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Abstract

The contamination detection problem aims to determine whether a set of observations has
been contaminated, i.e. whether it contains points drawn from a distribution different from the
reference distribution. Here, we consider a supervised problem, where labeled samples drawn
from both the reference distribution and the contamination distribution are available at training
time. This problem is motivated by the detection of rare cells in flow cytometry. Compared
to novelty detection problems or two-sample testing, where only samples from the reference
distribution are available, the challenge lies in efficiently leveraging the observations from the
contamination detection to design more powerful tests.

In this article, we introduce a test for the supervised contamination detection problem. We
provide non-asymptotic guarantees on its Type I error, and characterize its detection rate. The
test relies on estimating reference and contamination densities using histograms, and its power
depends strongly on the choice of the corresponding partition. We present an algorithm for
judiciously choosing the partition that results in a powerful test. Simulations illustrate the
good empirical performances of our partition selection algorithm and the efficiency of our test.
Finally, we showcase our method and apply it to a real flow cytometry dataset.

Keywords— Test, contamination detection, mixture model, flow cytometry.

1 Introduction

1.1 Motivation

Anomaly detection is an important research topic in data analysis, aiming to identify rare ele-
ments in a dataset that deviate significantly from the majority of observations. Its applications are
widespread, ranging from cybersecurity to social media content moderation and fraud detection,
making it a thoroughly investigated field. The primary goal of anomaly detection is typically to
identify unusual elements within a dataset. However, in specific scenarios, the objective shifts to
testing for the presence of anomalies in the entire dataset, a problem called contamination detection.
In this paper, we focus on the problem of supervised contamination detection, which seeks to assess
whether a sample has been contaminated by data points stemming from a distinct distribution,
based on samples from the non-contaminated distribution and the contamination distribution. Our
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study is motivated, among other problems, by the challenge of detecting rare populations in flow
cytometry.

Flow cytometry Flow cytometry is a widely used technology employed to identify and quantify
specific cell populations within a sample of cells. This method enables the simultaneous quantifi-
cation of multiple surface and intracellular markers at the individual cell level. To achieve this,
cells are labeled with antibodies coupled to fluorescent molecules, which bind specifically to par-
ticular receptors or intracellular markers. These cells then pass one-by-one in front of an optical
device that measures the emission spectrum of the markers attached to the cell, thereby revealing
the presence of the target receptor. Modern flow cytometers can detect up to 15 or 20 parameters
(i.e., markers) routinely, with throughput rates exceeding 10,000 cells per second. Flow cytometry
datasets commonly contain several million cells [LSW+19].

Data analysis for flow cytometry has traditionally been conducted through “manual gating",
involving successive visual inspections of two-dimensional scatterplots followed by selections of re-
gions in this two-dimensional space containing cells of interest. Typically, markers are selected
based on their ability to distinguish between different types of cells, allowing for meaningful cell
clustering when separating cells according to their values. However, this time-consuming method
has significant limitations, including its lack of scalability and the subjectivity in selecting dimen-
sions and regions of interest, leading to a lack of reproducibility. Consequently, substantial efforts
have been devoted to the development of automated analysis methods. These approaches include
unsupervised clustering algorithms as well as supervised techniques trained on manually annotated
samples. The primary goal of the latter type of algorithms is not only to identify the cell clusters
but also to automatically annotate these clusters.

One problem faced in flow cytometry data analysis is the significant heterogeneity in the number
of cells within each population, and the importance of small sub-populations in biological contexts.
Notably, a major challenge in clinical applications is the detection of rare pathogenic objects in
patient blood. These objects may include circulating tumor cells, which are very rare during the
early stages of cancer development [TPB+19], or various microorganisms and parasites present in
the blood during acute blood infections [VKV+20]. These examples emphasize the importance
of detecting small cell populations. Unlike many anomaly detection scenarios where information
about contaminations is unavailable, in this specific problem, manually labeled samples containing
instances of these small populations are accessible and can be leveraged for training our algorithm.
In this article, we therefore explore the problem of contamination detection using observations from
both uncontaminated and contaminating samples, motivated by the challenges related to small cell
populations identification in flow cytometry data.

1.2 Related works

Contamination detection is closely related to anomaly detection, which focuses on identifying in-
stances that originate from a different distribution or class than the majority. The settings for
anomaly detection vary based on the observations available to the statistician. In completely un-
supervised anomaly detection, the statistician only has access to unlabeled data. Anomalies, also
referred to as outliers, are commonly defined as “observations which deviate so significantly from
other observations as to raise suspicions that they were generated by a different mechanism" [End87].
In semi-supervised anomaly detection, also referred to as novelty detection, it is assumed that
the statistician has access to a “pure" sample of observations drawn from the non-contaminated
density f0, and to a test sample that is a mixture of f0 and of an arbitrary distribution f1

[EYN06, VV06, BLS10, VPACLG+21]. Finally, in supervised anomaly detection, samples from
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both f0 and f1 are available at training time. Consequently, the problem reduces to a two-class
classification scenario, which can be addressed using classical classification algorithms [Agg17]. We
emphasize that all these problems ultimately aim to identify anomalous observations, i.e., observa-
tions drawn from a distribution different from f0, and classify them as such. In contrast, in the
present paper, we focus on testing the presence of corruptions or anomalies in the test sample, i.e.
on testing whether the distribution f1 has a positive proportion in the mixture model defining the
density of the test sample.

Contamination detection from labeled samples is closely related to the problems of label shift
estimation and of quantification. Label shift estimation [GWBL20] addresses the task of estimating
the target label distribution in a classification task under label shift. On the other hand, quantifi-
cation [GCnCC17] focuses on estimating the class distribution for unlabeled test sets using models
trained on a dataset with a different class distribution. In both problems, the test distribution
can be viewed as a mixture of distributions corresponding to different labels, which can be learned
from a training sample. Methods to solve these problems can typically be categorized into two
types. The first type includes variants of the classify-and-count approach [For08, LWS18, AKS20],
which relies on fitting a classifier to the training samples and approximating the distributions of the
classes in the test sample based on the distribution of predictions. Another approach considers the
test distribution as a mixture model of distributions that can be learned from the training sample
[INS14, GCARA13, DBCA23]. The task of label shift quantification then involves estimating the
weights of the components in the source dataset. Our approach is similar to the latter approach. It
is important to note that these problems are typically concerned with obtaining guarantees on the
aggregated error for reconstructing the weights of the mixture model, whereas our objective is to
test if the weight of a given component is zero.

The contamination model examined in this paper is closely associated with the admixture model,
which finds applications in false discovery problems, genetics, and astronomy, and has been exten-
sively investigated (see, for example, [BV10, CJ10, CR10, NM14]). In this model, the distribution
of the non-contaminated density is assumed to be known, while the weight of the mixture and the
distribution of the contaminations are unknown. Previous works have mainly focused on estimating
these weights and on testing the equality of contamination distributions across different samples
[MPSV24].

Finally, it is worth noting that without observations drawn from the contamination distribution
f1, the problem of contamination detection reduces to that of two-sample testing. As highlighted
in [BLS10], the optimal approach in this scenario is to test if the testing and training samples have
the same distribution. In contrast, this paper takes advantage of additional information to develop
an adaptive test with high power against contaminations drawn from a distribution from which we
observe samples.

1.3 Preliminary considerations

Supervised contamination detection problem We consider the following contamination de-
tection problem : given a non-contaminated distribution f0 and a contamination distribution f1,
we want to determine whether a test sample X = (X1, . . . , Xn) of size n is drawn from f0, or if
contains a positive fraction of points drawn from f1. More precisely, denoting by f the distribution
of the test sample, we want to test the hypothesis

H0 : f = f0.

against the alternative

H1 : f = (1− θ)× f0 + θ × f1 for some θ ∈ (0, 1].
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In the supervised setting, we have access to a pure sample denoted X0 = (X0
1 , . . . , X

0
n0) of n0 points

drawn independently from f0. Additionally, we observe a sample of n1 labeled anomalies drawn
independently and identically from f1, denoted as X1 = (X1

1 , . . . , X
1
n1). In the following, we assume

that the densities f0 and f1 have support bounded in [0, 1]d. 1

Detection rates in case of known distributions To gain insight into the complexity of the
detection problem, let us first consider the simpler scenario where densities f0 and f1 are known.
Arguably, the most straightforward case for testing H0 against H1 arises when both f0 and f1 are
positive on [0, 1]d. In this situation, classical results from asymptotic statistics can be applied to
develop a test asymptotically of level α, and to establish its detection rate, as demonstrated in the
following lemma.

Lemma 1. Assuming that f0 and f1 are positive on [0, 1]d, define

σ2 =

∫ (
f1(x)

f0(x)
− 1

)2

f0(x)dx and Sn(X) =
1

n

∑
i≤n

(
f1(Xi)

f0(Xi)
− 1

)
,

and let Φ−1 be the quantile function of the normal distribution. Then, for all α ∈ (0, 1), the test
rejecting H0 if

Sn(X) ≥
√
σ2Φ(1− α)−1

√
n

is asymptotically of level α. Moreover, it has asymptotically power β > α against alternatives
θ = Φ−1(1−α)−Φ−1(1−β)√

nσ2
.

Under the assumptions of Lemma 1, the rates for testing H0 against H1 are parametric: the
test has constant power against alternative containing a proportion of order 1/

√
nσ2 of points from

f1. This result highlights the role played by the signal term σ2, given by the L2(f0) norm between
the density ratio f1/f0 and the constant function equal to 1. In comparison, two-sample tests
typically have constant power against alternatives f that are located at a given distance from the
null hypothesis f0, where the specific definition of this distance depends on the choice of the test.
Consequently, we expect that additional information on f1 will lead to improved detection rates if
the ratio f1/f0 takes large values.

If the densities f0 and f1 have disjoint support, the signal σ2 defined above is not defined, and
the results of Lemma 1 do not hold. However, the problem becomes easier, since observing points
in a region belonging to the support of f1 but not of f0 provides enough evidence to reject the null
hypothesis for any confidence level. More generally, if there exists a sequence of regions Rn with
sufficiently low probability under f0, and higher probability under f1, the following lemma shows
that a well-tailored test can achieve fast detection rates.

Lemma 2. Assume that there exists a sequence of measurable sets Rn ⊂ [0, 1]d such that, for some
constants A,B, γ > 0, we have∫

Rn

f0(x)dx ≤ A

n
and

∫
Rn

f1(x)dx ≥ B

nγ
.

Then, for all α ∈ (cA,n, 1), the test rejecting H0 if
∑

i≤n 1{Xi ∈ Rn} ≥ 1 is of level α, where cA,n

is a constant depending on n and A. Moreover, this test has power β against alternatives θ =
cB,β

n1−γ ,
where cB,n is a constant depending on B and β.

1In practice, this assumption holds true in flow cytometry analysis, where the data is often pre-processed in a
standardized fashion.
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Under the assumptions of Lemma 2, the test that rejects the null hypothesis if Rn contains at
least one observation can detect alternatives with proportions of points drawn from f1 as small as
nγ−1. When γ ≤ 1/2, meaning that the probability of the region Rn under f1 is large enough, this
detection rate is faster than the parametric rate. One extreme scenario arises when the support
of f1 is not contained within that of f0, and there exists a fixed region R with constant, positive
probability under f1 and null probability under f0. In this case, the test proposed in Lemma 2
detects the alternative H1 for θ of order 1/n, or equivalently with a finite number of points drawn
from f1. As γ increases, we observe a smooth transition to the parametric regime: in this situation,
the probability of the regions Rn decreases under f1, leading to an increase in the detection rate
up to the parametric rate of 1/

√
n. Finally, when γ > 1/2, the test proposed in Lemma 2 exhibits

a detection rate slower than the parametric rate, suggesting that such regions have a negligible
contribution to the signal of the contamination detection problem.

1.4 Outline and contribution

Although limited to the simplified scenario where the densities are known, the preliminary results
established above shed light on the factors driving the complexity of the contamination detection
problem. In particular, they show that if the densities are positive, then the detection rate of the
alternative is of order 1/

√
σ2n. On the other hand, if there are regions of sufficiently low weight

under f0 and sufficiently high weight under f1, faster detection rates can be achieved. When
compared to the two-sample testing problem, these results highlight the advantage gained from
the knowledge of both densities, enabling the development of effective tests tailored to the specific
problem. When these densities are unknown, the following question arises: can we design a test
that achieves fast detection rate under the assumptions of Lemma 2, and competitive parametric
rates otherwise, all without knowing the densities f0 and f1?

To address this question, we develop a non-asymptotic, non-parametric test for the problem
of supervised contamination detection. More precisely, we construct an estimate Ŝ(X) of the test
statistic Sn(X) used in Lemma 2. To do so, we estimate the densities f0 and f1 using thresholded
histograms introduced in Section 2.1. We derive non-asymptotic bounds on the fluctuations of
Ŝ(X) under H0, which allow us to design a non-asymptotic test of level α, presented in Section
2.2. We also provide a characterization of the detection rate based solely on quantities available
to the statistician. Our test is rather intuitive: thanks to its simplicity, its results of can be easy
interpreted by practitioners.

Our test critically depends on the choice of the partition of the sample space, which defines the
histograms for estimating f0 and f1. We provide an explicit characterization of this dependence,
and propose in Section 2.4 a heuristic for selecting a partition that corresponds to a significant signal,
leading to a faster detection rate. This heuristic is adapted from Classification and Regression Trees
(CART) and can be easily implemented using standard packages.

Simulations provided in Sections 3.1 and 3.2 illustrate respectively the efficiency of the parti-
tioning algorithm in identifying high-signal regions in the space, and the good performances of our
test. In Section 3.3, we conduct a thorough investigation of the empirical power of our test using
simulated datasets, comparing our algorithm with a bootstrap version of the test, as well as with a
benchmark test for two-sample testing. Our results highlight the computational and statistical effi-
ciency of our method. Finally, in Section 3.4 we apply our algorithm to analyze a publicly available
flow cytometry dataset from the Human Immune Phenotyping Consortium.

Proofs and additionnal experiments are postponed to the Appendix.
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2 A non-asymptotic test for contamination detection

2.1 Estimation of the densities

Building upon our preliminary findings on the toy problem with known densities, we propose to
estimate the statistic Sn(X) using the training samples X0 and X1. This requires estimating the
densities f0 and f1, which we do using histograms.

Estimation by piecewise-constant functions Let us divide the space [0, 1]d into K bins using
a partition P = (Bk)k≤K . The unknown functions f0 and f1 can be approximated using piece-wise

constant functions f
0
P and f

1
P , defined as follows:

f
0
P(x) =

∑
k≤K

h0k1{x ∈ Bk} and f
1
P(x) =

∑
k≤K

h1k1{x ∈ Bk},

where h0k =

∫
Bk

f0(x)dx∫
Bk

dx
and h1k =

∫
Bk

f1(x)dx∫
Bk

dx
. The optimal choice of partition, and particularly

the number of bins K, involves a trade-off between the variance of estimates for the probabilities
h0k and h1k, and the discretization cost incurred while approximating the densities using piecewise
linear functions. This approximation indeed comes at the expense of diminishing the signal when
testing H0 against H1. Specifically, if these functions are positive, Lemma 1 reveals that the signal
corresponding to the problem with densities f

0
P and f

1
P is given by

σ2
P =

∫ (
f
1
P(x)

f
0
P(x)

− 1

)2

f
0
P(x)dx. (1)

We can easily verify that σ2
P ≤ σ2 (see Lemma 11 in Appendix). In general, the choice of the

partition P will impact our ability to distinguish f
0
P from f

1
P , thereby influencing the test’s power.

The choice of this partition will be discussed in Section 2.4; for now, we consider P as fixed, and
independent from the training and testing samples.

Histogram estimators Recall that we observe samples X0 = (X0
1 , . . . , X

0
n0) drawn i.i.d. from

f0, X1 = (X1
1 , . . . , X

1
n1) drawn i.i.d. from f1, and X = (X1, . . . , Xn) drawn i.i.d. from f . For all

k ≤ K, let N0
k (resp. N1

k and Nk) be the number of points from sample X0 (resp. X1 and X) falling
into bin Bk. More formally, we have:

N0
k =

∑
i≤n0

1{X0
i ∈ Bk}, N1

k =
∑
i≤n1

1{X1
i ∈ Bk}, and Nk =

∑
i≤n1

1{Xi ∈ Bk}.

Recall that our test statistic estimates Sn(X) = 1
n

∑
i≤n

(
f1(Xi)
f0(Xi)

− 1
)
, and that our test rejects H0

for large values of Ŝ(X). Thus, a significant variance in our estimate of f0 in regions where it is
small can substantially impact the quality of our test. To ensure the robustness of our estimates,
the estimators for h0k are lower-thresholded at the levels ϵ0, where

ϵ0 =
3u

n0
∨ t

n
, (2)

and u and t are some positive constants to be defined later. We argue that lower-thresholding the
probabilities h0k at ϵ0 does not significantly diminish the test signal for this bin, given by

(h1
k

h0
k
−1
)2
h0k.
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Indeed, the preliminary results outlined in Lemma 2 indicate that a probability h0k of order 1/n or
lower will have the same contribution to the signal strength.

Following the same reasoning, we propose to threshold the estimates for h1k if the number of
points falling into bin Bk is excessively small. Lemma 2 shows that regions where h1k ≤ 1/

√
n have

a negligible contribution to the signal. For this reason, we propose to set the thresholds for h1k at
the levels ϵ1, where

ϵ1 =

√
3u

n1
(3)

In the subsequent analysis, we assume that u and t are small, while n0 and n1 are large, so that
we typically have ϵ0, ϵ1 ≪ 1. Moreover, we assume that n1 ≤ n0: indeed, our goal is to detect
the presence of points drawn from f1, which are typically rare. Consequently, in most scenarios of
interest, the size of the training sample X1 will be considerably smaller than that of X0.

Finally, we define the sets where the estimates for the probabilities h0k and h1k are small and
need to be thresholded as follows:

Ω0 =
{
k :

N1
k

n1
> ϵ1 and

N0
k

n0
≤ ϵ0

}
,

Ω01 =
{
k :

N1
k

n1
≤ ϵ1 and

N0
k

n0
≤ ϵ1

}
,

and Ω1 =
{
k :

N1
k

n1
≤ ϵ1 and

N0
k

n0
> ϵ1

}
.

We emphasize that these sets do not intersect. The set Ω0 includes bins where Nk
1 is sufficiently

large for estimating h1k, but where Nk
0 is too small and needs to be thresholded. The set Ω1 includes

bins where Nk
0 is sufficiently large for estimating h0k, but where Nk

1 is too small and need to be
thresholded. Finally, the set Ω01 corresponds to bins where both densities are low. The signal in
these bins is too weak to provide meaningful information, so we set the density ratio to 1 within
these bins.

Having introduced the thresholds ϵ0 and ϵ1, as well as the sets Ω0, Ω1, and Ω01, we are now
ready to introduce the thresholded histogram estimators. They are defined as follows:

ĥ0k =


3ϵ0 if k ∈ Ω0,

3ϵ1 if k ∈ Ω01,
N0

k
n0 else,

and ĥ1k =

{
3ϵ1 if k ∈ Ω1 ∪ Ω01,
N1

k
n1 else.

(4)

2.2 Estimated Density Ratio Test

Following the preliminary results presented in Lemma 1, we consider the following Estimated Density
Ratio Test.

Definition 1 (Estimated Density Ratio Test). For a desired confidence level α ∈ (0, 1), let u =
log
(
4K
α

)
, t = log

(
2
α

)
, and let ϵ0, ϵ1, ĥ0k and ĥ1k, be defined respectively by Equations (2), (3), and

(4). Let us define

r̂k =
ĥ1k

ĥ0k
, Ŝ(X) =

1

n

∑
k≤K

(r̂k − 1)Nk, and σ̂2 =
∑
k≤K

(r̂k − 1)2 ĥ0k.
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The Estimated Density Ratio Test is defined as the test rejecting H0 if

Ŝ(X) ≥
√
σ̂2

(√
10uK

n0
+

√
6t

n

)
+

t

3n
max
k

|r̂k − 1|+ 3ϵ1K1

where K1 =
(
|Ω01|+ |Ω1|

)
.

Note that the test statistic Ŝ(X) defined above verifies

Ŝ(X) =
1

n

∑
i≤n

(
f̂1(Xi)

f̂0(Xi)
− 1

)
,

where

f̂0(x) =
∑
k≤K

ĥ0k1{x ∈ Bk} and f̂1(x) =
∑
k≤K

ĥ1k1{x ∈ Bk},

are the estimators of f0 and f1. Thus, the statistic Ŝ approximates the test statistic defined in
Lemma 1. Similarly, σ̂2 is an estimator for the signal σ2

P corresponding to the problem where the
densities f0 and f1 are approximated by their piece-wise constant approximation on the partition
P. The following theorem controls the type I and type II error of the Estimated Density Ratio Test.

Theorem 1. Assume that 3ϵ0 ≤ ϵ1 ≤ 1, and that n1 ≤ n0. Then, the Estimated Density Ratio Test
has type I error lower than α. Moreover, under the alternative hypothesis H1, this test rejects the
hypothesis H0 with probability larger than 1− α if θ satisfies

θ ≥C

(√
t

nσ̂2

(
1 +K0

√
t

nσ̂2

)
+

K1√u

σ̂2
√
n1

+

√
u

n0σ̂2

(√
K +K0

√
u

n0σ̂2

))
.

where C is an absolute constant, K1 = |Ω1|+ |Ω01|, and K0 = |Ω0|.

Theorem 1 establishes that the Estimated Density Ratio Test at a confidence level α indeed has
type I error smaller than α. Moreover, it offers a characterization of alternatives that are detected
with a probability greater than 1 − α. It is important to note that this characterization depends
solely on known quantities, such as σ̂2, n0, n1, and n. Thus, the results presented in Theorem 1
enable the statistician to assess, based solely on the training data and on the size of the test sample,
the typical proportions θ of elements drawn from f1 that the test could detect.

As a first remark, note that we typically have K0
√

t
nσ̂2 ≪ 1 and K0

√
u

n0σ̂2 ≪ 1, so the detection

rate is driven by
√

t
nσ̂2 ∨ K1

√
u

σ̂2
√
n1

∨
√

uK
n0σ̂2 . This result highlights the very different roles played by

the sizes of the training samples n0 and n1, along with the size of the test sample n. When enough
observations from the distributions f1 fall in all bins, and K1 = 0, the detection rates does not
depend on n1 (provided that ϵ1 ≤ 1). In words, the (constant) additive error in the estimates hk1
implies an error in estimating the signal σ̂, which is deflated by a multiplicative factor. Note that
this behavior breaks down when K1 > 0, as the signal is poorly estimated in those bins.

By contrast, both n and n0 can in general be limiting factors in the detection rate. On the one
hand, when n ≥ n0

K , the size of the training sample X0 becomes limiting, restricting the precision
with which the distribution f0 is estimated. On the other hand, when n ≤ n0

K , the proportion θ
required to reject H0 with a constant probability is dictated by the size of the test sample. In the
following section, we analyze this detection rate under different assumptions regarding the densities
f0 and f1, corresponding to the various detection regimes examined in our preliminary remarks.
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2.3 Detection rate

Positive densities We begin by analyzing the regret rate under the assumptions of Lemma 1: in
this setting, both f0 and f1 have a positive density, and therefore, so do f

0
P and f

1
P . In fact, we

demonstrate that under the milder assumption that the signal σ2
P is finite, the estimated signal σ̂2

is close to σ2
P . This is done in the following Lemma.

Lemma 3. Assume that 3ϵ0 ≤ ϵ1 ≤ 1, that n1 ≤ n0, and that σ2
P is finite. Then, there exists a

constant C
f
0
P ,f

1
P ,K

depending only on f
0
P and f

1
P such that for all n, n0 and n1 large enough, with

probability 1− α,

∣∣σ̂2 − σ2
P
∣∣ ≤ C

f
0
P ,f

1
P ,K

(√
u

n1
+

√
u

n0

)
.

Lemma 3 reveals that σ̂2 → σ2
P as the size of the training samples goes to infinity. Combining

this result with Theorem 1 yields the following corollary.

Corollary 1. Assume that 3ϵ0 ≤ ϵ1 ≤ 1, that n1 ≤ n0, and that σ2
P is finite. Then, there exists a

constant Cα,K depending on α such that for all n, n0 and n1 large enough, the Estimated Density
Ratio Test of level α has power 1− α against alternatives

θ ≥
Cα,K√

σP (n ∧ n0)
.

Under the hypothesis of Corollary 1, when n0, n1 ≥ n, the detection rate is of order 1/
√
σPn.

In this case, the test is asymptotically equivalent (up to a numerical multiplicative constant) to the
test in the setting where f

0
P and f

1
P are known. On the contrary, when the training samples are

too small, the test’s complexity is driven by the challenge of learning f
0
P and f

1
P .

If we consider regimes where the number of points in both training samples becomes large com-
pared to the size of the testing samples, we anticipate that the inherent complexity of the problem
reduces to that of the toy problem where the densities f0 and f1 are known. A closer examination
of Lemma 3 reveals that the bound on

∣∣σ̂2 − σ2
P
∣∣ remains valid as long as the number of training

points from the samples X0 and X1 remains substantial in each bin (specifically, respectively larger
than a constant, and larger than

√
n1). Therefore, if f0 and f1 are positive, when n0/n, n1/n → ∞,

we can choose a sequence of partitions P of increasing size to better approximate the density func-
tions. Under additional assumptions on the regularity of the functions f0 and f1, we then have
σ2
P → σ2 as the training sample sizes increase. In the limit where n0/n, n1/n → +∞, the test has

asymptotically constant power against alternatives of order
√
nσ2, and the problem indeed reduces

to that with known densities.

Faster rates for densities with disjoint support When the densities f0 and f1 have disjoint
support, or when certain regions of the space have low probability under f0 and higher probability
under f1, we hope to achieve a faster detection rate than 1/

√
n, i.e., to recover the fast detection

rates highlighted by our preliminary analysis. However, this can only happen if one of the bins
in the partition coincides with such a highly informative region. Indeed, if the piece-wise constant
approximations to f0 and f1 are positive, the conclusions of the previous analysis still hold. In
this case, the test cannot leverage the information contained in low-density areas under f0 because
they are not captured by the partition. On the contrary, if there exists a bin Bk such that h0k = 0

and h1k > 0, classical concentration results reveal that ĥ1k is asymptotically of order h1k, while h0k is
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always thresholded at level ϵ0. The following Lemma indicates that in this scenario, the detection
rate can be of order 1/n. We recall that h1k =

∫
Bk

f1(x)dx/
∫
Bk

dx is the probability that a points
belongs to bin Bk under f1.

Lemma 4. Assume that 3ϵ0 ≤ ϵ1 ≤ 1, that n1 ≤ n0, and that there exists k ≤ K such that
h1k ≥

√
5u
n1 and h0k = 0. Then, with probability 1− α,

σ̂2 ≥
(
1−

( u

n1

) 1
4

)2
h1k
ϵ0

.

where we recall that ϵ0 = 3u/n0 ∨ t/n. Furthermore, for n, n0, and n1 large enough, the Estimated
Density Ratio Test has power 1− α against alternatives

θ ≥
Cα,Kϵ0

h1k
,

where the constant Cα,K > 0 depends on α and K.

Lemma 4 characterizes the detection rate in the case where the partition P captures a high-
signal region Bk such that h0k = 0 and h1k > 0. In this case, fast detection rates can be achieved: if
n0 > n, the test detects alternatives corresponding to proportion θ of order 1/(nh1k). Note that as
the size of the training sample X1 increases, our test is able to take into account high-signal regions
with ever decreasing probabilities h1k. In the limit where n1 ≈ n, these regions have probabilities of
order n−1/2, corresponding to the limiting regime highlighted in Lemma 2.

2.4 DROP: a partitioning algorithm

The analysis of the two cases outlined above, corresponding to the regimes explored in Lemmas 1 and
2 yielding respectively parametric and fast rates, emphasizes the critical role of partition selection.
In the first scenario, it was demonstrated that the detection rate is asymptotically 1/

√
nσ2

P . In this
situation, opting for a partition P associated with a substantial signal σ2

P allows for an enhancement
of this rate by a multiplicative factor. In the second scenario, the choice of partition becomes even
more pivotal, as selecting a partition that captures regions contributing the most to the signal is
crucial in achieving fast detection rates.

The remainder of this section is dedicated to introducing the Density-Ratio Oriented Partition-
ing (DROP) algorithm. In order to obtain meaningful piece-wise constant approximations of the
densities f0 and f1, we propose constructing a sequence of nested partitions with increasing sizes.
The optimal partition size will then be selected to maximize the lower bound on the test power as
established in Theorem 1. We begin by outlining our partitioning approach, followed by a discussion
on the selection of the optimal partition within this sequence. As a first step, we split the training
sample X0 (resp. X1) into two samples each, denoted X0

part and X0
est (resp. X1

part and X1
est ), of

respective sizes n0
part and n0

est (resp. n1
part and n1

est). The samples X0
part and X0

part will be used for
choosing the partition, while the samples X0

est and X1
est will be used for estimating the densities.

This separation ensures that the density estimates remain independent of the partition, preserving
the validity of the theoretical guarantees established for a fixed partition in Theorem 1.

A greedy partitioning scheme To construct a partition with a significant signal σ̂2, we begin
by generating a sequence of nested partitions with increasing size (PK)K∈N. At each iteration K,
the partition PK is obtained by subdividing a bin from PK−1 into two separate bins. To achieve a
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partition PK with a substantial estimated signal σ̂2
PK

, we choose this division in a greedy manner.
Before specifying the splitting criteria, let us introduce additional notations.

We emphasize the dependence of the density estimator on the partition by denoting by ĥ0k(P)

(resp. ĥ1k(P)) the estimated probability that a point belongs to the k-th bin in partition P under f0

(resp. f1). Assume that the partition PK is obtained by splitting the k− th bin of partition PK−1.
We denote the resulting bins as kL and kR, referred to as the “left" and “right" bins, respectively.
The increase in signal, denoted by ∆, can be expressed as ∆ = σ̂2

PK
− σ̂2

PK−1
, or equivalently as

∆ =

(
ĥ1kR(PK)

ĥ0kR(PK)
− 1

)2

ĥ0kR(PK) +

(
ĥ1kL(PK)

ĥ0kL(PK)
− 1

)2

ĥ0kL(PK)

−

(
ĥ1k(PK−1)

ĥ0k(PK−1)
− 1

)2

ĥ0k(PK−1). (5)

To obtain partition PK from partition PK−1, the split that maximizes the increase in signal ∆ is
selected. We recall that all quantities in Equation (5) are estimated using the samples X1

part and
X1
part. Note that both ĥ0k and ĥ1k depend on the size of the partition K though ϵ0 and ϵ1, and

more precisely through the parameter u, set as log(4K/α) in Theorem 1. We adopt a conservative
approach, and choose beforehand a maximum size Kmax for the partition. For reasons that will
become clear later on, we then set u = log(8Kmax/α).

DROP as a Classification And Regression Tree algorithm This greedy partitioning ap-
proach can be formulated as a variation of the Classification And Regression Tree (CART) algo-
rithm. Originally developed for classification and regression problems, CART relies on an impurity
measure, such as the Gini impurity measure for classification tasks or the variance of responses in
regression problems. The goal of CART is to create a partition of the covariate space, or equiv-
alently, a tree structure, where the leaf nodes have low impurity. To achieve this, the algorithm
examines every potential split at each step, considering all possible directions and splitting points.
It computes the reduction in impurity corresponding to each split and selects the one with the
maximum reduction. After constructing the tree, various heuristics can be applied to prune it and
prevent overfitting.

To adapt this algorithm to our problem, we introduce an artificial labeling scheme: we assign
the label Y = 0 (respectively, Y = 1) to the points in the dataset X0

part (respectively, X1
part ). These

labeled datasets are then concatenated. Finding a split with maximum signal reduces to discovering
a split with low impurity measure, where the impurity measure is given by −∆, and ∆ is defined
in Equation (5).

Choice of the partition size The aforementioned partitioning scheme allows us to build a
sequence of nested partitions with increasing size (PK)1≤K≤Kmax . Next, we estimate the signal of
each partition using the samples X0

est and X1
est. We argue that choosing u = log(4 × 2Kmax/α)

allows to control the error of ĥ0k and ĥ1k obtained using the sample X0
est and X1

est uniformly over all
bins of all partitions in the sequence, since they are at most 2Kmax such bins. Consequently, we
select the partition PK∗ , where

K∗ ∈ argmin
K≤Kmax

√ t

nσ̂2
PK

(
1 +K0

√
t

nσ̂2
PK

)
+

√
uK1

σ̂2
PK

√
n1

+

√
u

n0σ̂2
PK

√
K +K0

√
u

n0σ̂2
PK


(6)
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where σ̂2
PK

correspond to the signal estimated on the partition Pk using the sample X0
est and X1

est,
and n0 is the size of the sample X0

est. Theorem 1 implies the following lower bound on the detection
rate of our test, when the sequence of partitions is obtained using a sample independent from the
sample used to choose the partition and conduct the test.

Corollary 2. Let (PK)K≤Kmax be a fixed sequence of nested partitions. For each partition PK , let
EDRT(PK) be the Estimated Density Ratio Test for this partition with parameters u = log(8Kmax/α)
and t = log(2/α), and let σ̂2

PK
be the estimated signal for this partition. Then, if 3ϵ0 ≤ ϵ1 ≤ 1 and

n0 ≥ n1, for the choice K∗ given in Equation (6), the test EDRT(PK∗) has type I error lower
than α. Moreover, EDRT(PK∗) has power larger than 1− α against alternatives characterized by θ
verifying

θ ≥ C min
K≤Kmax

√ t

nσ̂2
PkK

(
1 +K0

√
t

nσ̂2
PK

)
+

√
uK1

σ̂2
PK

√
n1

+

√
u

n0σ̂2
PK

√
K +K0

√
u

n0σ̂2
PK


where C is an absolute constant.

The DROP algorithm, combined with the Estimated Density Ratio Test, provides an easily
interpretable test for detecting the presence of a specific type of cells. Indeed, the computation of
the signal σ̂PK∗ yields, as a byproduct, the contribution of different bins to the signal, indicating
their significance in the test. A region with a substantial contribution corresponds necessarily to an
area with a high probability under f1 and a low probability under f0. Intuitively, the test assigns
significant weight to observations in the test sample falling into these regions, and it rejects the
null hypothesis if they are too numerous. The partitioning of the space using a tree is akin to the
process of “manual gating", and the obtained regions can easily be manually inspected to assess the
good behavior of the test.

3 Experiments

In this Section, we investigate the empirical performance of our test. We begin by showcasing in
Section 3.1 how the partition selected by DROP captures the high-signal regions of the sample space.
In Section 3.2, we investigate the power of the Estimated Density Ratio Test on simulated datasets.
Our experiment reveal that this test is overly conservative. To circumvent this problem, we propose
in Section 3.3 a Boostraped Estimated Density Ratio Test, and we compare its performance to
that of the Estimated Density Ratio Test and of a benchmark algorithm for two-sample testing
based on Maximum Mean Discrepancy. Finally, we illustrate our method by applying it to real flow
cytometry data in Section 3.4. Additional simulations illustrating the robustness of EDRT against
variations of the density f0 can be found in Appendix B. The code for all experiments can be found
at https://github.com/SolenneGaucher/DensityRatioTest.

Implementation As mentioned earlier, the partition-sequence-building component of the DROP
algorithm can be considered a variation of the CART algorithm, where the impurity measure is
defined as −∆. Building on this remark, we make use of the R [R C21] package rpart [TA22] to
implement our algorithm. This package enables users to specify the impurity measure for splitting
criteria and handles the required bookkeeping efficiently through an optimized C implementation.
Moreover, we implement a constraint in our algorithm, preventing the splitting of a bin if it contains
fewer than 3n1

partϵ
1 points. Note that in most settings, n1

part ≤ n0
part. In this case, if a bin contains

less than 3n1
partϵ

1 points, this bin belongs to Ω01, and its contribution to the estimated signal is null.

12



In practice, when selecting the optimal size for the partition, we observe that in our experiments, the
leading terms in criteria (6) are

√
t

nσ̂2
PK

and
√

u
n0σ̂2

PK

. We therefore simplify our selection criteria,

and choose the partition with size

K∗ ∈ argmin
K≤Kmax

√
1

nσ̂2
PK

∨
√

K

n0σ̂2
PK

. (7)

Simulation settings Unless otherwise mentioned, we consider the following three experimental
settings. We consider a two-dimensional problem for visualization purposes, where f0 and f1 are
two truncated Gaussians in [0, 1]2 with covariance

(
1/100

0
0

1/100

)
. In Setting A, their means are

respectively (3/10, 3/10) and (7/10, 7/10). In Setting B, their means are respectively (4/10, 4/10)
and (6/10, 6/10). In Setting C, their means are respectively (4/10, 4/10) and (5/10, 5/10). Note
that these settings are ordered by increasing difficulty of the contamination detection problem, or
equivalently by decreasing signal σ̂2. We denote by ntrain the total number of training samples, and
we assume that n0 = 0.7×ntrain and n1 = 0.3×ntrain. In our experiments, we let ntrain vary from
1000 to 1000000.

3.1 Choice of the partition

In our first experiments, we assess the ability of the DROP algorithm to identify a high-signal
partition of the sample space. Throughout this section, we contrast our results with a benchmark
CART algorithm using the popular Gini Index.

CART with Gini Index When optimizing the partition with regard to the Gini Index, the split
is determined to maximize

pL(1− pL) + pR(1− pR)

where pL (and pR) denotes the proportion of points with label 1 in the left (and right) bin, re-
spectively. It is important to note that the Gini index criterion is influenced by the proportion of
points in the bin with label 0, leading to potentially distinct partitions based on different values
of the sample size ratio n0/n1. In our simulations, we consider n0/n1 = 7/3, and we compare
the partitions obtained when the partition sequence is constructed using the Gini index splitting
criteria, to that obtained using the impurity measure −∆. The size of the partition is chosen in
both cases according to the criterion in Equation (7).

Experiment We use half of the observations to grow the partition sequence, while the other half
is used to estimate the parameters ĥ0k, ĥ

1
k, r̂k and σ̂, and choose the partition. Note that in the

regimes considered in Experiment 1, Experiment 2 and Experiment 3a, we assume that n ≈ n0,
so that K∗ simply maximizes σ̂2

PK/K. In Experiment 3b, we investigate the impact of choosing a
larger partition size on the signal σ̂2. More precisely, we assume that n0/n ≥ log(ntrain), so that
K∗ ≥ log(ntrain).

As anticipated, a comparison of Figures 1a, 1b, and 1c reveals that as the separation between
the means of the two distributions widens, the signal for testing H0 against H1 increases for both
choices of partitions. Nevertheless, in some regimes we observe a strong contrast in the signal
strength captured by those partitions.

13



(a) Experiment 1 (b) Experiment 2

(c) Experiment 3a (d) Experiment 3b

Figure 1: Estimated signal
√
σ̂2 for different size of training samples ntrain corresponding to the

partition obtained using the density ratio criteria (red) and the Gini index (blue). The distributions
f0 and f1 correspond to Setting A (top left), Setting B (top right), and Setting C (bottom).
We consider respectively n ≈ n0 (top and bottom left) and n0/n ≈ log(ntrain) (bottom right)
when choosing K∗ according to criterion (6). Each experiment is reproduced 100 times.

Large signal setting In Settings A and B, certain regions of the sample space [0, 1]d exhibit high
density under f1 and low density under f0. These settings allow for the possibility of achieving
detection rates faster than the typical 1/

√
n, as demonstrated in Lemma 2. Our simulations in

Figure 1a and 1b reveal that the partition selected by DROP can adapt to identify these high-signal
regions. Furthermore, the estimated signal for these partitions sharply increases with the size of the
training sample. Indeed, the density ratio criterion seeks to identify regions with low density under
f0 and high density under f1. With an increasing number of points, the partition can be refined in
regions of the space where too few points were previously available.

In contrast, the partition generated using CART with the Gini index appears unable to capture
this rise in signal. To understand this phenomenon, note that CART aims to distinguish between
areas where the majority of points originates from distribution f0 and regions dominated by points
from distribution f1. Consequently, increasing the number of points allows for a more precise esti-
mation of the boundary that separates these two regions without significantly altering its position.
Since the bins remain unchanged, the estimated signal within these bins remains relatively constant.
This phenomenon is illustrated in Figure 2, underlining that the partition resulting from the Gini
index remains almost constant as the sample size increase. In contrast, the boundaries delineated
by the partition obtained through the density ratio criterion shift towards regions characterized by
very low density f0 and high signal (f1)2/f0.
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(a) Partition in Setting B, n0 + n1 = 10000 (b) Partition in Setting B, n0 + n1 = 1000000

Figure 2: Partition chosen in Setting B for ntrain = 10000 (left) and ntrain = 1000000 (right),
using the density ratio criteria (full lines) and the Gini index (dotted lines). The points drawn from
f0 are in red, the points drawn from f1 are in blue.

Low signal setting Experiments 3a and 3b correspond to scenarios where the distributions f0

and f1 are highly similar, making the test problem inherently challenging. Unlike the previous
scenarios, the estimated signal does not show significant increase even as the number of points
exceeds 1000. It is noteworthy that unless n0/n → ∞, and we compel K∗ to increase, the partition
chosen based on the Gini index and the partition selected using the density ratio criterion yield
equivalent signal terms σ̂2. However, if K∗ increases with the number of training samples, the
signal term appears to exhibit gradual growth with the size of the partition chosen according to the
density ratio criterion, while it seems to remain unchanged when using the Gini index. Once again,
this observation can be attributed to the fact that the Gini index aims to separate the two densities,
while the density ratio criterion seeks regions characterized by high signal (f1/f0 − 1)2 × f0.

3.2 Type I and II error for simulated data

Detection threshold for different signal strengths We now investigate the empirical type I
and type II error of the Estimated Density Ratio Test. We consider the distributions f0 and f1 of
Settings A, B and C. We simulate mixtures sampled from (1−θ)×f0+θ×f1 for θ varying between
0.0003 and 0.3.

Figure 3 presents the power in Settings A, B, and C, for a grid of 30 values of θ. As expected,
we observe that the detection threshold tends to 0 as the sample size increases, as expected, and
that is smaller when the signal is strong. Additional experiments in Appendix B.2 reveal that the
detection rate is of order n−0.97 in Setting A, n−0.76 in Setting B, and n−0.65 in Setting C.

Our experiment also reveals that the Estimated Density Ratio Test has a type I error lower than
the desired level α = 0.05. In fact, across all tested values of ntrain and all repetitions carried out for
θ = 0, the test never rejected H0. The theoretical bounds on the fluctuations of

∑
k(r̂k−1)Nk under

H0, which were used to design the Estimated Density Ratio Test, appear to be overly conservative
in practice. To address this issue, we propose in Section 3.3 a new test based on the empirical
estimation of this statistic using the bootstrap method.
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(a) Setting A. (b) Setting B. (c) Setting C.

Figure 3: Proportion of runs for which the Estimated Density Ratio Test rejected the null hypothesis,
for varying values of θ and of training sample size ntrain. Each experiment is reproduced 100 times.

3.3 Comparison with two bootstraped tests: Boootstraped Density Ratio and
Maximum Mean Riscrepancy

Bootstrap Estimated Density Ratio Test The simulations above suggest that the theoretical
bounds on the fluctuations of the statistic Ŝ(X) under H0 are overly conservative. In fact, the
empirical type I error consistently remains at 0 for all values of the training sample size, whereas
a well-calibrated test should exhibit a type I error of approximately 0.05 in these simulations. The
excessively conservative nature of the test can result in a reduction in power. To address this
issue, we propose a new test that estimates the fluctuations of Ŝ(X) using bootstrapping methods.
To alleviate the computational burden, the partition P is chosen once and for all using X0

part and
X1
part. Subsequently, we estimate the distribution of Ŝ(X) under H0 on this partition with bootstrap

methods, using the samples in X0
est and X1

est.
More precisely, we partition the training sample X0

est, which is used for the estimation of h0k,
into two samples. We begin by sampling (without replacement) a subset of size n from the training
sample X0

est, denoted as (X0
est)

I . Following this, we sample (with replacement) n0 points from the
remaining points of X0

est, and we denote this sample as (X0
est)

II . Lastly, we sample n1 points from
X1
est (with replacement) and denote this sample as (X1

est)
I . We estimate the density ratio r̂k for the

bins Bk ∈ P using the samples (X0
est)

II and (X1
est)

I , and we compute the statistic Ŝ((X0
est)

I). This
process is repeated numerous times to obtain a threshold τ , corresponding to the empirical quantile
of level 0.95 of the statistic Ŝ((X0

est)
I) for these bootstrapped samples. We then re-estimate the

quantities r̂k using the full samples X0
est and X1

est, along with the statistic Ŝ(X) corresponding to
the true test sample. We reject the hypothesis H0 if Ŝ(X) > τ . This test is hereafter referred to as
the Bootstrap Estimated Density Ratio Test.

In this Section, we compare the performance of the Estimated Density Ratio Test with that
of the Bootstrap Estimated Density Ratio Test, as well as a classical two-sample test based on
Maximum Mean Discrepancy (MMD), due to [GBR+12]. Before presenting our simulations, we
provide a brief reminder on MMD.

Maximum Mean Discrepancy Let (X , d) be a metric space, and p, q be two Borel probability
measures defined on X . Consider a class of functions F , where f : X → R. The Maximum Mean
Discrepancy between p and q is defined as:

MMD[F , p, q] = sup
f∈F

{EX∼pf(X)− EY∼qf(Y )} .
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When the function class F is rich enough, p = q if and only if MMD[F , p, q] = 0. To compute the
MMD of p and q, we can rely on the following property. When the class of functions F is the unit
ball in a reproducing kernel Hilbert space H with kernel k, and when EX∼p

√
k(X,X) < ∞ and

EX∼q

√
k(X,X) < ∞, we have:

MMD[F , p, q] = EX,X′∼p

[
k(X,X ′)

]
+ EY,Y ′∼q

[
k(Y, Y ′)

]
− 2EX∼p,Y∼q [k(X,Y )] .

This formula can be used to estimate the MMD between p and q, assuming samples (X1, ..., Xn) ∼ p
and (Y1, ..., Yn′) ∼ q are available. To do so, we could replace the unknown expectations in the
formula with their empirical counterparts. However, estimating the MMD between two samples of
size n would require n2 computations, which can be prohibitive in practice. When sample sizes are
large, [GBR+12] suggest approximating the MMD statistic using the following statistic, computed
in linear time (assuming, for simplicity, that n = n′ is even):

M̂MDl =
1

n/2

∑
i≤n/2

k(X2i, X2i+1) + k(Y2i, Y2i+1)− k(X2i, Y2i+1)− k(X2i+1, Y2i).

In practice, its distribution is estimated by bootstrapping, and the hypothesis p = q is rejected if
M̂MDl is larger than the corresponding quantile of level 1− α.

Detection rate of MMD and Bootstrap Estimated Density Ratio Test We compare the
power of MMD with that of the Estimated Density Ratio Test and its bootstrap equivalent. As
before, we simulate samples corresponding to Settings A, B, and C. We simulate mixtures sampled
from (1− θ)× f0 + θf1 for θ varying between 0.0003 and 0.3. The results are reported in Figure 4.
Note that the computation time of MMD is much larger than that of the Estimated Density Ratio
Test and its bootstraped version, and becomes prohibitive for test sample sizes above 100000. For
example, MMD is approximately 30 times slower than BEDRT for ntrain = 100000.

Figure 4 reveals that in settings corresponding to large and intermediate signal strength, the
power of the Bootstrap Estimated Density Ratio Test is comparable to that of MMD for small sample
sizes, and significantly better as the sample size increases. Additional experiments, presented in the
Appendix, confirm this phenomenon by showing that the detection rate for MMD decreases as n−0.5,
while the detection rate of the Bootstrap Estimated Density Ratio Test approaches n−1 in these
settings. In contrast, when the sample size is small, and the signal is low, MMD outperforms the
Bootstrap Estimated Density Ratio Test. It is important to note that both the Estimated Density
Ratio Test and the Bootstrap Estimated Density Ratio Test utilize the sample X1 to estimate the
density f1. When the sample size is small, the information provided by this sample becomes less
significant. Moreover, histogram-based tests, such as the Estimated Density Ratio Test and the
Bootstrap Estimated Density Ratio Test, retain less information than MMD. These factors may
explain the relative loss of performance of these tests for small sample sizes in low signal settings.

3.4 Application to flow cytometry data

Cytotrol FlowCAP III dataset We illustrate our test on flow cytometry data by applying it to
the T-cell panel of the Cytotrol FlowCAP III dataset provided by the Human Immune Phenotyping
Consortium (HIPC), available on the ImmuneSpace website. This dataset consists of 62 samples,
representing 3 replicates of analyses conducted on 3 patients across 7 different laboratories (one
dataset has been duplicated, so we exclude one of the copies). For each cell, seven biological
markers have been measured. These samples have been manually annotated, and the cells have
been categorized into the following 10 types: CD4 Effector (CD4 E), CD4 Naive (CD4 N), CD4
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(a) Setting A. (b) Setting B.

(c) Setting C.

Figure 4: Proportion of runs for which the Estimated Density Ratio Test (EDRT), Bootstrap
Estimated Density Ratio Test (BEDRT) and MMD test (MMD) rejected the null hypothesis for
varying values of θ and of training sample size ntrain. Each experiment is reproduced 300 times.

Central Memory (CD4 CM), CD4 Effector Memory (CD4 EM), CD4 Activated (CD4 A), CD8
Effector (CD8 E), CD8 Naive (CD8 N), CD8 Central Memory (CD8 CM), CD8 Effector Memory
(CD8 EM), and CD8 Activated (CD8 A). Each sample contains a varying number of cells, ranging
from 15,554 to 112,318 cells. Additionally, the cell proportions vary significantly, with proportions
typically ranging from 1% to 25% of the sample. There is notable variability between samples, with
standard deviations as high as 94% of the mean proportion for certain cell populations.

Experiment We focus our study on 4 types of cells, each with varying prevalence in the sample.
More precisely, we focus on detecting the cells CD4 N, CD8 E, CD8 EM, and CD8 CM whose
average prevalence in the sample represent respectively 17%, 1%, 11% and 24% of the sample cells.
We investigate the ability of our test to detect the presence of those cells. For each cell type c ∈ {CD4
N, CD8 E, CD8 EM, CD8 CM}, we treat cells of type c as being drawn from distribution f1, while
the remaining nine cell types are considered drawn from f0. We assess the power of our test against
alternatives characterized by different prevalence levels θ. Because of the large computation time
required by MMD, we limit the test sample size to 10000 cells. Details of the implementation can
be found in the Appendix. The result of this experiment is presented In Figure 5.
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Figure 5: Detection rates for different types of cells and different prevalence. The full line indicate
the true average in-sample cell prevalence. The dashed (resp. dotted) line indicate the power of
BEDRT (resp. MMD) against the alternative for varying levels of prevalence θ.

Results The average type I error is approximately 0.040 for the BEDRT, and 0.038 for the
MMD test. The results illustrate the good performances of BEDRT, demonstrating its ability
to accurately identify cells such as “CD4 N," “CD8 CM", and “CD8 EM" with probabilities nearly
reaching 1 at their actual prevalence levels. Additionally, BEDRT successfully detects the rare cell
“CD8 E" with a probability exceeding 0.75 at its true prevalence level. In stark contrast, MMD
consistently falls short, achieving low power for the specified prevalence levels. Furthermore, the
substantial computational time demanded by MMD prohibits the analysis of large samples. In
contrast, BEDRT, being significantly faster, can efficiently analyze larger datasets.

4 Conclusions

In this paper, we study a problem of supervised contamination detection. We design a test for this
problem, and we establish non-asymptotic bounds on its type I error, and on its power. The efficacy
of this test depends heavily on the judicious selection of a partition for estimating the densities
of inliers and outliers. We introduce a partitioning algorithm designed to efficiently capture the
signal for the test. Both the resultant test and partitioning algorithms yield results that are easily
interpretable.

Implementation of this test is straightforward using available packages for Classification And
Regression Trees. We demonstrate the good performance of the test through extensive simulations.
These simulations indicate that the test tends to be excessively conservative. To address this, we
propose a calibration method employing a bootstrapping approach. Simulations and experiments
conducted on flow cytometry data showcase the superior performance of the bootstrapped test,
surpassing benchmark tests for two-sample testing by a significant margin.

19



Acknowledgments and Disclosure of Funding

The authors thank Bastien Dussap for fruitful discussions. G. B. gratefully acknowledges funding
from the grants ANR-21-CE23-0035 (ASCAI), ANR-19-CHIA-0021-01 (BISCOTTE) and ANR-23-
CE40-0018-01 (BACKUP) of the French National Research Agency ANR. Part of this research was
done when G. B. received support from DFG SFB1294 “Data Assimilation”, as “Mercator fellow” at
Universität Potsdam, Germany. F.C. and S.G. thank the ANR TopAI chair (ANR–19–CHIA–0001)
for financial support. S.G. gratefully acknowledges funding from the Hadamard Doctoral School of
Mathematics (EDMH).

References

[Agg17] Charu C. Aggarwal. An Introduction to Outlier Analysis, pages 1–34. Springer
International Publishing, Cham, 2017.

[AKS20] Amr M. Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum likeli-
hood with bias-corrected calibration is hard-to-beat at label shift adaptation. In
Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

[BLS10] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Semi-supervised novelty detec-
tion. Journal of Machine Learning Research, 11:2973–3009, 03 2010.

[BV10] L. Bordes and P. Vandekerkhove. Semiparametric two-component mixture model
with a known component: An asymptotically normal estimator. Mathematical Meth-
ods of Statistics, 19(1):22–41, 2010.

[CJ10] T. Tony Cai and Jiashun Jin. Optimal rates of convergence for estimating the null
density and proportion of nonnull effects in large-scale multiple testing. The Annals
of Statistics, 38(1):100 – 145, 2010.

[CR10] Alain Celisse and Stéphane Robin. A cross-validation based estimation of the pro-
portion of true null hypotheses. Journal of Statistical Planning and Inference,
140(11):3132–3147, 2010.

[DBCA23] Bastien Dussap, Gilles Blanchard, and Badr-Eddine Chérief-Abdellatif. Label shift
quantification with robustness guarantees via distribution feature matching. In Ma-
chine Learning and Knowledge Discovery in Databases: Research Track: European
Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings,
Part V, page 69–85, Berlin, Heidelberg, 2023. Springer-Verlag.

[End87] G. Enderlein. Hawkins, d. m.: Identification of outliers. chapman and hall, london
– new york 1980, 188 s., £ 14, 50. Biometrical Journal, 29:198–198, 1987.

[EYN06] Ran El-Yaniv and Mordechai Nisenson. Optimal single-class classification strategies.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems, volume 19. MIT Press, 2006.

[For08] George Forman. Quantifying counts and costs via classification. Data Mining and
Knowledge Discovery, 17(2):164–206, 2008.

20



[GBR+12] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and
Alexander Smola. A kernel two-sample test. Journal of Machine Learning Research,
13(25):723–773, 2012.

[GCARA13] Víctor González-Castro, Rocío Alaiz-Rodríguez, and Enrique Alegre. Class distribu-
tion estimation based on the hellinger distance. Information Sciences, 218:146–164,
2013.

[GCnCC17] Pablo González, Alberto Castaño, Nitesh V. Chawla, and Juan José Del Coz. A
review on quantification learning. ACM Comput. Surv., 50(5), sep 2017.

[GN15] Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-Dimensional
Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2015.

[GWBL20] Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary C. Lipton. A
unified view of label shift estimation. In Proceedings of the 34th International Con-
ference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA,
2020. Curran Associates Inc.

[INS14] Arun Iyer, Saketha Nath, and Sunita Sarawagi. Maximum mean discrepancy for
class ratio estimation: Convergence bounds and kernel selection. In Eric P. Xing and
Tony Jebara, editors, Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pages 530–538,
Bejing, China, 22–24 Jun 2014. PMLR.

[LSW+19] Xiao Liu, Weichen Song, Brandon Y. Wong, Ting Zhang, Shunying Yu, Guan Ning
Lin, and Xianting Ding. A comparison framework and guideline of clustering meth-
ods for mass cytometry data. Genome Biology, 20(1):297, 2019.

[LWS18] Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola. Detecting and correct-
ing for label shift with black box predictors. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 3128–3136. PMLR, 2018.

[MPSV24] Xavier Milhaud, Denys Pommeret, Yahia Salhi, and Pierre Vandekerkhove. Two-
sample contamination model test. Bernoulli, 30(1):170 – 197, 2024.

[NM14] Van Hanh Nguyen and Catherine Matias. On efficient estimators of the proportion of
true null hypotheses in a multiple testing setup. Scandinavian Journal of Statistics,
41(4):1167–1194, 2014.

[R C21] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2021.

[TA22] Terry Therneau and Beth Atkinson. rpart: Recursive Partitioning and Regression
Trees, 2022. R package version 4.1.19.

[TPB+19] Xuefei Tan, Roshani Patil, Peter Bartosik, Judith M. Runnels, Charles P. Lin, and
Mark Niedre. In vivo flow cytometry of extremely rare circulating cells. Scientific
Reports, 9(1):3366, 2019.

21



[Vaa98] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1998.

[VKV+20] Denis V. Voronin, Anastasiia A. Kozlova, Roman A. Verkhovskii, Alexey V. Er-
makov, Mikhail A. Makarkin, Olga A. Inozemtseva, and Daniil N. Bratashov. De-
tection of rare objects by flow cytometry: Imaging, cell sorting, and deep learning
approaches. International Journal of Molecular Sciences, 21(7), 2020.

[VPACLG+21] Miryam Elizabeth Villa-Pérez, Miguel A. Alvarez-Carmona, Octavio Loyola-
González, Miguel Angel Medina-Pérez, Juan Carlos Velazco-Rossell, and Kim-
Kwang Raymond Choo. Semi-supervised anomaly detection algorithms: A compara-
tive summary and future research directions. Knowledge-Based Systems, 218:106878,
2021.

[VV06] Régis Vert and Jean-Philippe Vert. Consistency and convergence rates of one-class
svms and related algorithms. Journal of Machine Learning Research, 7(29):817–854,
2006.

22



A Proofs

A.1 Proof of Theorem 1

To make the proof easier to read, we divide Theorem 1 into two results, concerning the type I error
and type II error respectively. These results are then proved in sections A.1.2 and A.1.3 respectively.
Then, we characterize alternatives corresponding to power 1− α.

Lemma 5. Assume that n0 ≥ n1, and that 3ϵ0 ≤ ϵ1 ≤ 1. Then the Density Ratio Test has type I
error lower than 1− α.

The next lemma establishes a lower bound in Ŝ(X) that holds with high probability under the
alternative.

Lemma 6. Assume that n0 ≥ n1, and that 3ϵ0 ≤ ϵ1 ≤ 1. Under Hypothesis H1, with probability
larger than 1− α,

Ŝ(X) >
((

1−
( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4

)
θ −

(√
10uKσ̂2

n0
+
(
13ϵ1|Ω1|+ 4ϵ1|Ω01|+ 3ϵ0|Ω0|

))

−
√
σ̂2

√
6t

n

(
1 + θ + θmax

k
|r̂k − 1|

)
− t

3n
max
k

|r̂k − 1|.

Finally, next lemma characterizes alternative such that the test is rejected with probablity larger
than 1− α.

Lemma 7. Assume that n0 ≥ n1, and that 3ϵ0 ≤ ϵ1 ≤ 1. Under the alternative hypothesis H1, the
Density Ratio Test rejects the hypothesis H0 with probability larger than 1− α if θ verifies

θ ≥

(
353

√
t

nσ̂2
+

400
√
uK1

σ̂2
√
n1

+
30ϵ0K0

σ̂2
+ 64

√
uK

n0σ̂2

)
.

where K1 = |Ω1|+ |Ω0| and K0 = |Ω0|.

A.1.1 Concentration results on the estimated probabilities ĥ0k and ĥ1k

Before proving Lemmas 5, 6, and 7, we provide a list of concentration results relating the estimators
ĥ0k and ĥ1k to their population counterpart h0k and h1k. The concentration results bellow rely on
Bernstein’s theorem, which we recall here for completeness:

Theorem 2 (Bernstein inequality, see, e.g., Theorem 3.1.7 in [GN15]). Let Xi, 1 ≤ i ≤ n be indepen-
dent centered random variables a.s. bounded by c < ∞ in absolute value. Set σ2 = 1/n

∑
i≤n E

[
X2

i

]
and Sn =

∑
i≤nXi. Then, for all u > 0,

P
(
Sn ≥

√
2nσ2u+

cu

3

)
≤ e−u.

Lemma 8 shows that on an event E of large probability, ĥ0k and ĥ1k are close to h0k and h1k
simultaneously for all k.
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Lemma 8. On an event E of probability at least 1 − 4Ke−u, simultaneously for all k ≤ K and
a ∈ {0, 1}, one has

Na
k

na
∈

[
hak −

√
2
uhak
na

− u

3na
;hak +

√
2
uhak
na

+
u

3na

]
(8)

hak ∈

[
Na

k

na
−
√
2uNa

k

na
;
Na

k

na
+

√
2uNa

k

na
+

3u

na

]
. (9)

The proof of Lemma 8 is postponed to Appendix A.1.5.

The following lemma provides sharp bounds on the distance
∣∣∣hak − ĥak

∣∣∣ for a = 0 and a = 1, for
bins where the density have been thresholded and for bins in which they have not.

Lemma 9. Assume that n0 ≥ n1 and that ϵ0, ϵ1 ≤ 1. On the event E of Lemma 8, for a ∈ {0, 1}
and for all k ∈ Ωa ∪ Ω01,

hak ≤ ĥak. (10)

Moreover, for all k /∈ Ωa ∪ Ω01, ∣∣∣hak − ĥak

∣∣∣ ≤
√

10uĥak
na

. (11)

and ∣∣∣hak − ĥak

∣∣∣ ≤ 2ĥak. (12)

The proof of Lemma 9 is postponed to Appendix A.1.6.

Finally, the following Lemma provides a lower bound on the signal term
∑

k (r̂k − 1)h1k depend-
ing on the estimated signal σ̂2.

Lemma 10. Assume that n0 ≥ n1 and that ϵ0, ϵ1 ≤ 1. On the event E of Lemma 8,∑
k

(r̂k − 1)h1k ≥
(
1−

( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4 −

(
ϵ1
(
13|Ω1|+ 4|Ω01|

)
+ 3ϵ0|Ω0|

)
.

The proof of Lemma 10 is postponed to Appendix A.1.7.

A.1.2 Proof of Lemma 5

We apply Bernstein’s inequality (2) conditionally on the samples X0 and X1 to the random variables
Ai =

∑
k≤K (r̂k − 1)

(
1{Xi ∈ Bk} − h0k

)
. Note that the random variables Ai are centered, that

Ai ≤ maxk≤K |r̂k − 1| a.s., and that 1
n

∑
i≤n E[A2

i ] ≤
∑

k≤K (r̂k − 1)2 h0k. Then, under H0, for all
t > 0,

PH0

|X0,X1

Ŝ(X) ≥
∑
k≤K

(r̂k − 1)h0k +

√
2t

n

∑
k≤K

(r̂k − 1)2 h0k +
t

3n
max
k≤K

|r̂k − 1|

 ≤e−t. (13)

To prove Lemma 5, we provide upper bounds on the bias

B0 =
∑
k≤K

(r̂k − 1)h0k,

and on the variance
V0 =

∑
k≤K

(r̂k − 1)2 h0k.
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Bound on the bias B0 We begin by bounding the bias term. We decompose the B0 as follows:

B0 =
∑
k≤K

(r̂k − 1) ĥ0k +
∑
k≤K

(r̂k − 1)
(
h0k − ĥ0k

)
.

Using the definition of r̂k =
ĥ1
k

ĥ0
k

yields

B0 =
∑
k≤K

ĥ1k −
∑
k≤K

ĥ0k +
∑
k≤K

(r̂k − 1)
(
h0k − ĥ0k

)
.

By definition of ĥ1k,
∑

k≤K ĥ1k ≤ 1 + 3ϵ1
(
|Ω1|+ |Ω01|

)
, and

∑
k≤K ĥ0k ≥ 1. Thus,

B0 ≤ 3ϵ1
(
|Ω1|+ |Ω01|

)
+
∑
k≤K

(r̂k − 1)
(
h0k − ĥ0k

)
.

To bound
∑

k≤K (r̂k − 1)
(
h0k − ĥ0k

)
, we consider separately the cases where k ∈ Ω0 ∪ Ω01 and

k /∈ Ω0 ∪ Ω01. On the one hand, for all k ∈ Ω01, ĥ0k = 3ϵ1 = ĥ1k, so r̂k = 1 and∑
k∈Ω01

(r̂k − 1)
(
h0k − ĥ0k

)
= 0.

Similarly, for all k ∈ Ω0, ĥ0k = 3ϵ0. Moreover, ĥ1k > ϵ1 ≥ 3ϵ0. Thus, for all k ∈ Ω0, we see that
r̂k ≥ 1. Moreover, Equation (10) in Lemma 9 shows that for k ∈ Ω0 ∪ Ω01, h0k ≤ ĥ0k. Thus,∑

k∈Ω0

(r̂k − 1)
(
h0k − ĥ0k

)
≤ 0.

It remains to bound
∑

k/∈Ω0∪Ω01 (r̂k − 1)
(
h0k − ĥ0k

)
. Equation (11) in Lemma 9 implies that on the

event E ,

∑
k/∈Ω0∪Ω01

|r̂k − 1|
∣∣∣h0k − ĥ0k

∣∣∣ ≤√10u

n0

∑
k/∈Ω0

√
(r̂k − 1)2 ĥ0k

≤
√

10u

n0

∑
k≤K

√
(r̂k − 1)2 ĥ0k

Now, Jensen’s inequality implies

∑
k≤K

√
(r̂k − 1)2 ĥ0k ≤

√
Kσ̂2.

Thus,

B0 ≤ 3ϵ1
(
|Ω1|+ |Ω01|

)
+

√
10uKσ̂2

n0
. (14)
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Bound on V0 Next, we control the variance term under H0, defined as

V0 =
∑
k≤K

(r̂k − 1)2 h0k.

On the event E , Lemma 9 implies

V0 ≤ 3
∑
k≤K

(r̂k − 1)2 ĥ0k = 3σ̂2. (15)

Conclusion Combing Equations (13), (14), and (14), we find that under H0, on the event E , with
probability 1− e−t,

Ŝ(X) <3ϵ1
(
|Ω1|+ |Ω01|

)
+

√
10uKσ̂2

n0
+

√
6tσ̂2

n
+

t

3n
max
k≤K

|r̂k − 1|.

Note that for u = log(4Kα ), the event E holds with probability 1− α
2 . Choosing t = log( 2α), we see

that the test described in Lemma has type one error lower than α.

A.1.3 Proof of Lemma 6

Recall that under H1, the sample X has a density given by θ×f0+(1−θ)×f1. Applying Bernstein’s
inequality conditionally on the samples X0 and X1, we see that under H1, for all t > 0,

PH1

|X0,X1

(
Ŝ(X) ≤ (1− θ)

∑
k≤K

(r̂k − 1)h0k + θ
∑
k≤K

(r̂k − 1)h1k

−

√√√√√2t

n

∑
k≤K

(r̂k − 1)2 h0k + θ
∑
k≤K

(r̂k − 1)2 (h1k − h0k)

− t

3n
max
k≤K

|r̂k − 1|

)
≤ e−t.

(16)

To prove Lemma 6, we provide lower bounds on the bias under H1

B1 = (1− θ)
∑
k≤K

(r̂k − 1)h0k + θ
∑
k≤K

(r̂k − 1)h1k,

as well as upper bounds on the variance

V1 =
∑
k≤K

(r̂k − 1)2 h0k + θ
∑
k≤K

(r̂k − 1)2 (h1k − h0k).

Bound on B1 We begin by providing a lower bound on

B1 = (1− θ)
∑
k≤K

(r̂k − 1)h0k + θ
∑
k≤K

(r̂k − 1)h1k.

To do so, we first provide a lower bound on
∑

k≤K (r̂k − 1)h0k. Following the proof of Lemma 5, we
note that for all k ∈ Ω0 ∪ Ω01, r̂k ≥ 1. Thus,∑

k

(r̂k − 1)h0k ≥
∑

k/∈Ω0∪Ω01

(r̂k − 1)h0k

≥
∑

k/∈Ω0∪Ω01

ĥ0k − ĥ1k −
∑

k/∈Ω0∪Ω01

|r̂k − 1|
∣∣∣h0k − ĥ0k

∣∣∣ .
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Now,
∑

k/∈Ω0∪Ω01 ĥ0k ≥ 1−
(
ϵ0|Ω0|+ ϵ1|Ω01|

)
, and

∑
k/∈Ω0∪Ω01 ĥ1k ≤ 1 + 3ϵ1|Ω1|. Thus,∑

k

(r̂k − 1)h0k ≥ −
(
3ϵ1|Ω1|+ ϵ0|Ω0|+ ϵ1|Ω01|

)
−

∑
k/∈Ω0∪Ω01

|r̂k − 1|
∣∣∣h0k − ĥ0k

∣∣∣ .
Following the proof of Lemma 5, we find that on the event E ,∑

k/∈Ω0∪Ω01

|r̂k − 1|
∣∣∣h0k − ĥ0k

∣∣∣ ≤√10u

n0

∑
k/∈Ω0∪Ω01

√
(r̂k − 1)2 ĥ0k

≤
√

10u

n0

√
Kσ̂2

Combining these results, we find that

(1− θ)
∑
k≤K

(r̂k − 1)h0k ≥ −(1− θ)
(
3ϵ1|Ω1|+ ϵ0|Ω0|+ ϵ1|Ω01|

)
−
√

10uKσ̂2

n0
.

To conclude the lower bound on B1, we rely on Lemma 10. We find that

B1 ≥
((

1−
( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4

)
θ −

(√
10uKσ̂2

n0
+
(
13ϵ1|Ω1|+ 4ϵ1|Ω01|+ 3ϵ0|Ω0|

))
. (17)

Bound on V1 Next, we provide an upper bound on the variance

V1 =
∑
k≤K

(r̂k − 1)2 h0k + θ
∑
k≤K

(r̂k − 1)2 (h1k − h0k).

On the one hand, as shown previously, on E ,∑
k≤K

(r̂k − 1)2 h0k ≤ 3σ̂2.

On the other hand, ∑
k≤K

(r̂k − 1)2 (h1k − h0k) ≤ max
k

∣∣h1k − h0k
∣∣

ĥ0k

∑
k≤K

(r̂k − 1)2 ĥ0k

≤ max
k

∣∣h1k − h0k
∣∣

ĥ0k
× σ̂2

To bound maxk
|h1

k−h0
k|

ĥ0
k

, note that on the E , Lemma 8 implies that h1k ≤ 3ĥ1k and h0k ≤ 3ĥ0k. Thus,

max
k

∣∣h1k − h0k
∣∣

ĥ0k
≤ max

k

h1k

ĥ0k
∨max

k

h0k

ĥ0k
≤ 3(max

k
r̂k ∨ 1).

Moreover, necessarily maxk r̂k ≥ 1. Finally, this implies that∑
k≤K

(r̂k − 1)2 (h1k − h0k) ≤ 3

(
max
k

|r̂k − 1|+ 1

)
× σ̂2

V1 ≤ 3σ̂2

(
1 + θ + θmax

k
|r̂k − 1|

)
. (18)
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Conclusion Equation (16) implies that for all t > 0, with probability at least 1− e−t,

Ŝ(X) >B1 −
√

2t

n
V1 −

t

3n
max
k≤K

|r̂k − 1|.

Plugging the bounds on B1 and V1 given respectively in Equations (17) and (18), we find that under
H1, on the event E , with probability at least 1− e−t,

Ŝ(X) >
((

1−
( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4

)
θ −

(√
10uKσ̂2

n0
+
(
13ϵ1|Ω1|+ 4ϵ1|Ω01|+ 3ϵ0|Ω0|

))

−
√
σ̂2

√
6t

n

(
1 + θ + θmax

k
|r̂k − 1|

)
− t

3n
max
k

|r̂k − 1|.

A.1.4 Proof of Lemma 7

To prove Lemma 7, note that the test presented above rejects the null hypothesis if

Ŝ(X) ≥
√
σ̂2

(√
10uK

n0
+

√
6t

n

)
+

t

3n
max
k

|r̂k − 1|+ 3ϵ1
(
|Ω01|+ |Ω1|

)
.

Thus, according to Lemma 6, the test rejects the hypotheses H0 with probability larger than
1− α under the alternative hypothesis H1 if θ is such that

√
σ̂2

(√
10uK

n0
+

√
6t

n

)
+

t

3n
max
k

|r̂k − 1|+ 3ϵ1
(
|Ω01|+ |Ω1|

)
≤
((

1−
( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4

)
θ −

(
13ϵ1|Ω1|+ 4ϵ1|Ω01|+ 3ϵ0|Ω0|

)
−
√
σ̂2

(√
6t

n

(
1 + θ + θmax

k
|r̂k − 1|

)
+

√
10uK

n0

)
− t

3n
max
k

|r̂k − 1|

or equivalently if((
1−

( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4

)
θ −

(
16ϵ1|Ω1|+ 7ϵ1|Ω01|+ 3ϵ0|Ω0|

)
−
√
σ̂2

(√
6t

n

(√
1 + θ + θmax

k
|r̂k − 1|+ 1

)
+

√
40uK

n0

)
− 2t

3n
max
k

|r̂k − 1| ≥ 0

To simplify this expression, note that it is verified if

((
1−

( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4

)
θ −

√
6tσ̂2

n

(
1 + max

k
|r̂k − 1|

)√
θ

−

((
16ϵ1|Ω1|+ 7ϵ1|Ω01|+ 3ϵ0|Ω0|

)
+
√
σ̂2

(√
24t

n
+

√
40uK

n0

)
+

2t

3n
max
k

|r̂k − 1|

)
≥ 0
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Using (
√
a+

√
b)2 ≤ 2a+ 2b, we see that this is verified if

θ ≥
6tσ̂2

n (1 + maxk |r̂k − 1|)((
1−

(
u
n1

) 1
4

)
σ̂2 −

(
u
n1

) 1
4

)2
+ 2

(
16ϵ1|Ω1|+ 7ϵ1|Ω01|+ 3ϵ0|Ω0|

)
+
√
σ̂2
(√

24t
n +

√
40uK
n0

)
+ 2t

3n maxk |r̂k − 1|(
1−

(
u
n1

) 1
4

)
σ̂2 −

(
u
n1

) 1
4

or equivalently if

θ ≥ 1(
1−

(
u
n1

) 1
4 (1 + σ̂2)

)2 ×
(

6t

nσ̂2

(
1 + max

k
|r̂k − 1|

))

+
1(

1−
(

u
n1

) 1
4 (1 + σ̂2)

) ×

(
32ϵ1|Ω1|+ 14ϵ1|Ω01|+ 6ϵ0|Ω0|

σ̂2
+

√
96t

nσ̂2
+

√
160uK

n0σ̂2
+

4t

3nσ̂2
max
k

|r̂k − 1|

)
(19)

To simplify this expression, note that if ϵ1 ≤ 1, u
n1 ≤ 1

3 , so
(
1−

(
u
n1

) 1
4
(
1 + σ̂2

))−1

≤ 5. Thus,
Equation (19) is verified if

θ ≥150t

nσ̂2

(
1 + max

k
|r̂k − 1|

)
+

160ϵ1|Ω1|+ 70ϵ1|Ω01|+ 30ϵ0|Ω0|
σ̂2

+ 5

√
96t

nσ̂2

+ 5

√
160uK

n0σ̂2
+

10t

3nσ̂2
max
k

|r̂k − 1|.

Moreover, setting k∗ ∈ argmaxk |r̂k − 1|, we have

max
k

|r̂k − 1|2ϵ0 ≤ |r̂k∗ − 1|2 × ĥ0k∗ ≤ σ̂2,

so
t

n
max
k

|r̂k − 1| ≤
√

t

n

√
ϵ0max

k
|r̂k − 1|2 ≤

√
tσ̂2

n
.

Thus, Equation (19) is verified if

θ ≥

(
353

√
t

nσ̂2
+

400
√
uK1

σ̂2
√
n1

+
30ϵ0K0

σ̂2
+ 64

√
uK

n0σ̂2

)
.

where K1 = |Ω1|+ |Ω0| and K0 = |Ω0|.

A.1.5 Proof of Lemma 8

For a ∈ {0, 1} and k ≤ K, applying Bernstein’s inequality 2 to the random variables (1{Xa
i ∈ Bk} − hak)i≤na ,

we see that

P

(∣∣∣∣Na
k

na
− hak

∣∣∣∣ ≥
√
2
uhak
na

+
u

3na

)
≤2e−u. (20)
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Thus, the event E =

{∣∣∣Na
k

na − hak

∣∣∣ ≤√2
uha

k
na + u

3na for all k ≤ K, a ∈ {0, 1}
}

occurs with proba-

bility larger than 1− 4Ke−u. Note that on this event, Equation (8) is verified for all a ∈ {0, 1} and
k ≤ K. Moreover,

hak −
Na

k

na
−
√
2
uhak
na

− u

3na
< 0.

Thus, hak < r2, where r is the positive root of the polynomial x2 −
√
2 u
nax −

(
Na

k
na + u

3na

)
. Direct

calculations show that

r2 ≤
Na

k

na
+

√
2uNa

k

na
+

3u

na
. (21)

Similarly, on E ,

hak −
Na

k

na
+

√
2
uhak
na

+
u

3na
> 0.

Thus, hak > r′2, where r′ is the positive root of the polynomial x2+
√
2 u
nax−

(
Na

k
na − u

3na

)
. Straight-

forward calculations show that

r′2 ≥
Na

k

na
−
√
2uNa

k

na
. (22)

Combining Equations (21) and (22) yields Equation (9).

A.1.6 Proof of Lemma 9

We begin by proving Equation (10). For a = 1 and k ∈ Ω1 ∪Ω01, we have that N1
k ≤ ϵ1n1. On the

event E , Lemma 8 implies that

h1k ≤ ϵ1 +

√
2uϵ1

n1
+

3u

n1
= ϵ1

(
1 +

√
2ϵ1
3

)
+
(
ϵ1
)2

.

Since ϵ1 ≤ 1, we see that h1k ≤ 3ϵ1 = ĥ1k, which proves Equation (10) for a = 1.
For a = 0 and k ∈ Ω0, we have that N0

k ≤ ϵ0n0. On the event E , Lemma 8 implies that

h0k ≤ ϵ0 +

√
2uϵ0

n0
+

3u

n0
≤ 3ϵ0 = ĥ0k.

Finally, for a = 0 and k ∈ Ω01, we have that N0
k ≤ ϵ1n0. On the event E , Lemma 8 implies that

h0k ≤ ϵ1 +

√
2uϵ1

n0
+

3u

n0
.

Since n1 ≤ n0, this implies that

h0k ≤ ϵ1 +

√
2uϵ1

n1
+

3u

n1
.

The same arguments as previously show that this implies that

h0k ≤ 3ϵ1 = ĥ1k.
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We now turn to the proof of Equation (11). For a = 0 and k /∈ Ω0 ∪Ω01, we have that ĥ0k =
N0

k
n0 ,

so Lemma 8 implies that on the event E ,
∣∣∣h0k − ĥ0k

∣∣∣ ≤ √2uĥ0
k

n0 + 3u
n0 . Moreover, since k /∈ Ω0 ∪ Ω01,

ĥ0k ≥ ϵ0 = 3u
n0 . Thus, ∣∣∣h0k − ĥ0k

∣∣∣ ≤
√

2uĥ0k
n0

+

√
3uĥ0k
n0

≤

√
10uĥ0k
n0

.

Using 3u
n0 ≤ ĥ0k, we also find that ∣∣∣h0k − ĥ0k

∣∣∣ ≤√2

3
ĥ0k + ĥ0k ≤ 2ĥ0k.

We then prove Equation (11) for a = 1 and k /∈ Ω1 ∪ Ω01 : in this case, we have that ĥ1k =
N1

k
n1 ,

so Lemma 8 implies that on the event E ,
∣∣∣h1k − ĥ1k

∣∣∣ ≤ √2uĥ1
k

n1 + 3u
n1 . Moreover, since k /∈ Ω0 ∪ Ω01,

ĥ1k ≥ ϵ1 ≥
(
ϵ1
)2

= 3u
n1 . Thus,

∣∣∣h1k − ĥ1k

∣∣∣ ≤
√

2uĥ1k
n1

+

√
3uĥ1k
n1

≤

√
10uĥ1k
n1

.

Using 3u
n1 ≤

√
3u
n1 ≤ ĥ1k, we also find that

∣∣∣h1k − ĥ1k

∣∣∣ ≤√2

3
ĥ1k + ĥ1k ≤ 2ĥ1k.

A.1.7 Proof of Lemma 10

We begin by decomposing
∑

k(r̂k − 1)h1k as∑
k

(r̂k − 1)h1k =
∑
k∈Ω1

(r̂k − 1)h1k +
∑

k∈Ω01

(r̂k − 1)h1k +
∑

k/∈Ω1∪Ω01

(r̂k − 1)h1k.

We obtain a lower bound on the first term by noticing that r̂k − 1 ≥ −1. Thus,∑
k∈Ω1

(r̂k − 1)h1k ≥ −
∑
k∈Ω1

h1k.

Using Equation (10) in Lemma 9, we find that for all k ∈ Ω1, h1k ≤ ĥk
1
= 3ϵ1. Thus,∑

k∈Ω1

(r̂k − 1)h1k ≥ −3ϵ1|Ω1|.

On the other hand, for k ∈ Ω1, r̂k ≤ 3. Thus,∑
k∈Ω1

(r̂k − 1)ĥ1k ≤ 6ϵ1|Ω1|.

This shows that ∑
k∈Ω1

(r̂k − 1)h1k ≥
∑
k∈Ω1

(r̂k − 1)ĥ1k − 9ϵ1|Ω1|. (23)
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To obtain a lower bound on the second term, we note that for k ∈ Ω01, ĥ0k = ĥ1k. Thus, r̂k−1 = 0,
and ∑

k∈Ω01

(r̂k − 1)h1k =
∑

k∈Ω01

(r̂k − 1)ĥ1k. (24)

Finally, we derive a lower bound on
∑

k/∈Ω1∪Ω01(r̂k − 1)h1k. We note that by Lemma 8, on the
event E , for all k ≤ K,

h1k ≥
N1

k

n1

(
1−

√
2u

N1
k

)
.

Moreover, for all k /∈ Ω1 ∪ Ω01, ĥ1k =
N1

k
n1 ≥

√
3u
n1 , so N1

k ≥
√
3un1. This implies in particular that

for all k /∈ Ω1 ∪ Ω01, h1k ≥ ĥ1k

(
1−

(
u
n1

) 1
4

)
. Thus,

∑
k/∈Ω1∪Ω01

r̂kh
1
k ≥

(
1−

( u

n1

) 1
4

) ∑
k/∈Ω1∪Ω01

r̂kĥ
1
k.

This implies that

∑
k/∈Ω1∪Ω01

(r̂k − 1)h1k ≥
(
1−

( u

n1

) 1
4

) ∑
k/∈Ω1∪Ω01

(r̂k − 1)ĥ1k

+
∑

k/∈Ω1∪Ω01

(ĥ1k − h1k)−
( u

n1

) 1
4

∑
k/∈Ω1∪Ω01

ĥ1k

(25)

Now, on the one hand,
∑

k/∈Ω1∪Ω01 h1k ≤ 1. On the other hand,∑
k/∈Ω1∪Ω01

ĥ1k = 1−
∑

k∈Ω1∪Ω01

N1
k

n1
≥ 1− ϵ1

(
|Ω1|+ |Ω01|

)
and

∑
k/∈Ω1∪Ω01 ĥ1k ≤ 1. Thus,

∑
k/∈Ω1∪Ω01

(r̂k − 1)h1k ≥
(
1−

( u

n1

) 1
4

) ∑
k/∈Ω1∪Ω01

(r̂k − 1)ĥ1k +
( u

n1

) 1
4 − ϵ1

(
|Ω1|+ |Ω01|

)
(26)

Combining Equations (23), (24), and (26), we find that∑
k

(r̂k − 1)h1k ≥
(
1−

( u

n1

) 1
4

)∑
k

(r̂k − 1) ĥ1k −
( u

n1

) 1
4 − ϵ1

(
10|Ω1|+ |Ω01|

)
.

To conclude the proof, we note that

σ̂2 =
∑
k

(r̂k − 1)2 ĥ0k

=
∑
k

(r̂k − 1) ĥ1k +
∑
k

ĥ0k −
∑
k

ĥ1k.

Thus, ∑
k

(r̂k − 1) ĥ1k = σ̂2 +
∑
k

ĥ1k −
∑
k

ĥ0k.

32



As previously, we have that
∑

k ĥ
0
k ≤ 1 + 3ϵ0|Ω0|+ 3ϵ1|Ω01|, and

∑
k ĥ

1
k ≥ 1. Thus,∑

k

(r̂k − 1) ĥ1k ≥ σ̂2 − 3
(
ϵ0|Ω0|+ ϵ1|Ω01|

)
,

which implies

∑
k

(r̂k − 1)h1k ≥
(
1−

( u

n1

) 1
4

)
σ̂2 −

( u

n1

) 1
4 −

(
ϵ1
(
13|Ω1|+ 4|Ω01|

)
+ 3ϵ0|Ω0|

)
.

A.2 Proof of main lemmas and corollaries

A.2.1 Proof of Lemma 1

Before proving Lemma 1, we emphasize that when f0 and f1 are positive on [0, 1]d, σ2 is finite, and(
f1(X1)
f0(X1)

− 1
)

belongs to L2((1− θ)× f0 + θ × f1) for all θ ∈ [0, 1].

Moreover, under H0, E
[(

f1(X1)
f0(X1)

− 1
)]

= 0, and V
[(

f1(X1)
f0(X1)

− 1
)]

= σ2. Then, the Central
Limit Theorem implies that √

nSn(X)√
σ2

d→ N (0, 1) .

Thus, the test presented in Lemma 1 is asymptotically of level α.
To prove the second part of the Lemma, we consider alternatives θn = h√

n
for some h > 0. Let

us denote Pn the law of the sample X1, ..., Xn under H0, and Qn the law of the sample X1, ..., Xn

under the alternative indexed by θn. Under the assumption that f0 and f1 are positive on [0, 1]d,
it is easy to see that the family of models indexed by θ is differentiable in quadratic mean (using,
e.g., Lemma 7.6 in [Vaa98]). Then, using Theorem 7.2 in [Vaa98], we find that

log

(
dQn

dPn
(X)
)

=
h√
n

∑
i≤n

(
f1(Xi)

f0(Xi)
− 1

)
− h2

2n

∑
i≤n

(
f1(Xi)

f0(Xi)
− 1

)2

+ oPn(1).

The Law of Large Numbers implies that

h2

2n

∑
i≤n

(
f1(Xi)

f0(Xi)
− 1

)2
P→ h2σ2

2
,

and the Central Limit Theorem implies that

h√
n

∑
i≤n

(
f1(Xi)

f0(Xi)
− 1

)
d→ N

(
0, h2σ2

)
.

Thus, under Pn,  √
nSn(X)

log
(
dQn

dPn
(X)
) d→ N

((
0

−h2σ2

2

)
,

(
σ2

hσ2

hσ2

h2σ2

))
.

Now, Le Cam’s third Lemma (see, e.g., Example 6.7 in [Vaa98]) implies that under Qn,

√
nSn(X)

d→ N
(
hσ2, σ2

)
.
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Applying Theorem 14.7 in [Vaa98], we find that the power function

πn

(
h√
n

)
= Qn

(
Sn(X) ≥

√
σ2Φ(1− α)−1

√
n

)
converges as follows :

πn

(
h√
n

)
→ 1− Φ(Φ−1(1− α)− hσ).

This concludes the proof of Lemma 1.

A.2.2 Proof of Lemma 2

Let us define
p0Rn

=

∫
Rn

f0(x)dx and p1Rn
=

∫
Rn

f1(x)dx.

To prove the first part of the Lemma, note that under H0,

P

∑
i≤n

1{Xi ∈ Rn} = 0

 = exp
(
n log

(
1− p0Rn

))
.

Using the bound log(1− x) ≥ −x
2 × 2−x

1−x for x < 1, we find that

P

∑
i≤n

1{Xi ∈ Rn} = 0

 ≥ exp

(
−np0Rn

×
2− p0Rn

2− 2p0Rn

)
.

Thus, this test has type I error lower than α if

α ≥ 1− exp

(
−A× 2n−A

2(n−A)

)
.

This proves the first part of Lemma 2.

To prove the second part of Lemma 2, note that under the alternative H1,

Pθn

∑
i≤n

1{Xi ∈ R} = 0

 =
(
1− θp1R

)n
.

Using the bound log(1− x) ≤ −2x
2−x for x ∈ (0, 1), we find that

Pθn

∑
i≤n

1{Xi ∈ R} = 0

 ≤ exp

(
−2p1Rnθ

2− p1Rθ

)

≤ exp

(
−2Bn1−γθ

2− n−γθ

)
.

Thus, to ensure that the test has power β, it is enough to have

2Bn1−γθ

2− n−γθ
≥ log(1/β).

This is in particular verified if θ ≥ log(1/β)
Bn1−γ .
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A.2.3 Proof of Lemma 3

Recall that σ1
P is assumed to be finite. Defining B = {k : h0k > 0} and B = {k : h0k = 0}, we see

that {k : h1k = 0} ⊂ B. This implies in particular that Ω0 = ∅, and that B ⊂ Ω01. Now, for all
k ∈ Ω01, r̂k = 1, so

σ̂2 =
∑
k∈B

(
ĥ1k

ĥ0k
− 1

)2

ĥ0k

=
∑
k∈B

(
(ĥ1k)

2

ĥ0k
− 2ĥ1k + ĥ0k

)
.

Using
∣∣∣∑k∈B ĥ1k − 1

∣∣∣ ≤ ϵ1
(
|Ω1|+ |Ω01|

)
and

∣∣∣∑k∈B ĥ0k − 1
∣∣∣ ≤ ϵ1|Ω01|, we find

∣∣∣∣∣∣σ̂2 −

∑
k/∈B

(ĥ1k)
2

ĥ0k
− 1

∣∣∣∣∣∣ ≤ 5ϵ1|Ω|.

Similarly, we have σ2
P =

∑
k∈B

(h1
k)

2

h0
k

− 1. Combining these expressions, we find that

∣∣σ̂2 − σ2
P
∣∣ ≤ 5ϵ1|Ω|+

∑
k∈B

∣∣∣∣∣(ĥ1k)2ĥ0k
−

(h1k)
2

h0k

∣∣∣∣∣
≤ 5ϵ1|Ω|+

∑
k∈B

∣∣∣ĥ1k − h1k

∣∣∣ (ĥ1k + h1k

)
h0k

+
∑
k∈B

∣∣∣∣∣h0kĥ0k − 1

∣∣∣∣∣h0kĥ1k
Now, Lemma 8 shows that on the event E , for all k /∈ Ω1 ∪ Ω01

∣∣∣ĥ1k − h1k

∣∣∣ ≤√10u

n1
.

On the other hand, for all k ∈ Ω1 ∪ Ω01,

∣∣∣ĥ1k − h1k

∣∣∣ ≤ 3ϵ1 ≤
√

27u

n1
.

Moreover, Lemma 8 shows that on the event E , h1k ≤ 3ĥ1k. Thus,

∑
k∈B

∣∣∣ĥ1k − h1k

∣∣∣ (ĥ1k + h1k

)
ĥ0k

≤
√

27u

n1

∑
k∈B

4h1k
h0k

.

Similarly, Lemma 8 reveals that for all k,

∣∣∣∣∣h0kĥ0k − 1

∣∣∣∣∣ ≤
√

2u
n0h0

k
+ u

3n0h0
k

1−
√

2u
n0h0

k
− u

3n0h0
k

.
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This proves that

∣∣σ̂2 − σ2
P
∣∣ ≤ 5

√
3u

n1
|Ω|+

√
27u

n1

∑
k∈B

2h1k
h0k

+
∑
k∈B

√
2uh0

k
n0 +

uh0
k

3n0

1−
√

2u
n0h0

k
− u

3n0h0
k

Now, for all k ∈ B, h0k is stricly positive. Then, for n0, n1 and n large enough, mink(h
0
k −

√
2
uh0

k
n0 −

u
3n0 ) > ϵ1, so Ω01 ∩ B = ∅. When n0 is large enough so that

√
2uh0

k
n0 +

uh0
k

3n0 ≤ 1/2, there exists a

constant C
f
0
P ,f

1
P ,K

depending only on f
0
P f

1
P , and K such that

∣∣σ̂2 − σ2
P
∣∣ ≤ C

f
0
P ,f

1
P ,K

(√
u

n1
+

√
u

n0

)
.

A.2.4 Proof of Corollary 1

Let us assume that n, n0 and n1 are large enough so that Lemma 3 holds, and that on the event E ,∣∣σ̂2 − σ2
P
∣∣ ≤ σ2

P
2
.

Arguments similar to that of Lemma 3 show that for n, n0 and n1 large enough, K0 = K1 = 0.
Moreover, for n, n0 and n1 large enough, K0

√
u

n0σ̂2 ≤
√
K and K0

√
t

nσ̂2 ≤ 1. Then, Theorem 1
proves that the Density Ratio Test has power 1− α against alternatives such that

θ ≥
C
√

K(u ∨ t)

σ2
P

(√
1

n
+

√
1

n0

)
.

A.2.5 Proof of Lemma 4

The proof of Lemma 7 follows from noticing that if h1k ≥
√

5u
n1 , Lemma 8 implies that on E ,

N1
k

n1 >
√

3u
n1 , so k /∈ Ω1 ∪ Ω01. On the other hand, the same reasoning as in the proof of Lemma 10

shows that this implies that ĥ1k ≥ h1k

(
1−

(
u
n1

) 1
4

)
. Moreover, since

√
5u
n1 ≤ 1,

(
1−

(
u
n1

) 1
4

)
≥ 1

3 .
Thus,

σ̂2 ≥
(ĥ1k)

2

ĥ0k
≥
(
1−

( u

n1

) 1
4

)2
(h1k)

2

ϵ0
≥

(h1k)
2

3ϵ0
.

Now, applying Theorem 1, we find that the Density Ratio Test has power 1−α against alternatives
such that

θ ≥CK

(√
t

nσ̂2
+

√
u

σ̂2
√
n1

+

√
u

n0σ̂2

)
.

Note that √
u

σ̂2
√
n1

≤
√

5u

n1
× 3ϵ0√

5h21
.

Since
√
n1h1k ≥ 1, √

u

σ̂2
√
n1

≤ 2ϵ0

h1
.
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Moreover, ϵ0 = t
n ∨ 3u

n0 , so the Density Ratio Test has power 1− α against alternatives such that

θ ≥
Cα,Kϵ0

h1k

for some constant Cα,K depending on α and K.

A.2.6 Proof of Corollary 2

First, we note that by construcrion, there are at most 2Kmax different bins in the partition sequence
(PK) k ≤ Kmax), and that those nodes correspond to inner and outer node of the tree corresponding
to PKmax . Therefore, to control the error of h0k and h1k uniformly for all bins k in all Kmax partitions
PK , it is enough to control the error of h0k and h1k for the 2Kmax bins k corresponding to inner and
outer nodes of the largest tree. We choose u = log(8Kmax/α) and t = log(2/α), and we follow the
same proof as in Lemma 8 to show that the error bounds hold with the same probabilities for all
bins in partition PK∗ . Then, the control of the type I and type II error follows similarly.

A.2.7 Signal decreases after approximation

In this Section, we show that approximating the densities f0 and f1 using piece-wise constant
functions leads to a decrease in the test signal.

Lemma 11. For all functions f0, f1 positive on [0, 1]d, and for all partition P of [0, 1]d,

σ2
P ≤ σ2.

Proof. Note that it is enough to show that for all bin Bk of partition P,(
h1k
h0k

− 1

)2

h0k ≤
∫
Bk

(
f1(x)

f0(x)
− 1

)2

f0(x)dx.

The results will follow by summing over the different intervals. Now,(
h1k
h0k

− 1

)2

h0k = h0k
(h1

k)
2

+ 2h1k − h0k,

and ∫
Bk

(
f1(x)

f0(x)
− 1

)2

f0(x)dx =

∫
Bk

f1(x)2

f0(x)
dx− 2

∫
Bk

f1(x)dx+

∫
Bk

f0(x)dx

=

∫
Bk

f1(x)2

f0(x)
dx− 2h1k + h0kdx.

We conclude the proof by showing that h0k
(h1

k)
2

≤
∫
Bk

f1(x)2

f0(x)
dx. To do so, note that

(h1k)
2 =

(∫
Bk

f1(x)dx

)2

=

(∫
Bk

f1(x)√
f0(x)

√
f0(x)dx

)2

.
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Applying Cauchy-Schwarz inequality, we find

(h1k)
2 ≤

∫
Bk

f1(x)2

f0(x)
dx

∫
Bk

f0(x)dx

so

(h1k)
2

h0k
≤
∫
Bk

(
f1(x)√
f0(x)

)2

dx,

which proves the claim.

B Additional simulations

B.1 Robustness in the case of mixture model f 0

In some scenarios, there might be reasons to suspect that the distribution f0 could undergo changes
between the training and test phases. For instance, in the context of flow cytometry data, f0 may
be viewed as a multi-modal distribution, with each mode corresponding to a different type of cell.
In contrast, f1 is often a uni-modal distribution representing a specific type of cells of interest.
The proportions of the different cell types in f0 can vary between individuals, and f0 may be
more accurately modeled as a mixture distribution with varying proportions of its components. In
the following experiment, we explore the robustness of the Density Ratio Test in the face of this
phenomenon.

More precisely, we consider f0 as a mixture of two truncated Gaussians, denoted as ga and
gb, with covariance matrix

(
1/100

0
0

1/100

)
and means equal to (3/10, 6/10) and (6/10, 3/10), respec-

tively. The distribution f1 is chosen as in Setting 2: a truncated Gaussian with covariance matrix(
1/100

0
0

1/100

)
and mean equal to (6/10, 6/10). We set the training sample size n0 + n1 to 1000000

with n0 = 0.7 × (ntrain). We investigate the type I error of the test, as well as its power against
alternatives θ = 0.015. In the first scenario, we assume that at training time, f0 = 0.5×ga+0.5×gb,
while in the test sample, f0 = π × ga + (1 − π) × gb for π varying from 0.5 to 0.9. In the second
scenario, we assume that at training time, f0 = π × ga + (1− π)× gb for π varying from 0.5 to 0.9,
while in the test sample, f0 = 0.5 × ga + 0.5 × gb. Each experiment is reproduced 300 times. The
results are presented in Tables 1 and 2, respectively.

π 0.5 0.6 0.7 0.8 0.9
Proportion of rejects under H0 0.00 0.00 0.00 0.00 0.00

Proportion of rejects under H1 with θ = 0.015 1 1 1 1 1

Table 1: Proportion of experiments where H0 is rejected. The training sample X0 has distribution
f0 = 0.5× ga + 0.5× gb, while for the test sample f0 = π × ga + (1− π)× gb.

The results presented in Table 1 indicate a certain robustness of the Density Ratio Test against
reasonable variations in the proportions of the components of the mixture distribution f0. Indeed,
the type I error remains lower than the desired level α = 0.05 for all proportions considered in
the first experiment, and as long as π ≥ 0.2 in the second experiment. This should come as no
surprise: the partition chosen by our algorithm favors bins where the density under f0 is low, while
the density under f1 is relatively large. When such bins exist, they contain the majority of the
signal and carry the most weight in the test, leading to rejection of the hypothesis when the number
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π 0.5 0.6 0.7 0.8 0.9
Proportion of rejects under H0 0.00 0.00 0.00 0.00 1

Proportion of rejects under H1 with θ = 0.015 1 1 1 1 1

Table 2: Proportion of experiments where H0 is rejected. The training sample X0 has distribution
f0 = π × ga + (1− π)× gb, while for the test sample f0 = 0.5× ga + 0.5× gb.

of points falling into these bins is sufficiently large. On the contrary, the relative weight of the
different regions with a large weight under f0 can vary between the training and test times without
significantly increasing the type I error, as these regions have a limited influence on the test result.

B.2 Detection rate of Density Ratio Test, Bootstrap Density Ratio Test and
Maximum Mean Discrepancy

In this section, we investigate the detection rate of the Density Ration Test, the Bootstrap Density
Ratio Test, and Maximum Mean Discrepancy. Figure 3 suggests that the detection threshold
decreases more rapidly in the high signal setting than in the low signal setting. To confirm this
intuition, we investigate the values of θ such that the Density Ratio Test has power between 0.15
and 0.85 for different training sample sizes. The corresponding values of the pairs (ntrain, θ) are
plotted on a logarithmic scale in Figure 6.

We consider the distributions f0 and f1 of Settings A, B and C, corresponding respectively
to an easy, intermediate and hard contamination detection problem. We assume again that n0 =
0.7× (ntrain), and we let the number of training samples vary from 1000 to 1000000 (for DRT and
BDRT) or to 100000 (for MMD, due to larger computation times). We then conduct test with a
test sample size given by n = 0.1× (ntrain). We simulate mixtures sampled from (1− θ)× f0 + θf1

for θ varying between 0.0003 and 0.3. We investigate the values of θ such that the Density Ratio
Test has power between 0.15 and 0.85 (for DRT) and between 0.3 and 0.7 (for BDRT and MMD)
for different training sample sizes. The corresponding values of the pairs (ntrain, θ) are plotted on
a logarithmic scale in Figure 6.

Figure 6 reveals that the slope of the linear regression log(θ) = a log(1/ntrain) + b is larger
(in absolute value) in the high signal setting (Setting A): the detection threshold indeed decreases
more rapidly in this case. More precisely, we note that the slope a in Setting A is approximately
−0.97: the test detects alternatives corresponding to approximately constant power at a rate close
to n−0.94 (up to a multiplicative constant). In this large signal setting, the Density Ratio Test
almost achieves the fast detection rate n−1. The slope a in the intermediate setting is somewhat
lower, approximately −0.76. By contrast, the slope is approximately −0.65 in the low signal setting.
By contrast, the slope are respectively −0.51, −0.52 , and −0.5 for the MMD test (in settings A,
B, and C), and −0.95, −0.76, and −0.7 for BDRT.

B.3 Analysis of the HIPC dataset

Data pre-processing We pre-process the observations so as to ensure that each measurement
lies in the range [0, 1]. More precisely, we center each coordinates, and we apply an inverse sinus
function. Finally, we rescale the result to the range [0, 1].

Experiment We conduct the following experiment for each cell type, and each of the 62 samples.
We consider the current sample of cells as the test sample, with the remaining 61 samples serving
as training samples. Initially, we use 12 randomly selected samples (out of 61 samples) to determine

39



(a) Detection rate for DRT. (b) Detection rate for BDRT.

(c) Detection rate for MMD.

Figure 6: Values of pairs (ntrain, θ) such that the Bootstrap Density Ratio Test (left) and MMD
Test (right) have empirical power between 0.15 and 0.85 for DRT, and between 0.3 and 0.7 for
BDRT and MMD for an alternative parameterized by θ when the training sample size is n0 + n1,
plotted on a logarithmic scale. The color correspond to the empirical power, the shape of the dots
to the setting of the experiment (low, intermediate or high signal).

the partition. Subsequently, we calibrate the Bootstrap Density Ratio Test to achieve a desired
significance level α with a type one error of 5%. This involves estimating the distribution of the
statistic under the null hypothesis using 25 samples (excluding all cells labeled “c") and applying
the test on the remaining 24 samples (also excluding all cells labeled “c"). We choose α as the
largest value that ensures the test declares at most one false positive.

Finally, we execute our test for various prevalence levels θ of cell type c. To achieve this, we
re-estimate the distribution of the test statistic under the null hypothesis using the same 49 samples
used for calibration. Subsequently, we generate a synthetic test sample with a sample size of 10
000 cells, and with varying prevalence levels θ for cell type c. This is done by randomly selecting
the corresponding number of cells of type c and cells of other types (without replacement if the
number is smaller than the actual count, with replacement otherwise). For each prevalence level θ,
we repeat this sampling process 10 times. Averaging across the 62 samples, we obtain an estimate
of the test’s power for detecting each of the three cell types against alternatives characterized by
varying levels of prevalence θ.

We proceed similarly to estimate the power of MMD.
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