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ANALYSIS AND OPTIMIZATION OF A LIQUID-VAPOR
THERMOHYDRAULIC MODEL.

Philippe Helluy1 and Gauthier Lazare2

Abstract. This work presents a simplified model of compressible multiphase fluid flow
in a heated porous medium. We first introduce the model and its numerical approxima-
tion using a linearized implicit finite volume scheme. We then propose a technique to
accelerate the implicit scheme through a machine learning approach.

Résumé. Ce travail présente un modèle simplifié d’écoulement de fluide multiphasique
compressible dans un milieu poreux chauffant. Nous présentons d’abord le modèle et son
approximation numérique par un schéma de volumes finis implicite. Nous proposons en-
suite une technique d’accélération du schéma implicite par une approche d’apprentissage
automatique.

1. Introduction

Very often, techniques for electricity production involve heating a heat transfer fluid (usually
water). This heating is achieved through thermal exchange between the fluid and a hot medium
(solar furnace, coal, gas, nuclear fuel, etc.). In order to maximize heat transfer, it is important
that the heat exchange surface is large for a given volume. To achieve this, the fluid circulates in
contact with a heat exchange surface, which is most often in a confined solid medium. This surface
can be complex to model precisely and, for the purposes of simulation, it is convenient to assimilate
the exchange area to a porous medium in which the fluid circulates. In this work, we consider a
homogenized compressible model for the heat transfer fluid (water), which can locally vaporize.
The two phases, due to Archimedes’ force, can have different velocities. The difference in velocities
is taken into account by a drift model. However, the two phases are at pressure equilibrium.
This leads to a model that is simpler to simulate numerically, but more complex mathematically.
For example, it is not clear that this two-velocity, one-pressure model is hyperbolic. Many works
have been conducted on this type of models, see (for example) [1, 5, 6, 11, 16] and the included
references. For a general introduction to the subject of compressible multiphase fluids, we refer
to [12].
The mathematical model is here approximated by a semi-implicit time-stepping scheme on a stag-
gered grid proposed in [18]. The scheme is written in the non-conservative variables: entropy, vapor
fraction, mass flow rate, and pressure. It is well suited for low Mach number flow calculations.
The observed regimes do not exhibit shock waves, which justifies this choice.
Despite the simplifications adopted, obtaining the steady state from an unsteady scheme can be
costly in terms of computation time, or even unstable for poor initializations or too large time
steps.
The first objective of this work is to describe a model, the simplest possible, one-dimensional, but
which contains most of the characteristics of the complete industrial model presented in [18]. The
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2 ESAIM: PROCEEDINGS AND SURVEYS

second objective is to evaluate an acceleration technique, based on machine learning, for reaching
the stationary solution.

2. Equations

The two-phase (water-vapor) mixture flows in a medium partially occupied by solid heating rods
or tubes.
The goal of this section is to establish a system of balance laws in the form

∂tW +∇ · F (W ) +∇ · (D(∇W )) = S(W ),

where:

• the vector of unknowns W (x, t) depends on time t and space x. This unknown vector results
from mass, momentum, and energy balance equations; therefore, W ∈ R3 (homogeneous
3-equation model). The vapor mass fraction balance can also be considered to represent
certain out-of-equilibrium physical phenomena, such as subcooled boiling, then W ∈ R4

(unbalanced 4-equation model),
• the flux is denoted by F (W ),
• the second-order flux is denoted by D(∇W ),
• the zeroth-order source term is denoted by S(W ).

In the following paragraphs, we detail the notations, general balance laws, and the liquid-vapor
thermodynamic model. We will prioritize the zeroth and first-order terms. Second-order terms
are neglected here (no solid friction, no viscosity, no heat diffusion, no turbulence). The model
presented here is a simplified version of the THYC model, a two-phase thermohydraulic calculation
code at the component scale, developed by EDF (see [18]).

2.1. Some Notations

Fuel rods have a complex geometry and are therefore modeled as a porous medium, as explained
earlier. On a small volume V containing fluid and solid, we consider the porosity ε, defined as the
ratio of the fluid volume Vf to the total volume (fluid + solid) V = Vs + Vf . It is a geometric
parameter that depends on space x but not on time, and we always have 0 ≤ ε ≤ 1. The fluid
volume Vf is further decomposed into vapor volume Vv and liquid volume Vl. The two phases are
immiscible, so that

Vf = Vl + Vv.

The vapor volume fraction (also called void fraction) is denoted by α = α(x, t). It is defined as

α =
Vv

Vl + Vv
.

The mixture density is defined by

ρ =
Ml +Mv

Vl + Vv
, Ml : liquid mass, Mv : gas mass.

Thus,
ρ = αρv + (1− α)ρl

with the densities of each phase

ρl =
Ml

Vl
and ρv =

Mv

Vv

where Ml and Mv are the masses of liquid and gas, respectively. The mass fraction y (or mass
fraction) of vapor is then defined as

y =
αρv
ρ

=
Mv

Ml +Mv
and 1− y =

(1− α)

ρ
ρl. (1)
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We also define the volumetric momentum q of the mixture

q =
Mvuv +Mlul

Vv + Vl
= ρu,

which defines the mixture velocity u from the velocities of each phase ul and uv. We also define
ur, the relative velocity between the two phases

ur = uv − ul.

From these relations, we deduce the following relationships

ρu = αlρlul + αvρvuv,

ul = u− yur, uv = u+ (1− y)ur. (2)

Surface tension is neglected, and we consider pressure equilibrium between the phases, i.e., p =
pv = pl. We define the specific internal energy of the mixture e and the specific enthalpy of the
mixture h = e+ p

ρ from the specific internal energy and specific enthalpy of each phase

e = yev + (1− y)el,

h = yhv + (1− y)hl.

Finally, we also define the enthalpy difference

L = hv − hl. (3)

2.2. Balance laws

In this section, each balance law is derived from principles of mechanics. We use the approach
of [15], which has the advantage of being particularly concise. For each balance, we consider a
fixed domain Ω in space. The outward unit normal to Ω on ∂Ω is denoted by n.

2.2.1. Mass balance

The conservation of total mass is written in the same way for both the multiphase model and a
compressible single-fluid model:

∂t(ερ) +∇ · (εq) = 0. (4)
Using the method of [15], during a time dt, the mass of phase k crossing an element of surface ds
is given by εαkρkuk · ndsdt. This leads to the equation

d

dt

∫
Ω

ερ = −
∫
∂Ω

(εαlρlul · n+ εαvρvuv · n) =
∫
∂Ω

ερu · n,

which indeed gives (4), thanks to the Stokes formula.

2.2.2. Momentum balance

The momentum balance is more complex as it must take into account the relative velocity between
the two phases, which is not a priori zero. The equation is written as

∂t(εq) +∇ · (ερu⊗ u+ εpI) +∇ · (ερy(1− y)ur ⊗ ur) = ερg + Ifs + It (5)

where g is the acceleration due to gravity, It is turbulent dissipation, and Ifs is dissipation due to
head loss (corresponding to friction between the solid and the fluid). As mentioned earlier, friction
is neglected here, so It = 0 and Ifs = 0.
The equation (5) then becomes

∂t(εq) +∇ · (ερu⊗ u+ εpI) +∇ · (ερy(1− y)ur ⊗ ur) = ερg. (6)
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To establish this conservation equation, we can also reason as in [15]. The change in momentum
in the domain Ω is equal to the sum of the momentum crossing the boundary by convection, the
pressure forces (neglecting surface tension), acting on the boundary, and the volumetric forces. We
find

d

dt

∫
Ω

ερu = −
∫
∂Ω

εαlρlulul · n+ εαvρvuvuv · n

−
∫
∂Ω

εpn

+

∫
Ω

ερg.

Using the relations (1), we obtain

d

dt

∫
Ω

ερu = −
∫
∂Ω

(ε(1− y)ρulul · n+ εyρuvuv · n)

−
∫
∂Ω

εpn

+

∫
Ω

ερg.

We then use the relations (2) and the Stokes formula to conclude.

2.2.3. Energy balance

For the energy balance, several terms need to be considered to account for the relative velocity
and the latent heat of vaporization. We start by establishing the conservative formulation of the
energy balance. For this, we introduce the total specific energy of each phase k

ηk = ek +
u2
k

2
.

The total specific energy of the mixture is then given by

ρη =
∑
k

αkρkek + αkρk
u2
k

2
,

η = yev + (1− y)el + y
u2
v

2
+ (1− y)

u2
l

2
.

Using the relations (2), the total energy can be rewritten as

η = yev + (1− y)el +
u2

2
+ y(1− y)

u2
r

2
.

Note that we do not have the equality η = e + u2

2 in the case where the relative velocity is non-
zero. When writing the energy balance, we still use the technique presented in [15]. The temporal
variation of energy in Ω

d

dt

∫
Ω

ερη

is given by the balance of several terms:

• the quantity of energy that crosses the boundary by convection

W1 = −
∫
∂Ω

(εαlρlηlul · n+ εαvρvηvuv · n) ,

• the work of the pressure force at the boundary

W2 = −
∫
∂Ω

(εαlpul · n+ εαvpuv · n) ,
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• the work of the forces in the volume

W3 =

∫
Ω

ερg · u,

• heat sources, with ϕ the heat source from the solid, ϕdif the diffusion heat flux and ϕt the
turbulent heat flux

W4 =

∫
Ω

ϕ+

∫
∂Ω

ε(ϕdif + ϕt) · n.

After calculations, the terms Wi can be simplified. For W1 one finds

W1 = −
∫
∂Ω

ερηu · n

−
∫
∂Ω

ερy(1− y)(ηv − ηl)ur · n,

For W2

W2 = −
∫
∂Ω

εpu · n = −
∫
∂Ω

εp(α− y)ur · n.

One can also write (after calculations)

W2 = −
∫
∂Ω

εpu · n = −
∫
∂Ω

εpρy(1− y)(τv − τl)ur · n.

The conservative form of the equations is therefore

∂tερη +∇ · (ε(ρη + p)u)

+∇ · (ερy(1− y)(ηv + τvp− (ηl + τlp))ur)

= ερg · u+ ϕ+∇ · ε(ϕt + ϕdif ).

Since in this work we neglect terms of order 2, ϕt + ϕdif = 0

To obtain the equation for internal energy only, one must write the kinetic energy equation and
the equation for the quantity y(1− y)

u2
r

2 and subtract them from the total energy equation.
The kinetic energy equation is obtained by multiplying the momentum equation (6) by u and using
the mass conservation equation (4)

∂t(ερ
u2

2
) +∇ ·

(
ερu

u2

2

)
+ εu · ∇p+ u · (∇ ·

(
ερy(1− y)u2

r

)
) = ερg · u.

For the equation on the quantity y(1 − y)
u2
r

2 , the momentum equation for the vapor phase is
multiplied by (1 − y)ur and that for the liquid phase by yur. The vapor phase equation is then
subtracted from that of the liquid phase, and the equation for the mass balance of the vapor is
added, multiplied by the quantity (1 − 2y)

u2
r

2 . The final result is the equation for the quantity

y(1− y)
u2
r

2

∂t(ερy(1− y)
u2
r

2
)+∇ ·

(
ερy(1− y)u

u2
r

2

)
+ (ρy(1− y)ε

u2
r

2
∂xu+ ∂x(ρy(1− y)εur(1− 2y)

u2
r

2
)) =

− ρy(1− y)(τv − τl)ε∂xp− purε∂xα+ Ipur − Γ(
u2
g

2
− u2

l

2
)

with Ip the momentum exchange term between the vapor phase and the liquid phase and Γ the
mass exchange term between the vapor phase and the liquid phase. After calculations, one finally
obtains the following internal energy equation



6 ESAIM: PROCEEDINGS AND SURVEYS

∂tερe+∇ · (ερue) + ε(pI + ρy(1− y)u2
r) · ∇u+∇ · (ερy(1− y)(hv − hl)ur) =

ϕ+ (Γ(
u2
g

2
− u2

l

2
)− urI) + purε∂xα. (7)

In the applications considered, the heat flux is very large, which allows us to neglect the terms on
the right-hand side of the equation (Γ(

u2
g

2 − u2
l

2 )− urI) + purε∂xα. Using the formula h = e+ pτ ,
the enthalpy balance of the mixture becomes

∂t(ερh− εp) +∇ · (εhq) +∇ · (ερy(1− y)Lur) =

ε

(
u+ y(1− y)ρ

(
1

ρv
− 1

ρl

)
ur

)
· ∇p+ ϕ. (8)

The enthalpy gap L is given by equation (3). For our application, we can approximate the heating
term ϕ as a constant, in a first approximation.

2.2.4. Mass Balance of Gases

In the case where the mixture is not at thermodynamic equilibrium, the temperature of the liquid
can be, on average, lower than the saturation temperature, while observing steam production. This
is explained by the fact that the saturation temperature is reached locally. This phenomenon is
called unsaturated boiling. In this case, the fourth equation translates the mass balance of the
steam

∂t (ερy) +∇ · (εyq) +∇ · (εy(1− y)ρur) = Γ, (9)

where Γ the production term is divided into two terms

Γ = Γϕ + Γp,

with Γϕ the steam production due to heat flow (direct steam production) and Γp the steam produc-
tion by pressure effect (return to thermodynamic equilibrium term). We introduce this equation for
completeness and because we will need to take into account these terms in future works. However,
in the numerical simulations of this article, steam is always assumed to be at equilibrium. Equation
(9) will therefore not be taken into account. The mass fraction is always taken at equilibrium yeq.

2.3. Modeling

The equations proposed previously are based, as a whole, on fundamental principles: geometric
transport, conservation, Newton’s laws, thermodynamics. The task now is to propose a thermo-
dynamic model for the two-phase liquid-vapor mixture. In addition, the relative velocity must be
modeled by a correlation to close the equations.

2.3.1. Thermodynamics of the Mixture

We assume that the complete equations of state of the liquid and vapor are known. Examples of
these equations of state, based on stiffened gases, are given in Appendix 1. There are several ways
to write these complete equations of state, for example, we can give the specific energy of each
phase k. For each phase k, the specific energy ek is a function of the specific volume τk = 1

ρk
and

the specific entropy sk
ek = ek(τk, sk).

All other thermodynamic variables can be obtained from ek

• temperature

θk =
∂

∂sk
ek(τk, sk),

• pressure

pk = − ∂

∂τk
ek(τk, sk), (10)
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• chemical potential
µk = ek + pkτk − θksk,

• enthalpy
hk = ek + pkτk.

Using the state equations of each phase, we can establish a state equation for the mixture, which is
consistent with thermodynamic laws. For this, we start by defining the mass energy of the mixture
with the formula

e = yev(τv, sv) + (1− y)eℓ(τℓ, sℓ).

But also τk = Vk

Mk
= Vk

V · V
M · M

Mk
. So

τv =
α

y
τ, τℓ =

1− α

1− y
τ.

Similarly

sv =
z

y
s, sℓ =

1− z

1− y
s, (11)

where z is the entropy fraction of the vapor. So

e = yev(
α

y
τ,

z

y
s) + (1− y)eℓ(

1− α

1− y
τ,

1− z

1− y
s). (12)

For a more detailed discussion of this choice, see (for example) [2, 3, 7, 8]. A priori, the energy of
the mixture is a function of (τ, s, y, z, α). However, certain equilibria will allow the elimination of
the volume fraction α and the entropy fraction z. The equilibrium is determined by maximizing
the energy. Let’s calculate the differential of e

de =− (αpv + (1− α)pℓ) dτ

+ (zθv + (1− z)θℓ) ds

+ (µv − µℓ)dy

+ s(θv − θℓ)dz

− τ(pv − pℓ)dα. (13)

As explained in Section 2.2.4, we give details of the calculations in the non-equilibrium case, with
sub-saturated boiling, for the sake of completeness. However, in the numerical results, we will
assume that the vapor is in equilibrium.
Mechanical Equilibrium. To obtain mechanical equilibrium, we maximize the mixing energy with
respect to the volume fraction α. From equation (13), this results in pressure equilibrium between
the two phases:

p = pv = pℓ.

Thermal Equilibrium. Similarly, the thermal equilibrium condition can be established by maxi-
mizing energy with respect to the entropy fraction z. Thermal equilibrium is achieved when the
temperatures of both phases are equal:

θv = θℓ.

However, assuming thermal equilibrium is not realistic in the mean model when considering the
unbalanced model with 4 equations. This assumption is true in the 3-equation model, where both
phases are at the same temperature, the saturation temperature.
Chemical Equilibrium: We assume that any locally appearing vapor is in chemical equilibrium
with the surrounding liquid:

µv(p, θv) = µℓ(p, θ∗),

where θ∗ is the temperature of the liquid in immediate contact with the vapor. In general, vapor
appears near heat-emitting solids. However, a control volume may encompass a larger area where
the liquid temperature is not saturated on average.
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A more realistic assumption is that there is local thermal equilibrium between the vapor and the
liquid in direct contact with the vapor. In this case, the vapor remains saturated (no superheating),
and

θ∗ = θv.

This leads to
µv(p, θv) = µℓ(p, θv). (14)

This is the definition of the saturation temperature:

µv(p, θsat) = µℓ(p, θsat).

The chemical equilibrium can also be expressed as

θv = θsat(p) = θv(p). (15)

This eliminates the entropy fraction z from the calculations. From equation (11), we have

z =
ysv(p)

s
.

Given the saturation condition (15), the vapor entropy only depends on the pressure. This results
in

dz =
sv
s
dy +

y

s
s′v(p)dp−

ysv
s2

ds, (16)

where s′v(p) is the derivative of the vapor entropy with respect to the pressure.
Energy Balance. To summarize the previous calculations, the differential of the mixing energy (13)
can be rewritten as:

de =− pdτ

+ (zθv(p) + (1− z)θℓ) ds

+ (µv(p, θv(p))− µℓ(p, θℓ))dy

+ (θv(p)− θℓ)sdz.

With (16), z = ysv/s, we obtain

de =− pdτ

+ (zθv(p) + (1− z)θℓ) ds

+ (µv(p, θv(p))− µℓ(p, θℓ))dy

+ (θv(p)− θℓ) (svdy + ys′v(p)dp− zds) .

Switching to enthalpy h = e+ pτ we get

dh =(τ + y(θv(p)− θℓ)s
′
v(p)) dp

+ θℓds

+ ((θv(p))− θℓ)sv + µv(p, θv(p))− µℓ(p, θℓ)) dy, (17)

which gives

dh =(τ + y(θv(p)− θℓ)s
′
v(p)) dp

+ θℓds

(hv − hℓ + θℓ(sℓ − sv)) dy. (18)

Recalling that
L = hv − hℓ,
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and defining
L = sv(p)− sℓ,

we also have

dh =(τ + y(θv(p)− θℓ)s
′
v(p)) dp

+ θℓds

+ (L− θℓL)dy. (19)

Thermal Imbalance: As explained above, we do not always assume thermal equilibrium. In the
chosen model, generally,

θℓ ̸= θv.

This thermal imbalance has consequences for the calculation of the mixture variables. In particular,
since ∂sh = θ, we see from equation (17) that the constraint θv = θsat(p) imposes that the
temperature of the mixture is the temperature of the liquid

θ = θℓ. (20)

Calculation of other variables. The numerical model will be resolved in the following variables: flow
rate, entropy, pressure, and concentration, (q, s, p, y). Therefore, we need to know how to calculate
all other thermodynamic variables from y, s, p. We know that

s = ysv + (1− y)sℓ

where sℓ and sv denote the specific entropy of the liquid and vapor, respectively. The vapor is
always saturated, so

θv = θsat(p).

We can then deduce the specific entropy of the vapor (here expressed as a function of pressure and
temperature)

sv = sv(θv, p),

which gives us sℓ

sℓ =
s− ysv
1− y

if y < 1,

= 0 otherwise. This regime is never encountered in practice.

We can then deduce all other thermodynamic quantities for the liquid, since we know two variables
(here the pressure p and entropy sℓ).
Relative Velocity. The relative velocity must be modeled by a closure law to obtain a closed system
of equations. It is decomposed into two terms

ur = vr −
D

y(1− y)
∇y.

The gradient of concentration term is related to turbulent diffusion. The diffusion coefficient D
is often given by a model, but this second-order term is neglected in this article. The drift-flux
term vr along the vertical axis is taken from the correlation of Bestion (initially developed for the
CATHARE software, see for example [4])

vr = 0.188
1 + y(δ − 1)

1− y

√
gdh(δ − 1),

where dh is a characteristic length, depending on the geometry of the solid, and

δ =
ρl
ρv

.
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2.4. Vectorial Formulation

We can gather the equations into a system of conservation laws of the form

∂tW +∇ ·Q(W,x) = S(W ).

The vector of conservative variables is

W =


ερ
εq
ερη
ερy

 .

The flux Q contains the first-order terms in W . We have

Q(W ) · n =


εq · n

ε (q · nu+ pn+ ρy(1− y)ur · nur)
ε (q · nη + pu · n+ ρy(1− y)(ηv + τvp− (ηl + τlp))ur · n)

εyq · n+ ερy(1− y)ur · n

 ,

and

S(W ) =


0
ερg
ϕ

Γp + Γϕ

 .

3. Primitive Formulation of the Equations

The objective is to obtain a primitive formulation for the four equations with more physical un-
knowns: pressure, flow rate, entropy, and concentration (p, q, s, y). It is this non-conservative
formulation which will be used numerically. The considered applications do not exhibit shocks.
Therefore, there is no particular difficulty related to the definition of the Rankine-Hugoniot jump
relations.

3.1. Pressure Equation

The differential of the density with respect to the variables (p, q, s) is given by:

dρ =
1

c2s
dp+ βds+ γdy, (21)

where the expressions of the coefficients 1
c2s
, β and γ are detailed in Appendix 1. In the case where

a homogeneous model with 3 equations is considered, that is, when the vapor concentration is
always at equilibrium, y = yeq, we have γ = 0.
Using the differential on the mass conservation equation (4) and recalling that the porosity ε does
not depend on time, the pressure equation becomes

ε∂tp+ c2s∇ · (εq) = −εβc2s∂ts− εγc2s∂ty (22)

3.2. Entropy Equation

Using the differential of enthalpy (19), we can deduce a simple expression for the differential of
entropy for the homogeneous model. In fact, in this case, saturation is reached θl = θv = θsat and
then

θlds = dh− τdp.

The saturation hypothesis also allows us to write
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L = θlL̄

and

θldL̄ = dL− (τv − τl)dp.

Rewriting the energy equation in non-conservative form (using mass conservation)

ρε(∂th− τ∂tp+ u · (∇h− τ∇p)) + ρεy(1− y)ur · (∇L− (τv − τl)∇p) + L∇ · (ερy(1− y)ur) = ϕ,

and using the previous differentials, the entropy equation is

θl(ερ∂ts+ ερu · ∇s+∇ · (ερy(1− y)urL̄)) = ϕ. (23)

This equation also has a conservative form

∂(ερs) +∇ · (ερus+ ερy(1− y)urL̄) =
ϕ

θl
. (24)

3.3. Final Equation System

The conservation equations for momentum and the mass vapor title are also written in primitive
form. The final model is

ερ∂ts+ εq · ∇s+∇ · (ερy(1− y)urL̄) =
ϕ

θl
, (25)

ερ∂ty + εq · ∇y +∇ · (ερy(1− y)ur) = Γp + Γϕ, (26)

ε∂tp+ c2s∇ · (εq) = −εβc2s∂ts− εγc2s∂ty, (27)

ε∂tq +∇ · (εu⊗ q) +∇(εp) +∇(ερy(1− y)ur ⊗ ur) = ερg. (28)

Note: Non-conservative terms εq · ∇f are treated numerically by separating them into two parts
such that εq · ∇f = ∇ · (εfq)− f∇ · (εq).

4. Numerical Resolution

In this section, we describe the ThermoTorch code developed to approach the previously described
two-phase model on a one-dimensional domain.

4.1. Resolution Method

The resolution algorithm for a time step proceeds as follows:

(1) Thermodynamic variables are updated from the fields (p, s) (or (p, s, y) in the 4-equation
model) obtained from the previous time step. During this step, the equilibrium thermo-
dynamic concentration yeq is also evaluated.

(2) The entropy equation (25) is solved. The only implicit variable in this step is the entropy.
The equation becomes independent of the other unknowns and can be treated alone. More-
over, this implicit system is a linear system.

(3) Only for the 4-equation model: The concentration equation (26) is solved. This step
simplifies for the homogeneous 3-equation model since the concentration is at equilibrium
y = yeq.

(4) The coupled pressure-momentum system (p, q) (27-28) is solved. The flow and pressure
are calculated by an implicit scheme. The entropy and concentration obtained in steps 3
and 4 are taken explicitly in the pressure equation.
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4.2. Numerical Scheme

4.2.1. Discretization

The resolution is carried out using a 1D staggered grid scheme, which consists of a grid for the
pressure p, entropy s, and concentration y and a second grid for the flow q. This choice is justified
by the fact that this type of scheme has good behavior in the low Mach limit (see for example [9]).
For this, we consider a mesh of the interval [0, L] with cells Ci, 0 ≤ i < N + 1. The mesh size is
constant and equal to

∆x =
2L

2N − 1

and the cells are then

Ci =](i− 1)∆x, i∆x[.

We denote by pi the pressure at the center of the cell Ci, at the point xi = (i− 1
2 )∆x, 0 ≤ i < N+1.

The same convention is used for entropy si and concentration yi. The notation qi−1/2 is used for
the flow at the edges of the cells, at the points xi−1/2 = (i − 1)∆x, 1 ≤ i < N + 1. The flow is
assumed to occur from left to right, i.e., qi−1/2 > 0,∀i.
Cell C0 is used to impose the entropy boundary condition (it is called a ghost cell) at the entrance
of the domain. The following value is fixed

s0 = sin.

For the 4-equation model, the boundary condition for concentration is also added. The inlet flow
rate is imposed on the first cell C1 with

q1/2 = qin

The cell CN allows to impose the boundary condition for the pressure outlet:

pN = pout

A constant heat flow is imposed in the domain [L8 ,
7L
8 ] :

ϕ(x ∈ [
L

8
,
7L

8
]) = ϕ0, ϕ(x) = 0 otherwise.

Remark: For each calculation, the only input parameters are therefore (θin, qin, pout, ϕ0) for the
3-equation model. This reduced number of parameters will allow to predict the solution using a
very simple neural network.

4.2.2. Numerical Schemes

In the following, we denote by λ the ratio of the time step ∆t and the grid step ∆x

λ =
∆t

∆x
.

For the entropy and flow equation, convection is treated by a centered scheme considering a positive
flow rate. We consider all known quantities at time step n. The typical finite volume discretization
of the equations allows to obtain the unknowns at time step n+ 1.

The discretization of the vapor fraction equation is not detailed here. We consider only the 3-
equation model in the presented numerical applications. Moreover, in the considered framework,
we assume that the porosity is constant and that the relative velocity is zero.
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4.3. Discretization of the entropy equation

The discretization of entropy for cell i is written by freezing all quantities at time step n (including
the flow rate) except entropy to obtain a linear system

asi s
n+1
i +ms

i s
n+1
i−1 = bsi ,

with

asi = 1 +
λ

ρni
qni−1/2,

ms
i = − λ

ρni
qni−1/2,

bsi = sni +
ϕn
i ∆t

ρni θ
n
l,i

.

4.4. Discretization of the coupled pressure-flow system

The pressure and flow equations are resolved in a coupled manner. For the pressure equation, the
entropy increment (and vapor fraction for the 4 equations model) is necessary. It is determined
by solving the independently presented entropy equation. For the flow equation, the convection
velocity is frozen at time step n to obtain a linear system. The pressure grid up,i is necessary in
the flow equation. It is determined by the formula

un
p,i =

qni−1/2 + qni+1/2

2ρni
The linear system is written

pn+1
i + λ(cns,i)

2(qn+1
i+1 − qn+1

i ) = pni − βn
i (c

n
s,i)

2(sn+1
i − sni )− γn

i (c
n
s,i)

2(yn+1
i − yni ),(

1 + λun
p,i+1

)
qn+1
i+1/2 − λun

p,iq
n+1
i−1/2 + λ(pn+1

i+1 − pn+1
i ) = qni+1/2.

5. Numerical Applications

5.1. Simplified Test Case

In order to validate the implementation of the code, we consider an analytical stationary solution
of the equations (25-26-27-28). The method of calculation of this solution is given in [10]. We
consider here the homogeneous model with 3 equations and no relative velocity. The vapor phase
is therefore at saturation.
This solution is evaluated for two typical cases: case (1) of monophasic calculation (high flow rate)
and case (2) of two-phase calculation (low flow rate). The physical parameters retained for the
two cases are summarized in Table 1. The length of the domain is fixed at L = 4.6m.

param. cas (1) cas (2) unit
inlet flow rate qin 3500 1500 kg/s

inlet temperature θin 320 320 ◦C
outlet pressure pout 155 155 bar

imposed heat flow ϕ0 108 108 J/s/m3

Table 1. Numerical parameters for the test cases (1) and (2).

In Figure 1 (resp. 2), we represent the spatial variations of the stationary state (mass density, pres-
sure, temperature, quality) in case (1) (resp. (2)). We observe the good correspondence between
the numerical solution and the analytical solution. In Figure 3, we observe the convergence of the
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numerical method towards the analytical solution for the two cases considered. The convergence
is of order one as expected.
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Figure 1. From left to right and top to bottom: mass density, pressure, tem-
perature and vapor fraction for the stationary state of case (1). The numerical
solution (solid line) is compared with the analytical solution (dashed line) for a
mesh of size N = 100.
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Figure 2. From left to right and top to bottom: mass density, pressure, tem-
perature and vapor fraction for the stationary state of case (2). The numerical
solution (solid line) is compared with the analytical solution (dashed line) for a
mesh of size N = 100.
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Figure 3. Convergence test of the scheme for test cases (1) (left) and (2) (right)
- residuals for different variables: pressure, flow rate, entropy and vapor fraction
(if two-phase).

6. Motivation

In order to reach the stationary state, we solve the unsteady flow by starting from an initial state. If
this initial state is arbitrary (for example a uniform state), the convergence towards the stationary
state can be costly in terms of computation time. Furthermore, the calculation may not converge,
or may require significant reductions in the time step ∆t to avoid the appearance of non-physical
values.
The current initialization (model with 3 equations) of ThermoTorch consists of initializing the
solution fields (p, s, q) from constant properties of the unsaturated liquid water:

p(x, t = 0) = pout ; s(x, t = 0) = sl(pout, θin) ; q(x, t = 0) = qin.

A fictitious unsteady simulation is used to reach the stationary solution (p̄, s̄, q̄). This unsteady
computations require N ic

iter iterations when the fields are initialized by constant fields for reaching
the stationary state up to a given precision.
In order to accelerate convergence, we will train a neural network to predict the stationary solution
from input parameters (qin, θin, ϕ, pout). We will use this prediction (pml, sml) as initialization for
the ThermoTorch simulation. The prediction can then be written

pml(x) = p̄(x) + νp(x)∆p,

sml(x) = s̄(x) + νs(x)∆s

with ∆p = maxx(p̄(x) − pout) and ∆s = maxx(s̄(x) − sl(pout, θin)). The functions νs and νp are
functions evaluating the error made by the prediction compared to the stationary solution. If
we denote NML

it the number of iterations necessary to reach convergence with this prediction as
initialization, the goal is to make the neural network predict the solution with small enough errors
νp and νs to obtain NML

it < N ic
it .

Note: In this simple 1D case, the flow rate is not yet used, as the stationary solution is constant
(q̄(x) = qin).
In order to validate the concept and evaluate the errors (νs, νp) necessary for significant accelera-
tion, a test case is carried out with a randomly generated perturbation of the form

νs,p(x) = Ps,p(x)ν̄

where Ps(x) and Pp(x) are random variables following a uniform law on the interval [-1,1] and ν̄
is a constant defining the amplitude of the perturbation.
The test cases in Table 1 are used again. The single-phase test case (1) requires N ic

it = 31 iterations
before convergence and the two-phase test case (2) requires N ic

it = 58. On Figure 4, the number of
iterations required for convergence is represented as a function of the amplitude of the perturbation
for the two test cases. The calculation was performed 100 times with different random draws to
obtain average values. It can be seen that the number of iterations required for convergence
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decreases with the amplitude of the perturbation as expected. From ν̄ = 10−2, the decrease in the
number of iterations is ensured compared to the constant initialization for the two test cases.
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Figure 4. Number of iterations before convergence as a function of the pertur-
bation amplitude at initialization (100 random calculations averaged) for the test
case (1) (left) and the test case (2) (right).

7. Optimization of the initial state by machine learning

We propose in this section a prediction technique for the stationary solution using machine learning
tools based on neural networks. The classic approach is as follows:

• first, a database containing sets of input parameters (qin, θin, ϕ, pout) and corresponding
numerical stationary solutions is obtained using the ThermoTorch code with a constant
initialization.

• this database is then used to train a neural network to predict the numerical stationary
solution from any input parameters.

• the network is then used to initialize the code in order to decrease the number of iterations
required to reach the stationary state.

In order to evaluate the benefits of this approach, we consider a very simplified framework:

• the mesh size is fixed to N = 50 cells.
• The homogeneous model with 3 equations, without relative velocity ur = 0, is always con-

sidered.

The neural network is programmed using the PyTorch library1. Based on proposals made in the
literature [13,14,17] and after some testing, we have chosen the following features for the network
architecture:

• Dense linear neural network with 4 layers, including two hidden layers. The four layers
have sizes of respectively 4 (input parameters), 200, 200 and 150 (output values since 3
quantities (p, s, q) need to be predicted for 50 cells, the inner cells of the domain).

• Activation functions are of type ReLU.
• The cost function is of type least squares (MSELoss in PyTorch). The minimization algo-

rithm is the Adam gradient algorithm with default parameters of PyTorch (version 1.13.1).
The initial learning rate is set to 0.001.

To train this network, we generated a dataset with 10000 simulation results from ThermoTorch.
To do this, we first generated 10000 quadruplets of parameters (qin, θin, ϕ, pout) in the hypercube
[1000, 5000]× [553.15, 593.15]× [1× 107, 5× 108]× [140, 170] using low discrepancy pseudo-random
sequences. Constraints are added to the generation to always consider a liquid flow at the entrance
that never fully vaporizes in the medium. The temperature is therefore limited to the saturation
temperature (at the output pressure considered) and the heat flow is limited to the total vaporiza-
tion flow (determined from the other boundary conditions). For each of these parameter sets, the

1https://pytorch.org/
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steady-state solution is calculated using the ThermoTorch code. The parameters and dataset are
normalized, then used for network training. The network is trained on the dataset with batches of
size 50 and over 2000 "epochs" to reach the convergence of the loss. This convergence is illustrated
in Figure 5 which represents the loss as a function of the epoch.
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Figure 5. Loss function as a function of the epoch.

On Figures 6 (respectively 7), we compare the steady-state solution (calculated with ThermoTorch)
with the solution predicted with the neural network for case (1) (respectively case (2)) whose pa-
rameters are indicated in table 1. The neural network succeeds in predicting the solution relatively
well.
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Figure 6. Comparison between the ThermoTorch stationary solution and
the prediction by neural network for case (1) - (qin, θin, ϕ, pout) =
(3500 kg/s, 320◦C, 108 J/s/m3, 155 bar).
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Figure 7. Comparison between the ThermoTorch stationary solution and
the prediction by neural network for case (2) - (qin, θin, ϕ, pout) =
(1500 kg/s, 320◦C, 108 J/s/m3, 155 bar).

We now evaluate the gain of this approach to accelerate the convergence to the steady-state. On a
new database of parameters of size 1000, we evaluated the number of iterations before convergence
for an initialization with the prediction of the neural network and a constant initialization to
compare the two values. We observe in Figure 8 a gain of 21.6± 6.7% in the number of iterations
git =

Nic
it −NML

it

Nic
it

, and this despite the simplicity of the neural network used. Figure 9 represents the
distribution of cases according to the maximum amplitude maxx [νs,p(x)] of the error committed
by the prediction with respect to the stationary entropy and pressure fields. It can be noted that
this precision could potentially be improved with a better neural network.
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Figure 8. Distribution of the number of cases by relative gain in number of
iterations on a test base of 1000 cases.

In addition to reducing the number of iterations, the neural network allows for the prediction of
states close to the stationary solution, resulting in less oscillations of the fields at convergence.
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Figure 9. Distribution of the maximum error on pressure and entropy on a test
base of 1000 cases.
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Figure 10. Evolution of pressure at 3 points of the mesh (x1 = 0.88m;x2 =
1.81m;x3 = 2.74m) over time for test case (1).

This effect can be observed in Figure 10, which shows the pressure at 3 points of the mesh (x1 =
0.88m;x2 = 1.81m;x3 = 2.74m) over time for case (1). The case with constant initialization
is represented by dashed lines, while the case with predicted initialization is represented by solid
lines. This could potentially allow for an increase in time step and/or avoid exploration of unstable
physical domains during convergence.

8. Conclusion

In this work, we have presented a 1D simplified model of a compressible two-phase thermohydraulic
flow with phase change. This model is numerically resolved by a semi-implicit scheme in (entropy,
pressure-flow rate). The formulation of the numerical scheme allows for the separate resolution of
the entropy equation from the other unknowns, which accelerates the algorithm. The scheme is
written on a staggered grid to ensure good precision in the low Mach limit.
To accelerate numerical convergence to the stationary state, we have conducted preliminary tests
on a machine learning-based initialization method.
The initial results on a very simplified model (homogeneous model with 3 equations, without rela-
tive velocity) are promising with a first proposed neural network. Our perspectives are to improve
the neural network for more precise predictions and to increase the complexity of the physical model
(non-zero relative velocity, addition of the energy equation to account for unsaturated evaporation)
to validate this acceleration method on a wider range of cases and in higher dimensions.

9. Appendix

9.1. Annexe 1: thermodynamic state law

In this annex, we detail the practical calculation of the coefficients of the thermodynamic laws.
For each phase (vapor and liquid), a stiffened gas entropy is used
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s(τ, e) = s0 + cv ln

((
e− h0 − p∞τ

τγ−1

))
.

The parameters (γ, cv, p∞, h0, s0) are unknown for the moment. There are therefore 10 parameters
(5 per phase) to choose to establish the complete thermodynamic model. It is impossible to build
a precise model over a wide range of temperatures and pressures. It is necessary to settle for a
domain in the vicinity of the operating regime of the power plant, i.e. θ ≃ 310◦C and p ≃ 155 bar.
Calculations (which are detailed, for example, in [2]) allow for the determination of the temperature

cvθ = e− h0 − p∞au,

the pressure

p = (γ − 1)ρcvθ − p∞,

and the enthalpy

h = h0 + γcvθ = h0 + cpθ.

Consequently, in this model the thermal capacity at constant volume cv and the thermal capacity
at constant pressure cp are related by

cp = γcv.

The speed of sound is given by
c2s = γ(p+ p∞)/ρ.

It is then possible to calculate the chemical potential

µ(p, θ) = h− θs.

This expression defines the saturation temperature θs(p), which is given by

µv(p, θs(p)) = µl(p, θs(p)). (29)

9.1.1. Calculation of the coefficients

The International Association for the Properties of Water and Steam (IAPWS) 2 proposes precise
numerical formulations of the laws of behavior of liquid or steam water. These formulations
described in [19] are considered as a reference for establishing other simpler behavior laws. There
are Python packages 3 that implement these formulations and allow for the numerical fitting of the
coefficients.
Two points (a) and (b) at different temperatures and pressure p = 155 bar are considered:

• Point (a) at temperature θl = 310◦C to calibrate the liquid properties.
• Point (b) at temperature θg = 350◦C to calibrate the vapor properties.

We consider the following pressures and temperatures

p(a) = p(b) = 155 bar, θ(a) = 310◦C, θ(b) = 350◦C.

Furthermore, to fix the derivative of the saturation temperature, we will need the pressure at point
(c) :

p(c) = 150 bar.

2http://www.iapws.org/
3see for example https://pypi.org/project/iapws/
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Parameter Liquid Vapor Unit
p∞ 433027888.73886645 2265618.76 Pa
γ 1.347721005 1.092548 -
cv 3030.1475144213396 3273.937158624049 J/kg/K
h0 -987900.1770384915 377353.1095 J/kg
s0 -33462.74606510723 -41040.96603 J/kg/K

Table 2. Parameters obtained for the ideal gas laws (liquid and vapor phases).

Liquid water. The parameters to be defined are γl, cv,l, p∞,l, h0,l, s0,l. The following relationships
are used:

• The parameters (γl, p∞,l) are chosen to impose the speed of sound c
(a)
s and the density

ρ(a) at point (a), which gives

p∞,l =
ρ(a)(c

(a)
s )2

γl
− p(a), γl = 1 +

p∞,l

ρ(a)c
(a)
v θ(a)

.

• The heat capacity is fixed to cv,l = c
(a)
v .

• The reference enthalpy is h0,l = h(a) − γlcv,lθ
(a).

• The reference entropy s0,l = s(a) − cv,l ln (
p(a) + p∞,l

γl − 1
· (ρ(a))−γl).

Water vapor. The parameters to be defined are γg, cv,g, p∞,g, h0,g, s0,g. The following relationships
are used:

• The parameters (γv, p∞,v) are chosen to impose the speed of sound c
(b)
s and the volume

mass ρ(b) at point (b), which gives

p∞,v =
ρ(b)(c

(b)
s )2

γv
− p(b), γv = 1 +

p∞,v

ρ(b)c
(b)
v θ(b)

.

• The specific heat capacity is set to cv,l = c
(a)
v .

• Contrary to the liquid case, the reference enthalpies and entropy s0,v and h0,v are calculated
to match certain points of the saturation curve θs(p) defined by (29). Specifically, we
impose

θs(p
(a)) = θ(a)s , θs(p

(c)) = θ(c)s .

The numerical parameters are detailed in Table 1.

9.1.2. Coefficient of the linearization of the density

To obtain the pressure equation from the mass continuity equation, the linearization (21) is used.
The coefficients of this linearization are described below. These coefficients use the derivatives
of the density of each phase with respect to the pressure or entropy of that same phase. These
derivatives are obtained using the equation of state for each phase as(

∂ρk
∂p

)
sk

=
ρk

γk(p+ p∞,k)
,

(
∂ρk
∂sk

)
p

= − ρk
γkcv,k

.

These formulas also use the total derivative of the vapor entropy with respect to pressure, which
is obtained from pressure and saturation temperature as

dsv
dp

= cv,v(
γv

θsat(p)

dθsat
dp

(p)− γv − 1

p+ p∞,v
)
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Coefficient 1/c2 :

1

c2s
= ρ2 · [ y

ρ2v

((
∂ρv
∂p

)
sv

+

(
∂ρv
∂sv

)
p

· dsv
dp

)
+

1− y

ρ2l

((
∂ρl
∂p

)
sl

+

(
∂ρl
∂sl

)
p

· y

1− y
· dsg
dp

)
].

Coefficient β :

β =
ρ2

ρ2l

(
∂ρl
∂sl

)
p

.

Coefficient γ :

γ = ρ2

(
τl − τv +

sl − sv
ρ2l

(
∂ρl
∂sl

)
p

)
.
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