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Existence results for problems involving non local operator with an
asymmetric weight and with a critical nonlinearity

Sana Benhafsia *and Rejeb Hadiji'

Abstract

Recently, a great attention has been focused on the study of fractional and non-local operators
of elliptic type, both for the pure mathematical research and in view of concrete real-world applica-
tions. We consider the following non local problem on H(€2) C L% (Q), with ¢, := 2%, s €]0,1]
and n >3

/np(“’”)</n |“|£(E)_y|nig )da: /|u )|“de, 1)

where 2 is a bounded domain in R™,p : R® — R is a given positive weight presenting a global
minimum py > 0 at a €  and A is a real constant. In this work we show that for ¢ = 2 the infimum
of @) over the set {u € H{(S), ||ul|Le (o) = 1} does exist for some k, s, A and n and for ¢ > 2 we
study non ground state solutions using the Mountain Pass Theorem.

Keywords: Critical Sobolev exponent, non local operator, fractional Laplacian, minimizing problem.
2010 AMS subject classifications: 35J20, 35J25, 35H30, 35J60.

1 Introduction, notations and statement of the results

1.1 The fractional non-linear problem with weight and its relation with the ordi-
nary non-linear problem

Let © be a smooth bounded domain of R", n > 3. We are interested in the following non-linear
problem involving the fractional Laplacian, for v € H(€2)

R™ xR™ Q

|z —y["+e

- / ()|~ 2u(z) p () da
Q

for any ¢ € H5(€2), where the space H(2) is defined by

H5(Q) == {u e L*(Q), w € L*(R" x R™\ Q° x Q),u(z) =0,Yz e R*\ Q},  (3)
T —Y|2
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2 < q < g, with g, is the critical fractional Sobolev exponent ¢, := —2%-, A > 0. Note that it is

n—2s’
well known that the embedding H§(Q2) < L"(f2) is continuous for any 1 < r < f_’;s Moreover this
embedding is compact for 1 < r < nz_’;s, see ([5], lemma 1.31). We assume that p : R — R is a

positive bounded weight in C*(R"™), we assume also that p represents a global minimum pg at a € Q
and satisfies in B(a,4n), n >0, k> 0 and k > 1

p(x) < po+ klz —alr. (4)

We remind that for p = 1, (2)) is the weak variational of the following problem

(—A)su — M2y = |u[= 2y in (5)
u=0 in R™\ Q,

which was studied in [5] when ¢ = 2,n > 4s and X €]0, A\ 5[ where A; s denotes the first eigenvalue
of the non local operator (—A)® with homogeneous Dirichlet boundary datum. In this paper, we will
break the symmetry of the problem by introducing the weight p as described before. we extend the
result which was already done in the ordinary Laplacian in [I9] to the case of the fractional Laplacian.
Other authors gave a basic introduction to the fractional Laplacian operator, see [23] and references
therein, see also [2], [B], [5] and [24] where authors dealt with non local fractional problems. Some
other authors studied variants of the fractional Laplacian, see [15], [21] and [10].

Let us take p defined as previously in (), s €]0,1[ and n > 3, we define the infimum S, \(p) by

s =t ([ p ([ MO g [ ). o)

l[ullLas mny=1

The study of the infimum (@), shows that the existence of minimizers depends, apart from parameter
A, on the behavior of p near its absolute minima and the geometry of the domain €.

The well known fractional Sobolev inequalities were first considered in a remarkable paper by Lieb
in [20]; see also [13]; [11] or the survey [23].

Let us compare this work to what is known in the literature concerning problems related to the
Yamabe problemin the local case

S\p)= inf Ammwwm&m—a@mmﬁm, (7)

ueH}(Q)
[lullLa)=1

where ¢ = % is the critical exponent for the Sobolev embedding Hg (Q) C L%(€2). In [19], the authors
treated the case where the problem presents a positive weight with the ordinary Laplacian (s = 1).
They proved in particular, the existence of minimizers of Sy(p) for 0 < A < A¥ if n > 4 and k > 2,
and for \* < \ < le ifn >3and 0 < k < 2, k = 2 is critical for the problem, and in other
subcases which are well detailed in ([19],Theorem 1.1) with k is a positive constant that appears in
the expression of the weight p, A% is the first eigenvalue of —div(p(x)V.) on  with zero Dirichlet
boundary condition and \* is a positive constant. The method used for the proof of this result is, first

to show that Sy(p) < poS, with S is the best Sobolev constant defined by

Si=— inf /Q Vu(z)|2dz, (8)

ueH(R™)
||| Lagrny=1



then, they prove that the infimum Sy(p) is achieved. In the same context, similar questions were
studied in [16] where the author investigate the problem with a weight and a nonvanishing boundary
datum and in [I§] where authors dealt with a non-linear eigenvalue problem with a variable weight.

The problem involving the ordinary Laplacian in the case where p is a constant was originally
studied by Aubin in [I] and Brezis-Nirenberg in [9], see also [6], [4] we refer to [2I] for a complete
history of the problem and geometrical motivations.

The authors dealt in [26] with a non ground state solutions in the fractional Laplacian case without
weight. The solutions are constructed with a variational method by a min-max procedure on the
associated energy functional.

In [I5] the authors formulated a fractional s-Yamabe problems that include the boundary Yam-
abe problem studied by Escobar, see [I2]. They highlight a Hopf-type maximum principle together
with interplay between analysis of weighted trace Sobolev inequalities and conformal structure of the
underlying manifolds and they obtained some properties for the fractional case that are analogous to
the original Yamabe problem, see [12].

1.2 Some definitions

One of the aims of this paper is to study non local problems driven by (—A)® (or its generalization)
and with Dirichlet boundary data via variational methods. For this purpose, we need to work in a
suitable fractional Sobolev space: for this, we consider a functional analytical setting that is inspired
by (but not equivalent to) the fractional Sobolev spaces in order to correctly encode the Dirichlet
boundary datum in the variational formulation. This section is devoted to the definition of this space
as well as to its properties. Therefore, before setting the main result, we start by defining the fractional
Laplacian and the fractional Sobolev spaces.

Let s €]0,1[. Up to normalization factors we define the non local operator (—A)* : S(R") — L?(R")
by

. 'LL(.T) — u(y)
—A)’u(x) = lim ———="dy, 9
( ) ( ) =07t R\ B(z,e) ’x y’n+2s ( )

with x € R", B(x,¢) is the ball centered in z € R" of radius e.

We define the Sobolev space H*(R™) the set of functions u such that they are square integrable
and their fractional Laplacian (—A)2w is also square integrable:

|u(z) — u(y)?

s ny .__ . n 2 n
H(R).—{U.R —HR,UGL(}R)and/ o — |t

R xR™

drdy < +oo}. (10)
H?*(R™) is endowed with the norm defined as

u(z) — u(y)|? 2
s(pn) +— n —d d .
[[ull s mny = [|ul|p2 @ny + </R"><R" o — g[r2s Tay

We know that H*(R") endowed with the norm ||.||s(rn) is a Hilbert space.
Thus, H{(€2) is a subspace of H*(R") and is defined simply as in [5] by

H(Q) = {u € H*(R");u =0 a.e. sur Q°}.



The norm in H(2) is defined as follows

_ 2 3
N@) = |lu + </ Md$d > .
)= sy + ([ Pt g,

This norm is equivalent to

1

Ju(z) — u(y)? ) 2

ullgs ) = —=dxdy | ,
ety </]R"><]R" |z — y[rt2s

see ([5], lemmal.28) and ([13], lemma 3.1). We notice that the following identity ||ul|ps o) = H(—A)%UHLz(Rn),
gives the relation between the fractional Laplacian operator (—A)® and the fractional Sobolev space

H3(92), see ([, (4.35)).
In this present paper, H{(£2) will be the functional analytic setting because the classical fractional

Sobolev space approach not sufficient for studying the problem, see [3], [5], [26].

We start by recalling some notations and some remarks which will be useful. First, We will start
by giving some important definitions afterwards. Let denote by Ss(p) := Sso(p) and Ss := S 0(1) the
weightless case. Let’s denote by u. s, an extremal function for the weightless Sobolev inequality for
the fractional Laplacian operator. Let us fix n > 0 such that

B(a,4n) C Q (11)

For x € R" and ¢ > 0,

- g
Ue,s,0() = (m ; (12)
then we set
Ue 5.0(x) = Ue s,0(2)¥(x), (13)

where U € CF(R"™) such that 0 < ¥ <1, ¥ =1 in B(a,n) and ¥ = 0 in B(a,2n)°, with 1 is a postive
real.

We have ‘
(=A) 5t a(@) Bz gy = K (14)
the square integration of u. 5, goes as follows
Hua,s,aH%Z(Rn) = K2,552S + O(En_2s), (15)
the ¢s norm is given by
e s.all s ny = K2 + O(), (16)

and for any n > 4, s €]0,1[,q € [2, gs[ we have

_ g(n—=2s) q(n—2s)

HUE,&quLq(Rn) = K&qgn > +0( ) (17)

~ d d
with K>, is a positive constant, K, , = / y Ky = / ( Y and Kl; = 9.
Rn ( n

’ 14 y2) 1+ [y[2)» K



Note that for n = 3,5 < %, q € [2,qs[ (I7) holds true. In order to present our main results, we will
need to introduce the first eigenvalue with weight A; , s associated to the minimizing problem ({@l):

2
u(z) —u(y
oo ([ )
Alps = min - - 4 .
B | tuta)as

(18)

4

Let us take

Ey\(u) := /np(x)</n %dy)dw — )\/suqdaz.

For the sake of clarity, let us analyze a blow up around a minima of p which we suppose 0, we are
led to the study F)(v:) where v, is defined by by v(z) = s_"/qsve(f) and Q. = ¢7'Q. Note that if
llv]lg, = 1 then ||vg||q, = 1. We have

v,
E)\(Ua) = pO/ ‘( 2?]8’ d.Z'+€ / "T‘k/ ’ E ‘n+28)‘ d dx

a(n—2s)
—)\E”_T/ vildx.
1>

q(n—2s) n— Un=2s)
s 2

(19)

When ¢ > 2 and k > n — dominates the one related to £F

provided that the quantity

, the term related to e

/n’ ‘k/n v (@ ‘n+28)‘ dyds (20)

is finite, so we find that the energy get strictly below the critical value pZ® S2*, while in the case where
g =2 and k > 2s we expect that F)(v) < poSs, then S x(p) is achieved.

It is important to mention that, since the problem is not local, at infinity the term \x!k has an
impact on the integral (20]) which is not finite in general for v € H{(€2), so that we will restrict
ourselves to specific values of k.

We expect a competition between the local character of the weight and the non-local character of
the operator. It turns out that the local nature of the weight wins. The presence of weight pushes
the problem to be non-local. In other words, when k is smaller than n — 4s, we find that the local
character dominates, on the other hand when k is large we expect that the problem does not admit
solutions.

In (@), if we take A = 0 we get the following nonexistence result.

Proposition 1.1. If A =0, s €]0,1[ and 2 < k < n —4s then S o(p) = poSs,0(1) and Ss0(p) is never
achieved.

Proof : Let s €]0,1] and 2 < k < n — 4s. We recall the notations Ss(p) := Ss0(p) and S5 := S5 0(1).
By Theorem24] please see section 2, we write

2
ms.<S.0< [ [ '“‘x)_ ,Zi;;”( I dydz < pos, + (1), (21)
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as € tends to zero. Then we get Ss(p) = poSs.
We suppose that Ss(p) is achieved by some function u € Hg(€2) such that ||ul|qs gn) = 1, then

|2d dz < |“ Ju(@) —u)P g 22
n n ‘x - ‘n+28 v n 7L ’n+28 y = po 5 ( )

2
Therefore, Sy = / / T +28| dydz, |[u||fes mny = 1 which means that S is achieved by a
n n y

function u € H{(£2) and thls is absurd. See [20], see also [13] , [11] or [23]. O
In what follows, we will concentrate on the case where A > 0.

1.3 Statement of the main results

Let us announce the main statements of this paper. We state two Theorems where in the first, we
prove existence of minimizers of S; x(p) in the presence of a linear perturbation.

Theorem 1.2. Let € be an open, bounded subset of R™ with continuous boundary. Let p be as defined
in @), n>3 and 2 <k <n—4s. The following statements hold true

1. If n =3 and s €]0,1] orn = 4 and s €]0,3] or n =5 and s €]0, 3] there exists a constant
C = C(n,s, k) >0 such that for every k €]0, CA[ we have S5 x(p) is achieved.

2. If n > 6 and s €]0,1], there exists Cy := C(n, s, k) > 0 such that for every A €]0, 1] and for
every k €]0,Ca)[, SsA(p) is achieved.

The second Theorem is dealing with problem (2l), we prove that it has non ground state solutions
with a subcritical pertubation by proceeding with a min-max technique using the Mountain Pass
Theorem.

Theorem 1.3. Let Q be an open, bounded subset of R™ with continuous boundary. Let Suppose that
ke [2,n—4s|. If 2 < g < qs then we have

1. If n > 4 then for every s €]0, 1] and there exists Ao > 0 such that for every 0 < A < X\g problem
@) has a nontrivial solution u € H{(L2).

2. If n = 3 then for every s €0, %[ and there exists A\g > 0 such that for every 0 < A < Ao problem
@) has a nontrivial solution v € H{ ().

In the case where ¢ = 2 then we have

1. Ifn =3 and s €]0,1] orn =4 and 5 €]0,3] or n =5 and s €]0, 3] there exists a constant
C =C(n,s, k) >0 such that for every rk €]0, CA[ we have problem (2) has a nontrivial solution
u € Hj(2)

2. while if n > 6 and s €]0,1[, there exists Cy := C(n,s,k) > 0 such that for every X\ €]0, A1, s
and for every r €]0, Co)[, problem @) has a nontrivial solution u € H(12).



1.4 Structure of the paper

The paper is structured as follows. The next section §2, proves the a-priori estimate S5 x(p) < poSs.
TheoremI.2] which is the first main result of this paper, is proved by mathematical adequate technique
using the previous section in order to get existence of minimizing solutions to S, \(p). In section
83 we carry out non ground state solutions using the minimax technique and proving the Mountain
Pass Theorem in the general case. We investigate also a subcritical approximation and we adopt the
strategy used from [9] to prove Theorem by choosing a suitable test function.

2 Existence of minimizers

First of all, let us prove that the infimum S; z(p) does exist if A < Ay, . In fact, since by definition

of ALp,s We write
[ v [ MOt )a N Lo ] n—’?;x)__yﬁg?fdy)dﬂ?.

= D, — L
[ luta)as By [ lu@)Pds

Then

/7Lp($)</n|u';)_ |Z(+28 > /\/|u )|2da >/\1ps/|u |dx—)\/|u )|2dx -

= (s — ) /Q () d.

Therefore, we deduce immediately that if A < Ay, ,, then

, Ju(z) — u(y)|® > /
f dy |dx — A dx > 0.
uEI]HPS(Q) /n p(x) ( /n |$U - |n+2s v |u | .

l[ullLas gry=1

So that, the infimum S; »(p) exists.
The following Theorem plays a crucial role to prove existence of solutions, it is an adaptation of an
original argument due to [9] in the context of Yamabe’s conjecture.

Proposition 2.1. Let s €]0,1] and let a weight p satisfying @). If Ss(p) < poSs, then Ssa(p) is
achieved.

Proof : Let us recall the expression of Ss x(p):

s =t [ s [ O ) [ )P 1)

[lul| Las (rr)=1

Let (u;) a minimizing sequence of S x(p), then ||u;||pe®n) = 1 and

L . Wrx— ﬁfizs)' dydz = M3 = Ssa(p) + o(1), 3)



as j tends to +oo.

Since (u;) is bounded in H(€2), we extract a subsequence still denoted by (u;) such that, (u;) tends
weakly to u in H(Q) (since H(€2) is reflexive space). Then (u;) tends strongly to u in L?($2), and
(uj) tends to u almost everywhere in 2, with

l[w]|pas mny < 1. (26)

Let’s take v; := u; — u then (v;) tends strongly to 0 in H(€2) and (v;) tends to 0 almost everywhere
in .
By the definition of S, \(p) and S, we have,

/np(:E) /n |UJ’( ) ’:i_(gs” dydz > poSs,

then

U4 u
/ / | j |ni—2s)| dyd:E B S (p) + 0(1) > pOSs - Ss,)\(p) + 0(1),

as j tends to +o0, therefore
Allull22 gy > PoSs = Ssa(p) > 0.

Therefore u # 0. Using the definition of S5, we obtain

foro( [ oo [ e [ MR s

+2/np($) /n (U($) - U(y))(vj($) - U](y))dydzn o )\||u||%2(Rn) _ Ss,)\(p) _1_0(1)’

|z —y|"+>

as j tends to +0o. We define a scalar product on H(€2) by

< U, v >p= /np(x) /n (’U,(Z') — u(y))(v(x) — U(y))dydzn, (28)

|z —y["+e

for all u,v € H§(Q). It’s obvious that the norm associated with this scalar product is equivalent

to the ordinary norm over H{(£2). Then, / p(m)/ (u(z) = T(y))(z‘}fzi?s — W)
Rn Rn r—=1y

as j tends to +00. On the other hand, Since (v;) is bounded in L% (€2) and (v;) tends to 0 almost

everywhere in ), we deduce from a result of Brezis-Lieb, see [§] that:

dydzx tends to zero

1+ 0511 ey = Nl Tas ey + 110511 s ey + 0(1), (29)

as j tends to +o00. Therefore
1= ul|%, gy + 5] %, ey + 01),
as j tends to +o0. Since [|u||pes (rn) < 1 then

1< JJull s @y + 10511700 ey + (1),
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as j tends to +oo. Denoting by v; := . Since we have

J
[lvill Las (rm)

7 . 5. 200 _ ,,|n+2s
ws.< [ plo) [ B ZBOPe Pt

we obtain

1 lv; () — v;(y)|?
1< ||U||%qs(Rn) + m /n /n J ‘n]+25 dydﬂf +O( )

as j tends to +o00. Since we have already proved that S, A(p) > 0, we deduce from (BI]) that

s )\ Vi
Sua0) < Sur@)lul ooy + 22 [ plo) [ ) Wj’ dydz + of1),

as j tends to +oo. Combining (27)) and (I29]), we obtain

/R p(m)(/n ’U‘;)_ ’Zizs > A/ |U:17 2dx + gnp /n |U]\x)_ ‘Z]Jr(2s)| dydz

[03(2) = v3(w)|
< Sun @l oy + 522 [ pla) [ Py + o),

as j tends to +oo. Thus,

[ v ([ MOt Yas [ juoas
< Sua Ol ey + [ 222 1] [ gt [ 1B g0 o),

as j tends to +o00. Since S, \(p) < poSs, we deduce

/np@)(/n%d)dl‘ A/lu )Pdr < Son ()13 0 gy

This means that v is a minimum of S (p).

(30)

(31)

(32)

(33)

(34)

(35)

0

Remark 2.2. In the case where the weight p and X are such that —oo < S5 (p) < 0, we prove that

the infimum Ss A(p) is achieved. In fact, as in 26) we have [[ul|fqs ®mny < 1, then

Ss,)\(p) < Ss,)\(p) | |u| |%¢Is (R™)~

Again, we deduce [33) from 21).

Remark 2.3. If S;x\(p) is achieved by a function u € H{(Q2), then u > 0. In fact, thanks to the
following inequality ||uj(z)| — |u;(y)|| < |uj(x) —u;(y)|, if (u;) is a minimising sequence of Ss(p),
(luj]) is also a minimising sequence. Therefore, we take a positive minimizing sequence of S A(p).



2.1 A priori estimate on S, ,(p)

We need to prove the following proposition and the techniques that it uses since it constitutes an
official key in order to apply PropositionZ.1l

Theorem 2.4. Let s €]0,1[, n >3 and 2 < k < n — 4s. Then the following estimate holds true

o 2
p(x |u€757ll(x) uE,Sya(y” d:z:dy Sposs _1_/410628 +0 6n—2s +0 6k-‘,—25 , 36
|z — y["+2e

as € tends to zero and C' is a positive constant depending on k, s and the dimension n.

Proof : First of all and without loss of generality, we assume that a = 0 and we note U, ;0 = U. 5
Ue 5,0 = Ug,s-

The proof makes use of the following estimates and is a bit complicated definetly more difficult than
the one for similar results in the case of the fractional Laplacian without weight as it is in the [5] that
we will inspire from it to accomplish the proof.

We easily see that for p > 0 and = € B(0, p)¢, then

n—2s

|u5,s(:17)| < |U€,S($)| <Ce z, (37)

for any ¢ > 0 and for some positive constant C, possibly depending on 7, p, s and the dimension n.
We mention that the following assertions hold true
(a) For any € R" and y € B(0,7n), with |z —y| < 7,

n—2s
|ue,s(2) = ues(y)| < Ce= |z —yl. (38)

(b) For any x,y € B(Ovn)c7
n—2s .
|u€,8(33) - ue,s(y)| <Ce 2 mln{l, |3j - yl}, (39)

for any ¢ > 0 and for some positive constant C, possibly depending on 7, p, s and n
Let us begin the proof of the Theorem. We introduce the notations

D= {(z,y) € R" x R" ;2 € B(O,n),y € BO,n)", v —y| > 1} (40)

and
E:={(z,y) € R" x R" 12 € B0.n).y € BO.n)", |e —y| < 7}, (41)

where 7 is as in (II]).

10



By (3], we have that

k|u s Ue s k|U s )_ ( )|
/ ) / ot W;s ® gy / / e
777 777

_ 2
+2/ |x|k|ue,s($) us,s(y)| d:Edy
D

T — y|n+2s

(42)

_ 2
+2/|x|k|ue,s(x) us,s(y)| dxdy
E

T — y|n+2s

fu s<> ()
/ . / el vy

We start by treating the first term in the right hand side. For s €]0,1[,2 < k <n —4s and ¢ > 0,

let us denote by
_ 2
Agpe = / |x|k< / Ue.s () Uj;(y” dy | dz. (43)
|z|<n ly|<n |z — y[r 2

Proposition 2.5. For s €]0,1[, 2 <k <n —4s and € > 0, we have

As,k,e < CE2S; (44)

where C' is a positive constant depending on s,k and the dimension n.

Proof : Performing a change of variables in ([@3]), we obtain

2
1 1 1
Asks :Ek/ ’x‘k/ — — — dyda;
k, ) — +2 n n—2
elst Juist VTR ) () (45)
_gk/ / |$| |z|2 dydx
w2 Jpi<2 (1 +[22)"2° (L4 1p2) "3 yre

on the other hand, we have

- =1 ot~ ol P
. & y|2 —|x
2( — 2 |_yI2 Xz ) A
(1 + ‘x’2)n722.5 (1 + ‘ ’ )n 2s — ’fk(x) fk(y)‘ + ‘ (1 + ’y‘ )n 2s ( 6)
k
with fi.(t) := %,t € R™
(I4]eh) 72
As a consequence, in order to obtain the inequality (@4]), we will prove these two following assertions
fi(@) = fuly)?
dyd 4
/x<’7 /y<’7 ]a; — ‘n+2s yar < 400, (47)
and k »
||z — [yl o
dydzr < +2s 4
/I:c|<" / <z (1+ |y |2)n—2s|z — y|n+2s ydr < C"+ C"¢ , (48)

11



where C” and C” are two positive constants depending on s,k and n. We start proving (47)). For A
a subset domain of R", we define the function 14 by Vo € R™, 14(x) =0if x ¢ A and 14(z) = 1 if
x € A

Let v > 0. at first we take the case where |z — y| > .

[ lao-nr,,
nJlz—y|>y ‘Z’ - y‘
|| / / ly*
<2 / / dydz +
< n Sy (1 |2[2)" 728 |2 — y|nt2e n Sy (L [y[2)n 72 |2 — g2

2 lpoqe(e— / / lyl* 1)@ —y)
—9 ! Y gyd ’ dyd
<// Are)= oy 2 YT o fo Tr )= o — g Y

= 4/n(9k * h)(y)dy,

where g and h are functions defined by, for all ¢t € R™,

t]*

150,y (t)
(1 + [t[2)n=2s’

gu(t) = JR(1) = and h(t) = ot

Provided that k < n—4s, we have g, € L'(R"). Since s > 0, h € L'(R"). This implies g, xh € L'(R")
and we have

gk * Al wny < [lgkllzr @)A1 gny < +o0,
thus,

|fi(@) — fr(y)?
dydx < 4o00. (50)
/" /x Y=y ’x - y‘n+2s

Now, let’s take the case where |z — y| < ~, we apply Taylor’s formula we get

|fi(x) — fu(y) / / |y|* 1
d dr <C dydzx
/n /x yl<y |;17 - y|n+2s . y|<'y (14 |y|2)"=2s |z — y[nt2s—2
< 400

k
Since the convolution product of the integrable functions gx(x) = W, x € R™ and ((z) :=
‘lj;‘)ﬁ;ffﬁ ,z € R™ is well defined and finite, we have

12



| fr(x / / | fr(x ()|
dydz
/|m|<" /y|<" |$— |”+2s n Jrn |<L"— |"+23
/ / | fe( n+(28)’ dyda
nJlr—yl<y ‘x_y’

[fi(@) = fr@)?
dyd
/"/|m y|>y |l‘— |n+2s !

§é<+oo,

where C is a positive constant depending on s,k and the dimension n.

Now, in order to prove ([48]), we will need to prove some lemmas. Before that, let us explain the sketch
of the proof. First we treat the integral in [{S8) over the set {z,y € R", |z —y| < v < 1}, where v > 0,
and we divide this case into two cases, the first is where |z| > R and |y| > R. For the second, we
compute [])) for [z| < R, |y| < R. After that, we move to the second part, we treat the integral in
([@8) over the set {x,y € R™, |z — y| > ~}.

Lemma 2.6. Let v, R € R and s €]0,1[. We have
1) Let 8> 0,2 <k <2542 and let the set A defined by A := {x,y € R, |x—y| < v,|z| > R,|y| > R}.
Then, there exists §1 := 01(7, R, k, 3) > 0 such that for all x,y € A we have

k k2
22 = |y|2|* < 81|z — yl*|y]*. (52)

2) Let k > 2 and let the set B defined by B := {x,y € R",|x —y| <, |x| < R,|y| < R}. Then, here
exists 0y := 09 := 02(R, k, s) > 0, such that for every x,y € B, we have

P2 |l 2 = [y|2 * < ol — y. (53)

Proof : We start by proving the first assertion.
1)We introduce the function G defined for x,y € A by

k k2

|27 = ly|2]

|z — y|?ly|*

Proving (52]) remains to prove that G is bounded by some d; > 0 which doesn’t depend on x and y.
If k = 2, we have ||z| — |yH2 < |z — y|?, then

G(l‘,y) =

1
G(x7y) S |y‘2ﬁ

IN
‘H
|
—~
ot
=~
~—
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Let 2 < k <28+2. Let f(z) := |:17|§,x € R". We have for z € R", Df(x) = §|x|%_2$ By the
inequality of finite increments applied to the function f we have for z,y € R"”

k E k E_
lyl2 = zl2] < 5 swp Jy+t(z —y)l2 "z —yl, (55)
te(0,1]

then since 2 < k < 28 + 2, we have for z,y € A

ly+ t(x — y)|F2
Glz,y) <E sup
* t€[0,1] ’?J‘%

12 2 o=y
< T sup [yl "F2 +t 28
te(0,1]

sl ez ey |2
k i r—Y
< T<’y‘ k=2 4 =3 >
ly| F=2

k—2
1
< —k+2+128 + ZB>
R F-2  REF2

= 01.

IN

Thus, for all z,y € A, G is bounded on A and (52)) yields.
2) We proceed as previously. If k£ = 2, we have

_ 2 _
w22 2] = yl|” <yl -yl
< R¥ %z —y|? (57)

= Golw — y|?.
w15 — 15 |”
Let k > 2 and let H(z,y) :== |y|>~% =
some do which does not depend on x and y.

By 1) we have for z,y € R"

, x,y € B. Our aim is to prove that H is bounded by

k k2 K2 k—2 2
|ly|z — ||| <7 osw fyFt(z =)l -yl (58)
te[0,1]

Since for t € [0,1], z,y € B, we have |y + t(x — y)| = [tz + (1 — t)y| < |z| + |y| < 2R, then

X X 2
I = fol#)” <

< R -yl

Using the fact that & > 2, we have for z,y € B,

14



2 - —2s
H(z,y) <% (2R)F2y|*2
< ok—A47.2 pk—2s (59)

= 09.

Therefore, H is bounded over B and the result follows.

We move, now, to prove ([@8)) and we take |[x —y| < v < 1.
Let R > 0, we have two cases
1) If |#| > R and |y| > R, we apply the first assertion of the previous lemma for 3 < § —2s and 2s < 2

k k
2|5 — |y|5 | / / W*  lpoy(z—y)
dyde <96 ! dxd
/A\x—ywnﬂs(my\ 2)n-2s Y Y fan Jen (U4 Py o — ylrizs2 Y

60
= 51 / hl * g1 (Z)dZ ( )
R
< o0,
where hy and g; are defined by
|2|* gy (2)
hl(Z) = W and gl(Z) = W (61)

Since 8 < & — 2s, iy € L'(R") and since 2s < 2, g1 € L'(R"). Therefore hy x g; € L'(R").
2) If |[x] < R and |y| < R, we apply the second assertion of the previous lemma for n > 4 and a > 2s

k k
llel — Jyl2 |’ / / ly|*=2  1poq(T—y)
dydxr <o ’ dzd
I e LY W e e

62
b+ g1(2)ds (02
R
< o0,
where hy and g1 are the functions defined by
. |2[25-2 1oy ()
hl(Z) = W’ and gl(Z) = W (63)
Since n — 65 +2 > 0, by € L'(R") and since 25 < 2, g1 € L'(R"). Therefore hy * g; € L*(R™).
Finally we get
k k2
[lz[2 —Jyl2| ~
dydx < Cy < +00, 64
fode oS : o

where Cj is a positive constant depending on s, k,n. Now, to finish the proof of (48]), it remains to
study the integral in [#8)) over the set I'. := {z,y € R" such that |z| < Z,|y| < £ and |z —y| > 7}.
Let

k|2
j2l% — 3|
X ::/ ‘ dydzx. 65
S L T WP Pl = g (65)
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We have

X. <2 / " +/ [2I* dyda (66)
T\ Ayl =yt o (1 [yl |a -yl

We will treat both of the terms of the sum (G6]). The first term will be treated as a convolution
product of the functions h. and gz, where

lgo.n (2)
hE(Z) _ B(0,2)\B(0,7)

B ,2 € R™ and g, is already defined by gx(z) = ‘x‘kn,%,x € R™. Since

(1+]z[?)
k < n — 4s, the function g € L*(R™) and it’s obvious that the function h. € L'(R") (as a bounded

continuous function in R™) and we have

—2s

Cn —2s _2s —2s Y
|[hell L1 () 23( N e +477) < 7 (67)
So, their convolution product is integrable and by (67)) we deduce
ul* S— < |lgr * hel| < lgwll IR < (Cy < 400, (68
I (1 + ’y‘g)n_gs ’x — y‘n+28 Yyar = ||gk el |LL(R?) = 9k LY(R™) [[te || LY (R) = ©2 ) )

where Cy is a positive constant depending on s, k and n.
Now, we treat the second term of the sum in (G6l).

||
/ (1 + ’y‘2)n—2s‘x _ y‘n+2s 1B(07'Y)C (‘T - y)dydx

|z|*
< /|m|<7_] /n (1+ |y|2)n—25|x _ y|n+25 13(0,’7)6(95 — y)dydzx

|z|*
< 1 c(x —y)dydx
B /B(o,g)\B(og) /3(0,1) (1 + [y]2)n=25[z — y[n+2s B0 (== y)dy

|z[*
+ 1 e(x —y)dyd
/B(o,z) /R"\B(O,l) (1 + )25z — y[n+2s B0 (= = y)dyda

]t
1 el —
* /Bm,z) /Bm,l) T+ P2 le — gpies 20 (@~ y)dyde

TR p—
BO,")\B(0.2) JrR\B(0,1) (14 [y[?)" 28]z — y["+>

1B(0,y) (z — y)dydzx

Let’s start by the first term in the sum (©9). Since for |y| < 1, Wl)ﬁg <land|z—y| > |z]|—|y| >
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|x] — 1. Then we write

jl*
1 c(x —y)dydx
/ B(0,2)\B(0,2) /B( 1y (L4 [y?)r=2sle — y[n+2s Bom<l )
k
(0,2)\B(0,2) / B(0,1) |z =y
j*
< —————dyd 70
—/ \302/ 1 (a — 1)o¥2s yax (70)
g tk-i—n—l
¢ /2 |t— 1|n+2s
< 6€—k+287

where ¢, is a positive constant corresponding to the measure of the unit sphere of R™ and ¢ is a
positive constant depending on s, k and n.
For the second and third term of the sum in (69), since |z — y| > 7 then we get

|z|*
dydx
/3(0,2) /IR"\B(O,l) (1 + |y[?)n=28|x — y|n+2s Loy (x = y)dy

‘x’k (71)
" / / = g0,y (z — y)dyda
B(0,2) JB(0,1) (1 + ’y‘2)n 23‘% _ y‘n+2s B(0,v)
<a
where ¢; is a positive constant depending on s, k and n.
For the fourth and last term of (69]), we have
k
/ / n|3;|s ni2s B(O,'\/) ( y)dydm
BO,2\B(02) JR"\B(0,1) (1 + [y*)" 2|z — y]
: / / o 1 (z — y)dydx (72)
~ JB(0,2)\B(0,2) /B(0,2)\B(0,1) (1 + |y]2)"=25|2 — y[n+2s B(0,7)

Bk
B(0,2)\B(0,2) / B(0,2)° (1 + [y[*)n=2s]z — y[nt2s B0

y)dydz

To estimate the first term of the sum on the right hand side in (72)), we use the fact that if  and y
are such that |z —y| >y and 1 < |y| < 2 we have

ol oyl g Wl 240

< < 73
=y = ey v = (73)
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Consequently we have

|$|k 24+ Y\ n+2s; k_n_2
< n S 74
1+ |[yP) 2z — y|rt2s = ( ~ )"l (74)
Then we get
/ / J2I* 1 (z — y)dydz
—ZS8 n S B ) ¢ o
B(0,2)\B(0,2) Y B(0,2)\B(0,1) (1 + [y[?)=2|z — y|"+2 ©m (75)
S O€—k+28
where C' is a positive constant depending on ~, s, k and n.
For the second term of the sum in (72]) and similarly to (G8) we have
/ / 21" 1 (x — y)dydx
BO,2\B(02) /B2 (1+ [y[*)" > |w — y[F2s B0)
jz* 1By —y)
< : dydx
/B(o,g)\B(o,z) /]R” (L4 [z[2)n=2s  |o —y[nt2s
(76)
= || fe * h||L1(R")
< fellpr ey P £ ey
< 037
|z|*15(0.n (x) . 1 .
where Vz,y € R", f€($) = (13—’(_0,’;)‘;)375?21 , ( ) = ’;ff;s and ('3 is a positive constant
depending only on s, k and n.
Thus, ([2) gives
/ / 5 n|_332|f 53 1B(0,)c (7 — y)dydz < Coe™F+25 4 O3, (77)
BO,2)\B(0,2) Jrm\B(0,1) (1 + [y[*)" %]z — g
Therefore, by (70), (1) and (1), ([69) becomes
"T‘k ~_—k+2s ~ —k+2s
/E A W2 — 1p(0y)e (& — y)dyde < Ee™"F25 4 & + Coe™ " + Cs. (78)

Then, by (78]) and (G8]) we get
k k2
x = [ et
) (L )2 =yt

dydz

< 2(Co + Ee™FH28 1 &) + Coe 425 1 Oy)
< égE_k+2s + 6«47
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with Cs and Cj are two positive constants depending on s, k and n.

Thus, by (64]) and (79])

L] ol =t
)< 2 J|y|<2 (L4 |y[?)n=28]z — y[t2s

]2 — Jy|2 |
/|:c|<” /y<’7 1+ |y|?)n=28|z — y|nt2s g0 (z — y)dydzx

1] — [y]3]”
/|:c|<” /y|<"7 1+ \y! n- 25’x — ’n+2s 1B(O,V)c(x —y)dydx

// lol® —lls"
n Jj—yl<y (L [y[2)" 728 — y[F2s

k2
+/ |2z — |yl dyds
r. (L4 [yl?)2sle —y|+

< é’o + ég€_k+28 + 64,

thus, by taking C' = Cy + Cy and C” = Cs, [@R) yields.
We finally conclude the following assertion
For all s €]0,1[,2 < k <n —4s,n € N such that n > 3,

_ 2
e = [ ([ e
|| <n lyl<n |z -yl

< (2C + Ol 4 7%

— Eké« + C//E2S
< Ce%,

where C is a positive constant depending on s, k and n.

O

We move, now, to the fourth term in the right hand side of ([42). By using the assertion ([B9]), we
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have

_ 2
B(0.m) JBOn)* |z —y
< C’e"_25/ || ’—TH__%y'}dyd:E
B(0,n)¢x B(0,n)¢ |z — y|

:an—23</ ‘x’kw
B(0,n)°x B(0,n)° |z — y[n+2s=2

11 (x —y)
+/ x’k (_ : n—+2s—2
B(0,m)¢ xB(0,n)° |z =yl

= | fupsfal)de +Ce | i fo(e)de
RTL

where for all z € R™,

1 . 1 . .
fie(@) = |2[Flppe (@), fao(z) = BO.)NBO.m) (7) and fa(z) = ~BODOEO) (x)'

’x‘n+2s

Since fix, fo and f3 are integrable in R™ , then fi ; * fo and fi ; * f3 are integrable in R"™.

/ / |33|k |ue,s($) - Us,s(y)|2d$dy — (9(5”—25)
B(Ovn)c B(O,'f])c x€r — y|TL—|—25 .

We move, now, to study the integral over the set E. By using the assertion (38]), we have

Therefore

2
/‘ ’k’uas Uas( )‘ df]}'dy

y|n+2s

2
x —
<o | o v
v€B(0,) yeBOMC Jr—y<] 1T — Y]

2s. k
S C " 877 / n+2s—2
2€B(0,n) weBOm)< [z—y|<2 [T — Y|

1
< Cen 2