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Whole Genome Profiling™ Data
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and Jean-Marc Aury1

Abstract

Background: Scaffolding is an essential step in the genome assembly process. Current methods based on large
fragment paired-end reads or long reads allow an increase in contiguity but often lack consistency in repetitive
regions, resulting in fragmented assemblies. Here, we describe a novel tool to link assemblies to a genome map to
aid complex genome reconstruction by detecting assembly errors and allowing scaffold ordering and anchoring.

Results: We present MaGuS (map-guided scaffolding), a modular tool that uses a draft genome assembly, a Whole
Genome Profiling™ (WGP) map, and high-throughput paired-end sequencing data to estimate the quality and to
enhance the contiguity of an assembly. We generated several assemblies of the Arabidopsis genome using
different scaffolding programs and applied MaGuS to select the best assembly using quality metrics. Then, we used
MaGuS to perform map-guided scaffolding to increase contiguity by creating new scaffold links in low-covered and
highly repetitive regions where other commonly used scaffolding methods lack consistency.

Conclusions: MaGuS is a powerful reference-free evaluator of assembly quality and a WGP map-guided scaffolder
that is freely available at https://github.com/institut-de-genomique/MaGuS. Its use can be extended to other high-
throughput sequencing data (e.g., long-read data) and also to other map data (e.g., genetic maps) to improve the
quality and the contiguity of large and complex genome assemblies.

Keywords: Scaffolding, Genome map, Anchoring, Whole genome profiling, Arabidopsis

Background
Technical advances and cost reduction in genome se-
quencing have allowed the completion of numerous
genome sequencing projects based on whole-genome
shotgun fragments using high-throughput sequencing
data and the assembly of these data. The genome assem-
bly process usually involves four main steps: reads as-
sembly into contiguous sequences (contigs), linking of
contigs into larger gap-containing sequences (scaffolds),
gap closing to fill gaps generated by the scaffolding, and
anchoring onto a genetic map to build the final pseudo-
molecules. During the second step, end sequences of
large fragments (>1 kb) or long reads are aligned to the

contigs and the alignment information is used to link
contigs into scaffolds. Several commonly used scaffold-
ing programs have been published in the last decade [1].
The efficiency of the scaffolding depends mainly on the
diversity and fragment size of the input reads libraries
and on the size and quality of the long reads. Typically,
1 to 20 kb libraries are used consecutively during the
scaffolding step, which allows repetitive regions of vari-
ous sizes to be spanned [2]. However, during the align-
ment step, the presence of repeated sequences creates
multiple assembly solutions, which generally causes am-
biguities that scaffolder programs cannot untangle. This
is often the case in large and complex genomes where
repetitive elements are large and cover a large fraction
of the genome [3]. To decrease the number of false
links, scaffolder programs require a cutoff for the mini-
mum number of read pairs (or long reads) that validate
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a contigs junction; as a consequence, low-covered con-
tigs are overlooked for scaffold building.
Access to a genome map is a great advantage in

obtaining a high-quality genome assembly [4]. Genome
maps can also help in detecting assembly errors by re-
vealing discrepancies between the map and the assembly
[5] and can provide independent information for evalu-
ating genome assembly quality. Currently, several differ-
ent types of genome maps can be produced to drive or
improve assemblies including physical maps, optical
maps, and genetic maps.
Historically, physical maps have been used for large

genome sequencing projects to order clones and per-
form clone-by-clone sequencing, which reduces the
complexity of the assembly by sequencing single or
pooled clones [6, 7]. Although, this strategy is time con-
suming and expensive, it remains the best option for
high quality genome sequencing of large and complex
(polyploid) genomes such as the wheat genome [8].
Recently, the Whole Genome Profiling (WGP™) ap-
proach was developed by Keygene NV (Wageningen,
The Netherlands) to create an accurate sequence-based
physical map starting from a bacterial artificial chromo-
some (BAC) library [9]. In the WGP method, pooled
BAC DNA is digested by a restriction enzyme and after
amplification, Illumina technology is used to obtain se-
quence tags (typically 50 nucleotide sequences flanking
the restriction sites). WGP has been used successfully to
build physical maps of several plant genomes such as
those of wheat [10] and tobacco [11].
Optical maps were used to assemble the Amborella

[12] and goat genomes [13]. For Amborella, this allowed
the reordering and super-scaffolding of the draft assem-
blies and increased their contiguity (N50 increased from
4.9 to 9.3 Mb). More recently, the release of the Irys sys-
tem from BioNano Genomics provided new opportun-
ities to improve the quality and the contiguity of
genome assemblies [14].
Genetic maps allow the construction of pseudo-

molecules by anchoring the assembly on linkage groups
that correspond to the chromosomes [15]. Genetic map
construction takes advantage of sequence-based genotyp-
ing (SBG) [16], genotyping-by-sequencing, and RAD-seq
libraries [17] to obtain ultra-dense genetic linkage maps
[18]. However, missing data or genotyping errors cause
map inaccuracies [19]. Moreover, the physical distance be-
tween markers can be very high in genomic regions where
the recombination rate is low, which makes it difficult to
anchor or orientate scaffolds located in those regions.
Methods used to anchor whole-genome shotgun

(WGS) assemblies on genomes have been investigated
using several genetic maps to estimate assembly quality,
as implemented in MetaMap [5]. The ability of these
methods to produce pseudo-molecules also was tested,

as reported in Popseq [20] and Allmaps [21]. Allmaps
infers the sizes of gaps using the relation between the
local recombination rate and the physical distance be-
tween two adjacent genetic markers; however, the esti-
mations can be inconsistent considering the inaccuracy
of the recombination rate.
Hybrid strategies, combining WGS and genome map

data, are likely to help increase the quality of the assem-
bled genome sequence. With this in mind, we developed
MaGuS, a modular program that combines a genome
map and WGS data. MaGuS can anchor a draft assembly
onto a genome map for two applications: quality assess-
ment of a draft assembly by calculating novel metrics, and
improvement of the contiguity of a draft assembly based
on evidence provided by a genome map and high-
throughput screening (HTS) data. Here, we detail the
MaGuS pipeline and provide an example of its applica-
tions using the Arabidopsis TAIR10 genome assembly.

Methods
Arabidopsis thaliana genome assembly
One 350-bp paired-end (PE) (ERX372154) and two 5.35-
kb mate-pair (MP) (ERX372148, ERX372150) Illumina
sequence libraries from A. thaliana were downloaded
from the European Nucleotide Archive (ENA). A total of
47.6 Gb of data were obtained representing a coverage
depth of 306X of PE and 91X of MP reads.
Adapters and primers were removed from the reads,

and low quality nucleotides were trimmed from both ends
(quality values lower than 20). Reads were also trimmed
from their second N to the end and reads longer than 30
nucleotides were kept. Reads that mapped onto run qual-
ity control sequences (i.e., the PhiX genome that is used in
Illumina sequencing as quality control) were removed. To
decrease the number of sequencing errors present in the
paired-end (PE) reads, we applied Musket v1.1 [22] with a
k-mer size of 26 ‘-k 26’. We ran Kmergenie v1.5692 [23]
on the PE reads to find the best k-mer size for the contig
construction step and obtained an optimal k-mer size of
91 bp. SOAPdenovo2 [24] was used to perform the gen-
ome assembly, a de Bruijn graph was constructed with pa-
rameters ‘-K 91 –R’. As SOAPdenovo2 produces contigs
over k + 1 bp, we selected informative contigs longer than
500 bp for further processing.
We used the PE and MP reads in five different scaf-

folding programs: SOAPdenovo2, SSPACE [25], SGA
[26], BESST [27], and OPERA-LG [28]. We considered
that the two main scaffolding parameters were the k-
mer size used at the mapping step and the minimum
number of link that validates a contig junction. To per-
form a scaffolding with the five scaffolders in a fair way,
we chose the same parameters for the five scaffolders.
We set the k-mer size to 31 bp which is more stringent
than the bowtie and bwa mem default parameter, k = 28
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and k = 19 respectively. We set the minimum number of
link to five which corresponded to the default parameter
of BESST and SSPACE. For SOAPdenovo2, we ran the
map command with parameter ‘-k 31’, the scaf command
with parameter ‘–L 500’, and set the minimum number
of links in the configuration file as ‘pair_num_cutoff = 5’.
For SSPACE, we manually set the bowtie k-mer size ‘-l
31’ and ran the program with parameter ‘-k 5’. For SGA
and BESST, we first aligned the MP reads onto the con-
tigs using BWA aln [29] with parameter ‘-l 31’. For SGA,
the links file was created using the sga-bam2de com-
mand with parameters ‘-n 5 -m 500 –mina 31 –k 31’.
The astat file was generated setting ‘–m 500’. The scaf
file and the corresponding FASTA file were both created
with parameters ‘–m 500’. For BESST, we chose the opti-
mal k-mer size used for the contig assembly as ‘-K 91’
and ran the program with parameter ‘-e 5’. For each pro-
gram, we selected the scaffolds that were over 2 kb in
length. For OPERA-LG, we set the k-mer size for scaf-
folding with option ‘kmer = 91’. The minimum contig
size required for the scaffolding step was fixed as
500 bp with the parameter ‘contig_size_threshold =
500’. Finally, the number of links to validate a con-
nection between two contigs was assigned with the
parameter ‘cluster_threshold = 5’.
To evaluate the quality of each assembly, we used

QUAST v2.3, a popular program based on Nucmer. In
the presence of a trusted reference, QUAST aligns with
Nucmer the assembly to the provided reference and gen-
erates quality metrics. We observed several inconsistan-
cies in the QUAST output. After discussions with the
QUAST authors, the source code of QUAST was modi-
fied to avoid, as much as possible, the detection of mis-
assemblies (relocation, translocation, and inversion) that
correspond to false positives. Because Nucmer generated
spurious alignments lower than 5 kb in highly repetitive
regions, the minimum alignment length in both parts of
a misassembly was set to 5 kb. Moreover, the gap or
overlap size threshold length was increased to 5 kb to
detect relocations. By default, QUAST reports misas-
semblies found within a scaffold only if at least 50 % of
the scaffold is aligned. We modified this parameter to
report all misassemblies regardless of the aligned frac-
tion of a scaffold.

Analysis of A. thaliana WGP data
We used the WGP data produced from the A. thaliana
col-0 BAC library by Keygene (Wageningen, The
Netherlands), the method applied to generate this data is
fully described by van Oeveren et al., [9]. WGP tags were
ordered by an automated procedure that performed the
following steps. First, fingerprinted BAC-contig data
were read with BAC-contig and position information per
BAC. Then, BACs were sorted on their left and right

positions in the BAC-contig and assigned a rank number
(identical left and right positions lead to identical ranks).
Next, tag information from the WGP tag file was read
and occurrences of tags per BAC were listed. For a given
BAC-contig, a tag position was calculated as the mean
value of BAC rank numbers on which the tag occurred.
If BAC ranks were too far apart, the tag was identified as
an outlier and put aside. The remaining tags were ranked
according to their mean BAC rank value, possibly with
equal rank scores for equal average BAC rank values.

Map-guided scaffolding of genome using MaGuS
First, the WGP tags were aligned to scaffolds using BWA
aln [29] and tags with multiple locations were filtered out
of the BAM file [30]. We used the resultant alignments to
anchor the scaffolds on the genome map and created links
between adjacent scaffolds (Fig. 1a). However, scaffolds lo-
cated within other scaffolds, according to the anchoring
information, were not considered. More formally, let a
mapped tag t(c, r) be defined by its BAC contig c and its
rank r in c. Let a scaffold s((t1, p1), (t2, p2),…, (tn, pn)) be
defined by the n-uplet of a (tj, pj) couple, where the tag tj
aligns uniquely at position pj with pj ≤ pj + 1. We define a
map-link as a link between two adjacent scaffolds si and sj
if cni ¼ c1j and rni≤r1j .
The MP reads were aligned to the assembly using BWA

mem [29] and pairs whose mates mapped to different
scaffolds were selected. Multiple hits were recorded and
mapping possibilities that confirmed a map-link were
kept. We estimated the gap size between two adjacent
scaffolds using the MP fragment size distribution. If mul-
tiple scaffold orientations were reported by the read map-
ping, the one supported by the highest number of read
pairs was selected. More formally, Let a mapping possibil-
ity of a read pair ((scaf1, orient1, pos1), (scaf2, orient2, pos2))
be defined by its scaffold name, orientation, and location
of both reads with scaf1 ≠ scaf2. For each read pair, we cal-
culate the gap size using a “naïve” approach based on the
orientation of the two linked scaffolds inferred by each
supporting pairs. The gap size estimation is described in
(1), where μ is the mean of the MP library fragment size,
len1 and len2 are the lengths of scaf1 and scaf2 respectively,
R is the read length.

gapþþ ¼ μ−pos1−pos2−2R
gapþ− ¼ μ− pos1 þ Rð Þ− len2−pos2ð Þ
gap−− ¼ μ− len1−pos1ð Þ− len2−pos2ð Þ
gap−þ ¼ μ− len1−pos1ð Þ− pos2 þ Rð Þ

8>><
>>:

ð1Þ

We validate the link if minGap≤ 1
n

X
gap orient1;orient2ð Þ ,

where n is the number of supporting pairs for the scaffolds
link with the following orientation (orient1, orient2) and
minGap is the minimum gap size allowed, this value is set
to −200 bp. Although, the estimated gap size proposed
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here has an upper bound of μ and may underestimate the
real gap size as previously described by Sahlin et al., [31]
(Additional file 1: Figure S1), the naive calculation can be
used for map-link supported by one read pair which en-
able the validation of map-link in low covered regions. Fi-
nally, all validated links were formatted in a.de file for the
SGA program to perform the final scaffolding, the .de
contains the link information required by the SGA scaf-
folder i.e. name and orientation of the scaffolds, gap size,
number of read pairs supporting the link and the standard
deviation of the gap size.

Quality evaluation of genome assembly using MaGuS
We generated new quality assembly metrics from the
anchoring based on the commonly used N50 metric
(used to evaluate assembly contiguity) and the NA50 in-
troduced by the quality assessment tool QUAST (used
to evaluate both contiguity and quality of assembly using
a genome reference [32]). For each scaffold, we defined
collinear segments as the fraction of a given scaffold that
was correctly organized, i.e., segments anchored with
tags that have the same order in the genome map and in
the scaffolds (Fig. 1b). For a given assembly, the lengths
of all these segments were used to calculate the follow-
ing metrics: An50 (50 % of the anchored assembly con-
tains collinear segments with length over An50 bp),
AnA50 (50 % of the total assembly contains collinear
segments with length over AnA50 bp), and AnG50
(50 % of the estimated genome size contains collinear
anchored segments with length over AnG50 bp). MaGuS
also generates Anx, AnAx, and AnGx graphs (based on
the Nx graph [2]) that is a plot of the metrics for x
values ranging from 1 to 100 %.

Implementation of MaGuS
MaGuS was implemented in a Perl program based on five
modules: wgp2map, which performs the anchoring and
creates a MaGuS-format map that contains the anchoring
information; map2qc, which evaluates the quality of the
assembly; map2link, which creates the map-links between
scaffolds; pairs2links, which validates the map-links, ori-
ents the scaffolds, estimates the gap size, and creates a
link.de file; and links2scaf, which runs the SGA scaffolding
programs and creates the final assembly.

Results and discussion
Arabidopsis genome assembly and quality evaluation
using MaGuS
PE reads were assembled into contigs with SOAPdenovo2
(Additional file 1: Table S2). Then we generated five as-
semblies using five scaffolding programs (BESST, SSPACE,
SOAPdenovo2, SGA, and OPERA-LG) with PE and MP
reads. The BESST assembly had the highest contiguity
(N50 = 1.3 Mb) followed by OPERA-LG (N50 = 1.27 Mb),
SSPACE (0.98 Mb), SOAPdenovo2 (N50 = 0.82 Mb), and
SGA (N50 = 0.28 Mb). To evaluate the assembly quality,
we aligned the scaffolds against the Arabidopsis TAIR10
reference genome with Nucmer [33] using the QUAST
pipeline [32] (see Additional file 1 for details). We found
that although BESST and OPERA-LG created scaffolds
that had longer alignments, they also contained relatively
more misassemblies than SOAPdenovo2, SSPACE,
and SGA. Based on the QUAST NA50 and NA75
metrics, we ranked the assemblies from the highest to
lowest quality as BESST, OPERA-LG, SSPACE, SOAP-
denovo2, and SGA.

a

Assembly
quality
metrics

Genome
map

Markers 
alignment

Anchored
assembly

Alignment filtering
Assembly anchoring

Map-links

Scaffolds orienting
Gap size estimation 

Validated map-links

MP reads 
alignment

Final assembly 

Scaffolding

Initial 
assembly

Map-Links building

Assembly QC

b

1 2 3 4 5 5

BAC contig

Tags ranks

Scaffolds

Scaffolds

New 
scaffold

Scaffolds
MP reads 

BACs

c

Map-links

Genome map

Anchored scaffolds

Collinear segments

Genome
reference

Aligned scaffolds

Aligned segments

QUAST NAx metrics 

MaGuS Anx metrics

Fig. 1 MaGuS pipeline. a Flowchart of the MaGuS pipeline. b
Comparison of the QUAST and MaGuS metrics. c Application of
MaGuS to WGP data
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We used the WGP map to provide a reference-free ap-
proach that evaluates the quality of the five assemblies.
We applied the wgp2map and map2qc modules of
MaGuS to calculate the length of all collinear segments
(Fig. 1b) and generated Anx values (Table 1, Fig. 2a).
Considering the MaGuS An50 and the An75 metrics,
the ranking of the assemblies was the same as the rank-
ing using the QUAST NA50 and NA75 metrics. The
NAx and Anx values were strongly correlated (R2 > 0.96)
for the five assemblies (Fig. 2c), which allowed us to
consider using the MaGuS Anx metrics to compare as-
sembly quality.
Selecting the appropriate bioinformatics tools to per-

form genome de novo assembly is difficult and often de-
pends on the genome complexity and on the sequencing
technology used. The absence of a reference sequence
leads automatically to the selection of the assembly that
has the highest contiguity with no regards to the quality.
In the present case, access to a genome map and its use
with MaGuS allowed the BESST assembly to be selected
as being the most continuous and also the most collin-
ear to the WGP map.

Arabidopsis genome map-guided scaffolding using
MaGuS
We used the five assemblies produced previously to per-
form map-guided scaffolding through the MaGuS pipe-
line (Fig. 1c). For each assembly, we first created the
map-links (i.e., the links between two adjacent anchored
scaffolds) and aligned the MP reads onto the scaffolds to
validate the map-links by first determining the scaffolds
orientation (if the scaffold was anchored by only one

tag) and then by estimating the new gaps size (see
Methods). The validated map-links were used to build
the final scaffolds (Table 2). Only a fraction of the map-
links (21.2 to 49.9 %) was validated by the MP reads.
This limitation was clearly due to the MP library size,
and a higher fraction of map-links would certainly be
validated using larger MP libraries. Although only a frac-
tion of the map-links were used for the scaffolding, the
resulting assemblies showed increases in the N50 met-
rics ranging from 1.13 to 2.24-fold and increases in N75
from 1.23 to 2.43-fold (Table 2). To evaluate the accur-
acy of this scaffolding approach, we aligned the five as-
semblies generated by MaGuS onto the Arabidopsis
TAIR10 reference genome using QUAST. MaGuS gener-
ated 86 % to 97 % correct links for the five assemblies
and only a limited number of misassemblies (Table 2).
The quality of the scaffolds also was confirmed by ele-
vated NA50 and NA75 values. The number of read pairs
that validated a map-link had a very wide distribution,
from 1 to over 1000 read pairs (Fig. 3), which showed
that MaGuS enabled the scaffolding of both low covered
and highly covered regions that corresponded to repeti-
tive regions.

Effect of genome map errors on the MaGuS performance
To investigate the different types and levels of errors
present in the Arabidopsis WGP map, we first aligned
the WGP tags on the TAIR10 reference and selected the
tags aligning at a single location. We defined the gen-
omic positions of each BAC contig on the chromosomes
and compared the tag rank on the WGP map to their
rank inferred from their position on the assembly. This

Table 1 QUAST and MaGuS quality metrics for the five assemblies. The R2 values indicate the Pearson correlation coefficients
between the QUAST NAx and MaGuS Anx values

Assembly metrics SOAP SSPACE SGA BESST OPERA_LG

Assembly size (bp) 115 319 220 116 017 208 114 956 386 114 996 281 116 406 702

N50 (bp) 821 817 982 887 284 070 1 299 606 1 272 891

L50 39 31 115 22 26

N75 (bp) 306 051 340 070 118 727 643 037 566 836

L75 96 81 270 54 60

QUAST metrics

Number of N's per 100 kb 3851.60 3000.11 4251.16 2845.19 3139.94

Misassemblies 9 9 3 23 51

Largest alignment (bp) 3 482 036 4 678 885 1 680 656 6 501 653 5 259 610

NA50 (bp) 757 250 926 429 276 557 1 210 586 945 419

NA75 (bp) 268 694 291 099 100 235 516 026 351 844

MaGuS metrics

An50 (bp) 31 217 32 028 23 164 35 466 33 908

An75 (bp) 11 887 12 052 6 981 14 315 13 113

R2 0.99 0.98 0.96 0.99 0.96
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allowed us to define two types of error. The first error
type concerned tags that have a different rank on the as-
sembly but that are located within its BAC contig gen-
omic location. The second error concerned tags that
have a genomic position flanked by tags belonging to an-
other BAC contig. Among the 54 990 tags that mapped
on TAIR10 at a single position, 89.5 % had a WGP map
rank that was compatible to their genomic position,
6.15 % tags were misplaced within the same BAC contig
and 4.4 % were placed in another BAC contig.

To determine the effect of the two error types on the
MaGuS performance, we simulated artificial WGP maps
that contained different error levels. We first generated
an error-free WGP that contained 191 BAC contigs and
64 441 tags. Within a BAC contig, the occurrence of
each rank was set randomly from a gamma distribution
(shape = 1.07 and scale = 0.16), the parameters were in-
ferred from the rank occurrence observed in the Arabi-
dopsis WGP data. For the two error types, we created
WGP maps by adding random errors on the error-free

Fig. 2 Comparison of MaGuS and QUAST quality metrics for the five assemblies. a MaGuS Anx plot. b QUAST NAx plot. c Correlation between
Anx and NAx values

Table 2 Assembly metrics after MaGuS scaffolding for the five assemblies

SOAP SSPACE SGA BESST OPERA-LG

Assembly size (bp) 115 563 956 116 414 299 115 703 449 115 174 685 116 556 828

N50 (bp) 1 350 715 1 680 424 635 106 1 751 177 1 442 963

N50 fold change 1.64 1.74 2.24 1.35 1.13

L50 23 18 47 18 22

N75 (bp) 509 384 646 442 288 240 787 050 695 198

N75 fold change 1.66 1.9 2.43 1.22 1.23

L75 58 48 110 42 51

Number of N's per 100 kb 4 055.34 3 331.14 4 869.38 2 995.68 3 264.70

Largest alignment 5 012 555 7 708 756 3 361 051 6 902 343 5 597 743

NA50 1 187 620 1 455 792 579 394 1 407 579 1 258 868

NA50 fold change 1.57 1.57 2.1 1.16 1.18

NA75 354 088 508 625 215 751 609 320 560 902

NA75 fold change 1.32 1.75 2.15 1.18 1.59

Total misassemblies 23 19 19 36 62

Magus misassemblies 14 10 16 13 5

Number of map-links 534 481 1 034 371 368

Number of MP-validated links 209 (39.14 %) 214 (44.49 %) 516 (49.9 %) 93 (25.07 %) 78 (21.2 %)

Number of correct MP-validated links 195 (36.51 %) 204 (42.41 %) 500 (48.53 %) 80 (21.56 %) 73 (19.83 %)

False positive rate 6.7 4.7 3.1 14 6.4
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WGP map. Errors were added with the following rates:
0.01, 0.05, 0.1, 0.2, 0.5 and 0.8. For each error type and
error rate value, five random maps were generated as
replicates. A total of 60 simulated maps (2 error types ×
5 error rates × 5 replicates = 60 simulated maps) were
generated.
We ran the MaGuS pipeline using the simulated maps,

the assembly produced by the BESST scaffolder and the
mate-pair reads. The effect of the errors to the collinear-
ity between the TAIR10 sequence and the simulated
WGP maps is represented by the variation of the An50
values on Fig. 4a. The An50 values decreased for error
rates over 0.1 which was expected and validates the con-
struction of the simulated WGP maps. The N50 and
N90 values of the MaGuS scaffolds were impacted by
the intra and inter-BAC contig errors (Fig. 4b and c).
We compared the N50 obtained for each error rate and
found no significant differences between N50 for the
intra-BAC contig error rate of 0.01, 0.05 and 0.1
(Tukey test p-value adjusted > 0.05), the first signifi-
cant changes in N50 was obtained for intra-BAC con-
tig error rate = 0.2 (Tukey test p-value adjusted = 0.02)
and for intra-BAC contig error rate = 0.5 (Tukey test
p-value adjusted = 0.00009). The quality of the MaGuS
scaffolds was analysed using QUAST on the TAIR10
sequence reference. Whereas the NA50 values were
not impacted by the errors added in the artificial
maps (Fig. 4d and e), the NA90 values were affected
by both error types. The amount of misassemblies
found in the scaffolds was higher for those generated
from the map containing inter-BAC contig errors

than for those generated from the map containing
intra-BAC contig errors (Fig. 4f ). We also noted that
fewer misassemblies occurred when the error rate in-
creases which can be explained by the fact that less
junction were found to be validated by the mate-pair
reads. The simulation of artificial WGP maps containing
intra and inter–BAC contig errors at different rates
showed that the map-guided scaffolding accuracy is not
affected by errors whereas the contiguity depends closely
on the noise of the WGP map (for intra as well as inter-
BAC contig error rate over 0.1). As the WGP data of
Arabidopsis have an intra and inter-BAC contig error rate
under 0.1, we can consider that the Arabidopsis WGP
dataset was clean enough to be efficiently used by MaGuS
for a guided scaffolding.

Effect of the input assembly contiguity on the MaGuS
performance
To assess the impact of the assembly fragmentation on
the magus performance, we generated eight Arabidopsis
genome assemblies using different depths of coverage
(10, 20, 50, 100, 150, 200, 250 and 300X of PE reads).
Each read set was assembled using SOAPdenovo2 with
the same parameters used in the previous section but for
the k-mer size which was inferred by Kmergenie. The
contigs were scaffolded with the MP reads by SSPACEv2.
The resulting scaffolds were used by MaGuS to perform
the map-guided scaffolding by integrating the WGP map
and the MP reads (Additional file 1: Table S3). For the
assemblies based on the 10× and 20× read sets MaGuS
weakly improved the contiguity of the scaffolds with a

Fig. 3 Distribution of the number of mate-pairs that validates map-links for the five assemblies
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N50 MaGuS scaffolds/N50 scaffolds ratio (<1.07). For
assemblies based on read sets built with 50× or more,
we observed an improvement of the N50 MaGuS scaf-
folds/N50 scaffolds ratio (>1.2).

Conclusions
The method presented here and implemented in MaGuS
enabled the evaluation of the quality and the scaffolding
of a draft genome assembly using a physical map and
HTS data. Its application to Arabidopsis with a WGP
map provides a first example of its efficiency in recon-
structing a eukaryotic genome. Evaluating the quality of
a genome assembly is necessary in order to increase the
accuracy of downstream analyses, such as genome anno-
tation or comparative genomic analyses. De novo assem-
bly projects often lack a genome reference and different
ways to assess the assembly quality have been investi-
gated [2, 34] using either the HTS data used for the
assembly or a genome map. The latter remains a very
good independent source of information for this task.

From this perspective, we developed the map2qc module
of MaGuS to provide assembly quality metrics. Its appli-
cation to five Arabidopsis genome assemblies showed
that the new quality metrics based on the correctly an-
chored segments of the assembly gave the same assem-
bly ranking as if a reference genome was available.
Existing scaffolder tools encounter issues when dealing

with repeat-rich regions. The use of a map overcomes
this problem if a contig or scaffold can be anchored onto
the map. For large genomes, the sequencing depth of an
MP library may result in low covered regions. Users of
scaffolding programs often set a minimum cut-off for
read pairs required to validate a link between contigs, to
avoid assembly errors. The use of a map to guide the
assembly allows this cut-off to be lowered without loss
of accuracy. The use of MaGuS is not restricted to WGP
maps, other genome map types can be integrated after
formatting. For example, genetic maps can be provided
as input, however the performance will greatly depend
on the marker density.

Fig. 4 Effect of intra and inter-BAC contig errors on MaGuS scaffolds. The intra and inter-BAC contig errors are named e1 and e2 respectively. a.
Effect of the map errors on the An50 values. b. Effect of the map errors on the N50. c. Effect of the map errors on the N90. d. Effect of the map
errors on the NA50. e. Effect of the map errors on the NA90. f. Effect of the map errors on misassemblies. Grey areas are values between the
upper and lower pointwise confidence interval around the mean, these values were obtained from a log regression
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Availability of supporting data
Arabidopsis Illumina reads can be downloaded from the
European Nucleotide Archive (ENA) with the following
IDs: ERX372154, ERX372148, ERX372150. The WGP
data and MaGuS can be accessed through GitHub at
https://github.com/institut-de-genomique/MaGuS.

Additional file

Additional file 1: The supporting data are included as a single additional
file which contains Figure S1, Table S2 and Table S3. (DOCX 38 kb)
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