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THREE-TERM ASYMPTOTIC FORMULA FOR LARGE
EIGENVALUES OF THE QUANTUM RABI MODEL WITH A

RESONANT BIAS

ANNE BOUTET DE MONVEL1, MIRNA CHARIF2, AND LECH ZIELINSKI3

Abstract. We investigate the asymptotic distribution of large eigenvalues of the
asymmetric quantum Rabi model with an integer static bias. For this model, we
consider a variant of the generalized rotating-wave approximation, corresponding to
perturbations of double eigenvalues. Using this idea, we obtain a three-term asymp-
totic formula for the m-th eigenvalue with the remainder estimate O(m−1/2 lnm)
when m tends to infinity.

1. General presentation of the paper

1.1. Introduction. In Section 1.1 we briefly present the subject of the paper. In
Section 1.2 we give an overview of related works. The main result is stated in Section
1.3, and Section 1.4 gives an outline of its proof.

Our purpose is to investigate the behaviour of large eigenvalues of the Rabi model
(QRM). The QRM describes the simplest interaction between a two-level atom and a
quantized single-mode radiation. It has been widely used to study various problems of
quantum optics, condensed matter physics, and quantum information; we refer to [22],
[23], [15], [7], for the history of the model, and to the survey [36] for a list of theoretical
and experimental results.

The simplest QRM (see Definition 1.1(b)) is given by the Hamiltonian H∆,g
Rabi, de-

pending on the coupling constant g ∈ R and the energy separation of the two-level
system ∆ ∈ R. Its spectrum is discrete, and the fundamental question is how to
find a good approximation of the corresponding eigenvalues. One of the most popular
approximations, bears the name of the generalized rotating-wave approximation (GRWA)
after E. K. Irish [13]. The same idea was considered before by I. D. Feranchuk, L. I.
Komarov, A. P. Ulyanenkov [10], under the name of the zeroth order approximation of
the operator method (see also [11]). It appears that the GRWA is closely related to the
three-term asymptotic formula obtained in [4]. A high quality of this approximation for
large eigenvalues, was confirmed by the results of numerical computations of D. Braak,
L. T. H. Nguyen, C. Reyes-Bustos, M. Wakayama [8].

The authors of [8] give also conjectures on the behaviour of large eigenvalues for the
generalization of the QRM, called the asymmetric quantum Rabi model (AQRM), see
Definition 1.1(c). Its Hamiltonian, H∆,g,l

Rabi contains an additional parameter l, called the
static bias of the model. The AQRM is a particularly important model in the quantum
electrodynamics of superconducting circuits, where the additional term appears due
to the tunneling between two current states (see [12], [36], [24], [16]). See also recent
experimental realizations of this model in [38], [39].
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2 A. BOUTET DE MONVEL, M. CHARIF, AND L. ZIELINSKI

In this paper, we investigate the AQRM under the assumption that the static basis
l ∈ Z. In what follows, the integer static basis is called resonant, and we propose a
variant of GRWA for perturbations of double eigenvalues. Moreover, we prove that, for
l ∈ Z, the large eigenvalues of AQRM satisfy a three-term asymptotic formula, which is
similar to the formula for the QRM. We refer to [19], [31], [28], for other results in the
asymptotic analysis of the AQRM.

We observe that the AQRM with an integer bias, is the subject of numerous research
works. One of the most intensely studied aspects of this model, is the question of its
integrability (see [6], [17], [27], [32]), related to the existence of hidden symmetries and
double eigenvalues: the AQRM is expected to be integrable when the static basis l is
integer (see [1], [18], [20], [21], [25], [26], [35]).

1.2. Overview of results related to approximations of eigenvalues of QRM.
We refer to [30] and [10], for the earliest investigations of large eigenvalues of QRM. It
is well known (see [33], [4]) that H∆,g

Rabi can be expressed as a direct sum J− ⊕ J+ of
two Jacobi operators (i.e. operators defined by infinite tridiagonal matrices), hence the
spectrum of the QRM is composed of two eigenvalue sequences {E+

m}m∈N, {E−
m}m∈N

(corresponding to the spectrum of J+ and J− respectively). A mathematical study of
large eigenvalues of Jacobi matrices, was initiated by J. Janas and S. Naboko in the paper
[14], which contains fundamental ideas of the method of approximate diagonalizations.

The question of the behaviour of large eigenvalues of Jacobi matrices J± which
correspond to the QRM, was first posed by E. A. Tur [33]-[34] and it was mentioned
by A. Boutet de Monvel, S. Naboko and L. O. Silva in [2]. Due to the difficulty of the
problem, the paper [2] gives the asymptotic estimates for a simpler class of operators
("modified Jaynes-Cummings models"). However, using the ideas of [14], E. A. Ianovich
[37] proved the two-term asymptotic formula

E±
m = m− g2 +O(m−1/16) as m → ∞,

(see also [34]). However, the GRWA claims E±
m ≈ E±

m,GRWA, and according to the
formula (25) in the paper I. D. Feranchuk, L. I. Komarov, A. P. Ulyanenkov [10]),

E±
m,GRWA ≈ m− g2 ± rm as m → ∞

holds with

rm := (−1)m
∆

2

cos
(
4g

√
m− π

4

)√
2πg

√
m

. (1.1)

It appears that the three-term asymptotic formula

E±
m = m− g2 ± rm +O(m−1/2+ε) as m → ∞, (1.2)

holds with ε > 0 and rm given by (1.1) (see A. Boutet de Monvel, L. Zielinski [3]-[4]).
The estimate (1.2) was used by Z. Rudnick [29] to consider a Braak’s conjecture (see
[6]), and to check that the parameters of QRM are determined by its spectrum (see [5]).

If l ̸= 0, then H∆,g,l
Rabi cannot be written as a direct sum of Jacobi matrices, but a

two-term asymptotic formula for large eigenvalues was obtained for this model in the
paper M. Charif, A. Fino, L. Zielinski [9] (see Section 2).

1.3. Statement of the result. In what follows, we denote by Z the set of integers,
N := {j ∈ Z : j ≥ 0} and ℓ2(N) is the complex Hilbert space of square-summable
sequences x : N → C equipped with the scalar product
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⟨x, y⟩ =
∞∑

m=0

x(m)y(m)

and the norm ||x|| := ⟨x, x⟩1/2. For s > 0 we denote

ℓ2,s(N) := {x ∈ ℓ2(N) :
∞∑

m=0

(1 +m2)s |x(m)|2 < ∞}

The canonical basis of ℓ2(N) is denoted {en}n∈N (i.e. en(m) = δn,m for n, m ∈ N).
The annihilation and creation operators, â and â†, are the linear maps ℓ2,1/2(N) → ℓ2(N)
satisfying

â† en =
√
n+ 1 en+1 for n ∈ N

â e0 = 0 and â en =
√
n en−1 for n ∈ N \ {0}.

Using (1, 0) ∈ C2 and (0, 1) ∈ C2 as the canonical basis of the Euclidean space C2, we
denote by σx, σz, I2, the linear operators in C2 defined by the matrices

σx :=

(
0 1
1 0

)
, σz :=

(
1 0
0 −1

)
, I2 :=

(
1 0
0 1

)
The quantum Rabi model is described in

Definition 1.1. (a) The Hamiltonian of the single-mode radiation, is the linear map
Hrad : ℓ2,1(N) → ℓ2(N) defined by the formula

Hraden = â†â en = nen for n ∈ N. (1.3)

(b) The quantum Rabi Hamiltonian is defined as the linear map H∆,g
Rabi : C2⊗ ℓ2,1(N) →

C2 ⊗ ℓ2(N) given by

H∆,g
Rabi = I2 ⊗Hrad +

∆

2
σz ⊗ Iℓ2(N) + gσx ⊗

(
â+ â†

)
, (1.4)

where g ∈ R and ∆ ∈ R are fixed parameters.

(c) The asymmetric quantum Rabi Hamiltonian is defined as the linear map H∆,g,l
Rabi :

C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

H∆,g,l
Rabi = I2 ⊗Hrad +

(
l

2
σx +

∆

2
σz

)
⊗ Iℓ2(N) + gσx ⊗

(
â+ â†

)
, (1.5)

where g ∈ R, ∆ ∈ R and l ∈ R \ {0} are fixed parameters.

Our main result is

Theorem 1.2. Assume that g ̸= 0 and l ∈ Z. Then one can find {v+m}m∈N ∪ {v−m}m∈N,
an orthonormal basis of C2 ⊗ ℓ2(N), such that

H∆,g,l
Rabi v

±
m = E±

mv±m, m = 0, 1, 2, . . .

and the eigenvalue sequences (E+
m)m∈N, (E−

m)m∈N, satisfy the estimates

E−
i+|l| = i+ |l|

2 − g2 − |ri|+O(i−1/2 ln i) as i → ∞, (1.6)

E+
i = i+ |l|

2 − g2 + |ri|+O(i−1/2 ln i) as i → ∞, (1.7)
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where 

ri :=
∆

2

cos
(
4|g|

√
i− π

4

)√
2π|g|

√
i

if l is even

ri :=
∆

2

sin
(
4|g|

√
i− π

4

)√
2π|g|

√
i

if l is odd

(1.8)

1.4. Outline of the proof of Theorem 1.2. In Section 2 we recall some results from
[9]. We first introduce the operator H, which is similar to H∆,g,l

Rabi and the operator H0,
which is similar to H0,g,l

Rabi (i.e. with ∆ = 0). It appears that the operator H0 can be
written as the direct sum H−1⊕H1 and Proposition 2.1 gives information on eigenvalues
and eigenvectors of H±1. Proposition 2.2 gives a special property of eigenvectors of H0

and Proposition 2.3 gives the two-term asymptotic formula for large eigenvalues of H.
Throughout the paper, {dn}n∈N denotes the non-decreasing sequence of eigenvalues

of H0, counting the multiplicities. The sequence {dn}n∈N can be easily expressed by
means of the eigenvalues of H±1, which are explicitly known. It appears that the
assumption l ∈ Z implies the fact that the eigenvalues dn are simple if n < |l| and the
eigenvalues d|l|+2i = d|l|+2i+1 are double for any i ∈ N.

In Section 3 we consider H as a perturbation of H0. More precisely, we consider the
matrix of H in the basis {v0

n}n∈N formed by eigenvectors of H0 and in Proposition 3.1,
we formulate a variant of the generalized rotating-wave approximation. In Section 3.3
we show that Theorem 1.2 can be deduced by combining the assertion of Proposition
3.1 with the results of Section 2, i.e. we prove the implication

Propositions 2.1, 2.2, 2.3, 3.1 =⇒ Theorem 1.2

In Sections 4 - 7 we give the proof of Proposition 3.1, according to the following scheme{
Lemma 4.1 =⇒ Lemma 5.1,
Lemmas 5.1, 6.1 =⇒ Proposition 3.1

Our reasoning follows an idea similar to the successive diagonalization procedure of
Janas, Naboko [14]. A suitable approximation of the n-th eigenvalue of H, is obtained in
two steps. In Section 4 we introduce bounded self-adjoint operators Qn and in Section
5 we describe the structure of H ′

n = e−iQnHeiQn . In Section 6 we introduce bounded
self-adjoint operators Q′

n and in Section 7 we complete the proof of Proposition 3.1,
using a special structure of H ′′

n = e−iQ′
nH ′

ne
iQ′

n .

2. Earlier results

2.1. The initial reformulation. Our purpose is to investigate the operator

H∆,g,l
Rabi = I2 ⊗ â†â+ σx ⊗

(
g
(
â+ â†

)
+ l

2

)
+ ∆

2 σz ⊗ Iℓ2(N). (2.1)

We first claim that it suffices to prove Theorem 1.2 under the assumption l ∈ N. Indeed,
the operator H∆,g,l

Rabi is unitarily similar to

H∆,−g,−l
Rabi = I2 ⊗ â†â− σx ⊗

(
g
(
â+ â†

)
+ l

2

)
+ ∆

2 σz ⊗ Iℓ2(N) (2.2)

due to σ−1
z σxσz = −σx and the assertion of Theorem 1.2 in the case l ∈ Z \ N follows

by applying Theorem 1.2 to H
∆,−g,|l|
Rabi instead of H∆,g,l

Rabi .
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In what follows, we assume l ∈ N and, similarly as in Section 2.1 of [9], instead of
the operator H∆,g,l

Rabi , we are going to study the operator

H := I2 ⊗ â†â− σz ⊗
(
g
(
â+ â†

)
+ l

2

)
+ ∆

2 σx ⊗ Iℓ2(N), (2.3)

which is unitarily similar to H∆,g,l
Rabi due to the fact that

Uπ/4σxU
−1
π/4 = −σz, Uπ/4σzU

−1
π/4 = σx

hold with Uπ/4 = 1√
2

(
1 −1
1 1

)
. We identify C2 ⊗ ℓ2(N) with ℓ2(N)×ℓ2(N), writing

(1, 0)⊗ ej = (ej , 0) ∈ ℓ2(N)×ℓ2(N), (0, 1)⊗ ej = (0, ej) ∈ ℓ2(N)×ℓ2(N)

and we consider H as the linear map ℓ2,1(N)×ℓ2,1(N)→ ℓ2(N)×ℓ2(N) of the form

H =

(
H−1

∆
2 Iℓ2(N)

∆
2 Iℓ2(N) H1

)
(2.4)

where the operators H±1 : ℓ2,1(N) → ℓ2(N) are given by

H±1 := â†â± g
(
â+ â†

)
± l

2 . (2.5)

We consider the decomposition
H := H0 +V (2.6)

with

H0 :=

(
H−1 0ℓ2(N)
0ℓ2(N) H1

)
= H−1 ⊕H1 (2.7)

and

V =

(
0ℓ2(N)

∆
2 Iℓ2(N)

∆
2 Iℓ2(N) 0ℓ2(N)

)
(2.8)

2.2. Eigenvalues and eigenvectors of H±1. As before, {en}n∈N is the canonical
basis of ℓ2(N) and H±1 are given by (2.5). One has

Proposition 2.1. Let {v±1,n}n∈N denote the orthonormal basis given by

v±1,n := e±g(â−â†)en. (2.9)

Then
(a) for every n ∈ N one has

H±1v±1,n =
(
n− g2 ± l

2

)
v±1,n (2.10)

(b) the following large n estimate

||v±1,n − u±1,n|| = O(n−1/2) (2.11)

holds with u±1,n ∈ ℓ2(N) given by the formula

u±1,n(j) :=

∫ π

−π

ei(n−j)θ∓ 2ign1/2 sin θ+ ig2 sin θ cos θ dθ

2π
. (2.12)

Proof. (a) See Lemma 2.3 in [9]. (b) See Proposition 2.6 in [9]. □
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2.3. Eigenvalues and eigenvectors of H0. In what follows, {v±1,n}n∈N denotes
the basis introduced in (2.9) and we assume l ∈ N. The basis of eigenvectors of
H0 = H−1 ⊕H1, has the form {(v−1,n, 0) : n ∈ N} ∪ {(0, v1,n) : n ∈ N} and we can
label it as follows:

v0
n = (v−1,n, 0) for n = 0, . . . , l − 1, (2.13)

v0
l+2i = (v−1,l+i, 0) for i ∈ N, (2.14)

v0
l+2i+1 = (0, v1,i) for i ∈ N. (2.15)

Then we obtain
H0v

0
n = dnv

0
n for n ∈ N, (2.16)

where {dn}n∈N is the eigenvalue sequence given by

dn = n− l
2 − g2 for n = 0, . . . , l − 1, (2.17)

dl+2i = dl+2i+1 = l
2 + i− g2 for i ∈ N (2.18)

and it is easy to check that dj ≤ dj+1 holds for every j ∈ N.
We introduce the matrix (V (j, k))j,k∈N whose entries are

V (j, k) := ⟨v0
j ,Vv0

k⟩ℓ2(N)×ℓ2(N), (2.19)

where V is given by (2.8) and {v0
n}n∈N is given by (2.13)-(2.15).

By the definition of V, if i, j ∈ N then

V (l + 2i, l + 2j) = ∆
2 ⟨(v−1,l+i, 0), (0, v−1,l+j)⟩ℓ2(N)×ℓ2(N) = 0 (2.20)

V (l + 2i+ 1, l + 2j + 1) = ∆
2 ⟨(0, v1,i), (v1,j , 0)⟩ℓ2(N)×ℓ2(N) = 0 (2.21)

V (l + 2i, l + 2j + 1) = ∆
2 ⟨(v−1,l+i, 0), (v1,j , 0)⟩ℓ2(N)×ℓ2(N) =

∆
2 ⟨v−1,l+i, v1,j⟩, (2.22)

V (l + 2i+ 1, l + 2j) = V (l + 2j, l + 2i+ 1). (2.23)

Our analysis will use the following

Proposition 2.2. Let the matrix (V (j, k))j,k∈N be given by (2.19). Then

V (j, j) = 0 for every j ∈ N (2.24)

and there exist constants Ĉ, ĉ > 0, such that one has

|j − k| < ĉk1/2 ⇒ |V (j, k)| ≤ Ĉk−1/4 for j, k ∈ N (2.25)

Proof. The estimate (2.25) is proved in Corollary 5.2 of [9]. □

2.4. Two-term asymptotic formula. One has the following

Proposition 2.3. Let {dn}n∈N be the eigenvalue sequence of H0 given by (2.17)-(2.18)
and let {λn(H)}n∈N denote the non-decreasing eigenvalue sequence of H, counting the
multiplicities. Then one has the following

λn(H) = dn +O(n−1/4) as n → ∞ (2.26)

Proof. See the estimate (2.17) in [9]. □
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3. The generalized rotating-wave approximation

3.1. Notations. If V is a Banach space, then B(V) denotes the Banach algebra of
bounded linear operators on V, equipped with the operator norm || · ||B(V) and || · ||
denotes the norm of B(ℓ2(N)). If T ∈ B(ℓ2(N)) and j, k ∈ N, then we write

T (j, k) := (Tek)(j) = ⟨ej , T ek⟩. (3.1)

In what follows, H = H0+V with H0 and V given by (2.7)-(2.8). Let Ũ be the unitary
operator in ℓ2(N) satisfying Ũen = v0

n, where {en}n∈N is the canonical basis of ℓ2(N)
and {v0

n}n∈N is the basis introduced in (2.13)-(2.15). Then the operator

H := Ũ−1H Ũ (3.2)

can be expressed in the form
H = D + V, (3.3)

where D = diag(dj)j∈N is the linear map ℓ2,1(N) → ℓ2(N) satisfying

Dej = djej for j ∈ N (3.4)

with {dn}n∈N given by (2.17)-(2.18) and

V := Ũ−1V Ũ . (3.5)

Using the convention (3.1) to express V (j, k), we get

V (j, k) = (V ek)(j) = ⟨v0
j ,Vv0

k⟩ℓ2(N)×ℓ2(N),

which corresponds to (2.19).

3.2. Statement of the result. The idea of GRWA consists in a simplification of the
Hamiltonian H by neglecting some entries of its matrix so that the new matrix can be
explicitly diagonalized. The quantum Rabi model considered in [10], [13], corresponds
to the case when the QRM can be represented by a direct sum of two Jacobi matrices
and the generalized rotating-wave approximation consists in neglecting the off-diagonal
entries. The situation is more complicated in the case l ∈ N \ {0}, when we need to
consider the 2× 2 blocks whose diagonal entries are double eigenvalues of H0.

In what follows, H = D + V is as in Section 3.1 and n ∈ 2N+ l, i.e. n = 2i+ l holds
with a certain i ∈ N. Let us denote

Ĥn := span{en, en+1} (3.6)

and let Π̂n ∈ B(ℓ2(N)) denote the orthogonal projection on Ĥn. We consider an
approximation of H by the operator HGRWA defined as the linear map ℓ2,1(N) → ℓ2(N)
of the form

HGRWA := diag(d0, . . . , dl−1)⊕
⊕
i∈N

Ĥl+2i, (3.7)

where
Ĥn := Π̂nV |Ĥn

∈ B(Ĥn). (3.8)

We remark that the matrix of Ĥl+2i in the basis {el+2i, el+2i+1} is(
dl+2i V (l + 2i, l + 2i+ 1)

V (l + 2i+ 1, l + 2i) dl+2i

)
.
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The spectrum of Ĥl+2i consists of two eigenvalues dl+2i ± |V (l+ 2i, l+ 2i+ 1)| and the
spectrum of HGRWA has the form

{d0, . . . , dl−1} ∪ {dl+2i + ν|V (l + 2i, l + 2i+ 1)| : i ∈ N, ν = ±1}.

Our proof of Theorem 1.2 is based on the following :

Proposition 3.1. Assume that D = diag(dj)j∈N with {dj}j∈N given by (2.17)-(2.18)
and assume that V is a bounded self-adjoint operator in ℓ2(N), satisfying (2.24)-(2.25).
Assume that the spectrum of H = D + V is composed of a non-decreasing sequence of
eigenvalues {λn(H)}n∈N such that

λn(H) = dn + o(1) as n → ∞. (3.9)

Then one has

λl+2i(H) = dl+2i − |V (l + 2i, l + 2i+ 1)|+O(i−1/2 ln i) as i → ∞, (3.10)

λl+2i+1(H) = dl+2i + |V (l + 2i, l + 2i+ 1)|+O(i−1/2 ln i) as i → ∞. (3.11)

Proof. See Section 7.3. □

3.3. Proof of Theorem 1.2. In this section we show how the assertion of Theorem
1.2 can be deduced by combining the results of Section 2 with Proposition 3.1. We first
observe that Proposition 2.2 ensures the fact that the operator V satisfies (2.24)-(2.25)
and (3.9) holds due to Proposition 2.3. Thus, applying Proposition 3.1, we get the
estimates (3.10)-(3.11) and in order to complete the proof of Theorem 1.2, it remains
to show that the estimate

|V (l + 2i, l + 2i+ 1)| = |ri|+O(i−1/2) as i → ∞ (3.12)

holds with ri given by (1.8). For this purpose we observe that

V (l + 2i, l + 2i+ 1) = ∆
2 ⟨u−1,l+i, u1,i⟩+O(i−1/2) as i → ∞ (3.13)

follows from (2.22) and (2.11).
Step 1. For n ∈ N we define f±

n as the 2π-periodic function

f±
n (θ) := einθ∓ 2ign1/2 sin θ+ ig2 sin θ cos θ (3.14)

and for i ∈ N we introduce

γg,l,i :=

∫ π

−π

f−
l+i(θ) f

+
i (θ)

dθ

2π
. (3.15)

We claim that

V (l + 2i, l + 2i+ 1) = ∆
2 γg,l,i +O(i−1/2) as i → ∞. (3.16)

To begin the proof of (3.16), we write the Parseval’s equality,

γg,l,i =
∑
j∈Z

u−1,l+i(j)u1,i(j), (3.17)

where {u±1,n(j)}j∈Z denotes the sequence of Fourier coefficients of f±
n , i.e.

u±1,n(j) :=

∫ π

−π

f±
n (θ) e−ijθ dθ

2π
(3.18)
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and we remark that the expression of u±1,n(j) given by (3.18) is the same as given by
(2.12) for j ≥ 0. Moreover, the integration by parts allows us to estimate

(n− j)4Nu±1,n(j) =

∫ π

−π

e∓ 2ign1/2 sin θ+ ig2 sin θ cos θ
(

d
dθ

)4N(
ei(n−j)θ

) dθ
2π

=

∫ π

−π

(
d
dθ

)4N(
e∓ 2ign1/2 sin θ+ ig2 sin θ cos θ

)
ei(n−j)θ dθ

2π
= O(n2N ),

hence

j < 0 ⇒ |u±1,n(j)| ≤ CNn2N (n− j)−4N ≤ CNn−N |j|−N (3.19)

and, combining (3.17) with (3.19), we find that

γg,l,i − ⟨u−1,l+i, u1,i⟩ =
∑

{j∈Z: j<0}

u−1,l+i(j)u1,i(j) = O(i−N ) as i → ∞ (3.20)

holds for any N ∈ N. It is clear that (3.20) and (3.13) imply (3.16).
Step 2. We investigate γg,l,i as i → ∞ when g > 0. The direct computation gives

γg,l,i =

∫ π

−π

e−2ig(
√
l+i+

√
i) sin θe−iθl dθ

2π
. (3.21)

Using 2g(
√
l + i+

√
i) = 4g

√
i+O(i−1/2), we get

γg,l,i =

∫ π

−π

e−4ig
√
i sin θe−iθl dθ

2π
+O(i−1/2). (3.22)

We assume that g > 0. Since the phase function θ → − sin θ has non-degenerated
critical points −π/2 and π/2, the stationary phase formula gives

γg,l,i =
1√

2π · 4g
√
i

∑
κ=±1

eiκ(4g
√
i−π/4)eiκπl/2 +O(i−1/2)

=
cos
(
4g

√
i− π

4 + π
2 l
)√

2πg
√
i

+O(i−1/2)

and we obtain (3.12) for g > 0 due to

cos
(
4g

√
i− π

4 + π
2 l
)
=

{
(−1)l/2 cos

(
4g

√
i− π

4

)
when l is even

(−1)(l+1)/2 sin
(
4g

√
i− π

4

)
when l is odd

Step 3. We investigate γg,l,i as i → ∞ when g < 0. Then −g = |g| and the conjugation
of (3.22) gives

γg,l,i = γ |g|,−l,i +O(i−1/2) =
cos
(
4|g|

√
i− π

4 − π
2 l
)√

2π|g|
√
i

+O(i−1/2)

hence (3.12) still holds.
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4. Operators related to the first similarity transformation

4.1. The idea of the first similarity transformation. In this section we begin
the proof of Proposition 3.1. In what follows, H = D + V satisfies the assumptions of
Proposition 3.1. Moreover, we assume that n is large enough and n ∈ 2N+ l, which
implies

dn−1 + 1 = dn = dn+1 = dn+2 − 1. (4.1)

In what follows, we denote

Ĥn := span{en, en+1}, H̃n := Ĥ⊥
n , (4.2)

Π̂n ∈ B(ℓ2(N)) is the orthogonal projection on Ĥn and Π̃n := I − Π̂n.
Using the decomposition ℓ2(N) = Ĥn ⊕ H̃n, we can express

V =

(
V̂n V +

n |H̃n

V −
n |Ĥn

Ṽn

)
= V̂n ⊕ Ṽn + V −

n + V +
n , (4.3)

where

V̂n := Π̂nV |Ĥn
∈ B(Ĥn), (4.4)

Ṽn := Π̃nV |H̃n
∈ B(H̃n), (4.5)

V −
n := Π̃nV Π̂n, (4.6)

V +
n := Π̂nV Π̃n. (4.7)

In Section 4.2 we introduce the operators Qn ∈ B(ℓ2(N)) satisfying

[D, iQn] = −V −
n − V +

n , (4.8)

where (4.8) is understood as the equality

i(DQn −QnD)x = −(V −
n + V +

n )x for x ∈ ℓ2,1(N), (4.9)

well defined because ℓ2,1(N) is an invariant subspace of Qn due to Lemma 4.1(a).
In Section 5, we use the operator Qn to define

H ′
n := e−iQnHeiQn (4.10)

and we remark that the right hand side of (4.10) is a well defined map ℓ2,1(N) → ℓ2(N)
because ℓ2,1(N) is an invariant subspace of eiQn due to Lemma 4.1(b). In Lemma 5.1
we show that

H ′
n = D + V̂n ⊕ Ṽn +R′

n

holds with ||R′
n|| = O(n−1/4). However, the error O(n−1/4) is too rough to deduce the

asymptotic formula of Proposition 3.1 and we will have to consider a second similarity
transformation in Sections 6–7. Besides the operator Qn, we introduce auxiliary cut-offs
Q̌±

n , useful for estimates considered in 6.
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4.2. Definition of operators Q̌−
n and Q̌+

n . Let Z−
n , Z+

n ⊂ N2 be defined as follows

Z−
n = (N \ {n, n+ 1})× {n, n+ 1} (4.11)

Z+
n = {n, n+ 1} × (N \ {n, n+ 1}). (4.12)

We observe that

(j, k) ∈ Z−
n ⇒ dj ̸= dn = dn+1 = dk, (4.13)

(j, k) ∈ Z+
n ⇒ dk ̸= dn = dn+1 = dj (4.14)

and

(j, k) ∈ Z−
n ∪ Z+

n ⇒ |dj − dk| ≥ 1
4 |j − k|. (4.15)

In what follows, Ĉ, ĉ > 0 are fixed so that the estimate (2.25) holds and c is fixed so that
0 < c ≤ min{ 1

2 ĉ,
1
2}. We introduce the matrices (Q̌−

n (j, k))(j,k)∈N2 , (Q̌+
n (j, k))(j,k)∈N2

by

Q̌±
n (j, k) :=

 i
V (j, k)

dj − dk
if (j, k) ∈ Z±

n and |j − k| < cn1/2

0 otherwise
(4.16)

We observe that Q̌−
n (j, k) ̸= 0 implies j ≠ k and k ∈ {n, n+1}, hence |j − k| < cn1/2 ≤

ck1/2 < ĉk1/2 and

|Q̌−
n (j, k)| ≤

Ĉk−1/4

|dj − dk|
≤ 4Ĉk−1/4

|j − k|
≤ 4Ĉn−1/4

|j − k|
(4.17)

follows from (2.25), (4.15) and k ≥ n. Since (j, k) ∈ Z+
n ⇔ (k, j) ∈ Z−

n and V (k, j) =

V (j, k), it is clear that

Q̌+
n (j, k) = Q̌−

n (k, j) (4.18)

and

|Q̌+
n (j, k)| ≤

4Ĉn−1/4

|j − k|
. (4.19)

We claim that we can define Q̌±
n ∈ B(ℓ2(N)) satisfying (Q̌±

n ek)(j) = Q±
n (j, k) for all j, k ∈

N and one has

||Q̌±
n || = O(n−1/4). (4.20)

Indeed, by definition Q̌−
n x = 0 if x ∈ H̃n and for k ∈ {n, n+ 1} we can estimate

||Q̌−
n ek||2 =

∑
j∈N

|Q̌−
n (j, k)|2 ≤

∑
{j∈N: 0<|j−k|<cn1/2}

(
4Ĉn−1/4

|j − k|

)2

≤ 16Ĉ2n−1/2
∑

j∈N\{k}

|j − k|−2 ≤ Cn−1/2,

i.e. ||Q̌−
n || = O(n−1/4) and (4.18) ensures Q̌+

n = (Q̌−
n )

∗, hence ||Q̌+
n || = ||Q̌−

n ||.
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4.3. Definition of operators Q−
n and Q+

n . We introduce the matrices (Q−
n (j, k))(j,k)∈N2 ,

(Q+
n (j, k))(j,k)∈N2 by

Q±
n (j, k) :=

 i
V (j, k)

dj − dk
if (j, k) ∈ Z±

n

0 otherwise
(4.21)

where Z±
n are given by (4.11)-(4.12). We claim that we can define Q±

n ∈ B(ℓ2(N))
satisfying (Q±

n ek)(j) = Q±
n (j, k) for all j, k ∈ N and

||Q±
n − Q̌±

n || = O(n−1/2), (4.22)

hence, combining (4.20) with (4.22), we get

||Q±
n || = O(n−1/4). (4.23)

Indeed, by definition (Q−
n − Q̌−

n )x = 0 if x ∈ H̃n and for k ∈ {n, n+1} we can estimate

||(Q−
n − Q̌−

n )ek||2 =
∑

{j∈N: |j−k|≥cn1/2}

|Q−
n (j, k)|2

≤
∑

{j∈N: |j−k|≥cn1/2}

16|V (j, k)|2

|j − k|2
≤
∑
j∈N

16|V (j, k)|2

c2n
=

16||V ek||2

c2n
≤ 16||V ||2

c2n
,

i.e. Q−
n − Q̌−

n = (Q−
n − Q̌−

n )Π̂n ∈ B(ℓ2(N)) and ||Q−
n − Q̌−

n || = O(n−1/2). Moreover,
Q+

n − Q̌+
n = (Q−

n − Q̌−
n )

∗ ensures ||Q+
n − Q̌+

n || = ||Q−
n − Q̌−

n || = O(n−1/2).

4.4. Properties of Q±
n and Qn. Let Q±

n be as in Section 4.3 and introduce

Qn := Q−
n +Q+

n . (4.24)

Lemma 4.1. (a) ℓ2,1(N) is an invariant subspace of Q±
n and one has

[D, iQ±
n ]x = i(DQ±

n −Q±
nD)x = −V ±

n x for x ∈ ℓ2,1(N) (4.25)

with V ±
n given by (4.6)-(4.7).

(b) ℓ2,1(N) is an invariant subspace of eitQn and t → eitQnx is of class C∞(R; ℓ2,1(N))
if x ∈ ℓ2,1(N).

Proof. (a) One has

V ±
n (j, k) =

{
V (j, k) if (j, k) ∈ Z±

n

0 otherwise
(4.26)

hence
i(dj − dk)Q

±
n (j, k) = −V ±

n (j, k) for (j, k) ∈ N2. (4.27)
Let λ := 1 − d0 and introduce D′ = D + λ = diag(d′j)j∈N with d′j := dj + λ. Then
d′j ≥ d′0 = 1 and (4.27) implies

i(D′Q±
n ek)(j) = id′j(Q

±
n ek)(j) = i(Q±

n d
′
kek)(j)− (V ±

n ek)(j), (4.28)

hence D′Q±
n ek ∈ ℓ2(N) and Q±

n ek ∈ ℓ2,1(N). Let ℓ2fin(N) denote the set of finite linear
combinations of vectors from {ek}k∈N. Then (4.28) ensures the equality

iD′Q±
n x = iQ±

nD
′x− V ±

n x (4.29)

for x ∈ ℓ2fin(N). If y ∈ ℓ2fin(N), then using (4.29) with x = D′−1
y, we obtain

D′Q±
nD

′−1
y = T±

n y with T±
n := Q±

n + iV ±
n D′−1

. (4.30)
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Due to (4.30), for every y ∈ ℓ2fin(N) one has

Q±
nD

′−1
y = D′−1

T±
n y (4.31)

and by continuity, (4.31) holds for every y ∈ ℓ2(N). Consider now x ∈ ℓ2,1(N) and take
y = D′x in (4.31). This gives

Q±
n x = D′−1

T±
n D′x ∈ ℓ2,1(N) (4.32)

and

iD′Q±
n x = iT±

n D′x = iQ±
nD

′x− V ±
n x, (4.33)

i.e. (4.25) holds for every x ∈ ℓ2,1(N).
(b) Since (4.31) holds for every y ∈ ℓ2(N), (4.30) holds for every y ∈ ℓ2(N) and using
Qn = Q−

n +Q+
n , we deduce

D′QnD
′−1

y = Tny with Tn := Qn + i(V −
n + V +

n )D′−1 (4.34)

for every y ∈ ℓ2(N). More generally, it is clear that (Tn)
my = D′(Qn)

mD′−1
y holds for

every m ∈ N, y ∈ ℓ2(N), and

eitQnD′−1
y =

∞∑
m=0

(it)m

m!
(Qn)

mD′−1
y =

=

∞∑
m=0

(it)m

m!
D′−1

(Tn)
my = D′−1

eitTny ∈ ℓ2,1(N)

if y ∈ ℓ2(Z), hence setting x = D′−1
y, we find that t → D′eitQnx = eitTny is

C∞(R; ℓ2(N)) for every x ∈ ℓ2,1(N). □

5. The first similarity transformation

5.1. Statement of the result. If Ln, L′
n are linear maps defined on a dense subspace

of ℓ2(N) such that Ln − L′
n can be extended to a bounded operator on ℓ2(N), then we

still use the notation ||Ln − L′
n|| to denote the norm of this extension and the notation

Ln = L′
n + O(ηn) means that choosing n0 ∈ N and C > 0 large enough, we ensure

||Ln − L′
n|| ≤ Cηn for all n ≥ n0. We will prove the following

Lemma 5.1. We assume that H = D + V is as in Proposition 3.1, n ∈ 2N + l

and V̂n, Ṽn are given by (4.4), (4.5). If Qn = Q−
n + Q+

n are as in Section 4.4 and
H ′

n := e−iQnHeiQn , then the estimate

H ′
n = D + V̂n ⊕ Ṽn +Rn +O(n−1/2) as n → ∞ (5.1)

holds with

Rn := [ 12V + 1
2 (V̂n ⊕ Ṽn), iQn]. (5.2)

Proof. See Section 5.3. □
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5.2. Taylor’s expansion formula. Assume that B and Q ∈ B(ℓ2(N)) and denote

FtQ(B) := e−itQ B eitQ for t ∈ R, (5.3)

ad1iQ(B) := [B, iQ] = i(BQ−QB)

and
adm+1

iQ (B) := [admiQ(B), iQ] for m ∈ N \ {0}.
Then

dm

dtm
FtQ(B) = e−itQ admiQ(B) eitQ = FtQ(ad

m
iQ(B)) (5.4)

and the Taylor’s expansion formula gives

FtQ(B) = B +

N−1∑
m=1

tm

m!
admiQ(B) +Rt,N

Q (B) (5.5)

with

Rt,N
Q (B) :=

tN

(N − 1)!

∫ 1

0

FstQ(ad
N
iQ(B)) (1− s)N−1 ds. (5.6)

We can also consider the case when B is an unbounded symmetric operator in ℓ2(N),
defined on a dense domain D(B). Suppose that D(B) is an invariant subspace for Q
and eitQ for every t ∈ R. If t → BeitQx is of class C1(R, ℓ2(N)) for every x ∈ D(B),
then

d

dt
⟨eitQx,BeitQy⟩ = ⟨iQeitQx,BeitQy⟩+ ⟨BeitQx, iQeitQy⟩

holds for every x, y ∈ D(B). If the form (x, y) → ⟨iQx,By⟩ + ⟨Bx, iQy⟩ can be
extended from D(B)×D(B) to a bounded form on ℓ2(N)×ℓ2(N), then we can introduce
[B, iQ] ∈ B(ℓ2(N)) defined by this form and we can write

d

dt
FtQ(B) = e−itQ [B, iQ] eitQ = FtQ([B, iQ]),

hence (5.5)-(5.6) still hold for every N ∈ N∗.

5.3. Proof of Lemma 5.1. Using (5.5)-(5.6) with N = 2, t = 1, we obtain

e−iQnV eiQn = V + [V, iQn] +R1,2
Qn

(V ), (5.7)

||R1,2
Qn

(V )|| ≤ ||ad2iQn
(V )|| ≤ C||Qn||2 (5.8)

and using (5.5)-(5.6) with N = 3, t = 1, we obtain

e−iQnDeiQn = D + [D, iQn] +
1
2 [[D, iQn], iQn] +R1,3

Qn
(D), (5.9)

||R1,3
Qn

(D)|| ≤ ||ad3iQn
(D)||. (5.10)

Using [D, iQn] = −V −
n − V +

n (see Lemma 4.1(a)) in (5.9)-(5.10), we obtain

e−iQnDeiQn = D − V −
n − V +

n − 1
2 [V

−
n + V +

n , iQn] +R1,3
Qn

(D), (5.11)

||R1,3
Qn

(D)|| = ||ad2iQn
(V −

n + V +
n )|| ≤ C||Qn||2 (5.12)

and summing up (5.11), (5.7), we obtain

H ′
n = D + V − V −

n − V +
n + [V − 1

2 (V
−
n + V +

n ), iQn] +O(||Qn||2). (5.13)

Since Qn = Q−
n +Q+

n , (4.23) ensures

||Qn|| = O(n−1/4) (5.14)
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and ||Qn||2 = O(n−1/2), we complete the proof, using V −V −
n −V +

n = V̂n ⊕ Ṽn to write

[V − 1
2 (V

−
n + V +

n ), iQn] = [V − 1
2 (V − V̂n ⊕ Ṽn), iQn] = Rn,

with Rn given by (5.2).

6. Operators related to the second similarity transformation

6.1. The idea of the second similarity transformation. Due to Lemma 5.1, the
operator H = D + V is similar to

H ′
n = D + V̂n ⊕ Ṽn +Rn +O(n−1/2) (6.1)

with Rn given by (5.2). Similarly as before, we can decompose

Rn =

(
R̂n R+

n |H̃n

R−
n |Ĥn

R̃n

)
= R̂n ⊕ R̃n +R−

n +R+
n , (6.2)

where
R̂n := Π̂nRn|Ĥn

∈ B(Ĥn), (6.3)

R̃n := Π̃nRn|H̃n
∈ B(H̃n), (6.4)

R−
n := Π̃nRnΠ̂n, (6.5)

R+
n := Π̂nRnΠ̃n. (6.6)

In Section 6.2 we introduce the operators Q′
n ∈ B(ℓ2(N)) satisfying

[D, iQ′
n] = −R−

n −R+
n +O(n−1/2) (6.7)

where [D, iQ′
n]x = i(DQ′

n −Q′
nD)x is well defined for x ∈ ℓ2,1(N) due to the fact that

ℓ2,1(N) is an invariant subspace of Q′
n (see Lemma 6.1(b)). In Section 7 we use the

operator Q′
n to define

H ′′
n := e−iQ′

nH ′
ne

iQ′
n (6.8)

and we remark that the right hand side of (6.8) is a well defined map ℓ2,1(N) → ℓ2(N)
as ℓ2,1(N) is an invariant subspace of eiQ

′
n due to Lemma 6.1(c). In Section 7.1 we will

show that
H ′′

n = D + V̂n ⊕ Ṽn + R̂n ⊕ R̃n +O(n−1/2 lnn)

= D + (V̂n + R̂n)⊕ (Ṽn + R̃n) +O(n−1/2 lnn)

6.2. Definition and properties of operators Q′
n. In what follows, we denote

Wn := 1
2V + 1

2 (V̂n ⊕ Ṽn), (6.9)

Q̌n := Q̌−
n + Q̌+

n , (6.10)

where Q̌−
n , Q̌+

n are as in Section 4.2. We introduce (Q̌′
n(j, k))(j,k)∈N2 defined by

Q̌′
n(j, k) :=


(WnQ̌n)(j, k)

dk − dj
if (j, k) ∈ Z−

n ∪ Z+
n

0 otherwise
(6.11)
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Lemma 6.1. (a) There exist operators Q̌′
n ∈ B(ℓ2(N)) satisfying (Q̌′

nek)(j) = Q̌′
n(j, k)

for all j, k ∈ N and
||Q̌′

n|| = O(n−1/2 lnn). (6.12)
(b) ℓ2,1(N) is an invariant subspace of Q′

n := Q̌′
n + (Q̌′

n)
∗ and

[D, iQ′
n]x = i(DQ′

n −Q′
nD)x = −(Ř−

n + Ř+
n )x for x ∈ ℓ2,1(N) (6.13)

holds with
Ř−

n := Π̃n[Wn, iQ̌n]Π̂n, (6.14)

Ř+
n := Π̂n[Wn, iQ̌n]Π̃n. (6.15)

(c) ℓ2,1(N) is an invariant subspace of eitQ
′
n and t → eitQ

′
nx is of class C∞(R; ℓ2,1(N))

if x ∈ ℓ2,1(N).

Proof. See Sections 6.3-6.5. □

6.3. Step 1 of the proof of Lemma 6.1. Using Q̌n = Q̌−
n + Q̌+

n , we can write the
decomposition

Q̌′
n(j, k) = Q̌′+

n (j, k) + Q̌′−
n (j, k)

with

Q̌′±
n (j, k) :=


(WnQ̌

±
n )(j, k)

dk − dj
if (j, k) ∈ Z−

n ∪ Z+
n

0 otherwise
(6.16)

We first observe that Q̌′±
n (j, k) ̸= 0 ⇒ (j, k) ∈ Z−

n ∪ Z+
n ⇒ j ̸= k and

|Q̌′±
n (j, k)| ≤ 4|(WnQ̌

±
n )(j, k)|

|j − k|
. (6.17)

It is clear that (2.24)-(2.25) imply Wn(j, k) ̸= 0 ⇒ j ̸= k and

|j − k| < ĉk1/2 ⇒ |Wn(j, k)| ≤ Ĉk−1/4. (6.18)

In the remaining part of this section, we are going to check that there is Q̌′−
n ∈ B(ℓ2(N))

satisfying (Q̌′−
n ek)(j) = Q̌′−

n (j, k) for all j, k ∈ N and

||Q̌′−
n || = O(n−1/2 lnn). (6.19)

Since Q̌′−
n (j, k) = 0 if k ∈ N \ {n, n+ 1}, one has ||Q̌′−

n || ≤ ||Q̌′−
n en||+ ||Q̌′−

n en+1||. We
assume now k ∈ {n, n+ 1} and write

||Q̌′−
n ek||2 =

∑
j∈N

|Q̌′−
n (j, k)|2 ≤ Mn(k) +M′

n(k)

with

Mn(k) :=
∑

{j∈N: |j−k|≥cn1/2}

16|(WnQ̌
−
n )(j, k)|2

|j − k|2

M′
n(k) :=

∑
{j∈N: 0<|j−k|<cn1/2}

16|(WnQ̌
−
n )(j, k)|2

|j − k|2
.

It is clear that

Mn(k) ≤
∑
j∈N

16|(WnQ̌
−
n )(j, k)|2

c2n
=

16||WnQ̌
−
n ek||2

c2n
≤ C1n

−1. (6.20)
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Our next claim is the estimate

sup
{j∈N: 0<|j−k|<cn1/2}

|(WnQ̌
−
n )(j, k)| ≤ Cn−1/2 lnn. (6.21)

Indeed, writing
(WnQ̌

−
n )(j, k) =

∑
m∈N

Wn(j,m)Q̌−
n (m, k)

and using Q̌−
n (m, k) ̸= 0 ⇒ 0 < |m− k| < cn1/2 with (4.17), we get

|WnQ̌
−
n )(j, k)| ≤

∑
{m∈N: 0<|m−k|<cn1/2}

|Wn(j,m)| 4Ĉn−1/4

|m− k|
. (6.22)

However, |j − k| < cn1/2 and |m− k| < cn1/2 imply

|j −m| ≤ |j − k|+ |k −m| < 2cn1/2 ⇒ |Wn(j,m)| ≤ Ĉj−1/4 ≤ 2Ĉn−1/4, (6.23)

due to (6.18) and j ≥ k − |k − j| > k − cn1/2 ≥ n − 1
2n

1/2 ≥ 1
2n (where we used

k ∈ {n, n+ 1} and c ≤ 1
2 ). Combining (6.22), (6.23), we get

sup
{j∈N: 0<|j−k|<cn1/2}

|(WnQ̌
−
n )(j, k)| ≤

∑
{m∈N: 0<|m−k|<cn1/2}

8Ĉ2n−1/2

|m− k|

≤ 8Ĉ2n−1/2
∑

1≤i≤cn1/2

2

i
≤ Cn−1/2 lnn,

completing the proof of (6.21).
Using (6.21), we can estimate

M′
n(k) ≤ sup

{j∈N: 0<|j−k|<cn1/2}
|(WnQ̌

−
n )(j, k)|2

∑
j∈N\{k}

16

|j − k|2
≤ C2n

−1(lnn)2.

We conclude that ||Q̌′−
n ek||2 ≤ Mn(k) +M′

n(k) ≤ C1n
−1 + C2n

−1(lnn)2, completing
the proof of (6.19).

6.4. Step 2 of the proof of Lemma 6.1. In this section, we are going to check that
there is Q̌′+

n ∈ B(ℓ2(N)) satisfying (Q̌′+
n ek)(j) = Q̌′+

n (j, k) for all j, k ∈ N and

||Q̌′+
n || = O(n−1/2 lnn). (6.24)

Due to the Schur boundedness test, it suffices to show that there is C > 0 such that
one has

Qn(k) :=
∑
j∈N

|Q̌′+
n (j, k)| ≤ Cn−1/2 lnn for every k ∈ N, (6.25)

Q∗
n(k) :=

∑
j∈N

|Q̌′+
n (k, j)| ≤ Cn−1/2 lnn for every k ∈ N. (6.26)

We recall that Q̌′+
n (j, k) ̸= 0 ⇒ j ̸= k and we decompose Qn = Q′

n +Q′′
n with

Q′
n(k) :=

∑
{j∈N: |j−k|≥cn1/2}

|Q̌′+
n (j, k)|, (6.27)

Q′′
n(k) :=

∑
{j∈N: 0<|j−k|<cn1/2}

|Q̌′+
n (j, k)|. (6.28)
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Using (4.15) and the Cauchy-Schwarz inequality, we can estimate

Q′
n(k) ≤

∑
{j∈N: |j−k|≥cn1/2}

4|(WnQ̌
+
n )(j, k)|

|j − k|
≤ 4Mn(k)

1/2M′
n(k)

1/2 (6.29)

with
Mn(k) :=

∑
{j∈N: |j−k|≥cn1/2}

|j − k|−2,

M′
n(k) :=

∑
j∈N

|(WnQ̌
+
n )(j, k)|2.

However,

Mn(k) ≤ 2
∑

i≥cn1/2

1

i2
≤ 2

∫ ∞

cn1/2−1

ds

s2
=

2

cn1/2 − 1
≤ C1n

−1/2 (6.30)

and
M′

n(k) = ||WnQ̌
+
n ek||2 ≤ ||Wn||2 ||Q̌+

n ||2 ≤ C2n
−1/2, (6.31)

where the last estimate is due to (4.20). Combining (6.29) with (6.30)-(6.31), we get

Q′
n(k) ≤ C ′n−1/2. (6.32)

In order to estimate Q′′
n(k), we assume 0 < |j − k| < cn1/2 and observe that

(WnQ̌
+
n )(j, k) =

∑
n≤m≤n+1

Wn(j,m)Q̌+
n (m, k) (6.33)

due to Q+
n = Π̂nQ

+
n . Using |j − k| < cn1/2, m ∈ {n, n+ 1} and |Q̌+

n (m, k)| ≤ 4Ĉn−1/4

(due to (4.19) and Q̌+
n (k, k) = 0), we obtain

Q̌+
n (m, k) ̸= 0 ⇒ |k −m| < cn1/2 ⇒ |j −m|≤ |j − k|+ |k −m| < 2cn1/2

⇒ |Wn(j,m)| ≤ Ĉm−1/4 ≤ Ĉn−1/4 ⇒ |Wn(j,m)Q̌+
n (m, k)| ≤ 4Ĉ2n−1/2,

hence |j − k| < cn1/2 ⇒ |(WnQ̌
+
n )(j, k)| ≤ 8Ĉ2n−1/2 and

Q′′
n(k) ≤

∑
{j∈N: 0<|j−k|<cn1/2}

4|(WnQ̌
+
n )(j, k)|

|j − k|

≤ 32Ĉ2n−1/2
∑

{j∈N: 0<|j−k|<cn1/2}

1

|j − k|
≤ C ′′n−1/2 lnn,

due to
∑

1≤i≤cn1/2

1

i
= O(lnn). This proves the estimate (6.25).

In order to prove (6.26), we can use a similar decomposition Q∗
n = Q′∗

n + Q′′∗
n and

estimate

Q′∗
n (k) ≤

∑
{j∈N: |j−k|≥cn1/2}

4|(WnQ̌
+
n )(k, j)|

|j − k|
, (6.34)

Q′′∗
n (k) :=

∑
{j∈N: 0<|j−k|<cn1/2}

4|(WnQ̌
+
n )(k, j)|

|j − k|
. (6.35)
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However, the right hand side of (6.34) can be estimated by Mn(k)
1/2M′∗

n (k)
1/2 with

Mn(k) as before and

M′∗
n (k) =

∑
j∈N

|(WnQ̌
+
n )(k, j)|2 = ||(WnQ̌

+
n )

∗ek||2 ≤ ||Wn||2||Q+
n ||2 ≤ C ′n−1/2.

Finally, exchanging j and k in the previous reasoning, we get |j − k| < cn1/2 ⇒
|(WnQ̌

+
n )(k, j)| ≤ 8Ĉ2n−1/2 and we can estimate the right hand side of (6.35) by

C ′′n−1/2 lnn similarly as before. This completes the proof of (6.26).

6.5. End of the proof of Lemma 6.1. By the definition of Q̌′
n given in (6.11), we get

i(dj − dk)Q̌
′
n(j, k) = ⟨ej , (−i)(Π̃nWnQ̌nΠ̂n + Π̂nWnQ̌nΠ̃n)ek⟩ (6.36)

Since (WnQ̌n)
∗ = Q̌nWn and (Q̌′

n)
∗(j, k) = Q̌′

n(k, j), we can write the adjoint matrix
in both sides of (6.36) as follows

i(dj − dk)(Q̌
′
n)

∗(j, k) = ⟨ej , i(Π̃nQ̌nWnΠ̂n + Π̂nQ̌nWnΠ̃n)ek⟩. (6.37)

Summing up (6.36) and (6.37), we obtain

i(dj − dk)Q
′
n(j, k) = −⟨ej , (Ř−

n + Ř+
n )ek⟩ = −(Ř−

n + Ř+
n )(

′j, k) (6.38)

by the definition of Ř±
n given in (6.14)-(6.15). It is easy to see that one can deduce the

assertions of Lemma 6.1(b) and (c) from (6.38), reasoning similarly as in the proof of
Lemma 4.1.

7. Proof of Proposition 3.1

7.1. Step 1 of the proof of Proposition 3.1. We claim that one has the estimate

H ′′
n = D + (V̂n + R̂n)⊕ (Ṽn + R̃n) +O(n−1/2 lnn) as n → ∞ (7.1)

To begin the proof of (7.1), we observe that

H ′
n = D + V̂n ⊕ Ṽn +Rn +O(n−1/2). (7.2)

Using (5.5)-(5.6) with N = 2, t = 1, we get

e−iQ′
nDeiQ

′
n = D + [D, iQ′

n] +O(||ad2iQ′
n
(D)||). (7.3)

Since Lemma 6.1 ensures [D, iQ′
n] = −Ř−

n − Ř+
n , we get

ad2iQ′
n
(D) = [−Ř−

n − Ř+
n , iQ

′
n] = O(||Q′

n||)

and
e−iQ′

nDeiQ
′
n = D − Ř−

n − Ř+
n +O(||Q′

n||). (7.4)
Using (5.5)-(5.6) with N = 1, t = 1, we get

e−iQ′
n(V̂n ⊕ Ṽn +Rn)e

iQ′
n = V̂n ⊕ Ṽn +Rn +O(||Q′

n||). (7.5)

Due to ||Q′
n|| = O(n−1/2 lnn), summing up (7.4) and (7.5), we get

H ′′
n = D + V̂n ⊕ Ṽn +Rn − Ř−

n − Ř+
n +O(n−1/2 lnn). (7.6)

However
R−

n − Ř−
n = Π̃n[Wn, i(Qn − Q̌n)]Π̂n = O(||Qn − Q̌n||),

R+
n − Ř+

n = Π̂n[Wn, i(Qn − Q̌n)]Π̃n = O(||Qn − Q̌n||)
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and (4.22) ensures Q±
n − Q̌±

n = O(n−1/2), hence

R±
n − Ř±

n = O(n−1/2). (7.7)

Combining (7.7) and (7.6), we get

H ′′
n = D + V̂n ⊕ Ṽn +Rn −R−

n −R+
n +O(n−1/2 lnn) (7.8)

and (7.1) follows due to Rn −R−
n −R+

n = R̂n ⊕ R̃n.

7.2. Step 2 of the proof of Proposition 3.1. We claim that

||Π̂nRnΠ̂n|| = O(n−1/2 lnn). (7.9)

Since Rn = [Wn, iQn] = [Wn, iQ
−
n ] + [Wn, iQ

+
n ], it is clear that it suffices to prove

||Π̂nWnQ
±
n Π̂n|| = O(n−1/2 lnn) (7.10)

and due to (4.22), it remains to prove the estimate

||Π̂nWnQ̌
±
n Π̂n|| = O(n−1/2 lnn). (7.11)

We observe that
||Π̂nWnQ̌

±
n Π̂n|| ≤

∑
n≤j,k≤n+1

|(WnQ̌
±
n )(j, k)|

with
(WnQ̌

±
n )(j, k) =

∑
{m∈N: 0<|m−k|<cn1/2}

Wn(j,m)Q̌±
n (m, k).

Assume that j, k ∈ {n, n+ 1}. Then

|m− k| < cn1/2 ⇒ |j −m| ≤ |j − k|+ |k −m| < 1 + cn1/2 < ĉn1/2

⇒ |Wn(j,m)| ≤ Ĉj−1/4 ≤ Ĉn−1/4 ⇒ |Wn(j,m)Q̌±
n (m, k)| ≤ 4Ĉ2n−1/2

|m− k|
and consequently

|(WnQ̌
±
n )(j, k)| ≤

∑
{m∈N: 0<|m−k|<cn1/2}

4Ĉ2n−1/2

|m− k|
= O(n−1/2 lnn), (7.12)

where the last estimate is due to
∑

1≤i≤cn1/2

1

i
= O(lnn).

7.3. End of the proof of Proposition 3.1. To begin we observe that (4.1) and (3.9)
ensure the fact that there is n1 ∈ N such that for n ≥ n1 one has

λn−1(H) < dn− 3
4 < dn− 1

4 < λn(H) ≤ λn+1(H) < dn+
1
4 < dn+

3
4 < λn+2(H). (7.13)

Denote Un := eiQneiQ
′
n . Then (7.1) ensures

U−1
n HUn = D + (V̂n + R̂n)⊕ (Ṽn + R̃n) +O(n−1/2 lnn). (7.14)

Since (7.9) ensures ||R̂n||B(Ĥn)
= O(n−1/2 lnn), we can write (7.14) in the form

U−1
n HUn = D + V̂n ⊕ Ṽ ′

n +O(n−1/2 lnn) with Ṽ ′
n := Ṽn + R̃n. (7.15)

Let us introduce
Hn := Un(D + V̂n ⊕ Ṽ ′

n)U
−1
n . (7.16)

Then
H = Hn +O(n−1/2 lnn) (7.17)
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and due to the min-max principle, there exists C > 0 such that for every n ∈ N∗ one
has

sup
k∈N

|λk(H)− λk(Hn)| ≤ Cn−1/2 lnn, (7.18)

where (λk(Hn))k∈N denotes the non-decreasing sequence of eigenvalues of Hn, counting
the multiplicities. However, combining (7.18) with (7.13), we can find n1 ∈ N such that
for n ≥ n1 one has

λn−1(Hn) < dn − 1
2 < λn(Hn) ≤ λn+1(Hn) < dn + 1

2 < λn+2(Hn). (7.19)

Denote D̂n := D|Ĥn
and D̃n := D|H̃n

. Then

D̂n + V̂n =

(
dn V (n, n+ 1)

V (n+ 1, n) dn

)
and σ(D̂n + V̂n) = {λ̂n, λ̂n+1} holds with

λ̂n := dn − |V (n, n+ 1)| and λ̂n+1 := dn + |V (n, n+ 1)|. (7.20)

Since V (n, n+ 1) = O(n−1/4), there is n2 ∈ N such that for n ≥ n2 one has

dn − 1
2 < λ̂n ≤ λ̂n+1 < dn + 1

2 . (7.21)

However, σ(Hn) = σ((D̂n + V̂n)⊕ (D̃n + Ṽ ′
n)) = σ(D̂n + V̂n) ∪ σ(D̃n + Ṽ ′

n) implies

{λ̂n, λ̂n+1} ⊂ σ(Hn). (7.22)

Combining (7.22) with (7.19), (7.21), we get λ̂n = λn(Hn), λ̂n+1 = λn+1(Hn) and using
these equalities in (7.18), we deduce

λn(H) = λ̂n +O(n−1/2 lnn) and λn+1(H) = λ̂n+1 +O(n−1/2 lnn), (7.23)

completing the proof of (3.10)-(3.11).
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