
HAL Id: hal-04535159
https://hal.science/hal-04535159v2

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Compiling with Abstract Interpretation (with
appendices)

Dorian Lesbre, Matthieu Lemerre

To cite this version:
Dorian Lesbre, Matthieu Lemerre. Compiling with Abstract Interpretation (with appendices). CEA
LIST. 2024. �hal-04535159v2�

https://hal.science/hal-04535159v2
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Compiling with Abstract Interpretation (with appendices)

DORIAN LESBRE, Université Paris-Saclay, CEA, List, France

MATTHIEU LEMERRE, Université Paris-Saclay, CEA, List, France

Rewriting and static analyses are mutually beneficial techniques: program transformations change the inten-

sional aspects of the program, and can thus improve analysis precision, while some efficient transformations

are enabled by specific knowledge of some program invariants. Despite the strong interaction between these

techniques, they are usually considered distinct. In this paper, we demonstrate that we can turn abstract

interpreters into compilers, using a simple free algebra over the standard signature of abstract domains.

Functor domains correspond to compiler passes, for which soundness is translated to a proof of forward

simulation, and completeness to backward simulation. We achieve translation to SSA using an abstract do-

main with a non-standard SSA signature. Incorporating such an SSA translation to an abstract interpreter

improves its precision; in particular we show that an SSA-based non-relational domain is always more precise

than a standard non-relational domain for similar time and memory complexity. Moreover, such a domain

allows recovering from precision losses that occur when analyzing low-level machine code instead of source

code. These results help implement analyses or compilation passes where symbolic and semantic methods

simultaneously refine each other, and improves precision when compared to doing the passes in sequence.

CCS Concepts: • Software and its engineering→ Compilers; Formal software verification; • Theory of
computation→ Program analysis; Program verification; Abstraction; Equational logic and rewriting.

Additional Key Words and Phrases: Compilers, Abstract Interpretation, Static Single Assignment(SSA)

ACM Reference Format:
Dorian Lesbre and Matthieu Lemerre. 2024. Compiling with Abstract Interpretation (with appendices). Proc.
ACM Program. Lang. 8, PLDI, Article 162 (June 2024), 38 pages. https://doi.org/10.1145/3656392

1 INTRODUCTION

Syntactic transformations, also called symbolic methods [Miné 2006], are an essential tool to improve

the precision of abstract domains. For instance, compiled code usually executes sequences of small

instructions over temporary variables. Analyzing such code one instruction at a time leads to

precision losses compared to source analysis because the analysis lacks context. Logozzo and

Fähndrich [2008] call this the limited code window problem, and show that solving it requires

the use of syntactic term manipulation. Moreover, when the compilation target is machine code,

a precise analysis can only be obtained if it reconstructs simple conditions from the machine

semantics (e.g. it is more precise to analyze 𝑥 > 𝑦 than an instruction sequence involving a xor

between the overflow and signed flag) [Balakrishnan and Reps 2010; Djoudi et al. 2016]. Outside

of compiled code, many authors have used syntactic transformations to improve the precision of

abstract domains at a low cost [Boillot and Feret 2023; Gange et al. 2016; Lemerre 2023; Miné 2006].

However, many such syntactic transformations benefit from a prior semantic analysis. For

example, rewriting 𝑥 | 4 into 𝑥 + 4 (where | means bitwise or, as in C) holds only if the second bit of

𝑥 always has value 0. Common examples include dead code elimination or constant propagation,

Authors’ addresses: Dorian Lesbre, Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France, dorian.lesbre@cea.fr;

Matthieu Lemerre, Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France, matthieu.lemerre@cea.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART162

https://doi.org/10.1145/3656392

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-4328-6753
HTTPS://ORCID.ORG/0000-0002-1081-0467
https://doi.org/10.1145/3656392
https://orcid.org/0000-0002-4328-6753
https://orcid.org/0000-0002-1081-0467
https://doi.org/10.1145/3656392

162:2 Dorian Lesbre and Matthieu Lemerre

which requires a static analysis to identify constant boolean conditions or expressions. In general, the

essence of compiler optimization is to symbolically rewrite the program using semantic invariants

computed in a prior analysis pass [Cousot and Cousot 2002].

Thus, syntactic transformations both benefit from, and help improve, semantic analyses. There-

fore, applying each in different passes raises the phase ordering issue, and the best precision is

obtained by performing both simultaneously [Click and Cooper 1995; Cousot and Cousot 1979]. A

notable application of such a simultaneous analysis is machine code analysis, which often fails to

terminate due to excessive imprecision. Here, syntactic rewrites enabled by found invariants are

useful to undo compiler transformations and recover a representation which is easier to analyze.

Abstract interpretation [Cousot and Cousot 1977] provides a generic method for combining

analysis passes [Cousot and Cousot 1979] by encoding them as operations over an abstract domain

with a common interface. The classical interface requires a join, inclusion, widening, and analysis

of statements. Some syntactic transformations have been implemented as abstract domains under

this interface (e.g. [Boillot and Feret 2023; Chang and Leino 2005; Gange et al. 2016; Gulwani and

Necula 2004; Kildall 1973; Miné 2006]), but until recently, such domains could not produce recursive

terms. This limited the syntactic transformations that an abstract interpreter could perform to local

transformations, unlike the usual syntactic translation method used in compilation. This restriction

was lifted in Lemerre [2023], where an abstract interpreter was used to perform a complex syntactic

transformation, SSA translation, using simple abstract domains. The resulting algorithm is arguably

simpler than the standard methods [Aycock and Horspool 2000; Brandis and Mössenböck 1994;

Braun et al. 2013; Cytron et al. 1991; Sreedhar and Gao 1995].

Problem. While the work of Lemerre [2023] hinted that some compilation techniques could be

performed by abstract interpretation, it left many questions unanswered, such as:

• Can compilation-by-abstract-interpretation generalize to transformations other than SSA trans-

lation, i.e. to other input or output languages? In particular, Lemerre [2023] does not perform

any control-flow transformation other than dead-code elimination, and maintains a 1-to-1 corre-

spondence between source and target locations.

• How can compilation-by-abstract-interpretation interact with semantic analyses in practice?

Lemerre [2023] proposed using a regular reduced product [Cousot and Cousot 1979]. However,

one might prefer other generic domain combinations [Cousot and Cousot 1979; Venet 1996], or a

more specialized combination. This is especially true if one wants to perform the analysis on the

SSA translation instead of the source program.

• What are the cost and precision advantages of compilation-by-abstract-interpretation (and in

particular, SSA translation) when used to improve the precision of a static analysis? Do standard

compilation techniques apply to this framework, such as rewriting terms to improve global value

numbering? How would they impact precision? Lemerre [2023] only stated that his symbolic

expression abstract domain has a low computational complexity.

Contributions. Our overall contribution is to provide answers to the above questions by presenting
an abstract interpreter design. In this design, syntactic transformations, seen semantically as

abstract domains, can be combined with semantic analyses so that both run simultaneously and

help each other. We summarize this as “compiling with abstract interpretation”, which not only

means performing the compilation using abstract interpretation, but also to simultaneously use the

program transformations as a means to improve the abstract interpretation.

Figure 1 presents the overall design of our abstract interpreter as a collection of abstract domains

that are all executed simultaneously. More specifically:

• Section 4 (FA domain) explains how we can generate imperative programs by abstract interpre-

tation. We use a domain of free algebras over the classical abstract domain signature, dually

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:3

T DG Q ×
×

Lift

FA

N

×̂
F̂A

N̂

(Generates an Imp program)

(Generates an SSA program)

Fig. 1. Functor chain of our analysis: with the final domain on the left and base domains on the right. Arrows

point from arguments to the functor that uses them. Square purple nodes are Imp domains, and circular blue

nodes are SSA domains.

interpreted as a set of states and as a transition system. The result of this free-algebra analysis is

a program graph which is isomorphic to the source program graph;

• Section 5 (Q, DG, T, and × functors) shows that functor domains
1
, commonly used in abstract

interpretation to transform analyses, can be viewed as compiler transformation passes. The

setting is related to the tagless-final staged interpreters of Carette et al. [2009]. We show in

particular that these passes preserve semantics: functor soundness implies a forward simulation

and completeness implies a backward simulation with the same relation;

• Section 6 (circular hatted blue nodes) shows why static analysis of SSA programs requires an

abstract domain with a different signature (and free algebra F̂A) than the usual signature for

imperative programs;

• Section 7 (Lift functor) implements an SSA-translation compiler pass. This is achieved by a

functor that lifts an abstract domain with SSA domain signature to an abstract domain with an

imperative domain signature;

• Section 8 (N̂ domain), presents a “non-relational” analysis for the SSA signature, based on the

combination of symbolic expressions [Lemerre 2023] with single-value abstractions
2
, such as

intervals. We prove that lifting this non-relational SSA domain to an imperative domain is

always more precise than the usual imperative analysis while incurring only a constant overhead.

Moreover, it is the first known domain we know to have the strong relative completeness [Logozzo

and Fähndrich 2008] property: it allows analyzing a compiled program with the same precision

as the original (solving the limited code window problem);

• Section 9 evaluates our approach by describing Codex, a static analyzer, based on this technique.

It can handle both C and machine code and has been successfully used on industrial code bases

[Nicole et al. 2021, 2022]. The multiple simultaneous translations (both at the source and SSA

level) improve the precision and simplify the design of the analyzer in practice. We also present a

simplified analyzer, TAI, that closely corresponds to Figure 1. Using it, we compare SSA numerical

analysis to a standard non-relational analysis in terms of performance and precision. Both appear

in the open source software artifact accompanying this article [Lesbre and Lemerre 2024a].

Proofs and small enhancements to the formalization can be found in Lesbre and Lemerre [2024b].

2 A SMALL EXAMPLE

The top of Figure 2 presents a small example program, both in C code and in Imp (the simple input

language of our analysis, Section 3). It consists of a simple loop, with a branching path testing

whether the loop invariant holds. Here, the F macro stands for any complex numeric operation,

changing it to another expression should work just as well. The graph distinguishes between

conditional edges and assignment edges.

1
also called cofibered domains [Venet 1996]

2
called basis in Miné [2004] or partitioned lattice per variable in Rastello and Bouchez Tichadou [2022]

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:4 Dorian Lesbre and Matthieu Lemerre

Proving the invariant, and optimizing the dead code of the else branch away is fairly involved.

It is not optimized by modern compilers like GCC or LLVM. Doing so requires simultaneously

performing numerical analysis (to learn that z is even), some syntactic transformations (to learn

that F(j + z%2) is F(j)), optimistic global value numbering (to learn that 𝑖 = 𝑗), and dead code

elimination so that no analysis takes the else branch (which breaks all those properties). Performing

all analyses in one pass is crucial, as no analysis is strong enough to prove the full invariant alone.

The rest of the figure displays the result of analyzing this programwith various domains presented

in this paper. Using the free algebra domain from Section 4 yields a renaming of the initial graph by

Theorem 4.1, so we only show how a few select points are renamed in Figure 2b. Finally, Figure 2c

shows the result of our SSA translations, both as a standalone analysis (left), and combined with

other analysis that prove the invariant (right). The first one closely resembles the intermediate

representation that a compiler would generate, although our SSA variant deviates slightly from

typical SSA (𝜙 functions replaced by join nodes). Note how binding edges only appear before joins.

3 NOTATIONS AND BACKGROUND

This section presents the background notions used in this paper, with their associated notations.

Specifically, it describes common notations; introduces a small example language: Imp; and presents

the signature of our abstract domains along with an example numeric domain.

3.1 Notations

We write 𝑋⊥ ≜ 𝑋 ∪ {⊥} for the set 𝑋 with an extra element ⊥ ∉ 𝑋 . We use P(𝑋) ≜ {𝑌 | 𝑌 ⊆ 𝑋 }
for the set of subsets of 𝑋 and P𝑓 (𝑋) ≜ {𝑌 ∈ P(𝑋) | 𝑌 finite} for the set of finite subsets of 𝑋 .

Let 𝑋 ⇀ 𝑌 be the set of partial functions from 𝑋 to 𝑌 and 𝑋 → 𝑌 the set of total functions from

𝑋 to 𝑌 (their domain is exactly 𝑋). Functions are seen as sets of bindings 𝑥 ↦→ 𝑦, replacing curly

braces {} with brackets []. So [𝑧 ↦→ 𝑧 + 1 | 𝑧 ∈ Z] is the successor function, and [0 ↦→ 1; 1 ↦→ 2] is a
function defined only on 0 and 1. We use the short notation [𝑥 ∈ 𝑋 ↦→ 𝑓 (𝑥)] for [𝑥 ↦→ 𝑓 (𝑥) | 𝑥 ∈ 𝑋].

For a function 𝑓 , we denote its domain by dom 𝑓 and its image by img 𝑓 . We denote the image of 𝑥

under 𝑓 by 𝑓 (𝑥). We use 𝑓 [𝑔] ≜ [𝑣 ↦→ 𝑓 (𝑣) | 𝑣 ∈ dom 𝑓 \ dom𝑔] ∪𝑔 for the function 𝑓 updated with

all bindings of 𝑔. Often 𝑔 will be a single binding [𝑥 ↦→ 𝑦] which leads to the notation: 𝑓 [𝑥 ↦→𝑦].
We view relations 𝑅 as multi-variable predicates 𝑅 ∈ 𝑋 × 𝑌 → {0; 1} (also called indicative

functions). We often write then as logic formulas using the usual logical operators (=, ∧, ∨).

3.2 Imp syntax and semantics

We use a small imperative programming language named Imp, defined in Figure 3. Program ex-

pressions 𝑒 ∈ E are composed of integers (Z), variables (X), binary operators (⋄), and a ternary

if-then-else operator. A program G ∈ G is a directed graph, with location identifiers ℓ ∈ L as

vertices. Its edges are labelled by syntactic relations 𝑅 ∈ R, which are either guard conditions or

single variable assignments. L is finite. This language supports loops (looping path in the graph),

arbitrary gotos, but not function calls, as it has no memory and thus no call stack.

Semantics. E⟦𝑒⟧(𝜎) evaluates the expression 𝑒 to an integer, using the store 𝜎 for variable values.

Arithmetic operators are standard, using euclidean division and modulo. Divisions by 0 interrupt the

program (i.e., return ⊥). Comparison operators are defined to return 1 when true and 0 otherwise.

Boolean operators are non-lazy, and consider any non-zero value as true.

R⟦·⟧ transforms a syntactic relation R into a mathematical relation on program states (pairs
of locations and stores). Guards do not change the store but block execution when the condition

evaluates to 0 or ⊥; assignments 𝑥 := 𝑒 change the value of 𝑥 to the evaluation of 𝑒 in the input

state, leaving the other variables unchanged.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:5

#define F(x) ((x) * (x) + 1)
void example(int rand) { // ℓ0

int i = 0; // ℓ1
int j = 0; // ℓ2
int z = 4; // ℓ3
while(z < 125){ // ℓ4
// Invariant: i = j ∧ z%2 = 0
j = F(j + z % 2); // ℓ5
if(F(i) == j && z%2 == 0){//ℓ6
z += 2;

} else { // Dead code // ℓ7
i = rand; // ℓ8
z += 7;

} // ℓ9
i = F(i);

} // ℓ10
}

ℓ0

ℓ1

i := 0

ℓ2

j := 0

ℓ3

z := 4

ℓ10

If 125 ≤ z

ℓ4

If z < 125

ℓ5

j := F(j + z%2)

ℓ7

If (F(i)=j ∧ z%2 = 0) = 0

ℓ8

i := rand

ℓ6

If F(i)=j ∧ z%2 = 0

ℓ9

z := z + 2

z := z + 7

i := F(i)

(a) Example input program in C (left) and translated to Imp representation (right).

𝑝# (ℓ0) = Entry 𝑝# (ℓ1) = Apply(i := 0, Entry)
𝑝# (ℓ2) = Apply(j := 0, Apply(i := 0, Entry)) 𝑝# (ℓ4) = Apply(If z < 125, Loc(ℓ3))

𝑝# (ℓ3) = Loc(ℓ3) F𝑔 (𝑝#) (ℓ3) = Join
{
Apply(z := 4, 𝑝# (ℓ2)); Apply(i := F(i), 𝑝# (ℓ9))

}
𝑝# (ℓ9) = Join

{
Apply(z := z + 7, 𝑝# (ℓ8)); Apply(z := z + 2, 𝑝# (ℓ6))

}
(b) Result of analyzing using the free algebra domain (𝑝# ≜ analyse(FA), Section 4) for a selection of points

(ℓ0, ℓ1, ℓ2, ℓ3, ℓ4 and ℓ9). The value of F𝑔 (𝑝#) is also shown when different from that of 𝑝#.

Ent̂ry

𝑇 ≜ Lôc(ℓ3)

Assûme(125 ≤ z𝑇 ,𝑇) 𝑈 ≜ Assûme(z𝑇 <125,𝑇)

𝑉 ≜ Assûme(𝛼 = 0,𝑈) 𝑊 ≜ Assûme(𝛼,𝑈)

𝑋 ≜ Joîn {(𝛽,𝑉); (𝛾,𝑊)}

i𝑇 ↦→ 0

j𝑇 ↦→ 0

z𝑇 ↦→ 4

125 ≤ z𝑇 z𝑇 <125

𝛼 = 0

𝛼 ≜ z𝑇%2 = 0

∧ F(i𝑇)=F(j𝑇 +z𝑇%2)

𝛽 ≜

{
i𝑋 ↦→ randEnt̂ry
z𝑋 ↦→ z𝑇 + 7

𝛾 ≜

{
i𝑋 ↦→ i𝑇
z𝑋 ↦→ z𝑇 + 2

i𝑇 ↦→ F(i𝑋)
j𝑇 ↦→ F(j𝑇 + z𝑇%2)
z𝑇 ↦→ z𝑋

Ent̂ry

𝑇 ≜ Lôc(ℓ3)

Assûme(125 ≤ z𝑇 ,𝑇)

Assûme(z𝑇 <125,𝑇)

i_j𝑇 ↦→ 0

z𝑇 ↦→ 4

125 ≤ z𝑇
z𝑇 <125

i_j𝑇 ↦→ F(i_j𝑇)
z𝑇 ↦→ z𝑇 + 2

(c) Analysis with bare SSA translation (left: Lift(F̂A), Sections 6 and 7), and translation combined with

numerical analysis and simple rewrites (right: Lift(Q̂(F̂A×̂N̂))). For legibility, we use 𝑇 ,𝑈 , 𝑉 ,𝑊 , 𝑋 as short

names for terms and 𝛼 , 𝛽 , 𝛾 as short names for edges

Fig. 2. Example input program and results of different analysis.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:6 Dorian Lesbre and Matthieu Lemerre

𝑧 ∈ Z (Integers) 𝑥 ∈ X (Variables) 𝜎 ∈ � ≜ X→ Z (Stores) ℓ ∈ L (Locations)

S ≜ L×� ⋄ ∈ {+; −; ×; /; %; =; ≠; <; ≤; ∧; ∨} 𝑒 ∈ E ≜ 𝑧 | 𝑥 | 𝑒 ⋄𝑒 | 𝑒 ? 𝑒 : 𝑒 (Expressions)
𝑅 ∈ R ≜ If 𝑒 | 𝑥 := 𝑒 (Syntactic relations) G ∈ G ≜ L × R × L→ {0; 1} (Program graph)

E⟦·⟧ ∈ E→ �→ Z⊥ R⟦·⟧ ∈ R→ (� × �→ {0; 1}) →G ∈ S × S→ {0; 1}

E⟦𝑧⟧(𝜎) ≜ 𝑧

E⟦𝑥⟧(𝜎) ≜ 𝜎 (𝑥)
E⟦𝑒cond ? 𝑒true : 𝑒false⟧(𝜎) ≜

⊥ if E⟦𝑒cond⟧(𝜎) = ⊥
E⟦𝑒true⟧(𝜎) if E⟦𝑒cond⟧(𝜎) ≠ 0

E⟦𝑒false⟧(𝜎) if E⟦𝑒cond⟧(𝜎) = 0

E⟦𝑒ℓ ⋄ 𝑒𝑟⟧(𝜎) ≜
{
⊥ if (⋄ ∈ {/; %} ∧ E⟦𝑒𝑟⟧(𝜎) = 0) ∨ (⊥ ∈ {E⟦𝑒𝑙⟧(𝜎); E⟦𝑒𝑟⟧(𝜎)})
E⟦𝑒ℓ⟧(𝜎) ⋄ E⟦𝑒𝑟⟧(𝜎) otherwise

R⟦If 𝑒⟧(𝜎, 𝜎 ′) ≜ 𝜎 =𝜎 ′∧E⟦𝑒⟧(𝜎) ∉ {0;⊥} R⟦𝑥 := 𝑒⟧(𝜎, 𝜎 ′) ≜ E⟦𝑒⟧(𝜎)≠⊥∧𝜎 ′=𝜎 [𝑥 ↦→ E⟦𝑒⟧(𝜎)]
(ℓ, 𝜎) →G (ℓ ′, 𝜎 ′) ≜ ∃𝑅 ∈ R, G(ℓ, 𝑅, ℓ ′) ∧ R⟦𝑅⟧(𝜎, 𝜎 ′)

Fig. 3. Imp syntax (top) and semantics (bottom).

�
#
(set of abstract states) 𝛾 ∈ �#

⊥ → P(�)
entry ∈ �#

� ⊆ 𝛾 (entry) (EntrySound)

apply ∈ R × �# → �
#

⊥
{
𝜎 ′ ∈ �

�� ∃𝜎 ∈ 𝛾 (𝑠#),R⟦𝑅⟧(𝜎, 𝜎 ′)} ⊆ 𝛾 (apply(𝑅, 𝑠#)) (ApplySound)

join ∈ P𝑓 (�#) → �
#

⋃
𝑠#∈𝑆# 𝛾 (𝑠#) ⊆ 𝛾 (join(𝑆#)) (JoinSound)

widen ∈𝑊 × �# × �# → �
𝛾 (𝑠#) ∪ 𝛾 (𝑡#) ⊆ 𝛾 (widen(ℓ, 𝑠#, 𝑡#)) (WSound)

F𝑔 ∈ (L⇀ D.�#) → (L⇀ D.�#) (𝐷 is an Imp domain)

F𝑔 (𝑝#) ≜ ℓ0 ↦→ D.entry

| ℓ ↦→ D.join
{
D.apply(𝑅, 𝑝# (ℓ ′))

���� for ℓ ′ ∈ L, 𝑅 ∈ R : G(ℓ ′, 𝑅, ℓ) ∧ ℓ ′ ∈ dom𝑝#
∧ D.apply(𝑅, 𝑝# (ℓ ′)) ≠ ⊥

}
∇𝑊 ∈ (L⇀ D.�#) → (L⇀ D.�#) → (L⇀ D.�#)

𝑝# ∇𝑊 𝑞# ≜ ℓ ↦→ D.widen(ℓ, 𝑝# (ℓ), 𝑞# (ℓ)) if ℓ ∈𝑊 (set of widening points)

| ℓ ↦→ 𝑞# (ℓ) otherwise

analyse(D) ∈ L⇀ D.�#

analyse(D) ≜ lfp

[
𝑝# ∈ (L⇀ D.�#) ↦→ 𝑝# ∇𝑊 F𝑔 (𝑝#)

]
Fig. 4. Imp abstract domain signature (top left) properties (top right) and analysis (bottom).

The semantics of a program G ∈ G is given as a transition relation (ℓ, 𝜎) →G (ℓ ′, 𝜎 ′) between
states. There is a transition between two states if there exists an edge between their locations in

G such that the edge’s relation is verified by the stores. This is not necessarily deterministic, as a

state might have multiple valid successors. We write→∗G for the reflexive transitive closure of→G .
We assume that all outgoing edges from a location are labelled by different relations.

3

Finally, programs have an initial location ℓ0 ∈ L, which has no predecessors. We say that a state

(ℓ, 𝜎) ∈ S is reachable when there is a 𝜎0 ∈ � such that (ℓ0, 𝜎0) →∗G (ℓ, 𝜎).

3.3 Abstract interpretation of Imp

Abstract domains [Cousot and Cousot 1977] are algebraic structures whose signature is given at the

top of Figure 4. They contain a set of abstract states �#
whose meaning is given by a concretization

3
This allows uniquely identifying a program path from the trace of applied relations. It is true on deterministic programs,

but can also be enforced on non-deterministic ones (using rewrites 𝑒 ↦→ 𝑒 × 1 if needed). This simplifies Theorem 4.1.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:7

function 𝛾 , mapping an abstract state to a set of states. This function is only used in proofs and

needs not to be computable. To lighten notations, we lift this concretization to �
#

⊥ and assume that

𝛾 (⊥) = ∅ for all domains.

The domain operations (top left of Figure 4) must be computable. entry is the program entry

point. apply(𝑅, 𝑠#) represents all the states that can be obtained from 𝑠# after applying a relation 𝑅.

join computes an over-approximation of finite union, and is used at merge points in the control

flow. widen is a widening operation, used to ensure termination of the analysis. For the sake of

simplicity, we do not discuss much about termination here. We only require that widening chains,

i.e. repeated applications of widening operations, eventually stabilize. Thus, we do not need an

order relation in our domain signature, as we can use equality directly.
4
Another non-standard

point is the need to pass a location (the widening point) as an argument to widen. This is required to
ensure the convergence of abstract domains consisting in recursive terms [Lemerre 2023] by giving

unique names to those terms. One can view domains implementing this signature as records whose

fields are functions. We use the notation D.apply to denote the apply function of the domain D.

A domain is sound when its operations meet the soundness hypotheses given at the top right of

Figure 4. It is completewhen its operations meet the converse hypotheses, with set inclusion reversed.

Abstract interpretation of an Imp domain D is done via a standard dataflow analysis [Cousot

and Cousot 1977], presented in the bottom of Figure 4. F𝑔 joins at each point the applys of the
predecessors. It is undefined at points where the set in D.join is empty. We write𝑊 the set of
widening points, i.e. points where widenings are performed. Any subset of L with at least one point

on every cycle in the control-flow graph is a valid choice for𝑊 . Bourdoncle [1993] gives a method

to compute a reasonably small𝑊 (set of loop heads). The final result of our analysis is given by

analyse(D)5. It is a partial function mapping locations L to our domain state D.�#
. It is undefined

on locations determined unreachable. It is computed as least fixed-point (lfp) of the widening of F𝑔 .
The most precise domain we can define in this setting is the collecting semantics domain, denoted

CS. The concretization𝛾 of CS is the identity. It is not computable, but helps quantify the abstraction

loss suffered by other domains.

CS.�# ≜ P(�) CS.𝛾 (𝑠#) ≜ 𝑠# CS.entry ≜ � CS.join(𝑆#) ≜ ⋃
𝑠#∈𝑆# 𝑠

#

CS.apply(𝑅, 𝑠#) ≜
{
𝜎 ∈ �

�� ∃ 𝜎 ′ ∈ 𝑠#, R⟦𝑅⟧(𝜎 ′, 𝜎)} CS.widen(_, 𝑠#, 𝑡#) ≜ 𝑠# ∪ 𝑡#

3.4 Example: non-relational numeric domain

A classical example domain is built on top of a single-value abstraction like intervals. They represent

set of integers by pairs [𝑚 :𝑀] ∈ Z# ≜ Z ∪ { − ∞} × Z ∪ { + ∞} with 𝑚 ⩽ 𝑀 , concretized by

𝛾Z# ([𝑚 :𝑀]) ≜ {𝑧 ∈ Z |𝑚 ⩽ 𝑧 ⩽ 𝑀}. We denote ⊔Z# , ⊓Z# , ⊆Z# and ∇Z# the usual join, meet, subset

and widening operators on intervals [Cousot and Cousot 1977].

For each expression construct 𝑓 of arity 𝑛 we let
®𝑓 ∈ Z#𝑛 → Z#

be the associated forward
transfer function (which yields an abstraction of 𝑓 given abstractions of its arguments) and

®𝑓 ∈ Z#𝑛 × Z# → Z#𝑛
the backward transfer function (which refines the abstractions of the arguments

given an abstraction of the result of 𝑓).

Using these, we can define our first Imp domain: the numeric domain, denoted N. It is presented

in Figure 5, where
®E⟦·⟧ ∈ E→ (X→ Z#) → Z#

evaluates the expression (similarly to E⟦·⟧) in Z#

using the forward transfer functions; and 𝜎# ← 𝑒 ≠ 0 symbolizes refining 𝜎#
using the backward

transfer functions and the information that 𝑒 ≠ 0 (using an algorithm similar to the HC4 constraint

propagation [Benhamou et al. 1999]). This numerical domain is sound.

4
For more details on this, see Lesbre and Lemerre [2024b, §B].

5
The domain D is implicit in F𝑔 and ∇𝑊 , as it can be deduced from the analysis being considered, but explicit in analyse.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:8 Dorian Lesbre and Matthieu Lemerre

N.�# ≜ X→ Z
#

N.entry ≜ [𝑥 ∈ X ↦→ (−∞, +∞)]
N.join(

{
𝜎#

0
; . . . ; 𝜎#

𝑛

}
) ≜

[
𝑥 ∈ X ↦→ 𝜎#

0
(𝑥) ⊔Z# . . . ⊔Z# 𝜎#

𝑛 (𝑥)
]

N.apply(𝑥 := 𝑒, 𝜎#) ≜ 𝜎#
[
𝑥 ↦→ ®E⟦𝑒⟧

(
𝜎#

)]
N.apply(If 𝑒, 𝜎#) ≜ 𝜎# ← 𝑒 ≠ 0

N.widen(_, 𝜎#

0
, 𝜎#

1
) ≜

[
𝑥 ∈ X ↦→ 𝜎#

0
(𝑥) ∇Z# 𝜎#

1
(𝑥)

]
N.𝛾 (𝜎#) ≜

{
𝜎
�� ∀ 𝑥, 𝜎 (𝑥) ∈ 𝛾Z# (𝜎# (𝑥))

}
Fig. 5. The numeric Imp abstract domain (N).

s# ∈ FA.�# ≜ Entry | Apply(𝑅, s#) | Join(S#) | Loc(ℓ) (Algebraic locations)
(where 𝑅 ∈ R is a syntactic program relation, and S# ∈ P𝑓 (FA.�#))

FA.entry ≜ Entry
FA.apply(𝑅, s#) ≜ Apply(𝑅, s#)

FA.widen(ℓ, _, _) ≜ Loc(ℓ)
FA.join(S#) ≜

⊥ if S# is empty

s# if S# is a singleton {s#}
Join(S#) otherwise

FA.𝛾 (Entry) ≜ � FA.𝛾 (Apply(𝑅, s#)) ≜
{
𝜎 ∈ �

�� ∃ 𝜎 ′ ∈ FA.𝛾 (s#), R⟦𝑅⟧ (𝜎 ′, 𝜎)}
FA.𝛾 (Join(S#)) ≜ ⋃

s#∈S# FA.𝛾 (s#) FA.𝛾 (Loc(ℓ)) ≜ �

TApply

s#
𝑅↦−→# Apply(𝑅, s#)

TJoin

s#
𝑅↦−→# t

t# ∈ S#

s#
𝑅↦−→# Join(S#)

TSelf

F𝑔 (𝑝#) (ℓ) = Join(S#) Loc(ℓ) ∈ S#

Loc(ℓ) If 1↦−−−→# Loc(ℓ)
TLoc

s#
𝑅↦−→# F𝑔 (𝑝#) (ℓ)

s#
𝑅↦−→# Loc(ℓ)

VBase

s# ∈ img 𝑝#

𝑉 (s#)

VRec

s#
𝑅↦−→# t

𝑉 (t#)
𝑉 (s#)

GraphGen

s#
𝑅↦−→# t

𝑉 (t#)
G𝑝# (s#, 𝑅, t#)

Fig. 6. The free algebra Imp abstract domain (FA) (top) and rules for generating Imp programs (bottom).

We use intervals here as they are well-known and easy to define, but this abstraction can very eas-

ily be switched to other single-value abstractions, such as congruence [Miné 2017], bitwise/tristate

[Michel and Hentenryck 2012; Miné 2012; Vishwanathan et al. 2022], or any product of these

abstractions. For our running example (Figure 2), intervals alone cannot prove that z is even, thus

we need another abstraction (bitwise or congruence).

4 FREE ALGEBRA OF THE DOMAIN SIGNATURE

We now explain how a free algebra over the domain signature of Figure 4 can be used to exactly

recover the source program as a standard abstract interpretation. This is achieved thanks to the

dual interpretation of this abstract domain: the classical interpretation as a set of states, and the

other as a new program graph whose vertices are elements of the free algebra, and whose edges

are given by the Apply terms. In this section, the generated program is isomorphic to the source.

We will add transformations in Section 5.

4.1 Definition

The free algebra Imp domain, denoted FA, is presented in Figure 6. Its elements, called algebraic
locations are cyclic terms in the free algebra of the abstract domain signature (Figure 4). Thus,

the domain operations: FA.entry, FA.apply and FA.join just create terms using the Entry6, Apply
and Join function symbols. The other constructor, Loc, represents widening points, which also

6
We denote the Imp domain interface in lowercase purple italics, its implementations in the same style but prefixed with the

domain short name, and the terms of its free algebra in Capitalized Orange Typewriter Font.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:9

corresponds to recursion variables in the control-flow graph viewed as a cyclic term graph [Ariola

and Klop 1996], as they are both used to break cycles. Thus, the widening operation FA.widen simply

returns the relevant Loc, using the original program location name as a way to give a deterministic

name to recursion variables and allow the analysis to terminate [Lemerre 2023]. Figure 2b shows

the value of 𝑝# obtained from performing an analysis using this domain on a few select points.

4.2 Concretization as a set of states

These algebraic locations can be interpreted in different ways. The first, more usual one, is as sets

of states in the collecting semantics. It is given by the concretization FA.𝛾 (which matches with the

definition of the collecting semantics domain). Notice how the definition of the concretization simply

maps our free algebra constructors to the corresponding operation in the collecting semantics. For

instance, for the apply operation we have FA.𝛾 (Apply(𝑅, s#)) = CS.apply(𝑅, FA.𝛾 (s#)).
All FA domain operations are sound. FA.join, FA.apply and FA.entry transfer functions are also

complete: only FA.widen loses precision as Loc concretizes into the entire set of stores �. This

concretization can be refined by unfolding the fixed point (replacing Loc(ℓ) with F𝑔 (𝑝#) (ℓ)). The
new term will still contain Loc(ℓ) as subterm, which can once again be unfolded, and so on. For

the most precise version, unfold until a fixed point is reached here.

4.3 Concretization as a program graph

We can also construct a new Imp program graphG𝑝# ∈ FA.�# × R × FA.�# → {0; 1} from an abstract

element 𝑝# ∈ L⇀ FA.�#
, or any analysis that uses the free algebra domain as a subdomain. To

do so, we define an edge predicate ↦→# ∈ (FA.�# × R × FA.�#) → {0; 1}, and a vertex predicate

𝑉 ∈ FA.�# → {0; 1} by the rules at the bottom of Figure 6. Both depend on 𝑝#, not included it in

their notation to keep them light. See Figure 7 for a small example graph built using these rules.

An Apply(𝑅, s#) term represents a vertex (i.e., program location in the new graph) obtained

by following an edge labelled by 𝑅 coming from s# (rule TApply). TJoin ensures that all the terms

appearing in a Join(S#) term correspond to the same program location in the generated program

graph, thus, for any edge going to t# ∈ S#, it adds an edge going to Join(S#). For the Loc(ℓ) case,
we need to use the main transfer function F𝑔 of our abstract interpretation to obtain the pre-state

before widening (join of the applys of the predecessors of ℓ). The rule TLoc then simply states that

the transitions to Loc are the same as those to that pre-state (Loc is only introduced at a widening

point as a renaming to avoid having recursive terms). Finally, TSelf ensures that immediate loops

(ℓ being its own predecessor through a trivial relation) are preserved. Note that Entry has no

predecessor, which corresponds to the assumption that ℓ0 also has no predecessor.

The 𝑉 predicate is used to limit our graph G𝑝# to terms that appear in the result of our analysis

(img(𝑝#) by VBase) or their predecessors through ↦→# (VRec). It notably excludes the intermediate

terms that appear in TJoin and TLoc. In practice, it means we are defining an equivalence relation

on our states FA.�#
, that relates Join and its contents, as well as Loc and its value before renaming;

and choosing the Join and Loc terms as canonical representatives of their classes.

Finally, GraphGen defines our new graph G𝑝# : its edges are elements of ↦→# that end in 𝑉 . Using

the free algebra domain on its own, this newly generated graph is isomorphic to the input (restricted

to reachable locations). It is the same graph, whose vertices have been renamed by 𝑝#, as mentioned

in the following theorem. This implies there is no abstraction loss when using this domain.

Theorem 4.1. When 𝑝# = analyse(FA), G𝑝# is isomorphic to G (restricted to reachable locations,
i.e. locations ℓ such that there is a path from ℓ0 to ℓ in G) via 𝑝#:
• 𝑝# is injective (restricted to reachable locations)
• G𝑝# =

{
(𝑝# (ℓ), 𝑅, 𝑝# (ℓ ′))

�� G(ℓ, 𝑅, ℓ ′) ∧ ℓ reachable}
Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:10 Dorian Lesbre and Matthieu Lemerre

Note that the proof (in Lesbre and Lemerre [2024b]) uses the assumption that outgoing edges of

each node are uniquely labelled. Without it, we lose injectivity of 𝑝# as we merge identical children

in G𝑝# . G and G𝑝# would still be linked via a bisimulation between entry and widening points

(where injectivity still holds), similar to that of Theorems 5.5 and 5.6.

5 TRANSFORMATION FUNCTORS AS COMPILER PASSES

A functor F is a function that creates a new Imp domain F(D1, . . . ,D𝑛) from a number of Imp

domains D1, . . . ,D𝑛 passed as arguments. Here we are interested in two specific kinds of functors:

transformation functors, which only change the apply operation, and product functorswhich combine

domains. We exhibit a criteria for soundness and completeness of such functors, and show how

applying sound (resp. complete) functors to the free algebra domain lead to a forward (resp.

backward) simulation between the widening points in the input and generated programs.

We say that an n-ary functor F is sound when for all sound domains D1, . . . ,D𝑛 , the domain

F(D1, . . . ,D𝑛) is also sound. Similarly, we say that F is complete when for all complete domains

D1, . . . ,D𝑛 , the domain F(D1, . . . ,D𝑛) is also complete. Note that functor soundness and complete-

ness are compositional: if F and G are sound (or complete), then so is D ↦→ F(G(D)).

5.1 Transformation functors

Transformation functors are used to perform small, statement level transformations of our programs.

Formally, a transformation functor F is any functor that (1) only modifies the apply operation

of its argument D and (2) can only create values of type D.�#
through the domain operations

of D: specifically only D.apply and D.join. This means that all domain components other than

apply are equal to those of D; notably, F(D).�# = D.�#
. Furthermore, F(D).apply(𝑅, 𝑠#) returns a

combination of D.apply, D.join, and 𝑠#. The specific combination depends on 𝑅 and 𝑠#. Using an

opaque type, it is quite easy to enforce this constraint in code.

The state 𝑠# can only be inspected through sound queries. We write 𝑠# ⊨ 𝑃 when all elements

abstracted by 𝑠# ∈ D.�#
satisfy predicate 𝑃 ∈ � → {0; 1}, i.e. 𝑠# ⊨ 𝑃 implies ∀𝜎 ∈ D.𝛾 (𝑠#), 𝑃 (𝜎).

For instance 𝑠# ⊨ [𝜎 ∈ � ↦→ 𝜎 (𝑥) = 0] means variable 𝑥 is zero in all elements abstracted by 𝑠#. As

the full function definition of 𝑃 is a bit heavy, we abbreviate it as 𝑠# ⊨ 𝜎 (𝑥) = 0. Note that not

having 𝑠# ⊨ 𝑃 does not mean the property is false on D.𝛾 (𝑠#).

Example 5.1 (Division guard functor). A simple example of a transformation is the division guard
functor (DG), which adds an assertion “divisor is not 0” before every division:

safe({𝑒1; . . . ; 𝑒𝑛} , 𝑠#) ≜ D.apply(If 𝑒1 ≠ 0, . . .D.apply(If 𝑒𝑛 ≠ 0, 𝑠#) . . .)
DG(D).apply(If 𝑒, 𝑠#) ≜ D.apply(If 𝑒, safe(divisors(𝑒), 𝑠#))

DG(D).apply(𝑥 := 𝑒, 𝑠#) ≜ D.apply(𝑥 := 𝑒, safe(divisors(𝑒), 𝑠#))

where divisors ∈ E→ P𝑓 (E) is the set of sub-expressions that appear to the right of a division

or modulo operation in 𝑒 . Furthermore, we extend apply so that apply(_, ⊥) ≜ ⊥. This way,
safe ∈ P𝑓 (E) × D.�# → D.�#

⊥ adds a guard for each expression in its argument set
7
.

Example 5.2 (Ternary expression rewrite functor). A more complex example is the ternary rewrite
functor (T), which replaces the ternary if-then-else in expressions by explicit jumps. The full

definition is a bit technical, but for a single ternary expression, it can be defined as:

T(D).apply(If (𝑒𝑐 ? 𝑒𝑡 : 𝑒𝑒), 𝑠#) ≜D.apply
(
If t,D.join

{
D.apply(t := 𝑒𝑡 , D.apply(If 𝑒𝑐 , 𝑠#));
D.apply(t := 𝑒𝑒 , D.apply(If 𝑒𝑐 = 0, 𝑠#))

})
7
To avoid issues with nested divisions, the set passed to safe should be sorted in increasing size of terms.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:11

Entry

𝑇 ≜ Apply(If 2 ≠ 0, Entry)

𝑈 ≜ Apply(If b%2, 𝑇)

𝑉 ≜ Apply(If b%2 = 0, 𝑇)

𝑊 ≜ Join

{
Apply(t := r × a, 𝑈);
Apply(t := r, 𝑉)

}
Apply(r := t, 𝑊)

If 2 ≠ 0

If b%2

If b%2 = 0

t := r × a

t := r
r := t

Fig. 7. Example compilation of the small program “r := b%2 ? r×a : r” through the division guard and ternary

functors (analyse(DG(T(FA)))). We use T, U, V and W as short names for legibility.

where t ∉ X is a new, fresh variable. This example shows that transformation functors can change

the type of program relations (in this case, we remove a construct and add a variable). The new

variable requires changing the concretization as well: T(D).𝛾 (𝑠#) is the same as D.𝛾 (𝑠#) but removes

t from the store.

Figure 7 shows the result of compiling a simple program (a single assignment) through the

ternary rewrite (T) and division guard (DG) functors, applied to the free algebra (FA) domain of

Section 4.

Example 5.3 (Query simplification functor). Both previous examples only perform syntactic

transformations: their apply does not inspect the program state. A simple functor that does this is

the query simplification functor :

Q(D).apply(𝑥 := 𝑒, 𝑠#) ≜

⊥ if 𝑠# ⊨ ˆE⟦𝑒⟧(𝜎) = ⊥
𝑠# if 𝑠# ⊨ 𝜎 (𝑥) = ˆE⟦𝑒⟧(𝜎)
D.apply(𝑥 := 𝑧, 𝑠#) if ∃𝑧, 𝑠# ⊨ ˆE⟦𝑒⟧(𝜎) = 𝑧

D.apply(𝑥 := 𝑒, 𝑠#) otherwise

Q(D).apply(If 𝑒, (s#, 𝜎#)) ≜

⊥ if 𝑠# ⊨ ˆE⟦𝑒⟧(𝜎) ⊆ {0;⊥}
𝑠# if 𝑠# ⊨ ˆE⟦𝑒⟧(𝜎) ≠ 0

D.apply(If 𝑒, 𝑠#) otherwise
This simplifies an assignment to ⊥ if one of the variables has no valid values; removes it if it

doesn’t change the value of 𝑥 ; simplifies it if the expression 𝑒 has a constant value (thus performing

constant propagation); and leaves it unchanged otherwise. For guards, it checks if the condition is

false, in which case it returns ⊥; or true, in which case it removes the guard. Q works well with

the numerical domain, since queries using
ˆE⟦·⟧ can be computed using the forward evaluation

function
®E⟦·⟧ (for example 𝜎# ⊨ ˆE⟦𝑒⟧(𝜎) = 0 is simply

®E⟦𝑒⟧
(
𝜎#

)
= [0 : 0])

This definition for transformation functors is quite restrictive. They only act on a single relation,

and not on multiple statements. For example, they cannot simplify double assignments (𝑥 := 0

followed by 𝑥 := 1) or change order of assignments. However, our SSA translation will perform

these automatically by grouping assignments in blocks of bindings.

On the other hand, their simplicity allows proving some strong results. The following lemma

shows that it suffices to prove soundness (respectively, completeness) of the functor applied to the

collecting semantics domain (CS) to prove soundness (respectively, completeness) for any domain

given as an argument.

Lemma 5.4 (Functor soundness and completeness). A transformation functor F is sound if and
only if F(CS) is sound. Similarly, F is complete if and only if F(CS) is complete.

All three examples above are both sound and complete functors.

When proving soundness (or completeness) of a F(CS), one must take care to only use query

soundness results (𝑠# ⊨ 𝑃 ⇒ 𝑃 (𝑠#)), and not completness, as queries may be false even when 𝑃 is

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:12 Dorian Lesbre and Matthieu Lemerre

always true. For instance, to prove soundness of a functor that looks like

F(CS).apply(𝑅, 𝑠#) ≜
{
... if 𝑠# ⊨ true
... otherwise

we must prove soundness in the first branch (restricted to elements that satisfy 𝑃) and in the second

branch. We cannot use the information “true is true on all elements of 𝑠#” to skip the proof of the

second branch, as the query may return false.

5.2 Simulation theorems

Applying a transformation functor can be seen as a statement-level compiler pass. These passes

can perform syntactic transformations (by inspecting the relation), semantic ones (through queries

on the input states), or combine both. Since functor soundness and completeness are compositional,

we can easily define each small transformation we want to perform as a functor, prove that these

functors are sound (or complete) individually, and obtain the result for the whole chain.

Let us take a transformation functor F, we are interested the program generated by the free

algebra domain under F.Wewrite 𝑝# = analyse(F(FA)) the analysis result, and→G𝑝# the transition
system associated with the new Imp program G𝑝# generated by the free algebra domain.

Theorem 5.5 (Sound functor forward simulation). If F is a sound transformation functor,
then for all reachable pairs (ℓ, 𝜎) and (ℓ ′, 𝜎 ′) such that ℓ and ℓ ′ are the entrypoint or widening points:

(ℓ, 𝜎) →+G (ℓ
′, 𝜎 ′) ⇒ (𝑝# (ℓ), 𝜎) →+G𝑝# (𝑝

(ℓ ′), 𝜎 ′)

Theorem 5.6 (Complete functor backward simulation). If F is a complete transformation
functor, then for all entry or widening points ℓ , ℓ ′, and for all 𝜎 , 𝜎 ′:

(𝑝# (ℓ), 𝜎) →+G𝑝# (𝑝
(ℓ ′), 𝜎 ′) ⇒ (ℓ, 𝜎) →+G (ℓ

′, 𝜎 ′)

Proofs are presented in Lesbre and Lemerre [2024b].

5.3 Product functors

Reduced domain products [Cousot and Cousot 1979] are a classical tool to combine domains. The

basic product is a two argument functor. It returns a domain whose state is a pair of the states

of its arguments; whose operations are the pairwise lifting the argument operation; and whose

concretization is the intersection of their concretizations. We denote it with the infix ×.
Simply using this is equivalent to running the two analysis independently. For added benefit,

add a query simplification functor Q on top of the product. Queries can then use information from

both states to simplify the terms, and thus prove results that each individual domain could not.

A product between the free algebra domain and another domain can still generate a program

graph. The rules TLoc and TSelf just need to be adapted a little as F𝑔 (𝑝#) (ℓ) is no longer a free

algebra state, but a pair containing such a state, so we need to add a simple projection.

6 SSA SIGNATURE AND SSA FREE ALGEBRA

This section presents our SSA language, highlighting the differences to Imp. It then presents an

abstract domain signature adapted to this language (similarly to the Imp signature in Figure 4) and

a free algebra implementation of this signature (similar to the one from Section 4)

6.1 SSA syntax and semantics

We use the syntax and semantics of SSA (Figure 8) defined by Lemerre [2023] (corresponding to a

high-level representation of the sea-of-nodes representation [Click and Paleczny 1995; Demange

et al. 2018]), with small variations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:13

𝑖 ∈ I (Identifiers) ℓ̂ ∈ ˆL (Locations) 𝑖 ℓ̂ ∈ ˆX ≜ I × ˆL (Variables) � ≜ ˆX⇀ Z (Valuation)

𝑒 ∈ ˆE ≜ 𝑧 | 𝑖 ℓ̂ | 𝑒 ⋄ 𝑒 (SSA expression) 𝐵 ∈ B ≜ ˆX⇀ ˆE (Bindings) 𝑅 ∈ ˆR ≜ Îf 𝑒 | Bind(𝐵)
ˆG ≜ (ˆL × ˆR × ˆL) → {0; 1} (SSA graph)

ˆS ≜ ˆL × � (SSA state)

scope ˆG ∈ ˆE→ P(ˆL) scope ˆG (𝑖 ℓ̂) ≜
{
ℓ̂ ′ ∈ ˆL

�� ℓ̂ dominates ℓ̂ ′ in ˆG
}

unbind ˆG ∈ ˆL × �→ � unbind ˆG (ℓ̂, Γ) ≜
[
𝑥 ∈ dom Γ ↦→ Γ(𝑣)

�� ℓ̂ ∈ scope ˆG (𝑥)
]

bind ∈ B × �→ � bind(𝐵, Γ) ≜
[
𝑥 ∈ ˆX ↦→

{
ˆE⟦𝐵(𝑥)⟧(Γ) if 𝑥 ∈ dom𝐵
Γ(𝑥) otherwise

]
⇝ ˆG ∈ ˆS × ˆS (ℓ̂, Γ) ⇝ ˆG (ℓ̂

′, Γ′) ≜ ∃ 𝑒, ˆG(ℓ̂, Îf 𝑒, ℓ̂ ′) ∧ Γ′ = Γ ∧ ˆE⟦𝑒⟧(Γ) ∉ {0;⊥}
∨ ∃ 𝐵, ˆG(ℓ̂, Bind(𝐵), ℓ̂ ′) ∧ Γ′ = unbind ˆG (ℓ̂ ′, bind(𝐵, Γ))

Fig. 8. SSA language syntax (top) and semantics (bottom).

Syntax. An SSA expression 𝑒 ∈ ˆE8
is similar to a program expression 𝑒 ∈ E but without the

ternary if-then-else. SSA variables are composed of an identifier 𝑖 ∈ I and a location ℓ̂ ∈ ˆL, which

determines its scope, i.e., the set of locations where the variable can appear. For simplicity in this

paper, we choose I = X, i.e., the SSA variable 𝑥 ℓ̂ can be understood as the value of Imp variable 𝑥 at

location ℓ̂ .

In an SSA graph
ˆG ∈ ˆG, edges are either annotated by expressions (Îf 𝑒), representing a condition,

or bindings (Bind(𝐵)) mapping multiple variables to expressions. We denote by ℓ̂0 the initial location

where SSA programs start. We require that bindings edges are exactly those leading into a join

node (node with multiple predecessors). Furthermore, an SSA variable 𝑥 ℓ̂ should only appear in the

bindings leading into the join node at location ℓ̂ (location where it is bound), and it should appear

in all the bindings leading into ℓ̂ (all bindings leading into a join node have the same domain). Thus,

join nodes represent both program joins and what traditional SSA denotes by 𝜙 functions. If ℓ̂ has

two predecessors
ˆG(ℓ̂ ′, Bind([𝑥 ↦→ 𝑒]), ℓ̂) and ˆG(ℓ̂ ′′, Bind([𝑥 ↦→ 𝑒′]), ℓ̂), then the scope of 𝑥 is ℓ . In

traditional SSA, 𝑥 would be bound here to 𝜙 (𝑒, 𝑒′). Two example SSA graphs are given in Figure 2c

(where Îf and Bind constructors have been left implicit).

Semantics. The interpretation of SSA expressions
ˆE⟦·⟧ is similar to that of Imp expressions E⟦·⟧.

The semantics of SSA is given as a transition system (ˆS,⇝) between SSA states. Given an SSA

graph
ˆG, there is a transition (ℓ̂, Γ) ⇝ ˆG (ℓ̂ ′, Γ′) if there is an edge

ˆG(ℓ̂, 𝑅, ℓ̂ ′) and the edge 𝑅 is

either a condition that evaluates to non-zero, or a binding, which is then evaluated and added to

the environment.

We also have an unbinding operation that removes variables that are no longer in scope from the

environment (where scope is defined using domination between locations). It is not necessary (SSA

variables can be seen as assigned rather than bound [Schneider 2013]) but will help analyses, as it

avoids maintaining information about useless variables. Unbinding only occurs at join nodes (whose

incoming edges are annotated by bindings), since non-join nodes only have a single predecessor

and thus only grow in scope.

6.2 SSA domain signature

The signature of SSA domains is given in Figure 9. It is similar to the previous signature of Figure 4

with a few key variations. The only relations applied on SSA are guards. To emphasize this, we

rename apply to assûme. Since bindings only occur before joins, we place them directly in the

8
We use a hat ^ notation to differentiate SSA-specific objects from their Imp counterparts.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:14 Dorian Lesbre and Matthieu Lemerre

Γ# ∈ �#
(set of abstract states) joîn ∈ P𝑓 (B × �#) → �#

⊥
ent̂ry ∈ �# wid̂en ∈ 𝑊 × �# × �# → �#

assûme ∈ ˆE × �# → �#

⊥ 𝛾 ∈ �# → P(�)

ˆF𝑔 ∈ (ˆL⇀ D.�#) → (ˆL⇀ D.�#)
ˆF𝑔 (𝑝#) ≜ ℓ̂0 ↦→ D.ent̂ry

| ℓ̂ ↦→ D.assûme(𝑒, 𝑝# (ℓ̂ ′)) if
ˆG(ℓ̂ ′, Îf 𝑒, ℓ̂) ∧ ℓ̂ ′ ∈ dom𝑝#

| ℓ ↦→ D.joîn
{(
𝐵𝑘 , 𝑝

(ℓ̂𝑘)
) ��� (ℓ̂𝑘 , 𝐵𝑘) such that

ˆG(ℓ̂𝑘 , Bind(𝐵𝑘), ℓ̂) ∧ ℓ̂𝑘 ∈ dom𝑝#
}

Fig. 9. SSA abstract domain signature (top) and abstract interpretation (bottom)

Γ# ∈ F̂A.�# ≜ Ent̂ry | Assûme(𝑒, Γ#) | Joîn(C#) | Lôc(ℓ) (SSA algebraic locations)
where 𝑒 ∈ ˆE and C# ∈ P𝑓 (B × F̂A.�#)

F̂A.ent̂ry ≜ Ent̂ry

F̂A.assûme(𝑒, Γ#) ≜ Assûme(𝑒, Γ#)
F̂A.wid̂en(ℓ, _, _) ≜ Lôc(ℓ)

F̂A.joîn(C#) ≜
{
⊥ if C# is empty

Joîn(C#) otherwise

F̂A.𝛾 (Ent̂ry) ≜ � F̂A.𝛾 (Assûme(𝑒, Γ#)) ≜
{
Γ ∈ F̂A.𝛾 (Γ#)

�� ˆE⟦𝑒⟧(Γ) ≠ 0

}
F̂A.𝛾 (Joîn(C#)) ≜ ⋃

𝐵,Γ#∈C#
{
bind(𝐵, Γ)

�� Γ ∈ F̂A.𝛾 (C#)} F̂A.𝛾 (Lôc(ℓ)) ≜ �

TAssumeSSA

Γ#
Îf 𝑒
↩−−−→# Assûme(𝑒, Γ#)

TJoinSSA

(𝐵, Γ#) ∈ C#

Γ#
Bind(𝐵)
↩−−−−−−→# Joîn(C#)

TLocSSA

Γ#
�̂�
↩−→#

ˆF𝑔 (𝑝#) (ℓ̂)

Γ#
�̂�
↩−→# Lôc(ℓ̂)

Fig. 10. The free algebra SSA abstract domain (F̂A) (top) and rules for generating SSA programs (bottom).

signature of joîn. It no longer takes a set of states as argument, but a set states paired with their

respective bindings. Once again, all bindings given to a join should have the same domain (define the

same variables). For example, joîn
{
([𝑥 ↦→ 3] , Γ#); ([𝑥 ↦→ 5] , Γ′#)

}
is the merging of two branches

Γ# and Γ′# with the additional information that 𝑥 is 3 when coming from Γ# and 5 when coming

from Γ′#. This is howwe represent what traditional SSA would denote with a 𝜙 function: 𝑥 ↦→𝜙 (3, 5).
Note that this signature makes some constraints placed on our SSA programs explicit: it is clear

that assume nodes have a single predecessor labelled by a guard, and join nodes have multiple

predecessors labelled by bindings.

ˆF𝑔 is the transfer function used for the direct analysis of SSA programs. It is similar to F𝑔, but
explicitly separates treatment of guard edges (with assûme) and bindings before a join (with joîn),
whereas F𝑔 performed both simultaneously using a join of applys. The other components of our

analysis (∇𝑊 and analyse) are the same as in Figure 4.

The SSA domain also has soundness and correction hypothesis similar to those of the Imp domain

in Figure 4, omitted here for the sake of brevity.

6.3 Free algebra of the SSA domain signature

Figure 10 presents the free algebra SSA domain, denoted F̂A. Just like in Imp free algebra (Section 4),

the domain operation simply create terms using the relevant function symbols.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:15

Lift(D̂).�# ≜ (X→ ˆE) × D̂.�#
Lift(D̂).entry ≜

[
𝑥 ∈ X ↦→ 𝑥

D̂.ent̂ry

]
, D̂.ent̂ry

Lift(D̂).apply(𝑥 := 𝑒, (𝜎#, Γ#)) ≜ 𝜎#
[
𝑥 ↦→ subst(𝑒, 𝜎#)

]
, Γ#

Lift(D̂).apply(If 𝑒, (𝜎#, Γ#)) ≜ 𝜎#, D̂.assûme(subst(𝑒, 𝜎#), Γ#)

Lift(D̂).join
{
(𝜎#

𝑖 , Γ
#

𝑖)
�� 𝑖 = 1..𝑛

}
≜

𝜎#

1
, Γ#

1
if 𝑛 = 1 (join of a singleton)

𝜎#, Γ# if Γ# ≠ ⊥
⊥ otherwise

where 𝜎# ≜

[
𝑥 ∈ X ↦→

{
𝑒 if 𝑒 = 𝜎#

1
(𝑥) = . . . = 𝜎#

𝑛 (𝑥) (equal in all branches)

𝑥Γ# otherwise (∃ 𝑖 𝑗, 𝜎#

𝑖 (𝑥) ≠ 𝜎#

𝑗 (𝑥))

]
and Γ# ≜ D̂.joîn

{
[𝑥Γ# ↦→ 𝜎#

𝑖 (𝑥) | 𝑥 such that ∃ 𝑖 𝑗, 𝜎#

𝑖 (𝑥) ≠ 𝜎#

𝑗 (𝑥)], Γ#𝑖
��� 𝑖 = 1..𝑛

}
Lift(D̂).widen(ℓ, (𝜎#

ℓ , Γ
#

ℓ), (𝜎#

𝑟 , Γ
#

𝑟)) ≜
[
𝑥 ∈X ↦→

{
𝑥
D̂.wid̂en(ℓ, Γ#ℓ , Γ#𝑟)

if 𝜎#

𝑟 (𝑥)=𝑥Γ#𝑟
𝜎#

𝑟 (𝑥) otherwise

]
, D̂.wid̂en(ℓ, Γ#ℓ , Γ#𝑟)

Lift(D̂).𝛾 (𝜎#, Γ#) ≜
{[
𝑥 ∈ X ↦→ ˆE⟦𝜎# (𝑥)⟧(Γ)

] �� Γ ∈ D̂.𝛾 (Γ#)}
Fig. 11. The lift functor, lifting an SSA Domain D̂ into an Imp domain Lift(D̂).

This domain also presents a dual interpretation as sets of valuations (given by the concretization

F̂A.𝛾) and as a program graph (given by the edge predicate ↩→# ∈ (F̂A.�# × ˆR × F̂A.�#) → {0; 1}).
The rules for generating this graph are similar to those of the Imp free algebra. Note that contrary

to TJoin, where a Join had the same predecessors as its elements, here the Joîn’s predecessors are
its elements. Instead of identifying each term in the joined set with the whole join, each term is the

predecessor of the join, with the edge labelled by its bindings. This also means we no longer need a

TSelf rule, as we can no longer collapse loops completely.

Like in Figure 6, generating the graph also requires a vertex predicate 𝑉 ∈ F̂A.�# → {0; 1} to
filter the relevant nodes. It has the same rules as those of 𝑉 , so they were omitted here. Figure 2c

presents two example graphs generated from such free algebra terms.

Going further. We could easily show a version of Theorem 4.1 for direct analysis of the SSA free

algebra domain, and define functors on SSA similarly to Section 5. However, apart from the product

functor ×̂, we do not really need them as we are mostly interested in analyzing Imp programs,

which can use Imp functors before reaching SSA domains through the SSA Lift functor (Section 7).

7 LIFTING SSA DOMAINS TO IMP DOMAINS

In this section, we present the SSA Lift domain, denoted Lift, a functor that lifts an SSA domain

into an Imp domain. We then show that, when applied to the SSA free algebra domain, this functor

is akin to compilation from Imp to SSA.

7.1 The SSA lift functor

The lift functor is detailed in Figure 11. Lift states are pairs of an abstract store, mapping from

program variables to the SSA expressions they currently hold, and an SSA state D̂.�#
. The functor

reuses the SSA states of the argument D̂ as SSA locations (ˆL = D̂.�#). The entrypoint Lift(D̂).entry
contains a map from all program variables to initial SSA variables, paired with the SSA domain’s

entrypoint D̂.ent̂ry.
Applying an assignment updates the store of the corresponding variable; and applying a guard

updates the SSA state using D̂.assûme. Here the subst ∈ E × (X→ ˆE) → ˆE function substitutes

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:16 Dorian Lesbre and Matthieu Lemerre

all variables from a program expression 𝑒 ∈ E by their value in 𝜎#
, which is an SSA expression.

This only works if the constructs that appear in E are translatable to SSA expression constructs.

Use transformation functors (Section 5) to simplify the language of program expressions if needed.

The D̂.join
{
(𝜎#

𝑖 , Γ
#

𝑖)
�� 𝑖 = 1..𝑛

}
function is a bit more complex. The new store 𝜎#

maps 𝑥 to

the unique value if all argument stores evaluate 𝑥 the same value, and to a new SSA variable

otherwise (introducing a 𝜙 function). The new SSA state Γ# is the D̂.joîn of all locations Γ#𝑖 with

the corresponding bindings for renamed variables. Note that this is a recursive definition, as SSA

variables in the bindings are named 𝑥Γ# where Γ
#
is the SSA state being defined. In practice, we

break this mutual recursion through hash-consing [Filliâtre and Conchon 2006], each SSA state

is given a unique numeric identifier and SSA variables only reference that identifier. Although

not presented here, this join operation can easily be adapted to perform global value numbering

[Lemerre 2023] by merging SSA variables which are equal in all branches. Performing GVN is

required to optimize the dead code in Figure 2. Notice that by definition, the calls to D̂.joîn respect

the assumptions we made on our SSA form. All set elements bind the same variables, and, since

those variables are named after the current location, they are bound nowhere else.

The widening simply calls D̂.wid̂en to determine the new SSA state, and renames any introduced

variables in the store to match the new state. Note that this assumes both stores are fairly similar.

Finally, Lift(D̂).𝛾 ((𝜎#, Γ#)) generates the set of represented stores, by using 𝜎#
to map variable

to SSA expressions, and then evaluating these expressions in a context given by D̂.𝛾 (Γ#).

7.2 Compiling to SSA

We now consider running the analysis on the lift functor to the SSA free algebra domain F̂A. We

write 𝑝# ≜ analyse(Lift(F̂A)) the analysis result. Using it, we generate an SSA program
ˆG𝑝# from

the SSA free algebra. Just like for the functor products, this requires adapting the TLocSSA rule by

adding a projection, since our states are not SSA free algebra states, but a pair (which includes an

SSA free algebra state). With this setup, our analysis effectively compiles an Imp program to SSA

form. We write⇝ ˆG𝑝#
the transition system associated with this new SSA program.

The following theorems show simulation results between the source and compiled programs.

Since the source and target language are different, our simulation relation is no longer just equality:

C ∈ S × ˆS→ {0; 1}
C((ℓ, 𝜎), (Γ#, Γ)) ≜ ∃ 𝜎# ∈ X→ ˆE, (𝜎#, Γ#) = 𝑝# (ℓ) ∧ 𝜎 =

[
𝑥 ∈ X ↦→ ˆE⟦𝜎#

0
(𝑥)⟧(Γ)

]
The first part is compatibility between the Imp location ℓ and the SSA location Γ# via 𝑝#, and the

second part is compatibility between the Imp store 𝜎 and the SSA valuation Γ. Notice that with this

relation, Γ# is uniquely determined by ℓ , and 𝜎 is uniquely determined by Γ.

Theorem 7.1 (SSA compilation forward simulation). For all reachable pairs (ℓ, 𝜎) and (ℓ ′, 𝜎 ′)
such that ℓ and ℓ ′ are entry or widening points, for all 𝑠 ∈ ˆS we have:

(ℓ, 𝜎) →+G (ℓ
′, 𝜎 ′) ∧ C((ℓ, 𝜎), 𝑠) ⇒ ∃ 𝑠′ ∈ ˆS, C((ℓ ′, 𝜎 ′), 𝑠′) ∧ 𝑠⇝∗

ˆG𝑝#
𝑠′

Furthermore, there exists an 𝑠 ∈ ˆS such that C((ℓ, 𝜎), 𝑠) holds.
Finally, if 𝑠⇝∗

ˆG𝑝#
𝑠′ has length 0, then ℓ ′ is not a true loop head (it has a single reachable predecessor).

Theorem 7.2 (SSA compilation backward simulation). For all SSA states (Γ#, Γ) and (Γ′#, Γ′)
where Γ# and Γ′# appear in img𝑝# as images of widening or entry points, and for all 𝑠′ ∈ S we have:

(Γ#, Γ)⇝+
ˆG𝑝#
(Γ′#, Γ′) ∧ C(𝑠′, (Γ′#, Γ′)) ⇒ ∃ 𝑠 ∈ S, C(𝑠, (Γ#, Γ)) ∧ 𝑠→+G 𝑠

′

Furthermore, there exists an 𝑠′ ∈ S such that C(𝑠′, (Γ′#, Γ′)) holds.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:17

EvalReuse

𝑒 ∈ dom(Γ♯)
Γ♯ ⊨ 𝑒 ⇓ Γ♯ (𝑒)

EvalCst

Γ♯ ⊨ 𝑧 ⇓ [𝑧 : 𝑧]

EvalBinop

𝑒1 ⋄ 𝑒2 ∉ dom(Γ♯)
Γ♯ ⊨ 𝑒1 ⇓ 𝑧#1 Γ♯ ⊨ 𝑒2 ⇓ 𝑧#1

Γ♯ ⊨ 𝑒1 ⋄ 𝑒2 ⇓ ®⋄(𝑧#1, 𝑧#2)

EvalVar

𝑥 ∉ dom(Γ♯)
Γ♯ ⊨ 𝑥 ⇓ [−∞ :+∞]

ReduceBwd

Γ♯ ⊨ 𝑒1 ⋄ 𝑒2 ⇓ 𝑧# Γ♯ ⊨ 𝑒1 ⇓ 𝑧#1 Γ♯ ⊨ 𝑒2 ⇓ 𝑧#2
(𝑧′♯

1
, 𝑧
′♯
2
) = ®⋄(𝑧♯

1
, 𝑧

♯

2
, 𝑧♯) (𝑧′𝑖

♯ ⊓Z# 𝑧𝑖
♯) ⊂Z# 𝑧𝑖

♯

Γ♯ ⇒ Γ♯
[
𝑒𝑖 ↦→ 𝑧

♯

𝑖
⊓Z# 𝑧′𝑖

♯
] ReduceFwd

Γ♯ ⊨ 𝑒 ⇓ 𝑧#

Γ♯ ⇒ Γ♯
[
𝑒 ↦→ 𝑧#

] ReduceBot

Γ♯ ⊨ 𝑒 ⇓ ⊥Z#

Γ♯ ⇒ ⊥
N̂

Γ♯ ∈ N̂.�# ≜ ˆE⇀ Z
#

N̂.ent̂ry ≜ ∅

N̂.𝛾 (Γ♯) ≜
{
Γ ∈ ˆX⇀ Z

��� ∀𝑒 ↦→ 𝑧# ∈ Γ♯, ˆE⟦𝑒⟧(Γ) ∈ 𝛾Z# (𝑧#)
}

Nbind(𝐵, Γ♯) ≜ Γ♯ ⊎
[
𝑥 ↦→ 𝑧#

�� 𝑥 ↦→ 𝑒 ∈ 𝐵 ∧ Γ♯ ⊨ 𝑒 ⇓ 𝑧#
]

Assume Γ♯ ⊨ 𝑒 ⇓ 𝑧#

Γ♯
[
𝑒 ↦→ 𝑧♯ ⊓Z# (¬0)

]
⇒ Γ′♯

N̂.assûme(𝑒, Γ♯) ≜ Γ′♯

Join Nbind(𝐵𝑖 , Γ♯𝑖) ⇒ Γ′𝑖
♯

𝑖 ∈ 1..𝑛

N̂.joîn
{
(𝐵𝑖 , Γ♯𝑖)

�� 𝑖 ∈ 1..𝑛} ≜ [
𝑒 ↦→ 𝑧#

�� 𝑒 ∈ ⋂𝑖 dom(Γ′𝑖
♯) ∧ 𝑧# = ⊔

𝑍 # 𝑖 Γ
′
𝑖
♯ (𝑒)

]
N̂.wid̂en(_, Γ♯, Γ′♯) ≜

[
𝑒 ↦→ Γ♯ (𝑒) ∇Z# Γ′♯ (𝑒)

�� 𝑒 ∈ dom Γ♯ ∩ dom Γ′♯]
Fig. 12. Evaluation rules for ⇓ (top), constraint propagation/reduction rules (middle), SSA numeric domain N̂

(bottom).

8 SSA BASED NUMERICAL ANALYSIS

In this section, we implement a numerical abstract domain N̂ (similar to that of Section 3.4), but

using the SSA domain signature. Using SSA form here allows storing information about expressions,

and not just about variables, which improves precision. This is possible because variables are bound

and not assigned, and thus their values, and the values of expressions that use them, never change.

We illustrate the precision improvement through various examples, and prove that using Lift(N̂) is
always more precise than N.

8.1 The SSA numeric domain

The SSA numeric domain is presented at the bottom Figure 12. Its states are mappings from

SSA symbolic expressions to a numerical single-value abstraction. The concretization of such an

element Γ♯ is the set of valuations which, when used to evaluate an expression 𝑒 of Γ♯, yield an

integer in Γ♯ (𝑒). The entry point is the empty mapping. The domain operations require defining

a forward evaluation judgement Γ♯ ⊨ 𝑒 ⇓ 𝑧# ∈ (N̂.�# × ˆE × Z#) → {0; 1} and a reduction operator

⇒ ∈ (Γ♯ × Γ♯) → {0; 1}.
The judgement Γ♯ ⊨ 𝑒 ⇓ 𝑧# intuitively means that we can deduce 𝑒 ∈ 𝛾Z# (𝑧#) from Γ♯. Formally,

it is defined through the induction rules given at the top of Figure 12. They proceed by recursively

evaluating the expression 𝑒 (rule EvalBinop) until a constant (EvalCst), variable (EvalVar), or

remembered expression (EvalReuse) is found in Γ♯. Binary expressions are evaluated through

forward transfer functions, remembered expression return their values and unremembered variables

return the top element. The following lemma proves our judgement captures the intended meaning:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:18 Dorian Lesbre and Matthieu Lemerre

Lemma 8.1. If Γ♯ ⊨ 𝑒 ⇓ 𝑧#, then ∀ Γ ∈ N̂.𝛾 (Γ♯), ˆE⟦𝑒⟧(Γ) ∈ 𝛾Z# (𝑧#).

Proof. By induction on expressions, and soundness of ®⋄. □

The judgement Γ♯ ⇒ Γ′♯ is a reduction operator [Granger 1992], it implies that Γ♯ and Γ′♯

represent the same abstraction (N̂.𝛾 (Γ♯) = N̂.𝛾 (Γ′♯)) but Γ′♯ is smaller. Its induction rules are given

in the middle of Figure 12. ReduceBwd propagates constraints [Benhamou et al. 1999] of the form

𝑒 ∈ 𝛾Z# (𝑧#) between the symbolic expressions. Thus, it learns from conditions [Granger 1992]

(appearing e.g. in if statements). The result is saved when the precision has improved, which allows

further evaluations with⇒ to also improve. ReduceFwd saves the result of evaluation. This will

make the result of future joins more precise. Finally, ReduceBot quickly propagates the information

that the current state is bottom (some constraint is unsatisfiable).

The domain operations are given as rules instead of functions as they depend on how many

reductions (⇒) we wish to perform before returning the result. Performing more reductions will

be more precise but also reduce performance.

N̂.assûme(𝑒, Γ♯) propagates constraints, adding the information that the guard must be true

(denoted as ¬09). Nbind(𝐵, Γ♯) updates the abstract SSA state Γ♯ by mapping 𝑥 to the result of

the evaluation of 𝑒 for all bindings 𝑥 ↦→ 𝑒 that appear in the bindings 𝐵. The last operation, N̂.joîn,
applies the bindings, and then performs an intersection of the maps (only keeping expressions that

are present in all branches, including freshly bound variables). We can perform an intersection

because we know nothing important about a symbolic expression that is not present in every

branch (in many cases, they will go out of scope and be unbounded).

8.2 Combination of SSA-based analysis and online SSA translation

We can use this SSA state abstraction with the translation of Section 7 to analyze an SSA program

while it is being computed from the source program. This analysis combines our SSA abstract state

Γ♯ with an abstract store 𝜎# ∈ X→ ˆE.

This combination is more precise than the standard non-relational numerical analysis performed

by N (that constrains program variables instead of program values), i.e. we can abstract our

combination to a standard numerical analysis.

𝛼 ∈ Lift(N̂).�# → N.�#

𝛼 (𝜎♯, Γ♯) ≜
[
𝑥 ∈ X ↦→ 𝑧#

�� Γ♯ ⊨ 𝜎♯ (𝑥) ⇓ 𝑧#
]

Intuitively, this abstraction forgets the relations between the variables that are given by the symbolic

expressions, and just sees them as opaque identifiers. In particular, we can prove that our analysis

operations are monotonic (provided a suitable strategy for applying⇒, such as maximally applying

⇒ when evaluation is limited to the symbolic expressions that appear in the abstract store), and

thus that our combination is always more precise than the non-relational abstract domain for any

succession of operations.

We can also provide specific examples where our analysis improves over a non-relational domain:

• Reduction on related variables: in y := x+1; z := y*y; if(2 <= y <= 5) ..., the Lift(N̂)
domain can prove that 4 ≤ z ≤ 25 and 1 ≤ x ≤ 4 while N cannot. This is very useful when

analyzing machine code, which often places related variables in separate registers (and flags).

• Propagation across statements: in c := x < 7; if(c) ..., the SSA-based domain can prove

x < 7 after the if, while the Imp numeric domain cannot. Our domain thus avoids the limitation

that reduction over a condition [Granger 1992] is limited to the current statement.

9
Interval or congruence cannot represent this accurately, but a specialized 0/≠ 0 domain could be used here, or we could

use a specific rule for when 𝑒 is a comparison operator, since its value is either 0 or 1.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:19

• Remembering previously known facts: the Lift(N̂) domain can store information that the in-

terval single-value abstraction cannot remember. For instance, it can prove both

if(x!=0) assert(x!=0) and if(x*x == 4) assert(x*x==4), both of which cannot be proven

from a simple interval abstraction of x.
• Benefiting fromglobal value numbering:We could improve precision further by adding global

value numbering [Alpern et al. 1988; Rosen et al. 1988] in our Lift domain [Lemerre 2023].We could

then prove that both i and j are equal to 7 after running: i := j := 0; while(i < 7) {i++; j++}.

In general, the domain Lift(N̂) does not lose precision when analyzing a source which has

computations split across multiple statements and variables, as is often the case with machine code.

This is the strong relative completeness property, defined by Logozzo and Fähndrich [2008].

Lemma 8.2 (Strong relative completeness). Let C ∈ G→ G be the transformation that flattens
Imp program expression by writing all sub-expressions to new temporary variables, and 𝜋 a projection
that strips those newly introduced variables, then

analyseG (Lift(N̂)) = 𝜋 (analyseC(G) (Lift(N̂)))

9 EVALUATION

9.1 Evaluating using TAI

While our study is mostly theoretical, some of our claims can be validated through a practical

implementation. We are interested in the following research questions: how does SSA-based numer-

ical analysis (Lift(N̂)) compare to standard numerical analysis (N), both in terms of precision and

complexity? What overhead is introduced by using free algebra domains and the SSA lift domain?

To answer these, we have written a small abstract interpreter named TAI in OCaml, following the

definitions of this paper. It implements all domains and functors presented in this paper, and allows

combining them freely. We have run TAI on some C programs generated using CSmith [Yang et al.

2011] (limited to the constructs that Imp can represent: integer variables and non-recursive function

calls only). We then recorded the average analysis time over 100 passes. This is only the time of the

fixed-point calculation in analyse, it does not include parsing time or computation of the set𝑊 .

To validate precision, we run the analysis using N and Lift(N̂) in parallel. We compare the

precision using two metrics: the first compares the abstractions of all variables in all locations, the

second compares the abstractions of expressions that appear on outgoing edges in all locations.

Our results are presented in Table 1. We found that adding FA domains barely increases cost. It

even improves it in some case as we used hash-consing to have fast equality on the free-algebra,

thus skipping the slower numerical equality in our fixed-point computation. The SSA numeric

domain increases cost by a reasonable factor. The free algebra alone is quite fast, the SSA free

algebra is very slow mostly because of the Lift functor. Lift(N̂×̂F̂A) is faster than Lift(F̂A) since
queries on the numerical domain greatly reduce the number of nodes being considered.

In terms of precision, the SSA numeric abstraction is always equal or more precise than the

standard one. The first metric’s specific counts mean little, as variables often have the same value in

multiple locations, so a single improvement can be counted multiple times. The second metric does

not have this issue and shows that 5 to 10% of outgoing edges have a strict precision improvement

in most programs. Note that these metrics say nothing of how big that improvement is.

9.2 Practical experience

The compiling-with-abstract-interpretation method presented in this paper has also been imple-

mented as part of a generic static analysis library named Codex. It is an abstract interpreter that

supports not only the whole of C, but also a number of machine code formats (x86, ARM, AMD,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:20 Dorian Lesbre and Matthieu Lemerre

File LOC N Lift(N̂) N×FA Lift(N̂)×FA FA Lift(F̂A) Lift(N̂×̂F̂A)
c00.c 237 57 130 (2.3) 66 (1.16) 125 (2.2) 6 (0.11) 130 (2.3) 136 (2.39)

c02.c 393 87 86 (0.99) 103 (1.18) 100 (1.14) 17 (0.2) 334 (3.82) 81 (0.93)

c04.c 304 13 39 (3.09) 11 (0.9) 41 (3.25) 3 (0.25) 45 (3.54) 40 (3.15)

c07.c 397 12 25 (2.09) 12 (1.05) 27 (2.27) 9 (0.8) 131 (11.1) 27 (2.28)

c18.c 292 84 193 (2.3) 93 (1.11) 207 (2.47) 8 (0.1) 234 (2.79) 180 (2.15)

c23.c 3174 50 348 (7.02) 52 (1.05) 357 (7.2) 90 (1.82) 20.7s (418) 346 (6.98)

c24.c 11076 6.2s 20.4s (3.3) 5.3s (0.86) 19.4s (3.14) 2s (0.33) >10min 18.6s (3.01)

c29.c 2347 140 276 (1.98) 119 (0.85) 262 (1.88) 99 (0.71) 15.1s (108) 588 (4.21)

c30.c 1178 200 355 (1.77) 189 (0.95) 396 (1.98) 70 (0.35) 8.8s (44.2) 1361 (6.8)

Table 1. Execution time (in milliseconds) of our the analysis of each domain, along with the ratio (time for

this domain/time for N). All domains were passed through the query simplification functor Q, which not

mentioned in the header. LOC indicates lines of code in each file, as counted by cloc.

RISC-V), notably used in [Nicole et al. 2021, 2022]. This library is a collection of abstract domains

which lifts SSA-based numerical abstractions to standard analysis abstractions, whose interface

correspond to either the C or machine code language. Most of the code is generic (and related to the

memory abstractions, that are not covered in the present paper); the C-specific frontend requires

only 3KLOC, and the binary-specific one 4KLOC (excluding the parsers that come from external

components).

We have proved that the Lift(N̂) domain is always more precise than the direct numerical analysis,

and that it solves the small-code window problem. In practice, this domain is key to the precision

of machine code analysis, but is also very often useful when analyzing C. An important feature of

the SSA lift is that it is very easy to rewrite SSA expressions to improve precision, which is often

needed when analyzing machine code [Djoudi et al. 2016].

One of the main applications of the free algebra domain is that we can automatically produce a

simplified program that corresponds to all the traces leading to a remaining alarm or unproved

assertion. This SSA program can easily be converted to Constrained Horn Clauses for verification

by a goal-oriented software model checker like Spacer [Gurfinkel 2022] to remove these remaining

alarms. We found that the simplifications performed by the abstract interpreter are key to help

Spacer solve the formula (especially memory reasoning, which is a weak point of SMT solvers).

Note, for instance that the nature of the terms in our SSA free algebra domain implies that the

generated program is automatically sliced [Weiser 1984] for free.

10 RELATEDWORK

Abstract interpretation for compilation, and compiling for abstract interpretation. Using static

analyses to perform program transformations is the quintessential job of a compiler; we refer to

Cousot and Cousot [2002] for a formal treatment of this subject. Studying how program transfor-

mations can affect the precision of an analysis has been comparatively less studied. It is known

that functionally equivalent but intensionally different programs may yield different results when

analyzed, and thus that program transformation may affect the precision of an analysis [Bruni et al.

2020; Giacobazzi et al. 2015].

One particular instance is the loss of precision induced when analyzing a compiled code compared

to its source version. Logozzo and Fähndrich [2008] explains that compiled code analysis is less

precise because instructions have a smaller code window: typical low-level instructions are three-

address code “𝑟𝑖 ← 𝑟 𝑗 ⊕ 𝑟𝑘” or conditional jumps on the value of a flag register “if(𝑧) goto 𝑙”,

while instructions in source programs can view arbitrary large expressions with statements of the

form “𝑥 := 𝑒” or “if(𝑒)”. They then establish notions of strong completeness, asking whether an

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:21

analysis can be as precise on the source and binary executable. We prove that our SSA translation

and SSA-based non-relational domain is always more precise than the standard non-relational

abstract domain, and furthermore fulfills the strong relative completeness property, thus allowing

byte-compiled code to be analyzed as precisely as source programs using this domain.

It is common to perform a preprocessing transformation to enhance the precision of static

analyses. For instance, Djoudi et al. [2016] undoes compiler transformations to recover high-level

conditions from sequences of machine code instructions to help their static analyzer. But often, these

program transformations are performed online, during the analysis, so that the transformation can

benefit from the invariants computed by the analysis. For instance, Miné [2006] linearizes expression

and substitutes variables with their assigned expression; Boillot and Feret [2023] transform modular

arithmetic to standard arithmetic when possible. In particular, the dynamic expression rewriting

domains in MOPSA [Journault et al. 2019], used to simplify the language handled by the lower

layers of the analysis, are very similar to the transformation functors of Section 5. Symbolic domains

have also been used for the numerical properties that they can infer (e.g. to detect equalities [Chang

and Leino 2005; Kildall 1973; Lemerre 2023]), or as part of an abstract domain (for instance, Gange

et al. [2016] propagate non-relational values on terms instead of variables, similarly to our SSA-lift

on SSA non-relational domain combination Lift(N̂)).

Intertwining transformation and analysis. The traditional compiler design as a sequence of passes

allows transformations and analyses to help each other. For instance, analyses may help perform

register promotion, which will help analyses with a basic representation of memory. These im-

provements can be done in a fixed-point until maximum precision is reached. However, this will not

be as precise as doing all the analyses and transformations simultaneously [Click and Cooper 1995],

and transformations are often grouped to gain precision; sparse conditional constant propagation

[Wegman and Zadeck 1991] is a prime example of this. Abstract interpretation provides systematic

methods to combine analyses [Cousot and Cousot 1979], such as reduced products, which allows

implementing these combinations while maintaining a modular code base. In practice, reduced

products are implemented by having each analysis communicate through common abstractions

(called communication channels in Astrée [Cousot et al. 2006]). Another method for combining

analyses is the exchange of program transformations [Lerner et al. 2002]; a consequence of our

work is that this can be viewed as using the free algebra abstract domain (FA) as a communication

channel between domains. When the shared program fragment is sea-of-node SSA [Click and

Paleczny 1995], as in Rompf [2012], then the communication channel is the free SSA algebra abstract

domain.

Interpreters and compiler as (co)algebras on the program expressions. The idea of using an algebra

signature over program expressions that can correspond to concrete or abstract semantics has been

proposed in the context of structured programs. Our main contribution in this area is to use the

standard abstract domain signature to generate programs.

A very inspiring work in this area are the tagless-final interpreters of Carette et al. [2009] and
Kiselyov [2010]. In this work, the same language signature (for the PCF functional programming

language) is used to implement both a concrete interpreter, a compiler, partial evaluation/constant

propagation and transformation-passes functors that transform the program to compilation-passing

style, a formwhich is equivalent to SSA [Kelsey 1995]. Our work differs in that our analysis signature

corresponds to the abstract semantics rather than the concrete one (i.e. our work could be described

as tagless-final abstract interpretation), and targets unstructured imperative programs rather than

higher-order functional programs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:22 Dorian Lesbre and Matthieu Lemerre

It is generally desirable that the structure of an abstract interpreter or compiler mimics (or

is derived from) the structure of the concrete interpreter (see e.g. [Bodin et al. 2019; Roşu and

Serbanuta 2010]). This enables building the abstract interpreter by composing abstractions of the

different concepts of the concrete language [Darais et al. 2017, 2015; Keidel and Erdweg 2019; Sergey

et al. 2013]. While in this paper we have composed abstraction using product and functor domains,

it would be interesting to combine compiling-with-abstract interpretation with other compositional

design of abstract interpreters to produce modular single-pass compilers.

Formal verification of compiler passes. The correctness theorem on our functor domains used

as compiler passes is stuttering bisimulation between widening points of the program, which is

unusual in the field of semantic-preserving compilers [Appel 2014; Leroy 2009]. There seems to be

some benefits to these theorems. Firstly, as you cannot perform, neither in the source nor target

language, an infinite number of steps without encountering a widening point, this ensures that the

bisimulation between both traces remains synchronized. Secondly, it also allows including infinite

traces in the correctness argument. Finally, bisimulation proofs handle non-deterministic program

semantics (like the ones used in the paper), unlike the common technique of proving only forward

simulation assuming that the target language is deterministic [Leroy 2009].

11 CONCLUSION

Our contributions can be summarized using the following key messages: abstract interpreters can be

transformed into compilers by using a free algebra computing terms over the abstract domain signa-

ture. Different languages have different abstract signatures, that can be non-standard, like the SSA

abstract domain. Functor domains can be seen as compiler passes that all run simultaneously, rather

than sequentially. Combining symbolic and semantic analyses can significantly improve precision,

both in theory and in practice, as exemplified by our SSA-based non-relational abstract domain.

In future work, it would be interesting to see if lifting functor domains to compiler passes can be

an effective method to design compilers, as our practical experience with this method is limited

to the compilation of a program to horn clauses and SMT formulas. Note that even if our source

and target languages encodes conditional jumps as non-deterministism and guards, it is possible

to re-encode the result using standard target languages like LLVM [Lemerre 2023]. An important

issue is that abstract domains are usually sound but incomplete, which in the case of a functor

used as a compiler pass, means that the pass adds behaviors that are not present in the source

program. We believe however that many program transformations and corresponding functors

are both sound and complete. It is also possible that behavioral refinement [Dockins 2012], which

translates program that go wrong to executable traces, could also fit our framework; however,

passes performing choice refinement, i.e. removing determinism from the source language, does

not seem to be expressible as abstract interpretation functors. Another interesting direction would

be to see if lifting semantic soundness and completeness proofs on functor domains (as done by

Jourdan et al. [2015]) to compiler passes could be an effective method to formally implement and

verify these passes. Finally, the current analysis is limited to forward analysis. Performing any

backwards analysis (like liveness) must be done in a separate stage. It would be interesting to see if

this restriction can lifted.

ACKNOWLEDGEMENTS

This researchwas supported in part by the Agence Nationale de la Recherche (ANR) grant agreement

ANR-22-CE39-0014-03 (EMASS project).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:23

DATA-AVAILABILITY STATEMENT

The software that supports Section 9 is available on Zenodo DOI 10.5281/zenodo.10895582 [Lesbre

and Lemerre 2024a]. The Codex analyzer is available on www.codex.top [Lemerre et al. 2024].

REFERENCES

Bowen Alpern, Mark N Wegman, and F Kenneth Zadeck. 1988. Detecting equality of variables in programs, In Proceedings

of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM-SIGACT Symposium on
Principles of Programming Languages, 1–11. https://doi.org/10.1145/73560.73561

Andrew W. Appel. 2014. Program Logics - for Certified Compilers. Cambridge University Press.

Zena M. Ariola and Jan Willem Klop. 1996. Equational Term Graph Rewriting. Fundamenta Informaticae 26 (12 1996),
207–240. https://doi.org/10.3233/fi-1996-263401

JohnAycock and R. Nigel Horspool. 2000. Simple Generation of Static Single-Assignment Form. In 9th International Conference
on Compiler Construction – CC 2000 (LNCS, Vol. 1781). Springer, 110–124. https://doi.org/10.1007/3-540-46423-9_8

Gogul Balakrishnan and Thomas W. Reps. 2010. WYSINWYX: What you see is not what you eXecute. ACM Trans. Program.
Lang. Syst. 32, 6 (2010), 23:1–23:84. https://doi.org/10.1145/1749608.1749612

Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François Puget. 1999. Revising hull and box consis-

tency, In Logic Programming: Proceedings of the 1999 International Conference on Logic Programming. International
Conference on Logic Programming, 230. https://doi.org/10.7551/mitpress/4304.003.0024

Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt. 2019. Skeletal semantics and their interpretations.

Proc. ACM Program. Lang. 3, POPL (2019), 44:1–44:31. https://doi.org/10.1145/3290357

Jérôme Boillot and Jérôme Feret. 2023. Symbolic Transformation of Expressions in Modular Arithmetic. (10 2023), 84–113.

https://doi.org/10.1007/978-3-031-44245-2_6

François Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings, In Formal Methods in Programming and

Their Applications, Dines Bjørner, Manfred Broy, and Igor V. Pottosin (Eds.). Formal Methods in Programming and Their
Applications, 128–141. https://doi.org/10.1007/bfb0039704

Marc M. Brandis and Hanspeter Mössenböck. 1994. Single-Pass Generation of Static Single-Assignment Form for Structured

Languages. ACM Trans. Program. Lang. Syst. 16, 6 (1994), 1684–1698. https://doi.org/10.1145/197320.197331

Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mallon, and Andreas Zwinkau. 2013. Simple

and Efficient Construction of Static Single Assignment Form. In 22nd International Conference on Compiler Construction
(CC 2013). https://doi.org/10.1007/978-3-642-37051-9_6

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-Contreras, and Dusko Pavlovic. 2020. Abstract extensionality:

on the properties of incomplete abstract interpretations. Proc. ACM Program. Lang. 4, POPL (2020), 28:1–28:28. https:

//doi.org/10.1145/3371096

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally tagless, partially evaluated: Tagless staged interpreters

for simpler typed languages. Journal of Functional Programming 19, 05 (2009), 509–543.

Bor-Yuh Evan Chang and K. Rustan M. Leino. 2005. Abstract Interpretation with Alien Expressions and Heap Structures.
Springer, 147–163. https://doi.org/10.1007/978-3-540-30579-8_11

Cliff Click and Keith D. Cooper. 1995. Combining Analyses, Combining Optimizations. ACM Trans. Program. Lang. Syst. 17,
2 (1995), 181–196. https://doi.org/10.1145/201059.201061

Cliff Click and Michael Paleczny. 1995. A simple graph-based intermediate representation. ACM Sigplan Notices 30, 3 (3
1995), 35–49. https://doi.org/10.1145/202529.202534

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints (POPL 1977). Association for Computing Machinery, New York, NY, USA,

238–252. https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In 6th ACM Symposium on
Principles of Programming Languages (San Antonio, Texas) (POPL 1979). Association for Computing Machinery, New

York, NY, USA, 269–282. https://doi.org/10.1145/567752.567778

Patrick Cousot and Radhia Cousot. 2002. Systematic design of program transformation frameworks by abstract interpretation.

In 29th Symposium on Principles of Programming Languages (POPL 2002), John Launchbury and John C. Mitchell (Eds.).

ACM, 178–190. https://doi.org/10.1145/503272.503290

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2006.

Combination of Abstractions in the ASTRÉE Static Analyzer. In Revised Selected Papers from the 11th Asian Computing
Science Conference on Advances in Computer Science - Secure Software and Related Issues – ASIAN 2006 (Lecture Notes in
Computer Science, Vol. 4435). Springer, 272–300. https://doi.org/10.1007/978-3-540-77505-8_23

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing Static

Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (oct 1991), 451–490.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

www.codex.top
https://doi.org/10.1145/73560.73561
https://doi.org/10.3233/fi-1996-263401
https://doi.org/10.1007/3-540-46423-9_8
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.7551/mitpress/4304.003.0024
https://doi.org/10.1145/3290357
https://doi.org/10.1007/978-3-031-44245-2_6
https://doi.org/10.1007/bfb0039704
https://doi.org/10.1145/197320.197331
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1145/3371096
https://doi.org/10.1145/3371096
https://doi.org/10.1007/978-3-540-30579-8_11
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/503272.503290
https://doi.org/10.1007/978-3-540-77505-8_23

162:24 Dorian Lesbre and Matthieu Lemerre

https://doi.org/10.1145/115372.115320

David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. 2017. Abstracting definitional interpreters (functional

pearl). Proc. ACM Program. Lang. 1, ICFP (2017), 12:1–12:25. https://doi.org/10.1145/3110256

David Darais, Matthew Might, and David Van Horn. 2015. Galois transformers and modular abstract interpreters: reusable

metatheory for program analysis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA , USA, October
25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 552–571. https://doi.org/10.1145/2814270.2814308

Delphine Demange, Yon Fernández de Retana, and David Pichardie. 2018. Semantic reasoning about the sea of nodes, In

Proceedings of the 27th International Conference on Compiler Construction, Christophe Dubach and Jingling Xue (Eds.).

International Conference on Compiler Construction, 163–173. https://doi.org/10.1145/3178372.3179503

Adel Djoudi, Sébastien Bardin, and Éric Goubault. 2016. Recovering High-Level Conditions from Binary Programs. In : 21st
International Symposium on Formal Methods (FM 2016). 235–253. https://doi.org/10.1007/978-3-319-48989-6_15

Robert W Dockins. 2012. Operational refinement for compiler correctness. Ph. D. Dissertation. Princeton University.

Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-Safe Modular Hash-Consing. ML Workshop (9 2006), 12–19.

https://doi.org/10.1145/1159876.1159880

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Sø ndergaard, and Peter J. Stuckey. 2016. An Abstract Domain of

Uninterpreted Functions. In Verification, Model Checking, and Abstract Interpretation (VMCAI 2016), Barbara Jobstmann

and K. Rustan M. Leino (Eds.). Springer, 85–103. https://doi.org/10.1007/978-3-662-49122-5_4

Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. 2015. Analyzing Program Analyses. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India ,
January 15-17, 2015, Sriram K. Rajamani and DavidWalker (Eds.). ACM, 261–273. https://doi.org/10.1145/2676726.2676987

Philippe Granger. 1992. Improving the results of static analyses of programs by local decreasing iterations. In International
Conference on Foundations of Software Technology and Theoretical Computer Science. Springer, Springer Berlin Heidelberg,

68–79. https://doi.org/10.1007/3-540-56287-7_95

Sumit Gulwani and George C. Necula. 2004. A Polynomial-Time Algorithm for Global Value Numbering. In Static Analysis
Symposium (SAS 2004), Roberto Giacobazzi (Ed.). Springer, 212–227. https://doi.org/10.1007/978-3-540-27864-1_17

Arie Gurfinkel. 2022. Program Verification with Constrained Horn Clauses (Invited Paper). In Computer Aided Verification -
34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 19–29. https://doi.org/10.1007/978-3-031-13185-1_2

Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. 2015. A formally-verified C

static analyzer. ACM SIGPLAN Notices 50, 1 (2015), 247–259. https://doi.org/10.1145/2676726.2676966

Matthieu Journault, Antoine Miné, Raphaël Monat, and Abdelraouf Ouadjaout. 2019. Combinations of Reusable Abstract

Domains for a Multilingual Static Analyzer. In 11th International Conference on Verified Software Theories, Tools, and
Experiments - Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12031), Supratik Chakraborty and Jorge A.

Navas (Eds.). Springer, 1–18. https://doi.org/10.1007/978-3-030-41600-3_1

Sven Keidel and Sebastian Erdweg. 2019. Sound and reusable components for abstract interpretation. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 176:1–176:28. https://doi.org/10.1145/3360602

Richard Kelsey. 1995. A Correspondence between Continuation Passing Style and Static Single Assignment Form. In

Proceedings ACM SIGPLAN Workshop on Intermediate Representations (IR’95), Michael D. Ernst (Ed.). ACM, 13–23.

https://doi.org/10.1145/202529.202532

Gary A Kildall. 1973. A unified approach to global program optimization. In 1st annual ACM SIGACT-SIGPLAN Symposium
on Principles of programming languages (POPL 1973). https://doi.org/10.1145/512927.512945

Oleg Kiselyov. 2010. Typed Tagless Final Interpreters. In Generic and Indexed Programming - International Spring School,
SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures (Lecture Notes in Computer Science, Vol. 7470), Jeremy Gibbons

(Ed.). Springer, 130–174. https://doi.org/10.1007/978-3-642-32202-0_3

Matthieu Lemerre. 2023. SSA Translation Is an Abstract Interpretation. Proceedings of the ACM on Programming Languages
7, Article 65 (1 2023), 30 pages. https://doi.org/10.1145/3571258

Matthieu Lemerre, Julien Simonnet, Olivier Nicole, Dorian Lesbre, Iker Canut, Corentin Gendreau, and Guillaume Girol.

2024. The Codex semantic library. https://github.com/codex-semantics-library/codex. Version 1.0-beta.

Sorin Lerner, David Grove, and Craig Chambers. 2002. Composing dataflow analyses and transformations. In 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2002), John Launchbury and John C. Mitchell (Eds.).

ACM, 270–282. https://doi.org/10.1145/503272.503298

Xavier Leroy. 2009. A formally verified compiler back-end. Journal of Automated Reasoning 43 (2009), 363–446. https:

//doi.org/10.1007/s10817-009-9155-4

Dorian Lesbre and Matthieu Lemerre. 2024a. Compiling with Abstract Interpetation: Artifact. https://doi.org/10.5281/

zenodo.10895582

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/3110256
https://doi.org/10.1145/2814270.2814308
https://doi.org/10.1145/3178372.3179503
https://doi.org/10.1007/978-3-319-48989-6_15
https://doi.org/10.1145/1159876.1159880
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1007/978-3-540-27864-1_17
https://doi.org/10.1007/978-3-031-13185-1_2
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1145/3360602
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/512927.512945
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1145/3571258
https://github.com/codex-semantics-library/codex
https://doi.org/10.1145/503272.503298
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.5281/zenodo.10895582
https://doi.org/10.5281/zenodo.10895582

Compiling with Abstract Interpretation (with appendices) 162:25

Dorian Lesbre and Matthieu Lemerre. 2024b. Compiling with Abstract Interpretation (with appendices). Technical Report.
https://hal.science/hal-04535159

Francesco Logozzo and Manuel Fähndrich. 2008. On the Relative Completeness of Bytecode Analysis Versus Source Code
Analysis. Springer, Berlin, Heidelberg, 197–212. https://doi.org/10.1007/978-3-540-78791-4_14

Laurent D. Michel and Pascal Van Hentenryck. 2012. Constraint Satisfaction over Bit-Vectors. In Principles and Practice of
Constraint Programming - 18th International Conference, CP 2012, Québec City, QC, Canada , October 8-12, 2012. Proceedings
(Lecture Notes in Computer Science, Vol. 7514), Michela Milano (Ed.). Springer, 527–543. https://doi.org/10.1007/978-3-

642-33558-7_39

A. Miné. 2004. Weakly relational numerical abstract domains. Ph. D. Dissertation. École Polytechnique. http://www.di.ens.fr/

~mine/these/these-color.pdf.

Antoine Miné. 2006. Symbolic methods to enhance the precision of numerical abstract domains. In International Workshop
on Verification, Model Checking, and Abstract Interpretation (VMCAI 2006). Springer, 348–363. https://doi.org/10.1007/

11609773_23

Antoine Miné. 2012. Abstract domains for bit-level machine integer and floating-point operations. In WING’12 - 4th
International Workshop on invariant Generation. Manchester, United Kingdom, 16. https://doi.org/10.29007/b63g

Antoine Miné. 2017. Tutorial on static inference of numeric invariants by abstract interpretation. Foundations and Trends®
in Programming Languages 4, 3-4 (2 2017), 120–372. https://doi.org/10.1561/2500000034

Olivier Nicole, Matthieu Lemerre, Sébastien Bardin, and Xavier Rival. 2021. No Crash, No Exploit: Automated Verification

of Embedded Kernels. In 27th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2021). 27–39.
https://doi.org/10.1109/RTAS52030.2021.00011

Olivier Nicole, Matthieu Lemerre, and Xavier Rival. 2022. Lightweight Shape Analysis Based on Physical Types. In 23rd
International Conference on Verification, Model Checking, and Abstract Interpretation – VMCAI 2022 (Lecture Notes in
Computer Science, Vol. 13182), Bernd Finkbeiner and Thomas Wies (Eds.). Springer, 219–241. https://doi.org/10.1007/978-

3-030-94583-1_11

Fabrice Rastello and Florent Bouchez Tichadou (Eds.). 2022. SSA-based Compiler Design. Springer.
Tiark Rompf. 2012. Lightweight modular staging and embedded compilers: Abstraction without regret for high-level high-

performance programming. Ph. D. Dissertation. École Polytechnique Fédérale de Lausanne.
Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global value numbers and redundant computations, In

Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM-SIGACT
Symposium on Principles of Programming Languages, 12–27. https://doi.org/10.1145/73560.73562

Grigore Roşu and Traian-Florin Serbanuta. 2010. An overview of the K semantic framework. J. Log. Algebraic Methods
Program. 79 (2010), 397–434. https://api.semanticscholar.org/CorpusID:13756844

Sigurd Schneider. 2013. Semantics of an intermediate language for program transformation. preparation. Master’s Thesis.
Universität des Saarlandes (2013).

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013.

Monadic abstract interpreters. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 399–410. https:

//doi.org/10.1145/2491956.2491979

Vugranam C. Sreedhar and Guang R. Gao. 1995. A Linear Time Algorithm for Placing phi-nodes. In 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 1995), Ron K. Cytron and Peter Lee (Eds.). 62–73.

https://doi.org/10.1145/199448.199464

Arnaud Venet. 1996. Abstract Cofibered Domains: Application to the Alias Analysis of Untyped Programs. In Proceedings
of the Third International Symposium on Static Analysis (SAS ’96). Springer-Verlag, London, UK, 366–382. https:

//doi.org/10.1007/3-540-61739-6_53

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. 2022. Sound, Precise, and

Fast Abstract Interpretation with Tristate Numbers. In IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2022, Seoul, Korea, Republic of, April 2-6, 2022, Jae W. Lee, Sebastian Hack, and Tatiana Shpeisman

(Eds.). IEEE, 254–265. https://doi.org/10.1109/CGO53902.2022.9741267

Mark N Wegman and F Kenneth Zadeck. 1991. Constant propagation with conditional branches. ACM Transactions on
Programming Languages and Systems (TOPLAS) 13, 2 (4 1991), 181–210. https://doi.org/10.1145/103135.103136

Mark D. Weiser. 1984. Program Slicing. IEEE Trans. Software Eng. 10, 4 (1984), 352–357. https://doi.org/10.1109/TSE.1984.

5010248

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation, :SERIES: PLDI 2011, Mary W. Hall and

David A. Padua (Eds.). ACM, 283–294. https://doi.org/10.1145/1993498.1993532

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

https://hal.science/hal-04535159
https://doi.org/10.1007/978-3-540-78791-4_14
https://doi.org/10.1007/978-3-642-33558-7_39
https://doi.org/10.1007/978-3-642-33558-7_39
http://www.di.ens.fr/~mine/these/these-color.pdf
http://www.di.ens.fr/~mine/these/these-color.pdf
https://doi.org/10.1007/11609773_23
https://doi.org/10.1007/11609773_23
https://doi.org/10.29007/b63g
https://doi.org/10.1561/2500000034
https://doi.org/10.1109/RTAS52030.2021.00011
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1145/73560.73562
https://api.semanticscholar.org/CorpusID:13756844
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/199448.199464
https://doi.org/10.1007/3-540-61739-6_53
https://doi.org/10.1007/3-540-61739-6_53
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1145/103135.103136
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/1993498.1993532

162:26 Dorian Lesbre and Matthieu Lemerre

∀ ℓ (𝑠#𝑛), the sequence 𝑡#𝑛+1 ≜ D.widen(ℓ, 𝑡#𝑛, 𝑠#𝑛) stabilizes in finite time (WidenValid)

D.𝛾 (D.entry) ⊆ CS.entry (EntryComplete)

∀𝑅 𝑠#, D.𝛾 (D.apply(𝑅, 𝑠#)) ⊆ CS.apply(𝑅, D.𝛾 (𝑠#)) (ApplyComplete)

∀ 𝑆#, D.𝛾 (D.join(𝑆#)) ⊆ CS.join
{
D.𝛾 (𝑠#)

�� 𝑠# ∈ 𝑆#} (JoinComplete)

∀ ℓ 𝑠# 𝑡#, D.𝛾 (D.widen(ℓ, 𝑠#, 𝑡#)) ⊆ D.𝛾 (𝑡#) (WidenComplete)

Fig. 13. Extra hypotheses on an abstract domain D

A PROOFS

A.1 Proofs: notations and background

Figure 13 formally presents hypotheses on a domain D that were only described in the paper.

Widening should always lead to convergence: we say a sequence (𝑠#𝑛) stabilizes when it is constant

after a certain time: ∃𝑚, ∀𝑛, 𝑛 ⩾ 𝑚 ⇒ 𝑠#𝑚 = 𝑠#𝑛
10
. A domains soundness hypotheses were presented

in the top right of Figure 4, here we also state their complementary completeness hypotheses.

For abstract interpretation, we want domains to be sound (so that our analysis says something

meaningful about all program behaviors). For compilation, we want domains to be complete (so

that the compiled program behaviors are included in the source behaviors).

Let us take a domain D.

Lemma A.1 (Termination). Assuming D satisfiesWSound andWidenValid, analyse(D) reaches
a fixed point in a finite number of steps.

Proof. There are a finite number of widening points in𝑊 , which each stabilize in finite time. By

WidenValid. Thus, they are all constant after the maximum of their stabilization times. After that,

there are no loops in the program, so the remaining points also stabilize in finite time (bounded by

longest path). □

In the rest of this section, we write 𝑝#∞ ≜ analyse(D), and 𝑝#𝑛 the 𝑛-th iteration of the fixed

point computation in analyse. These verify 𝑝#∞ = 𝑝#∞ ∇𝑊 F𝑔 (𝑝#∞) and 𝑝#
0
= [ℓ0 ↦→ D.entry] and

𝑝#𝑛+1 = 𝑝#𝑛 ∇𝑊 F𝑔 (𝑝#𝑛).

Lemma A.2 (Soundness). If D is sound, then for all reachable pairs (𝜎, ℓ), we have 𝜎 ∈ D.𝛾 (𝑝#∞ (ℓ)).

Proof. By induction on the shortest path (𝜎0, ℓ0) →∗G (𝜎, ℓ) that makes (𝜎, ℓ) reachable.
If that path is empty then 𝜎 = 𝜎0 and ℓ = ℓ0. Therefore, we have 𝑝#∞ (ℓ) = D.entry and, by

EntrySound, � ⊆ D.𝛾 (𝑝#∞ (ℓ)).
For the recursive case we have (𝜎0, ℓ0) →∗G (𝜎𝑛, ℓ𝑛) →G (𝜎, ℓ) and 𝜎𝑛 ∈ D.𝛾 (𝑝

#

∞ (ℓ𝑛)). We write

𝑅0, . . . , 𝑅𝑛 the respective edge relations on this path. We can show that 𝜎 ∈ D.𝛾 (F𝑔 (𝑝#∞) (ℓ)).
Consider F𝑔 (𝑝#∞) (ℓ), it is the D.join of a set. That set contains D.apply(𝑅0, 𝑝

#

∞ (ℓ𝑛)) since
• D.𝛾 (𝑝#∞ (ℓ𝑛)) is non-empty by induction, so 𝑝#∞ (ℓ𝑛) ≠ ⊥
• G(ℓ𝑛, 𝑅𝑛, ℓ) holds by (𝜎𝑛, ℓ𝑛) →G (𝜎, ℓ).
• the D.apply is also not ⊥ else this would contradict the soundness of D.apply, (we know
D.𝛾 (D.apply(𝑅𝑛, 𝑝#∞ (ℓ𝑛))) should contain 𝜎 as (𝜎𝑛, ℓ𝑛)→G (𝜎, ℓ) implies R⟦𝑅𝑛⟧ (𝜎𝑛, 𝜎), then
use ApplySound).

10
Often in abstract interpretation, we only want to reach a post fixed point instead of a true fixed point. See Appendix B for

details on how to do so with this framework.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:27

The join set thus contains D.apply(𝑅𝑛, 𝑝#∞ (ℓ𝑛)), and the soundness of D.join and D.apply suffice

to show 𝜎 ∈ D.𝛾 (F𝑔 (𝑝#∞) (ℓ)).
If ℓ is not a widening point, then we have 𝑝#∞ (ℓ) = F𝑔 (𝑝#∞) (ℓ) and the result is shown. In the

other case, 𝑝#∞ (ℓ) = D.widen(ℓ, 𝑝#∞ (ℓ), F𝑔 (𝑝#∞) (ℓ)) so the soundness of D.widen is sufficient to

conclude. □

Lemma A.3 (completeness). If D is complete, then for all pairs (𝜎, ℓ), we have 𝜎 ∈ D.𝛾 (𝑝#∞ (ℓ)) ⇒
(𝜎, ℓ) reachable.

Proof. We show the property holds for all 𝑝#𝑛 by induction on 𝑛.

It is true at 𝑛 = 0 since 𝑝#
0
= [ℓ0 ↦→ D.entry] (by EntryComplete).

Suppose it is true of 𝑝#𝑛 , then since 𝑝#𝑛+1 = 𝑝#𝑛 ∇𝑊 F𝑔 (𝑝#𝑛) and since ∇𝑊 and F𝑔 only use complete

operations, it remains true. □

A.2 Proofs: Free algebra of the domain signature

Proof of Theorem 4.1:

Theorem 4.1. When 𝑝# = analyse(FA), G𝑝# is isomorphic to G (restricted to reachable locations,
i.e. locations ℓ such that there is a path from ℓ0 to ℓ in G) via 𝑝#:
• 𝑝# is injective (restricted to reachable locations)
• G𝑝# =

{
(𝑝# (ℓ), 𝑅, 𝑝# (ℓ ′))

�� G(ℓ, 𝑅, ℓ ′) ∧ ℓ reachable}
Proof. For the injectivity of 𝑝#, we reason by structural induction on s#, showing the following

property: “for all ℓ and ℓ ′ such that 𝑝# (ℓ) = 𝑝# (ℓ ′) = s#, we have ℓ = ℓ ′”. This is shown largely by

inspecting the fixpoint equality 𝑝# = 𝑝# ∇𝑊 F𝑔 (𝑝#) and unfolding F𝑔 and ∇𝑊 .

• Case s# = Entry, the only operation that introduces such a term is the FA.entry in F𝑔 , which
is only ever applied at ℓ0, so ℓ = ℓ ′ = ℓ0.

• Case s# = Loc(ℓ ′′), the only operation that introduces a Loc is FA.widen(, „ w)hich is only

ever applied at the point it is called, so ℓ = ℓ ′ = ℓ ′′.
• Case s# = Apply(𝑅, t#): by unfolding F𝑔, we know t# must be in img𝑝#, so we can apply

the induction hypothesis there. Conclude using the requirement that outgoing edges of Imp

nodes are uniquely labelled.

• The Join case is similar to the Apply case, just pick any element of the non-empty set: it

must be an Apply by inversion of F𝑔, so we can reuse the same reasoning.

Now for the second point.

Consider an edge G(ℓ, 𝑅, ℓ ′), assuming ℓ is reachable. Since the analysis is sound, this implies

FA.𝛾 (𝑝# (ℓ)) ≠ ∅ and therefore 𝑝# (ℓ) ≠ ⊥.
We can show that 𝑝# (ℓ) 𝑅↦−→# F𝑔 (𝑝#) (ℓ ′) holds. By definition of F𝑔 , the right-hand side is a FA.join

of FA.apply of the predecessors of ℓ ′, and ℓ is such a predecessor. The join is thus not empty, so it

is either the single element Apply(𝑅, 𝑝# (ℓ)) or the Join of a set containing it. Conclude by TApply

and TJoin.

Since 𝑝# = 𝑝# ∇𝑊 F𝑔 (𝑝#), we have two cases, either we didn’t widen at ℓ ′ (𝑝# (ℓ ′) = F𝑔 (𝑝#) (ℓ ′)),
and thus 𝑝# (ℓ) 𝑅↦−→# 𝑝

(ℓ ′) holds directly, or we performed a widening, and the same holds via TLoc.

This result is sufficient to show that G𝑝# (𝑝# (ℓ), 𝑅, 𝑝# (ℓ ′)) holds using VBase and GraphGen.

Consider now an edge G𝑝# (s#, 𝑅, t#). By definition of G𝑝# , 𝑉 (t#) holds, so by case disjunction:

• VBase case: there is some ℓ ′ such that t# = 𝑝# (ℓ ′). We have s#
𝑅↦−→# F𝑔 (𝑝#) (ℓ ′) since either ℓ ′

isn’t a widening point (and so 𝑝# (ℓ ′) = F𝑔 (𝑝#) (ℓ ′)) or it is, in which case we use TLoc.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:28 Dorian Lesbre and Matthieu Lemerre

F𝑔 (𝑝#) (ℓ ′) isn’t empty since it has an incoming transition. So it is either a Join of Apply of
predecessors of ℓ ′ or a single such Apply. Either way (optionally using TJoin), we can show

that there exists a predecessor ℓ such that s#
𝑅↦−→# Apply(𝑅, 𝑝# (ℓ)). Inverting TApply allows

us to conclude s# = 𝑝# (ℓ) and that G(ℓ, 𝑅, ℓ ′).
• VRec case: in the previous case, we have shown that if s#

𝑅↦−→# 𝑝
(ℓ ′) then there exists ℓ such

that s# = 𝑝# (ℓ). Thus by immediate recursion, 𝑉 (t#) implies t# ∈ img𝑝#, so we can always

use the base case. □

Notice that in this proof, TSelf cannot occur since we never simplify edges, and VRec is unused

as all points that would be added by it are already true by VBase. These extra constructs are only

useful when dealing with transformation functors (Section 5) which can add extra intermediate

states (which require VRec to be included) or remove no-op relations (which may require TSelf to

avoid deleting loops).

A.3 Proofs: Transformation functors as compiler passes

Proof of Lemma 5.4:

Lemma 5.4 (Functor soundness and completeness). A transformation functor F is sound if and
only if F(CS) is sound. Similarly, F is complete if and only if F(CS) is complete.

Proof. We start by the soundness proof.

The direct implication is trivial, since CS is sound.

For the reciprocal: F(CS) sound⇒ (∀D,D sound⇒ F(D) sound), let us take a sound domain D.

We only have to show ApplySound in F(D), since all other operations are equal to those of D.

Let us take 𝑅 ∈ R and 𝑠# ∈ D.�#
. We know F(D).apply(𝑅, 𝑠#) is a composition of D.apply,

D.join, and 𝑠#. (That composition may depend on 𝑅, or on 𝑠# through queries). We write it as

D.Composition(𝑠#).
• By soundness of D (and immediate induction on Composition):

CS.Composition(D.𝛾 (𝑠#)) ⊆ D.𝛾 (D.Composition(𝑠#)).
• We can show

{
𝜎 ′ ∈ �

�� ∃𝜎 ∈ 𝛾 (𝑠#),R⟦𝑅⟧(𝜎, 𝜎 ′)} ⊆ CS.Composition(D.𝛾 (𝑠#)) This is trivial
if there are no queries (Composition only depends on 𝑅). Since any query that holds on 𝑠#

will also hold on 𝛾 (𝑠#). (as the collecting semantics domain is the most precise domain).

• Thus: F(CS).apply(𝑅, D.𝛾 (𝑠#)) ⊆ F(D).apply(𝑅, 𝑠#)
• Conclude by soundness of F(CS).

The completeness proof is similar: it only inverts the set inclusions. □

Proof of Theorem 5.5: The proof requires modifying the graph generation rules a bit. Specifically,

we need to replace TJoin by two new rules:

TJoinElide

s#
𝑅↦−→# t

t# ∈ S# t# ∉ img𝑝#

s#
𝑅↦−→# Join(S#)

TJoinNoElide

t# ∈ S# t# ∈ img𝑝#

t#
If 1↦−−−→# Join(S#)

The problem with TJoin is that, when using transformation functors, an element t# that is both
in img𝑝# and in a join, since we can now remove trivial applies. This would break our graph

generation, duplicating all edges to t# (they will also go into the join), and making t# a local sink.
One solution to this is to remove t# from the new graph, but then we may lose the simulation (as

no point equivalent to t# exists in the new graph, there is only the join, which has more parents).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:29

The solution chosen here is to only carry over to the join the edges that don’t lead into the

img𝑝# (TJoinElide), and add an explicit edge for the others (TJoinNoElide). Note that with these

rules, Theorem 4.1 still holds (as TJoinNoElide is never used when all applys introduce terms). We

chose to only present TJoin in the main paper in an attempt at keeping the presentation simple.

In order to prove Theorem 5.5, we start by proving a stronger, more technical simulation result:

Lemma A.4. If F is a sound transformation functor, then for all reachable pairs (ℓ, 𝜎) and (ℓ ′, 𝜎 ′)
such that (ℓ, 𝜎) →G (ℓ ′, 𝜎 ′), we have (𝑝# (ℓ), 𝜎) →∗G𝑝# (𝑝

(ℓ ′), 𝜎 ′).

Proof. Consider a transition (ℓ, 𝜎) →G (ℓ ′, 𝜎 ′). Let 𝑅 be the associated transition. By definition

of→G , we know that R⟦𝑅⟧(𝜎, 𝜎 ′) holds.
Since FA is sound, F(FA) is also sound. Thus, by Lemma A.2, 𝜎 ∈ F(FA).𝛾 (𝑝# (ℓ)).
Since F is a transformation functor, F(FA).apply(𝑅, 𝑝# (ℓ)) is a combination of FA.apply, FA.join

and 𝑝# (ℓ), That is to say, it is a free algebra term made of Apply, Join and 𝑝# (ℓ). Looking at the
rules for our edge predicate, we can show that such a term represents a DAG between a unique

source (𝑝# (ℓ)) and a unique sink (the full term).

By soundness of F, FA.𝛾 (F(FA).apply(𝑅, 𝑝# (ℓ))) must contain 𝜎 ′. Thus, looking at the con-

cretization of the DAG term, we can show by induction on the DAG term, that there must exist a

path with intermediate states s#
1
..s#𝑛−1 and relations 𝑅1..𝑅𝑛 such that 𝑝# (ℓ) 𝑅1↦−−→# s

#

1

...↦−−→# . . .
...↦−−→#

s#𝑛−1
𝑅𝑛↦−−→# F(FA).apply(𝑅, 𝑝# (ℓ)). and (R⟦𝑅1⟧ ;..;R⟦𝑅𝑛⟧)(𝜎, 𝜎 ′) (where 𝑅1;𝑅2 is relation composi-

tion: (𝑅1;𝑅2) (𝑎, 𝑏) ≜ ∃ 𝑐, 𝑅1 (𝑎, 𝑐) ∧ 𝑅2 (𝑐, 𝑏))
• if that term is just 𝑝# (ℓ), then our path is a single vertex. Since the apply was removed, we

know by soundness that 𝑅 is no-op on 𝑝# (ℓ), thus 𝜎 = 𝜎 ′ (the empty relation composition is

equality).

• if that term is Apply(𝑅1, s
#

1
) we know there exists 𝜎 ′′ ∈ FA.𝛾 (s#

1
) such that R⟦𝑅1⟧ (𝜎 ′′, 𝜎 ′)

(by unfolding of 𝜎 ′ ∈ FA.𝛾 (Apply(𝑅1, s
#

1
))).

Apply the induction hypothesis on 𝜎 ′′ to get a path from 𝑝# (ℓ) to s#
1
, then extend that path

by one step using TApply.

• if that term is a join, we know the concretization of a join is the union of the concretization

of its elements, so we can apply the induction hypothesis directly on the relevant element,

then use TJoinElide or TJoinNoElide to turn the last path step into a step which leads into

the full join instead of the single element.

Notice that we can only use TJoinElide if the path yielded by the induction hypothesis has

non-zero length. However, if the path has length 0 then the element is 𝑝# (ℓ), so TJoinNoElide.

This is the proof step that fails when only using TJoin, as it also needs a non-zero length path.

That last step can be turned into s#𝑛−1
𝑅𝑛↦−−→# 𝑝

(ℓ ′) via TJoinElide or TJoinNoElide (if F𝑔 (𝑝#) (ℓ ′) is
a join) and TLoc (if ℓ ′ is a widening point).
All elements of the path satisfy 𝑉 : the last point by VBase and all previous ones by VRec.

This is enough to show (𝑝# (ℓ), 𝜎) →∗G𝑝# (𝑝
(ℓ ′), 𝜎 ′) since G𝑝# we have shown the edge and

vertex predicates hold along the given path. □

Theorem 5.5 (Sound functor forward simulation). If F is a sound transformation functor,
then for all reachable pairs (ℓ, 𝜎) and (ℓ ′, 𝜎 ′) such that ℓ and ℓ ′ are the entrypoint or widening points:

(ℓ, 𝜎) →+G (ℓ
′, 𝜎 ′) ⇒ (𝑝# (ℓ), 𝜎) →+G𝑝# (𝑝

(ℓ ′), 𝜎 ′)

Proof. Apply Lemma A.4 as many times as the initial path is long to get a path (𝑝# (ℓ), 𝜎) →∗G𝑝#
(𝑝# (ℓ ′), 𝜎 ′). If the obtained path has non-zero length, then the result is shown. If its length is 0,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:30 Dorian Lesbre and Matthieu Lemerre

then 𝑝# (ℓ) = 𝑝# (ℓ ′) and 𝜎 = 𝜎 ′. It is easy to show 𝑝# is injective when limited to entry or widening

points as such terms are constructed with either Entry or Loc. Thus ℓ = ℓ ′. This case is why we

have the TSelf rule, it gives us a special edge to capture the fact that ℓ is a direct predecessor of

itself. □

Proof of Theorem 5.6: In order to prove Theorem 5.6, we start by proving a stronger, more

technical simulation result:

Lemma A.5. If F is complete, then for all pairs (ℓ, 𝜎) and (ℓ ′, 𝜎 ′) such that ℓ is ℓ0 or a widening
point and (𝑝# (ℓ), 𝜎) →∗G𝑝# (𝑝

(ℓ ′), 𝜎 ′), then we have (ℓ, 𝜎) →∗G (ℓ
′, 𝜎 ′).

Furthermore, the right path has length 0 only if the left path also has length 0.

Proof sketch. Proceed by strong induction on the path (𝑝# (ℓ), 𝜎) →∗G𝑝# (𝑝
(ℓ ′), 𝜎 ′). Using

𝑝# = 𝑝# ∇𝑊 F𝑔 (𝑝#), and unfolding F𝑔, we can obtain a direct predecessor ℓ ′′ of ℓ that must be on

this path. We can use the induction hypothesis to get from ℓ to ℓ ′′, followed by completeness to get

from ℓ ′′ to ℓ ′.
There are some subtle cases when 𝑝# (ℓ ′′) is equal to 𝑝# (ℓ) (or 𝑝# (ℓ ′)), but ℓ ′′ ≠ ℓ or ℓ ′′ ≠ ℓ ′ (i.e.

when successive nodes of G have been merged into one). We have still made progress in those cases

since we cannot go through a location twice (as that would imply a loop in the source program,

which would lead to a new widening point). □

Proof. Consider a transition path (𝑝# (ℓ), 𝜎) →∗G𝑝# (𝑝
(ℓ ′), 𝜎 ′), with (ℓ, 𝜎) reachable and ℓ the

entrypoint or a widening point. Unfolding→G𝑝# , we obtain a path 𝑝# (ℓ) 𝑅1↦−−→# s#
1

...↦−−→# . . .
...↦−−→#

s#𝑛−1
𝑅𝑛↦−−→# 𝑝

(ℓ ′). We show the result for when no widening point appears on this path. If one does,

split the path where it appears, and apply the result to each segment, then compose the resulting

paths.

We proceed by strong induction on this path.

If the path is empty we have 𝑝# (ℓ) = 𝑝# (ℓ ′) and 𝜎 = 𝜎 ′. We distinguish two cases:

• If ℓ = ℓ ′ the result is immediate (empty path)

• Else ℓ ≠ ℓ ′.
ℓ ′ is not a widening point. This is because otherwise 𝑝# (ℓ ′) = Loc(ℓ ′) and since ℓ is either

the entrypoint (Entry) or a widening (Loc(ℓ)), we would get ℓ = ℓ ′ from 𝑝# (ℓ) = 𝑝# (ℓ ′).
Since ℓ ′ is not a widening point, we know that 𝑝# (ℓ ′) = F𝑔 (𝑝#) (ℓ ′). We also know 𝑝# (ℓ ′) is
either Entry or Loc(ℓ) since it is equal to 𝑝# (ℓ).
Unfolding F𝑔 , we can see that ℓ ′ must have a unique (non⊥) predecessor ℓ ′′ through a relation
𝑅 (since it isn’t a Join) and F(FA).apply(𝑅, 𝑝# (ℓ ′′)) = Loc(ℓ).
As a transformation functor, F(FA).apply can’t introduce the Loc, so it must be its argu-

ment: 𝑝# (ℓ ′′) = 𝑝# (ℓ). Thus, we have an empty path, between argument and F(FA).apply.
Completeness therefore implies that R⟦𝑅⟧ contains the empty relation composition, equality.

Therefore, for all 𝜎 ′ we have (ℓ ′′, 𝜎 ′) →G (ℓ ′, 𝜎 ′), meaning it is sufficient to show we have a

path ending in (ℓ ′′, 𝜎 ′) since that path can then be prolonged to reach ℓ ′.
We can then repeat the disjunction on ℓ ′′ = ℓ using the same reasoning. This terminates

because (1) there are a finite number of program locations (2) we cannot go through the same

location twice (else there would be a loop, which would lead to a widening point). So at some

point, we will get to ℓ .

For the recursive case, consider the last step s#𝑛−1
𝑅𝑛↦−−→# 𝑝

(ℓ ′). We would like to show s#𝑛−1
𝑅𝑛↦−−→#

F𝑔 (𝑝#) (ℓ ′), as this allows reasoning about the pre-state.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:31

• This is immediate if ℓ ′ is not a widening.
• If 𝑝# (ℓ ′) is Loc(ℓ ′) and the last edge predicate comes from TLoc, the result is true since it is

the premise of TLoc.

• Else 𝑝# (ℓ ′) is Loc(ℓ ′) and the last edge predicate comes from TSelf. This implies the path has

length one; its relation is If 1 (so 𝜎 = 𝜎 ′); the start and end match ℓ = ℓ ′; and F𝑔 (𝑝#) (ℓ) is a
Join(S#) with 𝑝# (ℓ) ∈ S#.
In that case, since F𝑔 (𝑝#) is a join that contains 𝑝# (ℓ), there is a looping path from ℓ to itself in

G. Furthermore, since the relation on this path have been erased by the functor, completeness

implies they are all trivial. Thus, this circular path in G proves the lemma in this case.

For all remaining cases, we have s#𝑛−1
𝑅𝑛↦−−→# F𝑔 (𝑝#) (ℓ ′). The right term is not ⊥ or Entry (as it

has an incoming edge), thus by unfolding F𝑔 and F(FA).join, it is either a Join of an F(FA).apply of

the predecessors, or directly an F(FA).apply of the unique predecessor. Either way (use TJoinElide

or TJoinNoElide in the first case), we know there exists a ℓ ′′, predecessor of ℓ ′ through a relation 𝑅

such that s#𝑛−1
𝑅𝑛↦−−→# F(FA).apply(𝑅, 𝑝# (ℓ ′′))

Since the path contains no Locs (as there are no widening points on it), it implies that 𝑝# (ℓ) is a
subterm of F(FA).apply(𝑅, 𝑝# (ℓ ′′)) (It is easy to show that, when only using TApply, TJoinElide and

TJoinNoElide, we have s#
𝑅↦−→# t

⇒ s# subterm of t#). Furthermore, by definition of transformation

functors, 𝑝# (ℓ ′′) is a source subterm of F(FA).apply(𝑅, 𝑝# (ℓ ′′)).
𝑝# (ℓ) cannot be a strict super-term of 𝑝# (ℓ ′′) since it is the entrypoint or a widening point (it has

no subterms and cannot be introduced by F(FA).apply), thus it is either 𝑝# (ℓ ′′) or a subterm of it.

• Case 𝑝# (ℓ) = 𝑝# (ℓ ′′)
– If ℓ = ℓ ′′, then the chain simplifies to

𝑝# (ℓ) 𝑅1↦−−→# s
#

1

...↦−−→# . . .
...↦−−→# s

#

𝑛−1
𝑅𝑛↦−−→# F(FA).apply(𝑅, 𝑝# (ℓ))

Using the completeness yields R⟦𝑅⟧ (𝜎, 𝜎 ′).
– The case ℓ ′′ ≠ ℓ is handled similarly to the initialization: ℓ ′′ isn’t a widening, so it has a

single parent ℓ ′′′ through a relation 𝑅′, and R⟦𝑅′⟧ contains equality, so showing the result

ending in ℓ ′′′ is sufficient. Repeat the disjunction on ℓ ′′′. This terminates because there is a

finite number of locations, and we cannot loop.

• If 𝑝# (ℓ) is a strict subterm of 𝑝# (ℓ ′′) then either 𝑝# (ℓ ′′) appears on the path, or it is equal to

the path’s last term 𝑝# (ℓ ′). In the first case, use the recursion hypothesis on the first segment

to obtain a path from ℓ to ℓ ′′, followed by completeness for the (non-empty) path from ℓ ′′ to
ℓ ′.
The second case is the third time we run into the 0-step problem: 𝑝# (ℓ ′′) = 𝑝# (ℓ ′) and ℓ ′′ ≠ ℓ ′.
It is solved in the same way as the first two occurrences: we can show that (ℓ ′′, 𝜎 ′)→G (ℓ ′, 𝜎 ′)
by completion; and that ℓ ′′ has a parent that satisfies the same hypotheses, and that we will

eventually take a non-zero step along our path since there are a finite number of locations,

and we cannot loop.

In all cases, we have taken a step in G, so we know the new path will not have length 0. □

Theorem 5.6 (Complete functor backward simulation). If F is a complete transformation
functor, then for all entry or widening points ℓ , ℓ ′, and for all 𝜎 , 𝜎 ′:

(𝑝# (ℓ), 𝜎) →+G𝑝# (𝑝
(ℓ ′), 𝜎 ′) ⇒ (ℓ, 𝜎) →+G (ℓ

′, 𝜎 ′)

Proof. Apply Lemma A.5 as many times as the initial path is long to get a path (ℓ, 𝜎)→∗G (ℓ
′, 𝜎 ′).

Since the initial path is not empty, we also know this new path is not empty. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:32 Dorian Lesbre and Matthieu Lemerre

A.4 Proofs: Lifting SSA domains to Imp domains

Proof of Theorem 7.1: we start by proving the following technical lemma.

Lemma A.6 (SSA forward simulation). For all reachable pairs (ℓ, 𝜎) and (ℓ ′, 𝜎 ′) such that
(ℓ, 𝜎) →G (ℓ ′, 𝜎 ′):
• For all (Γ#, Γ) such that C((ℓ, 𝜎), (Γ#, Γ)), there exists (Γ′#, Γ′) such that we have both
C((ℓ ′, 𝜎 ′), (Γ′#, Γ′)) and (Γ#, Γ)⇝∗

ˆG𝑝#
(Γ′#, Γ′).

• There exists (Γ#, Γ) such that C((ℓ, 𝜎), (Γ#, Γ))
• The (Γ#, Γ)⇝∗

ˆG𝑝#
(Γ′#, Γ′) is of length 0 only when ℓ ′ has a single predecessor.

Proof sketch. For existence, Γ# is uniquely determined by 𝑝# (ℓ) and Γ exists by soundness and

definition of Lift(F̂A).𝛾 . For the other point, proceed by disjunction on F𝑔 (𝑝#) (ℓ ′), which is either

the same SSA term Γ# as in 𝑝# (ℓ), an Assûme(𝑒, Γ#), or Joîn containing either Γ# or Assûme(𝑒, Γ#).
These case yield paths of lengths 0, 1, 1 and 2 respectively. □

Proof. Take (ℓ, 𝜎) and (ℓ ′, 𝜎 ′) reachable such that (ℓ, 𝜎) →G (ℓ ′, 𝜎 ′) via a relation 𝑅. Since

both are reachable, their values through 𝑝# are not ⊥ by soundness. Let us denote (𝜎#

0
, Γ#) ≜ 𝑝# (ℓ)

and (𝜎#

1
, Γ′#) ≜ 𝑝# (ℓ ′). Soundness also implies 𝜎 ∈ Lift(F̂A).𝛾 ((𝜎#

0
, Γ#)) so, by unfolding Lift(F̂A).𝛾 ,

we know there exists Γ such that ∀ 𝑥, ˆE⟦𝜎#

0
(𝑥)⟧(Γ) = 𝜎 (𝑥). This proves the second point. For the

first, take any Γ that satisfies this property.

We know ℓ ′ ≠ ℓ0 since it has a predecessor ℓ . Furthermore, if ℓ ′ is a widening point, we can use

TLocSSA to obtain a new Γ′# with the same transitions which is equal to the one in F𝑔 (𝑝#) (ℓ ′). In
the remaining cases, we have Γ′# equal to the one in F𝑔 (𝑝#) (ℓ ′).
The term built by F𝑔 is a Lift(F̂A).join of Lift(F̂A).apply of the predecessors (which include ℓ).

Looking how these map to our SSA operations, we notice four cases: joinmay or may not introduce

a Joîn, and apply may or may not introduce an Assûme.

• If 𝑅 is a guard “If 𝑒”, then an Assûme is introduced; since the guard holds on (𝜎, 𝜎 ′), we also
know 𝜎 = 𝜎 ′ and E⟦𝑒⟧(𝜎) ≠ 0. Therefore, we also have

ˆE⟦subst(𝑒, 𝜎#

0
)⟧(Γ) ≠ 0, which

implies that (Γ#, Γ)⇝ ˆG𝑝#
(Assûme(subst(𝑒, 𝜎#

0
), Γ#), Γ).

If no join is introduced, then we know Assûme(subst(𝑒, 𝜎#

0
), Γ#) = Γ′# and 𝜎#

0
= 𝜎#

1
. We set

Γ′ ≜ Γ. We have a path of length 1, and the property on Γ′ is immediate given the one on Γ.
If a join is introduced, let 𝐵 be the set of bindings for the Γ# branch. We define Γ′ ≜
unbind ˆG𝑝#

(Γ′#, bind(𝐵, Γ)) and we have (Γ#, Γ) ⇝ ˆG𝑝#
(Assûme(𝑒, Γ#), Γ) ⇝ ˆG𝑝#

(Γ′#, Γ′).
This is a path of length 2.

To show the condition on Γ′, take a variable 𝑥 :
– If 𝑥 isn’t in dom𝐵, then its values are equal in all join branches. This means 𝜎#

1
(𝑥) = 𝜎#

0
(𝑥).

It also implies that that expression was in scope in all branches and therefore is still in

scope at the join. So its evaluation is neither modified by unbind ˆG𝑝#
(in scope), nor by

bind(𝐵, Γ) (not in dom𝐵).
Thus,

ˆE⟦𝜎#

1
(𝑥)⟧(Γ′) = ˆE⟦𝜎#

0
(𝑥)⟧(unbind ˆG𝑝#

(Γ′#, bind(𝐵, Γ))) = ˆE⟦𝜎#

0
(𝑥)⟧(Γ) = 𝜎 (𝑥) =

𝜎 ′ (𝑥)
– Otherwise, it is bound to a new variable 𝑥Γ′# . Thus, it is in scope of Γ′# and not removed by

unbind ˆG𝑝#
. Furthermore, 𝐵 must bind 𝑥Γ′# to 𝜎

#

0
(𝑥), so evaluating it also yields the same

value.

• If 𝑅 is an assignment “𝑥 := 𝑒”, no Assûme is introduced; and 𝜎 ′ = 𝜎 [𝑥 ↦→ E⟦𝑒⟧(𝜎)].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:33

If no join is introduced then we know that Γ′# = Γ# and 𝜎#

1
= 𝜎#

0

[
𝑥 ↦→ subst(𝑒, 𝜎#

0
)
]
hold.

We set Γ′ ≜ Γ. We have a path of length 0. All that needs to be shown is the property on

Γ′, which is true for all variables except 𝑥 trivially, and true on 𝑥 by compatibility between

subst and E⟦·⟧. This is the only case where the path has length 0, and it implies ℓ ′ only has

a single predecessor (no join). Thus, it proves the third point.

If we introduce a join, let 𝐵 be the set of bindings for the Γ# branch. We define Γ′ ≜
unbind ˆG𝑝#

(Γ′#, bind(𝐵, Γ)) and we have (Γ#, Γ)⇝ ˆG𝑝#
(Γ′#, Γ′). This is a length 1 path. Show-

ing the condition on Γ′ is the same as in the previous case with a join. □

Theorem 7.1 (SSA compilation forward simulation). For all reachable pairs (ℓ, 𝜎) and (ℓ ′, 𝜎 ′)
such that ℓ and ℓ ′ are entry or widening points, for all 𝑠 ∈ ˆS we have:

(ℓ, 𝜎) →+G (ℓ
′, 𝜎 ′) ∧ C((ℓ, 𝜎), 𝑠) ⇒ ∃ 𝑠′ ∈ ˆS, C((ℓ ′, 𝜎 ′), 𝑠′) ∧ 𝑠⇝∗

ˆG𝑝#
𝑠′

Furthermore, there exists an 𝑠 ∈ ˆS such that C((ℓ, 𝜎), 𝑠) holds.
Finally, if 𝑠⇝∗

ˆG𝑝#
𝑠′ has length 0, then ℓ ′ is not a true loop head (it has a single reachable predecessor).

The condition on ℓ ′ when paths have length 0 means it is either an extra point added to𝑊 (not

a loop head in the initial program), or it is the head of a loop that is syntactically never taken (e.g.

while (...) {...; break; }). When combining SSA translation with transformation functors,

it can also be the head of a loop that our analysis proves to be broken before completing the first

iteration (e.g. while (c) when c = 0, or while (...) {... if (c) break; } when c ≠ 0).

Proof. We apply Lemma A.6 as many times as the input path is long, and then compose the

resulting paths. □

Proof of Theorem 7.2: we start by proving the following technical lemma.

Lemma A.7 (SSA backward simulation). For all paths (Γ#, Γ)⇝∗
ˆG𝑝#
(Γ′#, Γ′) such that Γ# and

Γ′# appear in img𝑝#:
• For all (ℓ ′, 𝜎 ′) such that C((ℓ ′, 𝜎 ′), (Γ′#, Γ′)), there exists (ℓ, 𝜎) such that (ℓ, 𝜎) →G (ℓ ′, 𝜎 ′)
and C((ℓ, 𝜎), (Γ#, Γ)).
• There exists (ℓ, 𝜎) such that C((ℓ, 𝜎), (Γ#, Γ))

Proof sketch. We show the result on paths that don’t go through img𝑝#, composing them if

needed. Γ′# is in the image of 𝑝#, so it has the same transitions as those to a F𝑔 (𝑝#) (ℓ ′) term. Thus,

we have the same cases four cases as in Lemma A.6. We can use the no 𝑝# on the path hypothesis

to ensure the start 𝑝# (ℓ) of our path must match Γ#. This requires a bit of work for the length 0

case though. □

Proof. Take (Γ#, Γ)⇝∗
ˆG𝑝#
(Γ′#, Γ′) such that Γ# and Γ′# appear in img𝑝#. We show the result

for when the path does not go through the image of 𝑝#, since the general case can be established by

splitting the path around nodes that are in the image of 𝑝# and applying the result to each segment.

Γ′# is in the image of 𝑝#, so there exists ℓ ′ and 𝜎#

1
such that (𝜎#

1
, Γ′#) = 𝑝# (ℓ ′). We can then define

𝜎 ′ ≜ [𝑥 ∈ L ↦→ ˆE⟦𝜎#

1
(𝑥)⟧(Γ)] which shows existence.

For the rest of this proof, take ℓ ′ and 𝜎 ′ such that C((ℓ ′, 𝜎 ′), (Γ′#, Γ′)).
The same reasoning as in the previous theorem shows we can take Γ′# to be the same as F𝑔 (𝑝#) (ℓ ′)

without changing the path. The term built by F𝑔 is a join of apply of the predecessors of ℓ ′. These
predecessors are in the image of 𝑝#.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:34 Dorian Lesbre and Matthieu Lemerre

Looking how these map to our SSA operations, we notice the same four cases as before in the

previous lemma (Lemma A.6). They imply that a path from a predecessor not going through the

image of 𝑝# is either empty, an Assûme, a Joîn, or a Joîn of an Assûme. Furthermore, these are the

only paths that reach Γ′#, so one of these predecessors must correspond to the path coming from

Γ#. Let us denote it ℓ and its associated relation 𝑅.

If the path from 𝑝# (ℓ) is non-empty, it must correspond to Γ# (Otherwise, the path from Γ# would
go through a point in img𝑝#). If the path is empty, then either 𝑝# (ℓ) ≠ (_, Γ#), then we can choose

a ℓ ≠ ℓ ′ (else Γ′# has only one parent, itself, and so Γ# = Γ′#). We can repeat this process until we

find a ℓ that matches Γ#. This terminates because there is a finite number of program locations.

There must then exist 𝜎#

0
such that (𝜎#

0
, Γ#) = 𝑝# (ℓ).

• If there is no Assûme, then by inverting apply, we know that 𝑅 is an assignment “𝑥 := 𝑒”.

If there is also no Joîn, the path is empty. Γ# = Γ′#, Γ = Γ′ and 𝜎#

1
= 𝜎#

0

[
𝑥 ↦→ subst(𝑒, 𝜎#

0
)
]
.

Choosing 𝜎 ≜ [𝑥 ∈ L ↦→ ˆE⟦𝜎#

0
(𝑥)⟧(Γ)] is then sufficient. It indeed verifies the compat-

ibility with Γ, which, combined with the compatibility between Γ′ and 𝜎 ′, implies 𝜎 ′ =
𝜎 [𝑥 ↦→ E⟦𝑒⟧(𝜎)] by compatibility between subst and E⟦·⟧.
If there is a Joîn, the path is a single transition labelled by bindings: Γ#

𝐵
↩−→# Γ

′#
. We therefore

have Γ′ ≜ unbind ˆG𝑝#
(Γ′#, bind(𝐵, Γ)). Furthermore, if we denote𝜎#

2
≜ 𝜎#

0

[
𝑥 ↦→ subst(𝑒, 𝜎#

0
)
]

𝜎#

1
is equal to 𝜎#

2
on the variables not in dom𝐵 and renames those in dom𝐵 to 𝑥Γ′# . Note that 𝐵

maps these variables to their value in 𝜎#

2
. Therefore, for all 𝑥 , ˆE⟦𝜎#

1
(𝑥)⟧(Γ′) = ˆE⟦𝜎#

2
(𝑥)⟧(Γ′).

So again, it is sufficient to choose 𝜎 ≜ [𝑥 ∈ L ↦→ ˆE⟦𝜎#

0
(𝑥)⟧(Γ)] and 𝜎 ′ ≜ [𝑥 ∈ L ↦→

ˆE⟦𝜎#

1
(𝑥)⟧(Γ)] to show the results.

• If there is an Assûme, then by inverting apply, we know that 𝑅 is a guard “If 𝑒”.

If there is also no Joîn, the path is a single transition Γ#
𝑒
↩−→# Γ

′#
. This transition implies that

Γ = Γ′, 𝜎#

1
= 𝜎#

0
and

ˆE⟦𝑒⟧(Γ) ≠ 0. Choosing 𝜎 ≜ [𝑥 ∈ L ↦→ ˆE⟦𝜎#

0
(𝑥)⟧(Γ)] is then sufficient.

It indeed verifies 𝜎 = 𝜎 ′ ∧ E⟦𝑒⟧(𝜎) ≠ 0 and the compatibility with Γ by definition.

If there is a Joîn, the path is made of two transitions:

Γ#
𝑒
↩−→# Assûme(𝑒, Γ#)

𝐵
↩−→# Γ

′#

We therefore have Γ′ ≜ unbind ˆG𝑝#
(Γ′#, bind(𝐵, Γ)). Furthermore, 𝜎#

1
is equal to 𝜎#

0
on the

variables not in dom𝐵 and renames those in dom𝐵 to 𝑥Γ′# . Note that 𝐵 maps these variables

to their value in 𝜎#

0
. Therefore, for all 𝑥 , ˆE⟦𝜎#

1
(𝑥)⟧(Γ′) = ˆE⟦𝜎#

0
(𝑥)⟧(Γ).

So again, it is sufficient to choose 𝜎 ≜ [𝑥 ∈ L ↦→ ˆE⟦𝜎#

0
(𝑥)⟧(Γ)] to show the results. □

Theorem 7.2 (SSA compilation backward simulation). For all SSA states (Γ#, Γ) and (Γ′#, Γ′)
where Γ# and Γ′# appear in img𝑝# as images of widening or entry points, and for all 𝑠′ ∈ S we have:

(Γ#, Γ)⇝+
ˆG𝑝#
(Γ′#, Γ′) ∧ C(𝑠′, (Γ′#, Γ′)) ⇒ ∃ 𝑠 ∈ S, C(𝑠, (Γ#, Γ)) ∧ 𝑠→+G 𝑠

′

Furthermore, there exists an 𝑠′ ∈ S such that C(𝑠′, (Γ′#, Γ′)) holds.

Proof. Apply Lemma A.7 as many times as the input path is long, and compose the results. □

A.5 Proofs: SSA based numerical analysis

Proof of Lemma 8.2:

Lemma 8.2 (Strong relative completeness). Let C ∈ G→ G be the transformation that flattens
Imp program expression by writing all sub-expressions to new temporary variables, and 𝜋 a projection

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:35

that strips those newly introduced variables, then

analyseG (Lift(N̂)) = 𝜋 (analyseC(G) (Lift(N̂)))
First, let us define the C transformation a bit more formally. We define Ce a transformation that

transforms an expression into a list of assignments and a simple expression (either a constant or a

variable) as follows:

Ce ∈ E→ (𝐿(X × E) × E) (𝐿(𝑋) ≜ 𝑋 ∗ is the set of finite lists of 𝑋)
Ce (𝑧) ≜ ([], 𝑧)
Ce (𝑥) ≜ ([], 𝑥)

Ce (𝑒ℓ ⋄ 𝑒𝑟) ≜ (𝑎ℓ ++ 𝑎𝑟 ++ [(𝑦, 𝑥ℓ ⋄ 𝑥𝑟)], 𝑦) (++ is list concatenation)
𝑦 is fresh, (𝑎𝑖 , 𝑥𝑖) ≜ Ce (𝑒𝑖)

Ce (𝑒𝑐 ? 𝑒𝑡 : 𝑒 𝑓) ≜ (𝑎𝑐 ++ 𝑎𝑡 ++ 𝑎𝑓 ++ [(𝑦, 𝑥𝑐 ?𝑥𝑡 :𝑥 𝑓)], 𝑦)
𝑦 is fresh, (𝑎𝑖 , 𝑥𝑖) ≜ Ce (𝑒𝑖)

From this compilation of expression, C transforms full Imp programs by replacing every edge

with a chain of edges, as generated Ce. All but the last edge of the chain are assignments, given by

the list, and the last edge is the same as the original edge, but whose expression was replaced by

the simple expression returned by Ce.
These definitions are meant to be close to those of Logozzo and Fähndrich [2008]. They are

slightly adapted to better fit our model. We do not have two distinct language for source and target:

our source is Imp and our target Imp but only using simple expressions (whose depth is at most 1).

Proof. The gist of the proof is to show that all domain operations verify the property, assuming

their argument do. The result is then obtained by structural induction.

We first show that applying a single relation, or applying the chain of relation from the compiled

version will lead to the same state (after removing the new temporary variables).

All but the last relation in the state are assignments. By definition of Lift.apply, these do not

modify the SSA state, only the mapping of Imp variables to program expressions. For the last

operation, the expression is first transformed to an SSA expression via subst. This function will

unfold the definition of all variables until it reaches a constant or an SSA expression, thus undoing

the compilation transformation.

We know that subst will remove all introduced variables since the only variables it cannot

simplify are those mapped to SSA variables. As it stands, SSA variables are only introduced if a

variable is used before it is defined (𝑥ent̂ry variable), or if a variable has different values in different

branches of a join (𝜙-variable, 𝑥joîn{ ...}). Both cases cannot occur for the newly introduced variables

since, by definition of Ce, it is clear that new variables are always defined before being used.

Furthermore, new variables are only defined once, so they cannot appear in multiple branches of a

join.

Thus evaluating (with subst) the full relation directly, or evaluating each assignment, then the

compiled (simplified) expression will yield the same result. Furthermore, the SSA state in unchanged

by evaluating the assignments, and only new variables in the variable store are changed. Hence,

after removing the new temporary variables, both abstract states are the same.

To generalize this result, all we need is to show that the other domain operations (entry, join,
widen) also verify this property. Lift(N̂).entry doesn’t depend on the input program graph, so it

is always true. For the Lift(N̂).join, notice that the SSA state is again unchanged in both versions,

since it only depends on the parent SSA states, and the variables that differ in each branch. For the

variable store, the join only keeps common variables, leaving them unchanged if they are equal

in all branches, and introducing a new variable if not. As argued above, new variables are only

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:36 Dorian Lesbre and Matthieu Lemerre

introduced for original program variables. Thus removing the extra variables doesn’t affect them

and maintains the property.

Finally, the Lift(N̂).widen is called at the same places on both graphs. It only affects the SSA state

(which is the same in both graph), and only renames the newly introduced variables in the store

(which are all variables from the original Imp program). Therefore, it also verifies the property.

Since all domain operations yield the same state (after stripping extra variables) when run directly

or run on the compiled version, it stands to reason that the full analysis (result of a finite number

of applications of such domain operations) also has this property. □

B USING AN ORDER RELATION TO REACH A POST FIXED POINT

For our analysis in Section 3.3, the hypothesis WidenValid requires our domains widening to

converge to a true fixed-point. Often in abstract interpretation, we relax that hypothesis to a post

fixed-point. To do so, we need a new domain function, a pre-order relation on �#
:

⊑ ∈ P(�# × �#)

It should be compatible with the domain order: ∀ 𝑠# 𝑡#, 𝑠# ⊑ 𝑡# ⇒ 𝛾 (𝑠#) ⊆ 𝛾 (𝑡#). We extend ⊑ to a

relation on �
#

⊥ by having ⊥ be a minimal element.

With this, we can weaken WidenValid to simply say the sequence 𝑡#𝑛+1 ≜ widen(ℓ, 𝑡#𝑛, 𝑠#𝑛)
reaches a post-fixed point in finite time: ∃ 𝑛, 𝑡#𝑛+1 ⊑ 𝑡#𝑛 . However, to prove convergence we now

need monotony hypotheses for two reasons:

• To ensure that once we will keep decreasing after we reach a post fixed point (𝑝#𝑛+1 ⊑ 𝑝#𝑛),
and so can stop at any time after that.

• To ensure that non widening points converge, since otherwise it is possible that although 𝑝#𝑛
decreases on the widening points, it does not do so on non-widening points.

Overall, this leads to a weaker hypothesis on widen, but requires stronger hypotheses on apply and

join:

∀ 𝑠# 𝑡# 𝑅, 𝑠# ⊑ 𝑡# ⇒ apply(𝑅, 𝑠#) ⊑ apply(𝑅, 𝑡#) (ApplyMonotone)

∀ 𝑆#𝑇 #, (∀ 𝑠# ∈ 𝑆#, ∃ 𝑡# ∈ 𝑇 #, 𝑠# ⊑ 𝑡#) ⇒ join(𝑆#) ⊑ join(𝑇 #) (JoinMonotone)

C PERFORMING FEWERWIDENINGS USINGWIDENING EDGES

C.1 Definition of widening edges

Since widening (calling widen) can lead to loss of precision, we want to do so as little as possible.

As defined the analysis (Section 3.3) calls widen on all loop heads. This notably includes heads of

unreachable loops. To avoid this, a simple improvement is to only widen at ℓ ∈ 𝑊 if one of its

predecessors is not ⊥.
While we are considering predecessors, we can do even better by limiting widening to prede-

cessors coming from inside the loop. Indeed, it is possible that the analysis detects that one edge

of the loop is not taken. This is especially possible with transformation functors (Section 5) and

numerical analysis (Section 5.3). This is expresses by having the corresponding apply evaluate to ⊥.
In that case, the loop is already broken: we have no need to widen at the head.

To take advantage of this fact, we replace our set of widening points𝑊 with a set of widening
edges 𝑈 ∈ P𝑓 (L × R × L). Formally, this is a subset of the program graph G that should contain at

least one edge in every looping path. In practice, we use the weak topological order [Bourdoncle

1993] and define𝑈 as the set of edges returning to a component head from inside said component.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

Compiling with Abstract Interpretation (with appendices) 162:37

This choice is not only practical, it is also optimal. Indeed, if the analysis detects a false edge, all

subsequent loop locations will be unreachable (⊥). So, if any edge of the loop is eliminated, then

the last edge will also be eliminated.

With this new set, we can define a new widening operator:

𝑝# ∇𝑈 𝑞# ≜ ℓ ↦→ widen(ℓ, 𝑝# (ℓ), 𝑞# (ℓ)) if ∃ ℓ ′, (ℓ ′, 𝑅, ℓ) ∈ 𝑈 ∧ apply(𝑅, 𝑝# (ℓ ′)) ≠ ⊥
| ℓ ↦→ 𝑞# (ℓ) otherwise

Here, the condition for widening is more complex than that of ∇𝑊 . We only widen if we are at the

end point of a widening edge ((ℓ ′, 𝑅, ℓ) ∈ 𝑈) and that edge is taken (apply(𝑅, 𝑝# (ℓ ′)) ≠ ⊥).

C.2 Ensuring convergence

With this definition, we can still prove soundness (Lemma A.3) and completeness (Lemma A.3)

fairly easily, but termination (Lemma A.1) is harder. Indeed, the set of widening points is no longer

fixed. It might vary across iterations.

Increasing it is fine: if we can prove that once we start widening at a given point we always will,

we can still show convergence. This is because in that case, the set of widening points is increasing

across iterations, and bounded by the finite set of points that appear in𝑈 . Thus, it converges and

the proof from Lemma A.1 still works.

Lemma C.1 (Monotone case). If our transfer functions apply and join are monotone (verify
ApplyMonotone and JoinMonotone), then the set of widening points is monotone.

Proof. Start by proving that for all 𝑛, we have ∀ ℓ, 𝑝#𝑛 (ℓ) ⊑ 𝑝#𝑛+1 (ℓ). This can be done by strong

induction on 𝑛.

• For 𝑛 = 0, consider the case ℓ ≠ ℓ0. Then 𝑝#
0
(ℓ) = ⊥, which is a minimal element. For the ℓ0

case, we have 𝑝#
1
(ℓ0) = entry = 𝑝#

0
(ℓ0).

• For the induction case, we can have 𝑝#𝑛−1 (ℓ) ⊑ 𝑝#𝑛 (ℓ) by induction hypothesis.

– If we widen at ℓ at 𝑛 + 1, the result is given by WSound.

– If there is no widening the result is shown by monotonicity of F𝑔, immediate given Apply-

Monotone and JoinMonotone.

– We cannot widen at step 𝑛 but not 𝑛 + 1. Otherwise, there exists ℓ ′ such that (ℓ ′, 𝑅, ℓ) ∈ 𝑈
(does not depend on 𝑛); 𝑝#𝑛−1 (ℓ ′) ≠ ⊥ (also true at 𝑛 since 𝑝#𝑛−1 (ℓ ′) ⊑ 𝑝#𝑛 (ℓ ′) by induction

and ⊥ is minimal); and apply(𝑅, 𝑝#𝑛 (ℓ ′)) ≠ ⊥ (also true at 𝑛 since apply is monotone and

the same reasoning as the previous point). Thus, we will also widen at step 𝑛 + 1.
Repeat the reasoning of the last point to show that ∀𝑛 ℓ, 𝑝#𝑛 (ℓ) ⊑ 𝑝#𝑛+1 (ℓ) implies the lemma. □

Non-monotone non-convergence. For the non-monotone case, we can find examples of non con-

vergence. For instance, consider the interval domain of Section 3.4. We could define non-monotone

transfer functions. Consider this function for the + operator:

[1 : 1] ®+ [1 : 1] = [1 : 4]
[1 :+∞] ®+ [1 : 1] = [2 :+∞] ⊉ [1 : 4]

Combine with edge elimination for false guards, this can lead to non-convergence. An example of

such a program is given in Figure 14. The analysis will not converge since will alternate between

widening at point 1, which leads to a more precise value at point 2, which leads to not considering

the widening-edge 2→ 1, so no longer widening at 1, which leads to imprecision at point 2 which

fails to eliminate the back edges...

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

162:38 Dorian Lesbre and Matthieu Lemerre

0

1

2

𝑥 := 1

𝑥 := 𝑥 + 1 If 𝑥 = 1

Fig. 14. Example of non-convergence for non-monotone programs

Forcing monotony. One workaround is to force the monotony of the set of widening points. We

remember the points where we widened in previous iteration and keep widening there. Formally,

we define the analysis no longer just on a function 𝑝#, but on a pair (𝑝#, 𝐿) where 𝐿 ∈ P(L), starting
at (𝑝#

0
, ∅). The transfer function just applies F𝑔 to the first component. For the widening change

the condition in ∇𝑈 to “. . . ∨ ℓ ∈ 𝐿”, and change 𝐿 to the set of points where we widened.

C.3 Performance cost of widening edges

The new widening operator ∇𝑈 can be computed with almost the same complexity as ∇𝑊 . Indeed,

the apply(𝑅, 𝑝# (ℓ ′)) ≠ ⊥ part of the condition is already computed in F𝑔 . By memorizing the points

for which this is true, we can evaluate the widening condition by simply testing, for each of these

predecessors, if they correspond to a widening edge. This means we have replaced one set lookup

per point ℓ (check if ℓ ∈𝑊) to multiple set lookups (for all predecessors ℓ ′, check if (ℓ ′, 𝑅, ℓ) ∈ 𝑈).

Thus added complexity comes from points which have lots of predecessors, or loops with many

paths returning to the head (e.g. loops with continue statements, which can lead to𝑈 being much

larger than𝑊). In most programs, both of these will be bounded by reasonable constants.

Another performance lost comes from slower convergence. Since we only widen when we find a

loop, we need to propagate through each loop at least twice to ensure convergence. Once before

widening, and once more after (since widening likely changes the loop head). This wasn’t a problem

with widening points since we always widened at the head, and thus avoided the first pre-widening

pass.

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 162. Publication date: June 2024.

	Abstract
	1 Introduction
	2 A small example
	3 Notations and background
	3.1 Notations
	3.2 Imp syntax and semantics
	3.3 Abstract interpretation of Imp
	3.4 Example: non-relational numeric domain

	4 Free algebra of the domain signature
	4.1 Definition
	4.2 Concretization as a set of states
	4.3 Concretization as a program graph

	5 Transformation functors as compiler passes
	5.1 Transformation functors
	5.2 Simulation theorems
	5.3 Product functors

	6 SSA signature and SSA free algebra
	6.1 SSA syntax and semantics
	6.2 SSA domain signature
	6.3 Free algebra of the SSA domain signature

	7 Lifting SSA domains to Imp domains
	7.1 The SSA lift functor
	7.2 Compiling to SSA

	8 SSA based numerical analysis
	8.1 The SSA numeric domain
	8.2 Combination of SSA-based analysis and online SSA translation

	9 Evaluation
	9.1 Evaluating using TAI
	9.2 Practical experience

	10 Related work
	11 Conclusion
	References
	A Proofs
	A.1 Proofs: notations and background
	A.2 Proofs: Free algebra of the domain signature
	A.3 Proofs: Transformation functors as compiler passes
	A.4 Proofs: Lifting SSA domains to Imp domains
	A.5 Proofs: SSA based numerical analysis

	B Using an order relation to reach a post fixed point
	C Performing fewer widenings using widening edges
	C.1 Definition of widening edges
	C.2 Ensuring convergence
	C.3 Performance cost of widening edges

