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A B S T R A C T   

The fast and reliable detection of micron-sized plastic particles from the natural marine envi
ronment is an important topic that is mostly addressed using spontaneous Raman spectroscopy. 
Due to the long (>tens of ms) integration time required to record a viable Raman signal, mea
surements are limited to a single point per microplastic particle or require very long acquisition 
times (up to tens of hours). In this work, we develop, validate, and demonstrate a compressive 
Raman technology using binary spectral filters and single-pixel detection that can image and 
classify six types of marine microplastic particles over an area of 1 mm2 with a pixel dwell time 
down to 1.75 ms/pixel and a spatial resolution of 1 µm. This is x10–100 faster than reported in 
previous studies.   

1. Introduction 

Left in the environment, plastics degrade according to kinetics that depend on abiotic (ultraviolet rays, oxygen, water, etc.) and 
biotic (microorganisms) factors. The degradation of plastics results in their fragmentation into small particles. When these are smaller 
than 5 mm, they are called microplastics (MPs). Nano-plastics (which size is between 1 nm and 1 µm) are also released throughout the 
aging of plastics by erosion of their surface, altered on its first micrometers, in particular under the effect of oxidation. From visible 
pollution, plastic pollution becomes invisible when it comes to micro and nano-plastics. As a result, animal species very easily ingest 
large quantities of plastic of various sizes, which their digestive systems cannot absorb, resulting to internal burns, digestive ob
structions, and even death (Kühn et al., 2015). Additionally, toxins from ingested plastic have been shown to harm reproduction and 
weaken the immune system of animals (Kühn et al., 2015). The human species is of course not spared and there is a lack of data on the 
impact of plastic pollution on diets (Senathirajah et al., 2021) with concerns concerning the amount of plastic ingested by humans 
every day. 

Solutions to plastic pollution must be found in areas such as health, food and the environment. In addition, sources of plastic are 
varied and modified by additives, ranging from textiles and tire dust to bottles and packaging. Therefore, in order to know how and 
where to intervene effectively, whatever the area concerned, a realistic assessment based on representative data of the quality and 
quantity of the MPs responsible for this pollution must be established. 
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Conventional Raman spectroscopy is one of the main methods used for the identification of very small MPs (< 20 µm) (Araujo et al., 
2018), along with FTIR (Fourier transform infrared spectroscopy) (Song et al., 2015; Hidalgo-Ruz et al., 2012) and GC/MS (Gas 
chromatography-mass spectrometry) (Fries et al., 2013; Chen et al., 2020). Among the optical techniques, conventional Raman 
spectroscopy seems to be the most suitable for a complete study of the MP range (from 5 mm to 1 µm) since it allow µm resolution 
(Chen et al., 2020). In addition to being a non-destructive and label-free method, Raman spectrometry requires minimal sample 
preparation with highly specific spectra and negligible interference from water, allowing direct analysis of aqueous samples (Vašková, 
2022; Ivleva et al., 2017). Identifications of plastic families have already been carried out by Raman spectroscopy, whether in sedi
ments (Van Cauwenberghe et al., 2013), in the oceans (Lusher et al., 2014; Enders et al., 2015) or in marine organisms (Van Cau
wenberghe et al., 2014; Cole et al., 2013; Goldstein et al., 2013). MPs identification by stimulated Raman scattering (SRS) has been also 
recently demonstrated with acquisition speeds >100 times faster (a few µs pixel dwell time) than conventional Raman mapping 
(typically ms pixel dwell time) on samples of the same type (Zada et al., 2018; Rigneault et al., 2018). Furthermore, SRS is not affected 
by autofluorescence, which is often present in environmental samples (Laptenok et al., 2020) but comes with a drastic increase in 
technological complexity (ultra-fast lasers, complex detection scheme, …) (Sarri et al., 2019; Heuke et al., 2021) and financial cost. 
MPs fieldwork can benefit from a less expensive and easier-to-use tool. In this paper a fast spontaneous Raman imaging technique 
known as compressive Raman technology (CRT), is used to perform fast detection (<500 µs pixel dwell time), fast identification and 
quantification of MPs. Six types of marine microplastic particles collected on a silicon filter were imaged and classified over an area of 
1 mm2 and with a 1 µm spatial resolution for a total acquisition time of less than two hours. 

Ideally, Raman analysis should provide spatially resolved maps for the MPs studied. However, Raman spectroscopy at some specific 
sample locations associated with bright-filed microscopy is often preferred over Raman imaging. This is because the acquisition of the 
complete Raman spectrum for each MPs spatial pixel, coupled with the weak Raman scattering cross section and detector array noise, 
requires lengthy acquisition times and generates large data sets (Nolan et al., 2011; Panczer et al., 2022). This is especially true when 
studying plastics taken from the natural environment, which are often combined with additives (giving a color to certain plastics 
depending on what they are made from). Indeed, this type of sample is known in the literature to emit a lot of background noise 
(fluorescence background) sometimes requiring much more acquisition time (Araujo et al., 2018; Ribeiro Claro et al., 2016) and signal 
post processing. Typically, MPs studies using spontaneous Raman imaging requires a >0.5 s pixel dwell time that lead to long 
acquisition time (> 25 hours up few days) to image surface of mm2 with a spatial resolution of ~1 µm (Araujo et al., 2018; Sobhani 
et al., 2019; Käppler et al., 2015). Notably, acquiring the complete Raman spectra at each sample pixel is a very inefficient way to map 
the spatial distribution of known chemical compounds. A more efficient way takes advantage of the knowledge of the molecular 
compounds that are present in a sample (Scotté et al., 2018; Cebeci et al., 2013). This precisely what does the recently developed 
compressive Raman technology (CRT) (Wilcox et al., 2012; 2013; Grand et al., 2022; Scotté et al., 2023; Rehrauer et al., 2018; 
Réfrégier et al., 2018). In CRT the measurement is directly designed to estimate the quantities of interest (e.g., molecular concen
trations), rather than deducing them from complete Raman spectra acquired at each pixel. Owing to the photon noise detection limit of 
single pixel detector and to the ability to estimate the concentrations of chemical species with a low number of photons, CRT has shown 
to perform Raman images × 10 to × 100 times faster than conventional EMCCD and CCD based Raman systems (Scotté et al., 2018).  
Fig. 1 shows a schematic view of a compressive Raman microscope (Sturm et al., 2019) where a fast programmable binary spectral 
filter, is inserted into a spectrometer to send selected Raman photons onto a single pixel detector (Scotté et al., 2018; Wilcox et al., 
2012). The design of these binary spectral filters and the algorithms on which they are based will be described in greater detail below. 

This paper follows the classification method reported in (Réfrégier et al., 2019) to map and classify 7 different types of MPs. It is 
demonstrated here that these chemical species can be successfully detected and identified at each micrometer-sized location on the 
surface of a laboratory coverslip or a micrometer filter at a pixel integration time as low as 250 µs per species. This allows a 1 mm2 area 
to be mapped in 30 minutes (4 min per species) with a spatial resolution of 1 µm. 

Fig. 1. Simplified sketch of the developed NIR CRT setup (see also Fig. S1); D: dichroic mirror; GM: Galvanometric mirrors; S: confocal slit; G: 
amplitude grating (1200 lines/mm); DMD: digital micro mirror device; SPD: single pixel detector; F1: laser line filter (LL01-785–12.5, Semrock), F2: 
notch filter. 
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2. Material and methods 

2.1. Compressive Raman technology (CRT) 

The complete CRT setup is shown in supporting information figure S1 and described earlier in (Grand et al., 2022; Grand, 2023), a 
simplified sketch is provided in Fig. 1. It uses a 785 nm CW laser (IPS – D-Type Module − 100 mW – 100 MHz bandwidth) together with 
a 3 nm bandwidth (48 cm− 1) laser line filter at 785 nm (Semrock 785 nm MaxLine). A two-axis galvanometric scanner (Cambridge 
Technology) was used to steer the beam together with a commercial microscope stand (Nikon Eclipse) equipped with a × 20, NA =
0.75 objective lens (Nikon CFI Apo Lambda). This objective focuses the 785 nm excitation light and collects the back emitted/reflected 
Raman photons. The latter are de-scanned and separated from the excitation beam by a dichroic mirror and sent to a custom-built CRT 
spectrometer. At the spectrometer entrance a 785 nm notch filter (HSPF785.0 – Kaiser) rejects all the remaining laser and Rayleigh 
light. The CRT spectrometer is composed of a high transmission (~85%) grating (1200 lines/mm) that disperses the Raman photons 
towards a dispersive micromirror device (DMD Vialux V-650 L NIR) with optimized NIR reflection. The binary encoded spectral filters 
displayed on the DMD send the Raman photons towards a single photon avalanche photodiode (SPAD-ID Quantique-ID120) with a 
75% quantum efficiency at 800 nm. The galvo mirrors and image acquisition are controlled by a custom LabView based software. This 
software controls also the DMD display via the Vialux interface. The spectral resolution of the CRT spectrometer is estimated to be δλ ≈
12 cm− 1 and the spatial resolution 1 µm (x,y) and 10 µm (z axis) (measured with calibrated samples, data not shown). 

2.2. CRT algorithm 

2.2.1. Filter design 
Central to CRT are the design of the binary filters that are displayed sequentially to classify chemical species, at each pixel (see supp 

info paragraph 3). The reported algorithms (Wilcox et al., 2012; Réfrégier et al., 2018) proceed in a similar way to design filters that 
maximize the precision of the chemical species proportions. This is done by the minimization of the trace of covariance (Wilcox et al., 
2012), or the Cramer-Rao lower bound (Réfrégier et al., 2018), matrices. The two approaches being equivalent when the number of 
binary filters equals the number of chemical species (Réfrégier et al., 2018). The filter design is based on the Cramer-Rao lower bound 
given by (Réfrégier et al., 2018; Scotté, 2022). 

2.2.2. Classification 
The CRT classification algorithm is based on the work from Réfrégier et al (2019).; it assumes that one pixel of an image (size 1 µm) 

represents only one species. From the obtained filtered measurements, this algorithm compares for each pixel the probability of each 
known species to be present. Among these different probabilities, the classifier chooses the species with the highest probability of 
identification for a given pixel and associates the respective color (see supp info paragraph 3). 

Fig. 2. Macroplastic wastes found in different Britany area (France) before and after cryo-grinding. The specific localities are precised on the top. 
Eppendorf samples from left to right: MPs sample of polyethylene terephthalate (PET, uncolored), polyurethane (PU, white), polyethylene (PE, 
pink), polystyrene (PS, orange), polypropylene (PP, blue) and Nylon (PA, light green). 
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In the case of classification, it is assumed that there is a single species per pixel (which is the case for MP particle that are equal or 
bigger than the 1 µm CRT microscope pixel size). A probability of error must be taken into consideration here. It will be limited by the 
bound of Bhattacharyya (BB). This bound is calculated from the reference spectra and the matched filters. BB is therefore greater than 
the probability of error of the classification method. Its limits lead to a simple expression of a minimum number of photons necessary to 
increase the probability of error. With this, the color corresponding to the pixel class can be displayed directly, but this is far from a 
"physical" image since the intensities do not appear. Since it is assumed that there is only one species, the weighting of the color of each 
pixel by the total number of photons received on the pixel is applied. Indeed since in this case, all the photons are supposed to come 
from the unique species of the pixel. A detailed analysis of the BB bound in CRT classification can be found in (Réfrégier et al., 2019). 

2.2.3. MP from the marine environment 
The samples were collected from natural marine environments in Britany area (France) from natural marine environments (sea, 

beaches, etc.) (Fig. 2). They were macroplastics with sizes ranging from a few mm to a few cm. These raw samples have undergone 
minimal initial treatments before their analysis with Raman spectroscopy. These treatments consisted in manually removing foreign 
macroelements present in the harvest samples. If necessary, the plastics were washed with filtered water to remove any sand and salt 
residue to be finally crushed (cryo-grinding) to produce plastic microparticles of different types (and colors) and different sizes. The 
polymers were identified by Raman spectroscopy before and after fragmentation, no polymers fingerprints variations were observed 
(result not show). Each type of plastic polymer has a different color caused by its own (unknown) additives that were originally added 
to it during its manufacture (Fig. 3). The figure S2 compares Raman spectra of these different plastic polymers from a conventional 
Raman spectrometer with those from a compressed Raman spectrometer. 

3. Results 

3.1. MPs test beads images with CRT 

To illustrate the operation and relevance of CRT for MPs imaging, a simple model is chosen involving only two types of synthetic 
MPs beads deposited on a CaF2 coverslip that are labelled P1 (polystyrene beads, 30 µm diameter) and P2 (methyl methacrylate beads, 

Fig. 3. (a) Raman spectra of P1 (polystyrene beads, 30 µm diameter) and P2 (methyl methacrylate beads, 20 µm diameter) with the superimposed 
designed binary filters (Raman photons falling in the white stripes are kept while the photons falling in the grey stripes are rejected), (b) sample seen 
from a microscope camera. (c) projection map of the two different spectral filters from the image seen in (b) where the exposure time is 250 µs/pix/ 
filter. (d) Classification map after applying the algorithm, described in (Réfrégier et al., 2019), on the filtered measurements shown in (c). For each 
image, the scale bar is 30 µm and the FOV is 100 µm × 100 µm (100 pixels × 100 pixels). 
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20 µm diameter) (Sigma Aldrich) (Fig. 3(b)). Spontaneous Raman spectra of P1 and P2 - measured with the Raman spectrometer of 
Fig. 1- are shown in Fig. 3(a). These known spectra are used to design binary filters that minimize the variance of the estimated P1 and 
P2 proportions following (Scotté et al., 2018; Réfrégier et al., 2018). The designed binary filters are presented on the respective Raman 
spectra for P1 and P2 (Raman photons falling in the white bands are detected while photons falling in the grey bands are rejected). 
Note that a spectral filter constructed from this model adapts not only to a spectral species but also to the combination of spectra 
involved in the experiment. In general, a filter cannot be associated to a specific specie, this is the combination of the signals that are 
coming from each filter that enables the identification of the species, at each spatial point. Once the sample is scanned for each spectral 
filter displayed on the DMD, the filtered measurements are obtained (Fig. 3(c)) where the scale is proportional to the photon count per 
pixel. Note that this process is also done for the background (CaF2) spectral filter which is also considered as a species. 

The CRT classification algorithm (based on the work from Réfrégier et al. (2019).) assumes that one pixel of an image (size 1 µm) 
represents only one species. From the obtained filtered measurements, this algorithm compares for each pixel the probability of each 
known species to be present. Among these different probabilities, the classifier chooses the species with the highest probability of 
identification for a given pixel and associates the respective color: P1 (red), P2 (green) or background (black). This classified image 
provides a colored image of the two distributions of P1 and P2 (Fig. 3(d)). Note that no other image processing (smoothing…) was 
performed to improve the image rendering. 

3.2. CRT imaging of mixed MPs samples from the marine environment 

Following the recording of the reference spectra (Fig. 4(a)), the construction of binary filters was carried out for all the spectra of six 
plastic polymers coming from the marine environment (Fig. 4(a)). These different filters were projected onto a sample that is a mixture 
of MPs polymers (PS, PP, PET, PU, PA, and PE – see Fig. 2) deposited on a CaF2 coverslip. The chosen imaging area corresponds to a 

Fig. 4. (a) MPs reference spectra and the associated 7 spectral filters (bright areas correspond to selected wavenumbers) (b) White light image and 
ground truth indication of the different MPs present in the field of view (FoV). The dashed square indicates the field of view of the Raman mi
croscope as seen in Fig. 4(d). (c) Projection maps obtained from filter measurements. (d) CRT final classification imaging (PS: red; PET: yellow; PU: 
cyan, PE: purple). Acquisition speed: 2 ms/pix by applied filter, FOV: 300 μm × 300 μm, scale bar: 50 μm. 
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FOV of 300 ×300 μm (Fig. 4(b)). Note that for ground truth determination, check was performed on the spectra of each MP bits present 
in the imaging region. 

After the projection of each filter on the chosen imaging region, the projection maps are obtained, i.e. the photons number received 
per pixel for each filter (Fig. 4(c)). Fig. 4(d) shows the result of the classification where an RGB filter has been applied to highlight the 
different plastic polymer type. A very good agreement is found with the ground truth (Fig. 4(b)) with PET in yellow, PS in red, PE in 
purple, PU in light blue, PP in dark blue and CaF2 in black. Note that although the PA filter was applied, none PA bits are found in this 
region of interest. 

3.3. High-speed CRT imaging of MP coming from the marine environment 

To investigate the ability of CRT setup to perform fast imaging of MPs, Fig. 5 compares the CRT image quality obtained with pixel 
dwell time ranging from 100 µs/pix/filter to 200 µs/pix/filter. The considered MPs sample and the region of interest is the same as in 
Fig. 4. At 250 µs/pix/filter it is still possible to distinguish the five MPs polymers PE, PS, PP, PET and PU. This probably sets the speed 
limit on this type of sample to access a decent signal-to-noise ratio for MPs detection. A quick statistic test applied to data (see supp info 
paragraph 4) showed a loss of information of more than 50% when scanning speeds exceeded 250 µs/pix/filter. This speed of 250 µs/ 
pix applied per filter represents a total time of 2.6 min to build an image with a FOV of 300 µm × 300 µm (with pixel dwell time of 
1.75 ms). 

For increasing pixel dwell time, the error probability decreases and the classifier reveals the accurate chemical species at each pixel. 
As a consequence, with increasing pixel dwell time, more pixels take the same color on macroscopic areas corresponding to a MP type. 
In the supplementary information Figure S2, validation of the CRT identifications of MPs for five polymers is conducted by recording 
full Raman spectra (as CRT can be switched to conventional Raman by sequentially scanning each pixel columns on the DMD). This 
corroborates the different chemical species identified by CRT. 

Fig. 5. CRT imaging performed at different pixel dwell time. (a) 100 µs/pix/filter, (b) 125 µs/pix/filter, (c) 250 µs/pix/filter, (d) 500 µs/pix/filter, 
(e) 1 ms/pix/filter, (f) 2 ms/pix/filter. FOV: 300 µm × 300 µm (300 pixels × 300 pixels); scale bar: 50 μm. 
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3.4. CRT detection of MP from the marine environment 

To evaluate the ability of CRT to be used in the field to detect and quantify MPs, a silicon filter has been used (131675 W14 - 
SmartMembranes) (MakroPor_002.pdf, 2022) as the substrate on which the MPs are deposited. These types of filters are commonly 
used to filter particles in liquid. This silicon filter has pores with a diameter of 5 μm, a thickness of 463 μm and a pore spacing of 12 μm. 
These type of filters guarantee sufficient transparency for the wide mid-IR of 4000–600 cm-1 (Käppler et al., 2015) and their me
chanical properties make them good candidate for field application. In order to use this silicon support in MPs analysis, its measured 
Raman spectrum has been added to the pool of pure MPs Raman spectra (Fig. 4(a)) and ran the algorithm to design the 7 binary 
orthogonal filters that will enable the CRT measurements (Fig. 6(a)). To build the sample, the MPs have been directly incorporated into 
pure water. Then, the silicon filter was directly immersed in the aqueous medium containing the six different MPs polymers (PE, PET, 
PA, PS, PU, and PP). The silicon filter was then dried in open air and the MPs found themselves naturally attached to its wall (Fig. 6(b)). 
Two images were taken with two different magnifications to obtain a view of the sample from which to apply MPs classification. A 
magnification from Fig. 6(c), in the white boxed area, was used to obtain the image shown in Fig. 6(d). 

3.5. MPs CRT imaging over a 1 mm2 silicon filter area 

CRT imaging was performed over a large (1 mm2) area of the Si substrate containing the collected MPs. Performing MPs detection 
and quantification over large areas is necessary to perform relevant statistical analysis. Fig. 7 compares the 1 mm × 1 mm FOV CRT 
images quality obtained with a pixel dwell time of (a) 1 and (b) 2 ms/pix/filter (7–14 ms total pixel dwell time, respectively) for each 
of the seven filters applied. This scan speeds have been selected to have superior image qualities as compared to those obtained with 
faster scanning speeds (see Fig. 5). These 1 mm2 images (1000 pixels x 1000 pixels) are obtained after total acquisition times of 2 h 
10 min and 4 h 32 min, respectively. This is to compare to the 500 ms pixel dwell time reported in the literature that lead to 10 s to 
100 s of hours acquisition time (depending on the pixel number) (Araujo et al., 2018; Sobhani et al., 2019; Käppler et al., 2015). The 
various types and shapes of the MPs present in the field of view can be clearly seen using CRT imaging. 

4. Discussion 

The ability of compressive Raman technology (CRT) to image and quantify micro-plastics (MPs) originating from natural marine 
environments has been successfully evaluated. CRT is different than conventional Raman imaging (that record the full Raman spectra) 

Fig. 6. (a) Reference spectra of the different MPs polymers with that of silicon filter (Si, in black) from which the binary orthogonal spectral filters 
have been constructed. (b) Image of the silicon filter (size: 10 mm x 10 mm) after passing it through an aqueous medium containing a mixture of 6 
MPs. (c) View from the microscope camera a FOV of the different MP polymers collected by a silicon substrate. A magnification is performed on the 
region of interest (white frame in c) to obtain (d). 
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because CRT uses a priori known spectral information to design a limited (one per MP chemical species) set of spectral filters that can 
be used to perform fast imaging using a single pixel detector. Despite the countless difference that can exist between each type of plastic 
due to their added additive, there are only about ten major microplastic polymers released in the marine environment. This suits 
perfectly the CRT technology. Indeed, too many species would require many spectral filters that would make CRT non-optimal as 
compared to a conventional Raman spectrometer. Because there is a limited (< 10) number of relevant MPs, there is a limited number 
of projection images (each of them corresponding to a specific spectral filter) that need to be acquired to reveal all the relevant in
formation to image, detect and classify MPs. CRT can image and classify MPs with a pixel dwell time as short as 250 µs/pix/filter where 
each species could be detected and correctly identified. With 7 polymer species of MPs, this brings down the overall illumination pixel 
dwell time to 1.75 ms, a time which is × 10–100 shorter that what is commonly used in MPs identification using conventional Raman 
spectroscopy and imaging (Araujo et al., 2018; Käppler et al., 2016). This fast imaging and classification speed can be advantageously 
used to image large surface areas and images were shown over 300 μm × 300 μm field of view (acquired in 21 min, and down to 
2.6 min for pixel dwell times of 2 ms/pix/filter and 250 us/pix/filter, respectively) and over 1 mm × 1 mm acquired in 2 h on a silicon 
filter that is used to filter MPs in liquids. This time is to be compared with the 12.5 h reported into the literature to image similar areas 
of MPs with the same resolution (1 μm) and a pixel dwell time of 0.5 s (Araujo et al., 2018; Sobhani et al., 2019). Beside this key speed 
advantage, CRT has been successfully used to image MPs coming from the natural environment where most samples are pigmented. 
Quite interestingly the reference MPs spectra and their associated computed binary filters were taken from uncolored MPs (i.e. syn
thetic uncolored MPs with no additives). The reference spectra on the uncolored MPs are shown in Fig. S2 c whereas the spectra from 
the marine environment samples are shown in Fig. S2 b. There are clearly some fluorescence backgrounds on some of the marine MPs 
(PET, PU, PP) but quite remarkably the binary filters taken from the uncolored, unpigmented, background free reference MPs are 
working to classify the marine MPs from natural environment. This shows the relative robustness of the binary filters that are built with 
reference background free MPs to address larger and wider types of similar MPs in terms of additives, colors and fluorescence 
background. This has of course some limits and we fail in imaging black Polyvinyl chloride (PVC) particles that always exhibit large 
and unstable fluorescence background followed by irreversible photo-damages. 

However, the samples used in this paper are less complex than real samples of sediment or organic matter. In fact, even after pre- 
treatment, these samples may still contain clay-like particles, shell fragments, organic debris, etc. In supp info Fig. S5 we have con
ducted a simple experiment to address this complexity. We demonstrate that despite the presence in the sample of an unknown 
(organic) species (in this case a leaf, whose spectral information was not taken into account in the initial model to build the binary 
filters), only the species initially considered to build the binary filters are present in the final Raman classification image. This 
demonstrate the relative resilience of CRT to be contaminated by unknown Raman species that are not taken into account in the design 
of the binary filters. 

Some of the MPs detected in Figs. 5 and 7 show different level of classification quality. This is probably due to the limited ≈10 µm z 
resolution of CRT microscope and the 3D nature of the MPs samples that provide an optimal SNR only for MPs located in the same 
plane. 3D imaging is possible using a z scanner at the price of a longer image acquisition time. Throughout this work, orthogonal binary 
spectral filters were used, these filters use sets of wavelengths that do not overlap, i.e. a wavelength used in one filter is not used in 
another filter in the set. The orthogonality requirement is not mandatory in the CRT context, as demonstrated in previous studies 
(Scotté et al., 2018; Grand et al., 2022). However, it was observed that the orthogonality constraint proved beneficial in the context of 
MPs imaging and quantification, likely owing to the fluorescence background. 

Fig. 7. CRT imaging of MPs performed on a silicon filter substrate, (a) 1 ms pixel dwell time and (b) 2 ms pixel dwell time, for each of the seven 
spectral filters applied. Scale bar: 100 μm, total FOV = 1 mm × 1 mm (1000 pixels × 1000 pixels). 
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5. Conclusion 

We have demonstrated that compressive Raman can rapidly image and classify microplastics (MPs) with a shortest pixel dwell time 
of 250 µs per projection filter. This reduces the pixel dwell time to 1.75 ms to detect the six major MPs, which is >50 times faster than 
previously reported work using conventional Raman. When compared to other techniques, CRT has several advantages. First, like most 
optical techniques, it employs relatively light and inexpensive technology compared to mass spectrometry. This is beneficial when 
implemented in conventional laboratories or deployed for underwater investigations (Liu et al., 2021). Second, CRT is well-suited for 
MPs detection because (i) the Raman spectra of MPs are known, and (ii) there are fewer than 10 major MPs to detect, requiring the 
sequential display of fewer than 10 binary filters to complete the detection of the MPs. Third, because CRT uses a single-pixel detector 
that is shot-noise-limited and has a fast (MHz) response time, it allows for fast imaging and provides MPs morphological information, 
with pixel dwell time limited only by the Raman signal. These advantages make CRT superior to mass spectrometry, FTIR, and 
conventional Raman for rapid detection and imaging of MPs. Further improvements to increase imaging speed could be envisioned, 
such as ’region of interest predeterminations’ using white light images, sub-sampling (decreasing spatial resolution), or flow detection, 
which would reduce the image to a line or even a point. These improvements could further establish CRT as a game-changer for MPs 
imaging and quantification in environmental applications. 
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