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E N V I R O N M E N TA L  S T U D I E S

Drivers of natural gas use in U.S. residential buildings
Rohith Teja Mittakola1,2*, Philippe Ciais1, Jochen E. Schubert3, David Makowski4,  
Chuanlong Zhou1, Hassan Bazzi1,2,4, Taochun Sun5, Zhu Liu5,6, Steven J. Davis7

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and driv-
ers. We use daily county-level gas consumption data to assess the spatial patterns of the relationships and the 
sensitivities of gas consumption to outdoor air temperature across U.S. households. We fitted linear-plus-plateau 
functions to daily gas consumption data in 1000 counties, and derived two key coefficients: the heating tempera-
ture threshold (Tcrit) and the gas consumption rate change per 1°C temperature drop (Slope). We identified the 
main predictors of Tcrit and Slope (like income, employment rate, and building type) using interpretable machine 
learning models built on census data. Finally, we estimated a potential 2.47 million MtCO2 annual emission reduc-
tion in U.S. residences by gas savings due to household insulation improvements and hypothetical behavioral 
change toward reduced consumption by adopting a 1°C lower Tcrit than the current value.

INTRODUCTION
The United States is currently the top global producer and consumer 
of natural gas (1). U.S. households account for 15% of total U.S. gas 
consumption (2), gas being the dominant heating fuel (3) and repre-
senting 42% of the energy consumed by residential households (4). 
Households use gas primarily for heating and hot water, as well as 
for cooking and other miscellaneous uses. Previous studies in 
Europe (5) showed that the daily gas consumption of residential and 
commercial buildings was negatively correlated with daily outdoor 
air temperatures, reflecting higher heating requirements in the cold 
season, typically when the temperature drops below a critical level. 
Although this inverse relationship has been observed consistently 
across eight major European countries, it showed different sensitivi-
ties related to building insulation. In the context of energy savings 
policies and climate change mitigation, it is thus important to quan-
tify the relationship between temperature and natural gas use and 
understand how it relates to human behavior and income, gas access 
and price, and insulation.

Prior research has highlighted certain facets of residential natu-
ral gas consumption in the United States, yet there is a notable 
knowledge gap that warrants our attention. The Residential Energy 
Consumption Survey (RECS) (6) has provided insights into various 
aspects of energy consumption, including natural gas. It is a recur-
ring survey conducted by the U.S. Energy Information Administra-
tion. The 15th iteration of 2020 RECS estimated consumption based 
on responses from 18,496 households across the United States, a 
relatively small sample size that may not capture specific popula-
tions or geographic regions. RECS samples homes that are occupied 
as primary residences and excludes households that are difficult or 
costly to survey. This study (7) used RECS data to model end-use 
characteristics like space heating, cooling, and water heating of resi-
dential energy with a regression approach. They found potential 

errors in RECS data, which raises issues of reliability. Another study 
(8) analyzed temperature-consumption correlations in a region lim-
ited to the Central and Eastern United States.

Energy consumption has an important socioeconomic angle, 
and understanding its predictors is crucial for addressing various 
energy-related challenges and opportunities. A study (9) recently 
shed light on the vital concept of energy poverty. It is defined as an 
inability to get access to energy due to issues with affordability, qual-
ity, or other reasons. Their study introduced the topic of inflection 
temperature (the temperature at which households start cooling) 
and then discussed policy implications for eradicating energy pov-
erty. They conducted the study using residential electricity con-
sumption data from 6000 households in the U.S. state of Arizona 
and did not address the use of natural gas. Again, we observe a limi-
tation of spatial coverage, also highlighted by another study on en-
ergy poverty (10), which only focuses on Buffalo, NY. This shows the 
strong necessity for research that covers the entire United States.

Natural gas has the potential to act as a “transitional” fuel (11) and 
an intermediary step toward the path for a sustainable and decarbon-
ized future energy. It offers a pragmatic approach to addressing the 
urgent need for reducing the carbon intensity of the residential sec-
tor. Natural gas has lower carbon emissions (44% less) than other 
fossil fuels like coal (12) and burns clean, which makes it a relatively 
“greener” fuel. By leveraging the advantages of natural gas, local 
communities can make substantial progress in the reduction of their 
carbon footprint, especially in nations with abundant natural gas re-
serves (like the United States). This is crucial in achieving the United 
Nations Sustainable Development Goals (13), particularly Goal 12, 
which emphasizes the importance of sustainable consumption and 
production patterns. However, we should note that natural gas is not 
the solution for a greener economy and could be controversial in 
some aspects. Notably, some studies (14, 15) have analyzed the meth-
ane emissions linked to the leakages in the natural gas production 
and transport sector. Even advanced natural gas production tech-
niques like hydraulic fracturing or fracking can have negative effects 
on the environment (16). It is therefore essential to also focus on 
strengthening the natural gas network, enhancing its efficiency, until 
we can seamlessly transition to greener energy alternatives.

Hence, with this study, we aim to provide a thorough and de-
tailed analysis of natural gas consumption patterns in the United 
States at the county level. We extend our analysis to a broader 
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geographical area to deliver a comprehensive understanding of re-
gional variations in natural gas consumption. To do so, we use a 
dataset of daily pipeline gas flows for gas delivered to residential 
households and some small commercial entities (large building 
complexes that may be equipped by small gas generators) across 
1000 U.S. counties, with the aim of answering the following ques-
tions: (i) What are the spatiotemporal patterns of natural gas con-
sumption by households across the United States? (ii) What are the 
predictors underpinning the dependence of gas consumption on 
temperature across counties? and (iii) How can predictors be lever-
aged to reduce gas consumption in buildings across the United 
States? Here, we fit linear-plus-plateau functions to county-specific 
data to summarize local nonlinear relationships between daily gas 
usage and temperature based on two key parameters: the heating 
temperature threshold, also called critical temperature below which 
heating begins (Tcrit), and the rate of increase in gas consumption 
when the temperature below the Tcrit threshold drops by 1°C (Slope) 
during the cold season. Here, Tcrit is a fundamental characteristic in 
understanding how gas consumption increases when temperature 
drops. The Slope, on the other hand, explains how sensitive gas con-
sumption is to temperature changes during the cold season. These 
two parameters encapsulate the essential consumption-temperature 
relationship, which is central to our research questions. Subsequent-
ly, we built interpretable machine learning models to assess regional 
differences in these parameters considering related and socioeco-
nomic factors from sources like the U.S. census. This approach al-
lows us to propose two gas-saving scenarios for the United States, 
assuming changes in Tcrit and Slope to represent behavioral changes 
(as a solution with direct effect on natural gas demand) or extensive 
building renovation (as a long-term solution). The International En-
ergy Agency mentioned the importance of behavioral interventions 
and their potential impact on energy efficiency policies (17). Behav-
ioral interventions are policies that apply insights from human be-
havior studies to encourage socially desirable actions. This paper 
(18) discussed practical interventions to reduce carbon emissions 
from the residential sector, with proposed consumption reduction 
and retrofitting homes. Overall, our study addresses all aspects of 
interest, including socioeconomic considerations explaining gas 
consumption and their effect on CO2 emissions.

RESULTS
Spatiotemporal patterns of gas consumption in the 
United States
The relationship between daily household and commercial build-
ings gas consumption and ambient temperature was analyzed using 
a harmonized database established from natural gas pipeline nomi-
nations and flows from Wood Mackenzie’s “Natural Gas Analyst” 
(19), and ambient air temperature data from Copernicus ERA5 
gridded data (20). Gas consumption by residential and commercial 
buildings was separated from that of the large power plants, large 
industries, and storage using only data from so-called “Citygate” 
(21) pipeline delivery points in (19) (Fig. 1C). The resulting dataset 
provided details for 1000 individual counties, and per-household 
consumption was then calculated using U.S. census data (22). Per-
household gas consumption is shown in Fig. 1A for the entire coun-
try and in Fig. 1B for five regions (23). The East Coast, West Coast, 
and Midwest display higher gas consumption per household than 
other regions. Because we aimed to derive relationships between 

daily consumption per household and temperature during normal 
conditions, we removed the data from 2020 when consumption was 
affected by COVID lockdowns, although we observed no substan-
tial change during the peak lockdown from 15 March 2020 to 
24 April 2020 (24). Therefore, using only data from 2018 and 2019, 
we characterized the local relationship between daily natural gas 
consumption and daily average air temperature in each county.

Gas consumption typically peaks during winter due to low tem-
peratures, and household heating is required (Fig. 1). In most coun-
ties, we find that the relationship between daily per-household gas 
consumption and the ambient temperature is well described by a 
linear-plus-plateau function, as shown in Fig.  1D for Middlesex 
County, MA. For this county, consumption decreases linearly with 
temperature below a threshold of approximately 15°C, defined as 
critical temperature (Tcrit). Above this threshold, gas consumption 
does not change substantially with temperature, reflecting a plateau 
corresponding to the base consumption for cooking and hot water 
usage. A similar pattern is observed for nearly all counties in the 
United States, consistent with the results from previous research at 
the national scale in European countries (5). By fitting a linear-plus-
plateau function to the data from each county, we obtain the spatial 
distribution of Tcrit and the linear regression coefficient for tempera-
tures below Tcrit to define the Slope parameter. Slope represents the 
rate of increase in gas consumption when the temperature drops by 
1°C. Strong and significant correlations between gas consumption 
and air temperature were mainly found in counties in the Midwest 
and East Coast regions (Fig. 2A). The median Tcrit value across the 
United States is 16.5°C, with Tcrit values increasing from north to 
south (Fig. 2B). For a handful of counties in Minnesota and Wiscon-
sin, the Tcrit values are below zero. The linear relationship between 
gas consumption and temperatures below Tcrit is significant in most 
counties, with Slope values spanning a large range from −1500 to 
170 metric million British thermal units (MMBtu)/100 households 
per degree Celsius (Fig. 2, C to F). For a majority of the counties, the 
slope values are negative. The small number of positive values is 
viewed as outliers, due to a lower quality of fit in those cases. Coun-
ties in the Midwest, East Coast, and West Coast regions exhibit 
more negative slopes, that is, a steeper increase in consumption per 
unit drop in temperature (fig. S1). The quality of fit (R2) was also 
assessed over the 1000 U.S. counties (see Materials and Methods). In 
70% of the counties, the R2 values were higher than 0.5 (Fig. 2D). 
Although the distribution of Tcrit is close to normal, the distribu-
tions of R2 and Slope across counties are left-skewed (Fig. 2, D to F).

Drivers of regional differences in household gas use
Next, we examined the potential predictors that influence the spatial 
distribution of R2, Tcrit, and Slope across counties by using explain-
able machine learning models (see Materials and Methods). We 
considered 19 different predictors listed in table  S1, grouped into 
three families: (i) building characteristics such as the age of con-
struction, the fraction of residential versus commercial and admin-
istrative buildings, and the number of housing units per building, 
derived from a combination of the American Community Survey 
(ACS) and Zillow’s ZTRAX databases of housing units (22, 25); (ii) 
socioeconomic predictors such as population, employment rate, and 
income, collected from U.S. census data (22); and (iii) energy-related 
predictors such as the type of fuel used for heating, derived from the 
ACS (22). Two machine learning models, Random Forest (RF) and 
CatBoost, were trained to explain the spatial patterns of R2, Tcrit, and 
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Slope from a parsimonious subset of predictors. The modeling ob-
jective was formulated as a multiclass classification task where each 
of the three predicted variables (R2, Tcrit, and Slope) was subdivided 
into four discrete classes (see Materials and Methods). Although the 
performances of RF and CatBoost models only differed by 1 to 5%, 
the model with the highest accuracy score was selected to explain R2 
(CatBoost), Tcrit (RF), and Slope (RF) (see table S2). Results of ma-
chine learning models predicting the three target parameters as con-
tinuous outcomes were consistent with the relevant classifications 
(table S3). The selected models were used to identify the most influ-
ential predictors explaining the spatial variability in the three pre-
dicted parameters. To do so, we calculated the Shapley index values 
(SHAP) (26) to assess the sensitivity of the dependent variables R2, 
Tcrit, and Slope to the predictors and ranked all predictors according 
to their importance. Shapley indices use a game theory strategy to 
extract the contribution of each predictor on the final prediction.

The results show that building properties (green bars in Fig. 3A) 
are the most important group of predictors for predicting the 

spatial patterns of R2; more precisely, the fraction of single-family 
residential buildings, the fraction of residential buildings reporting 
indoor heating, and the fraction of housing units built between 
1950 and 1999 in each county are the most important predictors. 
The second group of important predictors for R2 is socioeconomic 
factors (blue bars), particularly the fraction of the population 
working in the largest employing industry in each county, the frac-
tion of the employed population, and the median income. The spa-
tial distribution of Tcrit is influenced by a mix of building-related 
and social predictors (Fig. 3B), mainly the fraction of “old” houses 
built between 1950 and 1999, the fraction of the employed popula-
tion, and the average household size in each county. A high frac-
tion of houses built between 1950 and 1999 and a low median home 
value contributed to higher Tcrit values (see fig. S2 for the sign of 
the SHAP indices for predictors). This result is consistent with the 
expectation that older buildings are characterized by less effective 
insulation than recent buildings, resulting in more gas consump-
tion and an increase in Tcrit. Finally, we found that the share of gas 

Fig. 1. Spatial and temporal fluctuations in the daily per-household gas consumption and temperature in the United States. (A) Time series plot for the entire 
United States and different regions showing the gas consumption and temperature values, where the hatched area is the main period of mobility restrictions during 
COVID. The left y axis shows gas consumption, and the right y axis shows temperature. (B) Map showing the U.S. regions considered. (C) Distribution of the Citygate pipe-
line gas delivery locations in the United States. The size of the dots on the map indicates the consumption value. Sample sizes of different counties in the regions are as 
follows: West Coast (6.3%), Rocky Mountains (6.2%), Gulf Coast (16.2%), Midwest (46.3%), and East Coast (25%). (D) Piecewise function with one breakpoint fitted based 
on the gas consumption and temperature data from Middlesex County, MA (2018). This plot presents data derived from processed data sources.

D
ow

nloaded from
 https://w

w
w

.science.org at IN
R

A
E

 Institut N
ational de la R

echerche A
gronom

ique et de lE
nvironnem

ent on A
pril 09, 2024



Mittakola et al., Sci. Adv. 10, eadh5543 (2024)     3 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 11

used in buildings relative to total fossil fuel use, i.e., the sum of gas 
and oil excluding biomass, is the most influential predictor of the 
spatial patterns of Slope (Fig. 3C). Other factors explaining the spa-
tial distribution of Slope values are the median income, the type of 
property (fraction of renters and multifamily residential build-
ings), and the average number of household units per building 
(Fig. 3C). We found that high income and employment levels tend 
to be associated with lower Slopes (fig.  S2). However, the age of 
buildings, based on the fractions built between 1950 and 1999 or 
before 1949, ranked as moderately influential predictors for the 

Slope (Fig.  3C), whereas this influence was more important for 
Tcrit and R2.

The relative importance of the three categories of predictors, that 
is, the share of gas as a heating fuel (energy), building properties 
(building), and socioeconomic predictors (social), varies across the 
U.S. regions (Fig. 4). On the East Coast, both Tcrit and Slope were 
mainly controlled by the share of gas in the heating fuel mix, and by 
building characteristics. Parts of New England and Mid-Atlantic 
along the East Coast are primarily influenced by the share of gas as 
a heating fuel. We see a dominance of predictors linked to the 

Fig. 2. Spatial distribution of the parameters derived from linear-plus-plateau functions fitted based on the daily per-household gas consumption and air tem-
perature data. (A to C) Spatial distributions of R2, Tcrit, and Slope, respectively. (D to F) Distributions of R2, Tcrit, and Slope, with the four classes (low, medium, high, and very 
high, which are used in the formulation of machine learning classification problem) defined for explainable machine learning models as delimited by the vertical red lines.
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Fig. 3. Mean absolute values of the Shapley indices (SHAP). This figure shows the importance of different predictors in the machine learning models used in prediction 
of R2 (A), Tcrit (B), and Slope (C). The Shapley indices are ranked by decreasing order of importance from top to bottom, as selected by the machine learning models. Posi-
tive or negative signs of the Shapley indices are shown in fig. S2. The shades of the bars (increasing saturation) denote the four discrete classes of the predicted variables 
(low, medium, high, and very high). The name of each predictor is detailed in table S1. In the figure, HU indicates housing units. These predictors are grouped into three 
families: type of fuel or energy used in buildings (orange), building characteristics (green), and other socioeconomic predictors (blue).

Fig. 4. Map showing the dominance of the three families of predictors. This map illustrates mean absolute values of Shapley indices for the three predicted parame-
ters of per-household gas consumption fitted as a function of temperature: R2 (A), Tcrit (B), and Slope (C).
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“energy” category in this region that has a high density of gas pipe-
line infrastructures (Fig. 1C). In the Midwest, encompassing states 
like Iowa, Minnesota, Nebraska, North Dakota, Ohio, and Washing-
ton, the spatial pattern of Tcrit was predominantly influenced by 
building properties and to a lesser extent by socioeconomic or en-
ergy predictors (Fig. 4B). The emphasis on building characteristics 
in the Midwest suggests that factors like insulation related to the age 
of the house are critical in assessing the gas consumption tempera-
ture threshold. Nevertheless, the share of gas as a heating fuel re-
mains relevant in the states harboring the Great Lakes. The building 
properties were the dominant predictors of the Slope (Fig. 4C) in 
the Midwest. The presence of well-insulated buildings plays a cru-
cial role for gas consumption in this region. In certain parts of both 
the Midwest and Rocky Mountain regions, socioeconomic predic-
tors interact with building-related predictors. In the Midwest, this is 
mainly in association with the temperature-consumption correla-
tion (R2), while in the Rocky Mountains, the influence is on Tcrit and 
Slope. We included four predictors: county mean annual tempera-
ture, cooling degree days, heating degree days, and county tempera-
ture range (maximum minus minimum temperature) to check the 
influence of climate indicators on gas consumption. Degree days 
indicate the extent to which outdoor temperatures deviate from a 
standard temperature, typically 65°F (18.3°C) in the United States, 
indicating the need for cooling or heating (27). These predictors 
were in addition to the list of 19 previously chosen predictors. The 
climate predictors show the strongest influence for all three cases 
(R2, Tcrit, and Slope) in the SHAP importance plot (fig. S3). It is dif-
ficult to ascertain whether this is a “direct” effect of temperature (as 
the parameters were derived from a temperature-consumption fit) 
or whether it is because temperature could be a better proxy of insu-
lation than building features. Therefore, we excluded the climate 
predictors from the study.

Potential gas savings inferred from gas consumption models
In this section, we assessed how much gas could potentially be saved 
in the U.S. residential sector through the adoption of measures to 
reduce the demand for gas in households based on the fitted linear-
plus-plateau functions and explainable machine learning models. 
Two idealized gas-saving scenarios were proposed: a behavioral 
change scenario and a massive building renovation scenario. In the 
first scenario, we supposed a hypothetical change in household be-
havior to reduce Tcrit and Slope within plausible ranges. This sce-
nario corresponds to a response of households to a potential surge 
in gas prices, as observed in Europe in 2022, or to a voluntary shift 
toward reduced individual consumption. In this scenario, we as-
sumed that the entire U.S. population adopts a lower critical heating 
start temperature (Tcrit) and reduces their consumption of gas per 
degree of air temperature cooling (Slope). In each county, the lower 
Tcrit was defined as being 1°C less than the current value (28), and 
the lower Slope was defined within a plausible range by fitting only 
the lower 25th percentile of daily gas consumption in each tempera-
ture bin below Tcrit (Materials and Methods). It is worth noting that 
the data used in this section only pertains to normal working days, 
and does not include holidays, special days, or weekends. In the sec-
ond scenario, we explored the potential effects of a hypothetical ex-
tensive renovation of buildings. To do so, we exploited the partial 
sensitivities of our machine learning models that relate the gas 
consumption-temperature functions to building age, and every-
where in the best model, we replaced the predictors related to “old” 

buildings (houses built before 1999) with 100% of “recent” buildings 
(houses built after 2000). When this renovation scenario was ap-
plied to all the counties, the residential sector’s regional and nation-
al gas consumption was reduced because both Tcrit and Slope 
were lowered.

The impact of the behavioral change scenario is illustrated in 
Fig.  5A for Middlesex County in Massachusetts. In this county, a 
1°C decrease in Tcrit and a 2% decrease in Slope reduced the cold 
season gas consumption by 14.4%. Extending this scenario to all the 
1000 counties included here, we find that the average Slope de-
creased by 10.9% and that the mean annual gas consumption was 
reduced by 26.1%. In this behavioral change scenario, the resulting 
map of relative gas consumption changes (Fig. 5B) shows that the 
savings range from 20% to 40% in most counties. We found that 
only 1.2% of counties have savings greater than 70%, which is quite 
high and may be due to variability in the data or local outliers. About 
78% of the potential national gas savings are found in the Midwest 
and East Coast regions of the United States, where the climate is cold 
in winter, and the extensive gas pipeline network makes gas the 
dominant heating fuel. At a regional level, this scenario provided the 
highest relative reductions of gas consumption over the West Coast 
and the Gulf Coast, 33.8% and 28.1% less than current consumption 
levels, respectively. The Midwest, East Coast, and Rocky Mountain 
regions had lower relative saving potentials, within the range of 
22 to 23%.

The impact of the renovation scenario (fig. S4) also decreased the 
values of Tcrit and Slope. Specifically, a hypothetical retrofitting of all 
buildings to “recent” standards, that is, changing their characteris-
tics to an age posterior to 2000, resulted in a drop in the critical 
temperature by 2°C in 14% of counties. The impact of renovation on 
gas savings through Tcrit was found to be particularly substantial in 
the Midwest and East Coast regions (fig. S4A). A few counties, how-
ever, showed an increase in Tcrit (6.7% of all counties) and Slope 
(2.7%), but these counties could be considered outliers, given their 
low correlation between gas consumption and temperature. The 
lower Tcrit values derived from the renovation scenario were used to 
recalculate the gas consumption-temperature relationship for each 
county and deduce the pertaining gas savings. We found that the 
renovation scenario would result in a gas savings of 24.8% on a na-
tional scale, which is similar to the behavioral change scenario. The 
range of gas savings can vary depending on the extent of renovations 
carried out. Completing between a quarter and half of the renova-
tions can result in gas savings ranging from 14.2% to 49.3% of the 
total potential savings achievable through a complete renovation. 
The largest contributions to national savings were mostly found in 
the Midwest and East Coast regions. Nevertheless, building renova-
tions led to the highest relative gas savings in the West Coast and 
Gulf Coast regions, by 34.4% and 29.3%, respectively. The Rocky 
Mountains, Midwest, and East Coast showed slightly lower relative 
savings of about 23%.

DISCUSSION
Gas consumption patterns in the United States
Our results demonstrate that in most U.S. counties, household gas 
consumption decreases as a function of ambient air temperature 
when the temperature is lower than a county-specific critical tem-
perature threshold and reaches a plateau of minimum consumption 
when the temperature is above this threshold. We found that 
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pipeline operators in 396 counties reported highly irregular gas con-
sumption, which led us to remove these data (see Materials and 
Methods). This filtering procedure still provided us with a sufficient 
number of counties (i.e., 1000 counties) suitable for analysis with 
machine learning models and covering all regions of the United 
States. Furthermore, in a few counties (11 of 1000; see fig. S5), we 
detected a substantial increase in gas consumption when the tem-
perature exceeded Tcrit. Most of those counties are characterized by 
hot summers during which electricity is largely used for air condi-
tioning. Our gas consumption data from “Citygate” pipelines ex-
cluded power generation from large power plants but included 
power generation for cooling by small power plants located in cities, 
such as in business districts, hospitals, commercial malls, and build-
ings with multiple household units. The presence of such small gas-
powered plants, which could not be distinguished from households 
and other building types in the pipeline gas consumption dataset, 
likely explains the increased gas consumption above Tcrit. In another 
small group of counties (128 of 1000), we found a weak relationship 
between gas consumption and temperature. These counties are 
characterized by a high proportion of buildings that do not rely on 
natural gas for heating.

Predictors with expected effects on gas consumption
We showed that counties with a high proportion of “old” houses 
built in the period of 1950–1999 have a steeper Slope and higher 
heating setpoints (Tcrit). On the basis of this result, we developed 
two scenarios for estimating gas savings: reduced household con-
sumption behavior and the renovation of “old” buildings to “recent” 
standards (age posterior to 2000). Using these scenarios, annual re-
ductions in gas use can be translated into reductions in residential 
CO2 emissions (29). We estimate that reduced consumption and 
building renovations would reduce CO2 emissions by 1.22 million 

MtCO2 and 1.24 million MtCO2 per year, respectively (table S4). At 
the regional scale, improving building energy efficiency through 
renovation would yield slightly increased gas savings for every re-
gion in the United States. In each scenario, about 79% of the poten-
tial national CO2 reductions were found in the Midwest and East 
Coast regions. The Rocky Mountain region, which has fewer houses 
connected to gas pipelines, displays a comparatively lower reduction 
of only 2%. Combining the effects of both behavior change and ren-
ovation scenarios, we found potential gas savings amounting to 
44.79 million MMBtu/100 households, which is about 46% of the 
total gas consumption in the country for 2018. In terms of potential 
CO2 emissions, it translates to a mitigation potential of 2.47 million 
MtCO2 per year. The behavior change has a direct effect on reduc-
tion in gas consumption while building renovations provide long-
term energy and emissions savings. Together, both scenarios create 
a powerful strategy for substantial reductions in gas consumption. 
Note that although both scenarios are modeled separately, there 
could be interactions between them, causing the calculated value of 
potential gas savings to appear slightly lower than indicated here.

We propose the Midwest region as a good candidate for an initial 
renovation pilot project aimed at reducing CO2 emissions. In the 
Midwest, gas consumption as a function of temperature is well de-
fined (high R2 in Fig.  2A), and Tcrit is dominantly explained by 
building-related predictors (Fig. 4B), thus making renovation rele-
vant for reducing gas consumption and CO2 emissions (table S4). 
On the other hand, on the East Coast, where the share of gas as a 
heating fuel is the most influential predictor of the Slope, compared 
to building properties (Fig.  4C), measures to encourage reduced 
consumption could be the best option for reducing gas-related 
emissions. In relation to the climate warming scenarios from the 
Coupled Model Intercomparison Project Phase 6 (30), it is suggested 
that in urban areas, a 1°C warming could lead to a 10.5% reduction 

Fig. 5. Illustration of the gas consumption savings in the behavioral change scenario assuming a high rate of compliance. (A) Example of gas consumption savings 
in Middlesex County, MA, when adopting a 1°C lower critical temperature and a lower slope resulting from fitting only the lower 25th percentile of current consumption 
data (the black points). The potential gas savings are indicated by the green-shaded area. (B) Map showing the relative savings in percentage below the current consump-
tion levels in each county of the United States according to this scenario.
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in building natural gas consumption, primarily for space heating 
purposes (31). Building energy efficiency policies could take this 
into account to create more effective and sustainable solutions.

Predictors with unexpected effects on gas consumption
A key point of discussion is that household gas consumption is sen-
sitive to income level, as shown in Fig. 3, B and C. Wealthy counties 
with high employment rates display a Tcrit about 0.6°C lower than 
the national average and a lower Slope value as well (fig. S2). Despite 
living in larger and single-family houses, more affluent households 
with a median income greater than $70,488 in 2018 and 2019 (32) 
consumed 57% less gas per household for heating than poorer 
households (wealthier counties have twice the median home value 
than the rest, so we presume the higher home value may be corre-
lated to the higher floor area/size of homes). The comparatively high 
Tcrit in counties with high unemployment rates can be tentatively 
explained by poor house insulation and by higher gas consumption 
due to the longer presence of unemployed people in private houses. 
This finding suggests that counties with low-income and high-
unemployment rates should be prioritized in efforts to reduce gas 
consumption per household in the United States. Naturally, these 
counties also have a higher proportion of households below the pov-
erty rate as defined in (33). We also found that the base rate of gas 
consumption when the temperature exceeds Tcrit is 9.4% higher in 
counties with high rates of unemployment than in other counties. 
This all points toward the need for targeted energy efficiency pro-
grams for counties with low-income households and high unem-
ployment rates. It is vital to tackle this energy poverty issue. A study 
about U.K. households (34) suggested that energy efficiency policies 
yielded considerable gas savings, but they did not produce consis-
tent results for households experiencing multiple deprivations, 
highlighting the need to consider the diverse impacts of policies. 
Policymakers can use our results to prioritize areas to implement 
incentives for building renovations. To complement the financial 
incentives, targeted policies could also invest in public awareness 
campaigns to educate residents about the benefits of energy efficien-
cy and promote available assistance programs. In addition, inter-
vening energy audit services to assess a household’s energy usage 
and recommend improvements will be beneficial. All such measures 
would aid in energy poverty alleviation.

Moreover, it is worth considering that America is aging (i.e., the 
average age of the U.S. population is increasing), which will affect 
gas consumption in the future. Elderly people over 55 years old will 
represent about 35% of the U.S. population by 2060 (35). In this con-
text, we found that counties with a higher number of elderly people 
display a stronger correlation between gas consumption and tem-
perature (fig.  S2) and a lower value of Tcrit, possibly indicative of 
better-insulated houses. Furthermore, elderly people also have a 
higher per-household energy consumption than the rest of the pop-
ulation (36). Therefore, policies targeted toward further improve-
ment of household energy efficiency in counties with aging 
populations could be valuable to achieve substantial gas savings per 
household.

Despite some shortcomings, the 2020 RECS provides valuable 
independent estimates and analysis of gas consumption for different 
variables such as type of housing unit, income, etc. RECS made a 
study on gas consumption based on the age of the building and in-
come levels (37). The buildings with a year of construction between 
1950 and 1999 represented 58.9% of the total gas residential gas 

consumption in the United States. On the other hand, older build-
ings constructed before 1950 represented 24.1% of the total con-
sumption. This result supports our findings on building renovation. 
On the income levels, RECS estimated that poor households (me-
dian income < $70,488) represented 45.5% of the total gas con-
sumption, which is not the same as our finding (we found that poor 
households consumed 57% of the total gas consumption). It should 
be noted that RECS data are subjected to higher sampling error as 
their sample size is rather small (18,496 households across the Unit-
ed States). Moreover, the spatial scale for comparing RECS (house-
holds) and our study (counties) is not the same.

In summary, our analysis shows the expected negative relation-
ship between gas consumption by U.S. households and outdoor 
temperature. However, along with climatic variables, we identify 
several key social predictors of gas use, such as median household 
income, employment levels, population age, and features of the 
housing stock, such as home age, size, and value that substantially 
influence patterns of gas use. According to our simulation, lowering 
thermostat setpoints by 1°C could reduce the current level of U.S. gas 
consumption by up to 25% and by as much as 40% in some counties. 
Renovation of the building stock and consumption behavioral 
changes could further reduce gas use, especially for counties in the 
Midwest and East Coast regions. Our calculations indicate a poten-
tial reduction in residential CO2 emissions, amounting to 2.47 mil-
lion MtCO2 annually if behavioral changes in gas consumption and 
building modernization are implemented. Future research could 
explore long-term behavioral trends in gas consumption in associa-
tion with the integration of renewable energy sources into the en-
ergy grid. By addressing these, explainable machine learning models 
such as those presented in this work pave the way for effective poli-
cies and practices aimed at promoting sustainable energy transitions 
for a zero-carbon energy future.

MATERIALS AND METHODS
Natural gas data
Daily natural gas consumption data were obtained from Wood 
Mackenzie’s “Natural Gas Analyst,” a comprehensive database of gas 
nominations and flows (19). Our dataset includes data from differ-
ent gas delivery points across the United States called a “Citygate.” A 
Citygate can be defined as a point or a measuring station where the 
gas is collected from the natural gas pipeline company and delivered 
to the end consumers like residential and small commercial entities 
(21). The gas data comprise two entities: net scheduled capacity and 
no-notice capacity. The net scheduled capacity is the volume re-
quested by an end-user 1 day before consumption. The no-notice 
capacity is the amount of gas delivered as needed without schedul-
ing the gas quantity in advance to meet a sudden surge in gas de-
mand. The total gas transported to the distributing company or 
Citygate from the pipeline company is computed by aggregating the 
net scheduled capacity and no-notice capacity. The unit used for gas 
volume is metric million British thermal unit. Data reported at City-
gate delivery points can cover multiple locations in a given county. 
Location-based hourly Citygate gas data were aggregated to county-
level daily values. For temperature-consumption fittings, only pre-
COVID period data were used as we assumed that the influence of 
the pandemic had overridden the effects of climate predictors. The 
Citygate delivery points covered 1000 counties (of 3143), as not all 
counties in the United States have gas pipeline access.
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Gas consumption
We calculated per-household gas consumption values using demo-
graphic data from the American Community Survey (ACS 2019) 
(38). Normalization of the consumption values was necessary as dif-
ferent counties have different population levels, resulting in high gas 
consumption variability. Consumption values were normalized by 
the total number of households (ACS variable B11016_001E) using 
gas as a heating fuel in each county. The units of consumption are 
MMBtu/100 households. The no-notice capacity values in the data 
were not reported daily but with a lag of 2 to 4 days, and tended to 
fluctuate considerably. To maintain the homogeneity of the data, we 
retained only counties with a low proportion of the no-notice capac-
ity (<49%) in the final aggregated consumption values. Data report-
ed on weekends and U.S. holidays were removed.

Temperature
We obtained daily gridded air temperature data at 2 m above ground 
at a 25-km spatial resolution from ERA5 (39) on the same dates as 
the gas use data. The gridded data were clipped using county vector 
polygons, and spatially distributed temperature values across each 
county were averaged to obtain a time series of daily average county 
temperatures. Counties smaller than the ERA5 grid were resampled 
to a spatial resolution of 2 km using a linear interpolation technique 
(40). Temperature data were obtained for all the counties with the 
gas consumption data.

Housing structure properties and socioeconomic indicators
A list of 39 housing structure properties and socioeconomic indi-
cators was assembled to be used as predictors for natural gas con-
sumption (see table  S1). The predictors were selected assuming 
they would play a role in household gas consumption and can be 
classified into three categories: (i) building structure, (ii) social, 
and (iii) energy and miscellaneous. Building structure–related pre-
dictors describe attributes such as the size and year of construction 
of a housing unit, as well as its use type (commercial, agricultural, 
residential, etc.). Social predictors cover income, poverty rate, em-
ployment rate, population size, etc. Energy-based predictors ad-
dress the types of fuel used by households to heat housing units 
(natural gas, electricity, fuel oil or kerosene, and coal). We also 
added some miscellaneous predictors that focus on the number of 
mega-cities and the number of pipelines present in a county to the 
third category. The data sources include the ACS and the Zillow 
Group’s ZTRAX data (25). The ACS provides data at the county 
level, and Zillow’s ZTRAX provides data at the housing unit level, 
which was aggregated to the county level. All predictors were nor-
malized based on the number of households in each county using 
gas as heating fuel.

Relationship between gas consumption and temperature
We fitted a linear-plus-plateau piecewise function (with one break-
point) to the gas consumption and temperature data. The function 
identifies the breakpoint location based on a global optimization 
that minimizes the sum of squares errors. Piecewise regression 
models were built separately for each county for 2018 and 2019. 
From the fit, we derive the quality of the fit (R2), the critical tem-
perature (the breakpoint, Tcrit), and the slope of the line below Tcrit 
(the first segment of the piecewise fit). These results for both years 
were averaged to obtain the final values for each county. We found 
that the piecewise function (with one breakpoint) was the best fit for 

the data as it had the lowest Akaike information criterion (AIC) (41) 
out of the other models we tested (simple linear regression and gen-
eralized additive models). AIC explains how complex it is to use a 
particular model. Lower AIC values indicate better-fitting and more 
parsimonious models.

Formulation of machine learning models
We built a dataset to train a machine learning model using the 39 
variables from ACS and Zillow as predictors to predict (i) the 
quality of the fit (R2), (ii) the temperature heating threshold (Tcrit), 
and (iii) the estimated slopes representing the rate of decrease in 
the gas consumption at temperatures below Tcrit. These three vari-
ables were classified into four classes based on three different 
thresholds. For R2, we chose thresholds of 0.7, 0.8, and 0.9 and 
obtained four classes: low (0 to 0.7), medium (0.7–0.8), high (0.8 
to 0.9), and very high (0.9 to 1) quality of fit (Fig. 2). For Tcrit, the 
thresholds were chosen as 14°, 16°, and 18°C. For Slope, the 
thresholds were the 25th percentile, 50th percentile, and 75th per-
centile values. Two ensemble tree-based machine learning mod-
els, RF and CatBoost (42), were trained and evaluated to classify 
the three above-mentioned variables (see Supplementary Meth-
ods). A recursive feature elimination technique was applied to re-
move half of the least important predictors. Model evaluation was 
performed using standard metrics: accuracy, precision, recall, and 
F1 score. The best model was selected for each variable according 
to the highest accuracy scores. We made sure the data used in 
training the machine learning models were devoid of any missing 
information.

Interpretable machine learning model
The differences between machine learning predictions and average 
predictions were explained by the SHAP (SHapley Additive exPla-
nations) framework (26). SHAP is a state-of-the-art approach that 
can be used to find the main predictors of machine learning model 
output. It uses a game theory approach, assigning an importance 
value to each predictor observation to enable local and global inter-
pretability. With this framework, each difference between individual 
and average predictions is decomposed into a sum of the contribu-
tions of the different predictors. The most influential predictors can 
then be identified from their individual contributions. The formula 
to calculate SHAP values is as follows:

where ϕi is the Shapley value for the predictor i , f is the machine 
learning model, x is the input datapoint, M is the total number of 
predictors, and z is the subset of predictors. A high positive SHAP 
value for a predictor indicates that the predictor has a significant 
impact on producing the outcome. In our experiments, a high SHAP 
value is associated with the following outcomes:

1. In the R2 case, a high SHAP value suggests that the predictor is 
likely to yield high R2 values.

2. In the Tcrit case, a high SHAP value suggests that the predictor 
has a significant influence on increasing Tcrit values, ultimately con-
tributing to higher gas consumption.

3. In the Slope case, a high SHAP value suggests that the predic-
tor plays a significant role in generating low Slope values, which im-
plies that temperature has a minimal influence on gas consumption.

�i( f , x) =
∑

z⊆x

∣ z ∣!(M−∣ z ∣ −1)!

M!
[ fx(z)− fx(z�i)]
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Refer to Fig. 3 for the importance of predictors based on their 
mean absolute SHAP values and to fig. S2 to understand how the 
nature of predictor affects the SHAP value.

Gas consumption reduction potential (behavior 
change scenario)
One method of reducing household gas consumption is by changing 
residents’ consumption habits to consume less gas. Here, a mathe-
matical simulation of the amount of gas that could be saved was in-
vestigated by considering a scenario that each household adapts to a 
1°C reduction in the starting heating temperature of the residence 
(Tcrit reduced by 1°C). To do so, we constructed a plausible reduc-
tion scenario by modifying two variables derived from the piecewise 
function. We assumed a lower critical heating start temperature that 
was 1°C less than the actual and computed a lower slope below crit-
ical temperature by using the data below a low threshold percentile 
of gas consumption data. The threshold was set to be the 25th per-
centile (28). The experiments were applied for each county for both 
2018 and 2019.

Effect of building renovations or changing building age 
proportions (renovation scenario)
Another method used to reduce gas consumption is improving the 
insulation of buildings to increase indoor heat retention and de-
crease the use of gas heating. The age or year of construction of a 
building is typically linked to gas consumption efficiency, with older 
structures generally being less efficient than recent ones due to poor 
insulation. Hence, we use the year of construction as one of the pre-
dictors in the machine learning model. We split the predictor into 
three different time period intervals: housing units built in 1949 or 
earlier, from 1950 to 1999, and in 2000 or later. A housing unit can 
be a single-family home, a unit within a multifamily building, a unit 
within a condominium or cooperative home, a shared-family house, 
or an apartment that serves as a separate living quarter (43). In the 
experiment, we assumed complete renovation of all the “old” build-
ings in all the counties. Therefore, the proportion of housing units 
built in 2000 or later was set to 100% and the rest was set to 0%. The 
obtained modified dataset was used to make new predictions with 
the previously trained machine learning model. The final predic-
tions based on the modified and original data were compared to see 
how the renovation affected the output.

CO2 emission calculation
The per-household natural gas consumption values are used to com-
pute the carbon dioxide emissions using the Greenhouse Gas Equiv-
alencies Calculator (29) provided by the U.S. Environmental 
Protection Agency.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S10
Tables S1 to S5
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