novel  NiS2/g-C3N4 is reported 
prepared by a simple hydrothermal method with the use 
of a low cost  NiCl2.6H2O as Ni source and  CS2 as carbon 
source (Zhu et al. 2016). Engineering crystal facets is a 
hot research topic in photocatalysis. It has been observed 
from the reported works that synthesis of a particular facet 
is determined by the precursors used, solvent, and reaction 
parameters employed in the synthesis procedure (Zhang 
et al. 2022). For example,  NiS2 was prepared in two crystal 

facets, i.e., {111} and {100} where a hydrothermal treat-
ment was given for 12 h at 150 °C to the reaction con-
tents (Liang et al. 2020). When  NiCl2·6H2O (96 mg) and 
 Na2S2O3·6H2O (266 mg) along with 220 mg of polyvi-
nylpyrrolidone (PVP) were used in deionized water,  NiS2 
{111} was obtained, whereas  NiS2 {100} was observed on
using Ni  (NO3)2·6H2O (1.4 g),  CN2H4S (1.6 g), and 1.2 g
PVP with 2 mg of NaOH. Figure 5k shows the atomic
structure of  NiS2 {111} facet from both top and side views.
In the other study, NiS/CdS heterostructures were prepared
by adjusting the feed molar ratios of Ni/Cd from 0 to 1.2
and also varying the amounts of  NaH2PO2·H2O and lactic
acid (Zhang et al. 2018a). NiS and CdS were obtained in
β-rhombohedral and hexagonal phases respectively. The
synthesized samples mainly composed of nanoflowers, and
no appreciable change in the morphology was observed on
changing Ni/Cd ratio as shown in Fig. 5i–j.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Fig. 5  Microspheres FESEM and TEM images of  NiS2 (a–d) and NiS 
(e–i). Reprinted with permission from ref. (Luo et al. 2017).  Copy-
right 2016 American Chemical Society. i–j SEM images of pure CdS 
and NiS/CdS (Ni/Cd ratio of 0.4) nanoflowers. Reprinted with per-
mission from ref. (Zhang et  al. 2018a). Copyright 2019 Elsevier. k 

 NiS2 {111} crystal facets atomic structure from top and side view 
respectively (purple sphere represents Ni and orange sphere rep-
resents S atom). Reprinted with permission from ref. (Liang et  al. 
2020). Copyright 2019 Elsevier



Applications of nickel sulfide‑based 
photocatalysts

NiS and  NiS2‑based photocatalysts 
for the degradation of organic compounds

NiS and  NiS2 nanostructures are the superior semiconduc-
tors and various photo-active materials took advantage of 
their semiconductor features in constructing composite 
catalysts and vouchsafed excellent photocatalytic activity 
towards organic compounds degradation (Zhu et al. 2016; 
Huerta-Flores et al. 2018; Ardebilchi Marand et al. 2020; 
Khan et al. 2021; Mohtar et al. 2021). Table 2 presents the 
survey scan summary on NiS and  NiS2-based photocatalytic 
degradation activities of different organic contaminants. The 
photocatalytic efficiency of nickel sulfide microstructures 
with different atomic ratios of Ni and S can be explained 
with the help of ANSYS simulation and field emission stud-
ies (Khan et al. 2021). It was observed that the sample hav-
ing highest atomic ratio of Ni to S, i.e., 3:1, exhibited best 
performance in photodegradation (Khan et al. 2021). The 
probable reason may be associated with the morphologies 
of the samples. With increase in the atomic ratio of Ni, rod-
like blocks increased and each rod behaves like an individual 
emitter. On the other side in S-rich samples, the single parti-
cles are not effective emitters; in fact, the whole tube behaves 
as the cold cathode, thus leading to higher emission proper-
ties. The obtained results are also supported by the ANSYS 
simulation and turn-on fields as shown in Fig. 6.

Several materials including organic and inorganic 
have been explored as supports for NiS and  NiS2-based 
photocatalysts with improved suppression rates of the 
recombination of  e−/h+ pairs, thus resulting in higher 
photocatalytic efficiencies. Integrating NiS and  NiS2 with 
metal oxides is an effective approach towards designing 
active photocatalysts for the removal of organics (Saboo 
and Quadrelli 2019). Although nickel sulfide is of a high 
ability to harvest visible light due to their narrower band 
gaps, bare nickel sulfide suffers from the rapid recombin-
ing of charge carriers and photo-corrosion which affects its 
photocatalytic efficiency. Therefore, in this regard, nickel 
sulfides interfaced with other semiconductors behave like 
a co-catalyst, matching band edge positions lead to an 
efficient separation of  e−/h+ pairs, thereby boosting the 
photocatalytic effect (Lee and Chang 2019). A remark-
able adsorption and degradation of methyl orange was 
reported for heterostructure  TiO2/NiS2 photocatalyst (Zhu 
et al. 2012). The higher surface area, porosity, and polarity 
match between the adsorbate and the adsorbent were found 
to be the major contributing factors. Similarly, in another 
report (Mahmood et al. 2019), incorporation of  NiS2 into 
 TiO2 increased the photodegradation efficiency from 17 

to 80% for rhodamine B under visible light. Recently, 
a highly stable α-Fe2O3/NiS2 composite achieved up to 
93.7% degradation efficiency for humic acid which was 
higher than both the α-Fe2O3 and  NiS2 (Mohtar et  al. 
2021). The proposed degradation mechanism is depicted 
in Fig. 7a. Among the different proposed supports, mag-
netic materials like  Fe3O4 are of prior importance because 
of large surface area and simple separation of the cata-
lyst from the reaction system due to their paramagnetic 
behavior (Habibi-Yangjeh and Akhundi 2016). In the same 
direction, different conducting polymeric compounds are 
also regarded as promising materials due to their ease 
of preparation, high surface area and conductivity, and 
good environmental stability (Marimuthu et al. 2015). A 
polypyrrole@Fe3O4 core/shell as the support for NiS pho-
tocatalyst was fabricated and examined its photodegrada-
tion activity in cephalexin antibiotic removal under both 
direct sunlight and simulated UV irradiations (Torki and 
Faghihian 2017). The degradation efficiencies were deter-
mined to be 65 and 82% in sunlight and UV light respec-
tively. The effect of irradiation time on cephalexin degra-
dation by NiS and  Fe3O4@PPY-NiS is shown in Fig. 7b.

Hybrid NiS/rGO composite formed by the adjacent 
interface of NiS and rGO stimulate the formation of charge 
carrier with higher life times and thus displayed the higher 
photocatalytic performance in degradation removal of meth-
ylene blue dye (Arumugam et al. 2020). A high photoactivity 
observed for the NiS/rGO was 87%, which was significantly 
higher than the NiS of 70% activity for the dye degradation. 
The electrochemical impedance spectroscopy (EIS) studies 
also confirmed the higher charge transfer efficiency for the 
NiS/rGO in comparison to NiS and reduced graphene oxide, 
respectively. In the NiS/rGO composite, rGO can act as elec-
tron acceptors which enhance the charge separation. Another 
work reported a highly active NiS/CNTs photocatalyst for 
methylene blue degradation within 50 min (Haider et al. 
2021). The enhanced photoactivity of the hybrid photocata-
lyst than the individual NiS or CNTs was explained on the 
basis of generation of more reactive free radicals, surface 
defects, formed Ni–S–C bond, and availability of a greater 
number of active sites.

While dealing with  NiS2 photocatalyst, aggregation of 
the NPs is the main problem in the system. In this direc-
tion, g-C3N4, acts as a fascinating material owing to its 
s-triazine structure and visible light response (Zhu et al.
2016). This is due to the reason that heptazine rings of
g-C3N4 serve as a good support for loading  NiS2 NPs
and more importantly prevent the agglomeration of  NiS2
particles, thus improving the specific surface area and
hence the photoactivity of the material. It is reported that
the loading of  NiS2 over g-C3N4 is beneficial in improv-
ing the photoactivity especially because of the electron
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transference from g-C3N4 to  NiS2 and decreasing the 
charge recombination rate (Zhu et al. 2016).  NiS2/g-C3N4 
composite with improved absorption, less aggregation, 
and more charge transfer showed enhanced photocata-
lytic activity (Zhu et al. 2016). A 13.7 wt%  NiS2/g-C3N4 
composite demonstrated the highest photocatalytic per-
formance on rhodamine B underneath visible light illu-
mination. Furthermore, doping g-C3N4 with non-metallic 
elements (O, B, S, P, and halogens) and then forming het-
erojunctions with metal doped-NiS is also an efficient way 
to improve the catalytic efficiency of NiS photocatalyst. A 
co-doped NiS/S-g-C3N4 heterojunction was synthesized 
and demonstrated an improved photocatalytic performance 
towards methylene blue degradation when compared to 
single photocatalysts (Hakami 2022). The results showed 
that the interface contact between Co-NiS nanorods and 
S-g-C3N4 nanosheets increased the formation and separa-
tion effectiveness of the photoexcited charge carriers, thus
preventing their recombination.Ta
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(i) (ii) (iii) (iv)

(v) (vi)

(a)

(b)

Fig. 6  a ANSYS simulations for output filed magnitude of nickel 
sulfide; individual rod-made sphere (i), particulate sphere (ii); field 
vectors for individual rod-made sphere (iii), particulate sphere (iv); 
and output filed magnitude for micro tube with rod-made sphere (v), 
particulate sphere (vi), and b turn-on fields for varying Ni to S atomic 
compositions (1 to 3). Reprinted with permission from ref. (Khan 
et al. 2021).  Copyright 2021 Elsevier



Amorphous polysulfide,  NiSx, also acts as a good co-
catalyst. Both Ni (OH)2 and  NiSx have been reported as 
highly active co-catalyst with bismuth vanadate  (BiVO4) 
in the photodegradation of phenol due to effective elec-
tron transfer (Huang et al. 2022). As already described, 
phase and size of the synthesized nanoparticles (NPs) can 
be regulated by varying the initial ration of the concentra-
tions of the used sources. Single-phase nickel sulfide NPs 

including NiS,  Ni3S4,  NiS2, and  Ni7S6 were obtained utiliz-
ing a temperature-controlled precursor injection procedure 
(Karthikeyan et al. 2015). The synthesized NiS-phase NPs 
exhibited metallic characteristics and highest reduction effi-
ciency towards 4-nitrophenol when compared with the other 
nickel sulfide phases. A complete reduction of 4-nitrophe-
nol into 4-aminophenol was achieved in 300 s (Karthikeyan 
et al. 2015). On the other hand, the removal efficiencies of 

(a)

(b)

Fig. 7  a Photocatalytic mechanism of humic acid degradation by 
α-Fe2O3/NiS2 photocatalyst. Reprinted with permission from ref. 
(Mohtar et al. 2021) Copyright 2021 Elsevier. b Cephalexin degrada-

tion by NiS and  Fe3O4@PPY-NiS; S4 and S2 (sunlight) and S3 and 
S1 (UV) irradiations respectively. Reprinted with permission from 
ref. (Torki and Faghihian 2017).  Copyright 2017 Elsevier



other sulfur-rich phases were found lesser than that of the 
NiS phase being in 400 and 500 s for  (NiS2,  Ni3S4) and 
 Ni7S6 respectively. In recent times, crystal facet-dependent 
materials are receiving tremendous attention in the field of 
photocatalysis. It is found that a particular faceted nanocrys-
tals exhibit greater photoactivity than the other facets of the 
same material. Liang et al. found  NiS2 {111} nanocrystals 
exhibiting better photocatalytic activity in degrading of 
methyl orange and methylene blue organic dyes than {100} 
faceted nanocrystals (Liang et al. 2020). Moreover, integrat-
ing  NiS2 {111} with (rGO) further enhanced the photocata-
lytic efficiency where complete removal was achieved in 150 
and 180 min respectively.

Conclusion and future perspectives

This review presents the recent progress and developments 
in nickel sulfide (NiS and  NiS2)-based photocatalysts, 
focusing on the applications in environmental degradation 
of model organic wastewater pollutants by photocatalytic 
process. Undoubtedly, both NiS and  NiS2 can be considered 
as superior active visible-light semiconductors, due to their 
narrow indirect bandgap, which have demonstrated promis-
ing inherent photocatalytic properties.

NiS and  NiS2 both possesses the characteristics to be an 
efficient photocatalyst with a limitation of fast recombina-
tion rates of photogenerated charge carriers which need to 
be improved for a better performance. Hence, much effort 
has been directed to towards co-catalyst in constructing 
heterostructures interfaces with enhanced photocatalytic 
properties. The analyzed properties of NiS and  NiS2 can 
be extended to make the perception of inherent effects of 
heterostructure composite photocatalysts easy, paving the 
course of designing photocatalysts with improved photocata-
lytic activity and higher performance in the degradation of 
various organic wastewater pollutants. NiS and  NiS2 hybrid-
ized with metal oxides, metals, and carbon-based materials 
and further leads multicomponent from binary to ternary 
heterostructures which causes band edge alignments and 
improved heterostructures and surface characteristics with 
enhanced photocatalytic properties. The overall survey scan 
of the literature highlighted significant improvements on het-
ero-interfaced photocatalysts based on NiS and  NiS2 that 
are comparable to expensive noble-metal photocatalysts and 
degradation activity of organics. This compiled literature 
advancements in NiS and  NiS2 photocatalysts for the envi-
ronment will provide a comprehensive insight for developing 
new approach of designing superior visible-light photoactive 
catalysts based on cost-efficient nickel metal cocatalysts.

Although current studies have reported significant 
improvements in the catalytic efficiency of the hetero-
structures in water treatment, the active components of the 

catalyst will inevitably be lost or poisoned after multiple 
cycles. Therefore, there is need to improve the stability and 
reusability of the catalysts. In the future, more optimized 
synthetic methods should be developed for the stable het-
erostructured materials.

There are fewer studies on the eco-toxicity of nickel 
sulfide-based materials. Analysis of eco-toxicity is favora-
ble for establishing more environmentally friendly catalytic 
systems.

DFT computations can provide in-depth view of the 
transformation of target pollutants and help us to accurately 
elucidate the active catalytic centers.

Overall, the study on nickel sulfide-based heterostructures 
is still at an early stage; it is far from the large-scale practical 
application. Studies on stability for long-term performance, 
incorporation on structural modelling of pure structures of 
NiS and  NiS2, and their heterostructures are encouraged for 
further advancements in comprehending these photocatalytic 
materials for potential industrial implementations.
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