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Recently, we introduced the active Dyson Brownian motion model (DBM), in which N run-
and-tumble particles interact via a logarithmic repulsive potential in the presence of a harmonic
well. We found that in a broad range of parameters the density of particles converges at large
N to the Wigner semi-circle law, as in the passive case. In this paper, we provide an analytical
support for this numerical observation, by studying the fluctuations of the positions of the particles
in the nonequilibrium stationary state of the active DBM, in the regime of weak noise and large
persistence time. In this limit, we obtain an analytical expression for the covariance between the
particle positions for any N from the exact inversion of the Hessian matrix of the system. We show
that, when the number of particles is large N ≫ 1, the covariance matrix takes scaling forms that
we compute explicitly both in the bulk and at the edge of the support of the semi-circle. In the
bulk, the covariance scales as N−1, while at the edge, it scales as N−2/3. Remarkably, we find that
these results can be transposed directly to an equilibrium model, the overdamped Calogero-Moser
model in the low temperature limit, providing an analytical confirmation of the numerical results
by Agarwal, Kulkarni and Dhar [24]. For this model, our method also allows us to obtain the
equilibrium two-time correlations and their dynamical scaling forms both in the bulk and at the
edge. In the bulk the dynamics exhibits an anomalous diffusion regime ∼ t1/4. Our predictions at
the edge are reminiscent of a recent result in the mathematics literature by Gorin and Kleptsyn
[25] on the (passive) DBM. That result can be recovered by the present methods, and also, as we
show, using the stochastic Airy operator. Finally, our analytical predictions are confirmed by precise
numerical simulations, in a wide range of parameters.
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I. INTRODUCTION

An important open problem in active matter is the characterisation of the collective behavior of many interacting
active particles. A paradigmatic model of active systems is the so-called run-and-tumble particle (RTP), a motion
exhibited by E. Coli bacteria [1, 2], driven by telegraphic noise [3–5]. Even in one dimension, and for such a stylized
model, there are only a few cases where exact results can be obtained for a large number of RTP’s [6–13]. Recently, we
introduced an active version of the Dyson Brownian motion where RTP’s interact via a repulsive logarithmic potential
in the presence of a quadratic external potential. We showed that this model is amenable to analytical treatment, at
least in some regimes [14]. In the regime of weak noise the RTP’s form a well ordered state. In fact in the limit of
zero (active and passive) noise, the equilibrium positions of the particles are those of the ground state of the log gas.
These coincide with the zeros of the Hermite polynomials, as is well known in random matrix theory [15, 16]. As a
consequence, for a large number of particles N ≫ 1, the equilibrium density of the positions converges to the Wigner
semi-circle. An outstanding question is to describe the fluctuations around this equilibrium density profile.
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For interacting particle systems submitted to passive noise, the equilibrium measure is a Gibbs-Boltzmann weight.
It is then possible to compute the weak noise (i.e., low temperature) fluctuations using an expansion of the energy
functional in small displacements, such as phonons, or spin waves [17]. In the case of active systems the stationary
measure is usually non-trivial and not of Gibbs-Boltzmann type, so there is no energy functional and the corresponding
calculation is much more challenging.

The aim of this paper is to provide an explicit calculation of the weak noise fluctuations in the case of the active
DBM. Remarkably, we show that the method developed here also allows to treat an a priori unrelated system, namely
the overdamped Langevin dynamics of the Calogero-Moser (CM) system in one dimension [18, 19]. This CM system
has been much studied in the case of Hamiltonian dynamics due to its integrability properties [18–23]. Much less is
known in the case of the overdamped Langevin dynamics. Recently, the latter was studied numerically, with some
emphasis on the regime of low temperature [24]. Here we obtain analytical results in that regime. The reason why
the small fluctuations in the two systems are similar is that (i) the equilibrium positions are the same and (ii) their
Hessian matrices are related, as we will explain below. For both systems, active DBM and passive CM, we obtain the
correlations both in the bulk and at the edge of the Wigner semi-circle, where they take markedly different scaling
forms at large N . Remarkably, we find that the scaling function which describes the edge behavior in our models
share some similarities with the one for the passive DBM which was obtained recently in the math literature [25].

Let us now describe the two models that we will study in this paper. The first model is the so-called active DBM
[14]. It describes the dynamics of N run and tumble particles (RTPs) in one dimension, described by their positions
xi(t). Each particle can be in two internal states σi(t) = ±1 of velocities respectively ±v0, and flips its sign with a
constant rate γ. In addition each particle is submitted to a confining potential V (x) = λ

2x
2 which ensures that the

system reaches a stationary state at large time (which is non Gibbsian and non trivial). The evolution equations
read [14]

ẋi(t) = −λxi(t) +
2 g

N

∑
j ̸=i

1

xi(t)− xj(t)
+ v0σi(t) +

√
2T

N
ξi(t) for i = 1, 2, · · · , N. (1)

The last term represents a thermal noise at temperature T/N , where the ξi(t)’s are independent standard white
noises, of zero mean and delta correlations ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′). The particles interact via a repulsive pairwise
logarithmic potential (i.e. a 1/x force) of strength g/N . In the case v0 = 0 this model is the celebrated Dyson
Brownian motion, whose stationary measure for any N describes the statistics of the eigenvalues of the Gaussian
beta-ensemble with Dyson index βDBM = 2g/T [15, 26]. In that case the average density at large N converges to the

Wigner semi-circle density with edges at ±2
√
g/λ [15, 16]. Numerous results exist in the math literature on random

matrix theory concerning the universality of the behavior, e.g., for the level spacing distribution, both in the bulk and
at the edge [27–32]. Here we will focus on the purely active case v0 > 0 and T = 0. Note that, since the interactions
diverge at contact, the particles in that case can never cross, hence their ordering is preserved under the dynamics.
Here we will choose x1(t) > x2(t) > · · · > xN (t).
The second model is the overdamped dynamics of the Calogero-Moser (CM) model for N particles at positions Xi(t)

in one dimension [18, 19], which belongs to the more general family of Riesz gases [33–35]. The particles interact via a
1/X2 potential of strength g̃2/N2 and are subjected to a quadratic confining potential which ensures that the system
reaches Gibbs equilibrium. It is described by the equations of motion

Ẋi(t) = −λXi(t) +
8 g̃2

N2

∑
j ̸=i

1

(Xi(t)−Xj(t))3
+

√
2T

N
ξi(t) for i = 1, 2, · · · , N. (2)

Here again the ξi(t)’s are independent standard white noises, and one can show that the particles cannot cross (see
Appendix C). Here also, we choose X1(t) > X2(t) > · · · > XN (t). In both models, the scaling with N of the different
terms has been chosen such that the support of the densities is finite, i.e., independent of N , for large N .
In this paper we will study the fluctuations of the positions of the particles in the steady state of each model. We

will obtain analytical results and also perform numerical simulations of Eqs. (1) (at T = 0) and (2) (at finite T ), the
steady state averages being obtained by time averaging of the observables. It turns out that the weak noise limit of
both models are very similar and can be studied in the same framework. The first model, the active DBM, has been
studied in [14]. As mentionned in that work, there are two dimensionless parameters

v20
gλ

and
γ

λ
. (3)

The weak noise limit corresponds to a small value of the parameter
v2
0

gλ . In that limit, the particles remain close to
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their equilibrium positions which we denote xeq,i, and one can thus write

xi = xeq,i + δxi , xeq,i =

√
2g

λN
yi , HN (yi) = 0 , (4)

where the δxi’s are the small deviations from equilibrium which vanish as v0 → 0. A remarkable property is that the
scaled equilibrium positions y1 > y2 > · · · > yN are the zeros of the Hermite polynomial of degree N , i.e., the roots of
HN (yi) = 0. At large N the particles thus form a ”crystal”, and from the properties of the Hermite polynomials one
can show that the mean density ρeqN (x) of particles at equilibrium (i.e. for v0 = 0) in the quadratic well is a Wigner
semi-circle, as is also the case for the DBM. Indeed, one has [16]

ρeqN (x) =
1

N

N∑
i=1

δ(x− xeq,i) −→
N→∞

√
λ

2g
ρsc

(√
λ

2g
x

)
, ρsc(z) =

1

π

√
2− z2 . (5)

Here we will study the fluctuations of the δxi around this equilibrium state in the weak noise limit. In addition for
technical reason the analytical calculations will be performed in the persistent limit of small γ. This allows to show
that the semi-circle mean density persists in a broad range of parameters for this model, as observed numerically in
[14]. In addition we will quantify the long-range order of the crystal.

In the CM model, it turns out, quite remarkably, that the equilibrium positions (i.e., for T = 0) are also given in
terms of the zeros of the Hermite polynomial HN (y), namely one has

Xeq,i =
1

λ1/4

√
2g̃

N
yi , (6)

which leads to the T = 0 equilibrium density

ρeqN (X) =
1

N

N∑
i=1

δ(X −Xeq,i) −→
N→∞

λ1/4√
2g̃
ρsc

(
λ1/4√
2g̃
x

)
, ρsc(z) =

1

π

√
2− z2 . (7)

Here we will study the fluctuations of the particle positions around this T = 0 equilibrium. In this model there is
only a single dimensionless parameter

T

g̃
√
λ

(8)

and we will study the regime where this parameter is small. These fluctuations were studied numerically in [24]. Here
we will obtain analytical results for any N and we will compare with the numerical results.

II. MAIN RESULTS

In this section we summarize the main results of this paper. The detailed derivations will be presented in Sections
III-VI. Section VII discusses the application of our method to the passive DBM.

A. Active Dyson Brownian Motion

Let us start with the active DBM. The main idea to compute the statistics of the deviations δxi = xi − xeq,i is to
consider the small γ limit. In that limit the system has enough time to relax to a stable fixed point corresponding to
a given σ⃗(t) ≈ σ⃗ in (1), before its state changes again. Hence one can write to lowest order in v0 (and for γ = 0+)
and 1 ≤ i ≤ N

δxi =
v0
λ

N∑
j=1

(H−1)ijσj +O(v20) , (9)

where λH is the Hessian matrix given below [see Eq. (40)]. It is important to note that the matrix H is independent
of the model parameters. In the stationary state the system explores all the possible σ⃗ (i.e. all the possible fixed
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points) and a meaninful description of the system is thus obtained by averaging over all these possible fixed points,
with equal weight. One then obtains the moments

⟨δxi⟩ = O(v20) ,

⟨δxiδxj⟩ =
v20
λ2

(H−2)ij +O(v30) . (10)

It turns out that the Hessian can be diagonalized exactly for any N in terms of Hermite polynomials [24, 36]. This
allows to evaluate its inverse and obtain the more explicit formula

⟨δxiδxj⟩ =
v20
λ2

N∑
k=1

1

k2
uk(yi)uk(yj)∑N

l=1 uk(yl)
2
+O(v30) with uk(y) =

H
(k)
N (y)

H ′
N (y)

, (11)

where H
(k)
N (y) denotes the k-th derivative of HN (y) and we recall that yi is the i-th largest zero of HN (y).

The exact result (11) can be analyzed in the large N limit. Let us recall that, in this limit, the mean equilibrium

density has a finite support [−xe, xe] with two edges at x = ±xe with xe = 2
√
g/λ. One must thus distinguish

between the bulk region , i.e. far from the boundary of the support ±xe, and the edge region , i.e. close to ±xe. The
width of the edge region is found to be xeq,i − xe = O(N−2/3).

Bulk. In the bulk region one finds

⟨δxiδxj⟩ ≃
v20
λ2N

Cb

(
xeq,i

2
√
g/λ

,
xeq,j

2
√
g/λ

)
with Cb(x, y) =

∞∑
k=1

1

k2
sin(k arccosx)√

1− x2
sin(k arccos y)√

1− y2
, (12)

where the index ’b’ refers to ’bulk’. The sum over k can be performed explicitly, see Appendix B, which leads to the
more explicit expression of the scaling function Cb(x, y)

Cb(x, y) =
π arccos(max(x, y))− arccos(x) arccos(y)

2
√
1− x2

√
1− y2

. (13)

Note that this result, as well as all the other bulk results presented below, can be rewritten using that at large N
xeq,i

2
√

g/λ
=

yeq,i√
2N

≃ G−1(i/N) where G(x) =
∫ x

−1
du 2

√
1−u2

π is the cumulative of the semi-circle density (see e.g. [37]).

For the variance of the displacement of a single particle this becomes

⟨δx2i ⟩ ≃
v20
λ2N

Vb

(
xeq,i

2
√
g/λ

)
with Vb(x) = Cb(x, x) =

∞∑
k=1

1

k2
sin2(k arccosx)

1− x2
=

arccos(x)(π − arccos(x))

2(1− x2)
. (14)

Inside the bulk, Vb

(
xeq,i

2
√

g/λ

)
is of order 1, and thus the variance of particle displacements scales as 1/N .

The result for the covariance allows us to compute the variance of the gap between particles i and i+n in the bulk,
for n≫ 1. In the intermediate regime 1 ≪ n≪ N we obtain, e.g. for i = N/2,

⟨(δxi − δxi+n)
2⟩ ≃ π2

4

v20
λ2N2

n . (15)

The linear behavior in n of the variance can be understood qualitatively as arising from the 1/k2 factor in the sum
over eigenmodes in Eq. (12) and can be obtained by an approximate calculation which neglects the space dependence
of the mean density, see Appendix D.

Edge. The equation (11) can also be used to obtain the covariance of the particle displacements in the edge region,
again in the large N limit. In that region the equilibrium positions take the large N scaling form near the right edge
xe = 2

√
g/λ for i ≥ 1 and i = O(1)

xeq,i = 2

√
g

λ

(
1 +

ai
2
N−2/3 +O(N−1)

)
, (16)



6

FIG. 1. Shape of the total density ρ in the active DBM (model II in Ref. [14]) as a function of the parameter v20/gλ showing
the different regimes at large N . The dashed red line shows the semi-circle. In the middle regime the wings which are visible
near the edges disappear in the limit N → +∞, and can be related to edge effects. The spatial extension of the density as a
function of the parameters is also shown in the different regimes. Its behavior for v20/gλ ≫ 1 (right panel), was obtained from
numerical simulations of an effective model, see Ref [14]. The results were derived for γ → 0 but simulations suggest that they
are valid beyond this limit.

where ai is the i
th zero of the Airy function, with, e.g., a1 = −2.3811 and for large i, ai = −( 3π8 (4i−1))2/3+O(i−4/3).

The ∼ i2/3 power law behavior is consistent with the fact that the equilibrium density vanishes as a square root at
the edge. We obtain the following result for the position fluctuations at the edge

⟨δxiδxj⟩ ≃
v20

λ2N2/3
Ce(ai, aj) , Ce(ai, aj) =

1

Ai′(ai)Ai′(aj)

∫ +∞

0

dx
Ai(ai + x)Ai(aj + x)

x2
, (17)

where Ai(x) is the Airy function and ai is its ith zero. This shows that the variance of the particle positions scales
as N−2/3 at the edge. Interestingly, this expression (17) is reminiscent of a similar result previously obtained for the
(passive) Dyson Brownian motion [25]. Note that one can check that our formula at the edge matches correctly the
formula in the bulk (12), as we show below in Section V.

Let us now turn to the implications of these results on the particle density in the bulk of the active DBM. In Fig. 1
we are showing the various regimes as the dimensionless parameter v20/(gλ) is varied, which were discussed in [14].
The results obtained here allow to describe the left part of the figure (i.e. to the left of the red line in Fig. 1). The
important consequence of (14) is that the variance of the position fluctuations of any particle in the bulk scales as
v20/(λ

2N) at large N . More precisely one can compare the root mean squared displacement to the typical separation

between particles
√
(g/λ)/N by considering the dimensionless ratio√

⟨δx2i ⟩
⟨xi − xi+1⟩

∼ v0√
gλ

√
N , (18)

which is thus small compared to unity when v20/(gλ) ≪ 1/N . This defines the regime represented on the left in Fig. 1
where the crystal is very well ordered and the density exhibits peaks around the equilibrium positions xeq,i. The
second regime in Fig. 1 can be identified by looking at the dimensionless ratio√

⟨δx2i ⟩
xe

∼ v0√
gλN

. (19)

Clearly the semi-circle density can hold only when this ratio is small compared to unity, which means v20/(gλ) ≪ N .
In this second regime 1

N ≪ v20/(gλ) ≪ N , the fluctuations are larger but the semi-circle density still holds. Note that
although the results described above were obtained strictly in the limit γ → 0, numerical simulations strongly suggest
that the scalings obtained above hold for any value of γ.

It is important to note that the approximation (9) and the above results are, strictly speaking, only valid when

the typical variations of the distance between successive particles
√
⟨(δxi − δxi+1)2⟩ is much smaller than the average

distance ⟨δxi − δxi+1⟩. Although (15) is valid only for n≫ 1, we still expect it to give the correct order of magnitude
for n = 1. Thus we get that our results should be valid when the 1D Lindemann-like ratio is small, i.e.

cL =

√
⟨(δxi − δxi+1)2⟩
⟨xi − xi+1⟩

∼ v0/(λN)√
(g/λ)/N

=
v0√
gλ

≪ 1 . (20)
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This defines an additional line in the Fig. 1 which falls in the middle of the intermediate regime, i.e, our detailed
predictions (10)-(17) are valid for v20/(gλ)

<∼ 1. However, we expect our theory to describe the system beyond this
line, at least qualitatively as order of magnitude estimates. We have indeed checked numerically that this is the case
in Ref. [14].

Let us now briefly describe the implications of our result in the edge region, i.e. Eq. (17). The fluctuations are
larger in that region and the scaling with N is different. Indeed, the dimensionless ratio defined in (19) is ∼ N−1/3 at
the edge, instead of ∼ N−1/2 in the bulk. However one can again consider the relative fluctuations by comparing with
the distance between particles which is also larger, i.e. consider the ratios defined in Eqs. (18), (20). Estimating any
function of the ai to be of order unity, one finds that these relative fluctuations are small when v20/(gλ) ≪ 1/N2/3,
which also gives the condition for our detailed predictions (17) to be valid.

Finally, we have tested some of the above predictions for the active DBM numerically and have observed a very
good agreement. This is discussed later in the paper, see sections IV and V and Figs. 6, 7, 8, 9, 10 (see also some
discussion at the end of the next section in the context of the CM model).

B. Overdamped Calogero-Moser model

The dynamics of the CM model defined in (2) converges at large time towards a Gibbs-like equilibrium state which
however retains the same ordering as the particles in the initial state, see Appendix C. Choosing X1 > · · · > XN in
the initial state, the joint PDF of the positions of the particles in this equilibrium state can be written as

P[X] ∼ e
−N

T (λ
2

∑
i X

2
i +

4g̃2

N2

∑
i<j

1
(Xi−Xj)

2 )
θ(X1 > X2 > · · · > XN ) . (21)

We are interested here in the correlation functions with respect to this joint PDF. Note that for the observables which
are symmetric in the labels of the particles, the ordering is immaterial. This is however not the case for correlations
with specified particle labels. Let us summarize our main results, both in the low temperature regime T/(g̃

√
λ) ≪ N

[where at large N the support of the density remains finite and takes the Wigner semi-circular form (7)] and the high

temperature regime T/(g̃
√
λ) ≫ N where the support is unbounded.

Low temperature regime. Let us define δXi = Xi −Xeq,i where Xeq,i are the equilibrium positions given in (6).
For the CM model, it was shown in [24] that the two-point correlation function takes the form at low temperature

⟨δXiδXj⟩ =
T

λN
(H−2)ij , (22)

with the same matrix H as in Eq. (9) above. Quite remarkably, the relation (22) has exactly the same form as (10),
and therefore the results above can be transposed directly to the CM model by simply changing the prefactor.

In the large N limit, we recall that the mean equilibrium density of the CM model is given by the Wigner semi-
circle (7) which has a finite support [−Xe, Xe] with two edges at X = ±Xe with Xe = 2

√
g̃/λ1/4. Furthermore, from

the above results, we obtain that in the bulk

⟨δXiδXj⟩ ≃
T

λN2
Cb
(
λ1/4Xeq,i

2
√
g̃

,
λ1/4Xeq,j

2
√
g̃

)
, (23)

where the function Cb(x, y) is given in Eq. (12). At the right edge the equilibrium positions take the form

Xeq,i = 2

√
g̃

λ1/4

(
1 +

ai
2
N−2/3 +O(N−1)

)
, (24)

and we obtain that their fluctuations obey

⟨δXiδXj⟩ ≃
T

λN5/3
Ce(ai, aj) , (25)

in the edge region, where Ce(ai, aj) is defined in (17).

Finally, we have computed by the same method the temporal correlations ⟨δXi(t)δXj(t
′)⟩ in the stationary state

and at low temperature for the CM model. The results are given in Section VI in terms of dynamical scaling functions
which generalize the equal time ones given above. In particular we find that the time dependent displacement of a
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particle in the bulk exhibits anomalous diffusion, i.e. ⟨(δXi(t)− δXi(0))
2⟩ ∼ t1/2 in an intermediate time window.

High temperature regime. At high temperature the interaction becomes formally irrelevant when T/(g̃
√
λ) ≫ N ,

although the order of the particle is still retained (see Appendix J). Hence the Gibbs measure (21), expressed in terms
of scaled variables, converges to

P (X1, ..., XN ) =
1

ZN
e−

1
2

∑
i X̃

2
i θ(X̃1 > X̃2 > ... > X̃N ) , Xi =

√
T

Nλ
X̃i , (26)

where ZN = 1/(N !(2π)N/2). In other words, at a given time the particle positions X1, · · · , XN are i.i.d centered

Gaussian variables with variance
√
T/(λN), ordered from the largest to the smallest. When computing the particle

density the ordering is irrelevant, so that the density in this regime is a Gaussian with variance
√
T/(λN). In addition,

we can use existing results on the order statistics of i.i.d. Gaussian variables [38–41], see Appendix J where some
additional results are derived (and some numerical tests are presented), to obtain the mean and two-point covariance
of the positions of the particles. In the large N limit they take the form, in the bulk, i.e. i, j = O(N)

⟨Xi⟩ ≃
√

T

λN
Q−1

(
i

N

)
, ⟨XiXj⟩c ≃ 2π

T

λN2

i

N

(
1− j

N

)
e

1
2 [Q

−1( i
N )]2+ 1

2 [Q
−1( j

N )]2 (27)

where Q(x) =

∫ +∞

x

dy
e−y2/2

√
2π

=
1

2
erfc

(
x√
2

)
. (28)

Note that the one-point variance ⟨X2
i ⟩c is given by the same formula setting i = j. In particular, one finds that the

higher order cumulants are subdominant, so that the distribution of the rescaled positions N(Xi−⟨Xi⟩) are Gaussian
in the limit of large N . On the other hand, at the (right) edge of the gas, i.e. i, j = O(1) one obtains instead, for
j ≥ i

Xj =

√
T

λN

√
2 logN

(
1 +

ζj + cN
2 logN

+ . . .

)
(29)

⟨ζi⟩ = −ψ0(i) , ⟨ζiζj⟩c = ψ1(j) = ⟨ζ2j ⟩c , (30)

where ψ0(x) = Γ′(x)/Γ(x) and ψ1(x) = ψ′
0(x) are the digamma and trigamma functions respectively and cN =

− log(
√
4π logN). As shown in Appendix J the two forms (edge and bulk) match correctly. As detailed in the

Appendix J, the position of the edge particle X1 follows a Gumbel distribution, and furthermore the distributions of
the gaps Xi −Xi+1 are exponential both in the bulk and near the edge.
Note that we expect this high temperature regime to be more general than the current setting. Indeed, the only

information that remains about the interaction being the ordering constraint, this should remain valid for any inter-
action potential of the form 1/|xi − xj |α with α > 0 (see Appendix C). Moreover, if the external potential V (x) is
not quadratic but is instead any type of confining potential, so that an equilibrium measure exists, then the particle
positions will be the ordered set of N i.i.d. random variables drawn from the single-particle Gibbs measure e−NV (x)/T .

Discussion of the crossovers. These results allow to discuss the different regimes for the CM model as the
dimensionless parameter T/(g̃

√
λ) is varied, as represented in Fig 2. At variance with the active DBM, the stationary

state is a Gibbs equilibrium, which makes the discussion somewhat easier. There are thus again three regimes. The
very low temperature well ordered crystal, with peaks in the density (left panel in Fig 2), is obtained when the
dimensionless ratio √

⟨δX2
i ⟩

⟨Xi −Xi+1⟩
∼

√
T

g̃

1

λ1/4
(31)

is much smaller than unity, i.e. when T/(g̃
√
λ) ≪ 1. For higher temperature 1 ≪ T/(g̃

√
λ) ≪ N the fluctuations are

larger but the semi-circle density still holds. This is the intermediate temperature regime shown in the middle panel
in Fig. 2. Finally there is the high temperature regime shown in the right panel in Fig. 2. In that regime the width
of the gas behaves as ∼

√
T/(λN). It matches the width of the semi-circle ∼

√
g̃/λ1/4 when T/(g̃

√
λ) ∼ N . Hence

we find that the boundary between the semi-circle and the high temperature regime occurs for T/(g̃
√
λ) ∼ N and

coincides with the domain of validity of the above analytical results, i.e., when√
⟨(δXi − δXi+1)2⟩
⟨Xi −Xi+1⟩

∼
√
(T/λ) N−3/2

√
g̃ λ−1/4N−1

=
1

λ1/4

√
T

g̃

1√
N

≪ 1 . (32)
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FIG. 2. Shape of the total density ρ in the Calogero-Moser model as a function of the parameter T/g̃λ1/4 showing the different
regimes at large N . The dashed red line shows the semi-circle.
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FIG. 3. Left: The left figure shows the density for the CM model for β = 4, obtained by direct simulation of the Langevin
dynamics (2). We use the notations summarized in the text around (33). The peaks are clearly visible as predicted for β > 1,
see left panel of Fig. 2. It is analogous to Fig. 1a in [24], where however the peaks cannot be seen for the same values of
N . Right: The right figure shows a comparison between (i) the scaled variance in the bulk (22) as a function of the scaled

equilibrium position yi/
√
2N computed by inverting the Hessian for different values of N and (ii) the scaling form predicted at

in large N in (23) (dashed black line), recalling that Vb(x) = Cb(x, x). This figure should be compared with the Fig. 8a in [24].

Comparison with Ref. [24]. We can compare our results, in particular Eqs. (23) and (25), with the ones obtained
numerically on the CM model in [24]. In that work they study the same displacement correlations either by (i)
numerical evaluation of the Hessian or (ii) by direct Monte-Carlo simulations, and they compare both methods,
with a good agreement for lower temperature Their conventions are different from ours, so we start by giving the
corresponding dictionary. Denoting for convenience zi the positions of the particles denoted xi in [24] (they set to
unity their parameter g) we can identify

zi√
2N

=
λ1/4

2
√
g̃
Xi , (33)

both sides being dimensionless and of order unity in the bulk at equilibrium. In fact one has zeq,i = yi, where yi is
the i-th root of the Hermite polynomial HN (y). This then leads to the following identification for the parameter β
(analogous to the Dyson index for the DBM)

β =
2g̃

√
λ

T
. (34)

In the bulk, our result then leads to, in their notations

⟨δziδzj⟩ =
1

Nβ
Cb

(
zeq,i√
2N

,
zeq,j√
2N

)
, (35)

where we recall that the function Cb(x, y) is given in Eq. (12). Forming the dimensionless ratios we see that our
prediction is that in their conventions the three regimes in the bulk in Fig. 2 are (i) the regime with peaks for β >∼ 1,
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FIG. 4. Left: The left figure shows the scaled variance of the midpoint position zi=N/2 for the CM model for various values of
N . We use the notations summarized in the text around (33). The blue crosses correspond to the numerical inversion of the
Hessian. The dashed black line is our analytic prediction of the value V(0) = π2/8 in the large N limit, see Eq. (68). The inset
shows the difference, with the dotted black line showing a 1/N decay. This figure corresponds to the Fig. 6a in [24]. Right:
The right figure shows a similar plot for zi=1 and represents the scaled variance of the edge particle. The dashed black line

correspond to our prediction N2/3β⟨δz21⟩ = I = 1
Ai′(a1)2

∫ +∞
0

dx Ai(a1+x)2

x2 ≃ 1.12481... (see Eq. (17)). The inset shows the

difference, with the dotted black line showing a 1/N1/3 decay. This figure corresponds to their Fig. 3a.

(ii) the semi-circle regime for 1/N <∼ β <∼ 1, and the high temperature regime for β <∼
1
N . Similarly at the edge we

predict

⟨δziδzj⟩ ≃
1

βN2/3
Ce(ai, aj) , (36)

where Ce is given in (17).
In the left panel of Fig. 3, we show the mean particle density for the CM model for β = 4 obtained by direct

simulation of the Langevin dynamics (2). The density exhibits clearly visible peaks, in agreement with our theoretical
prediction for β = 4 (see the left panel of Fig. 2). We note that this is qualitatively different from the numerical
results shown in Ref. [24] (see their Fig. 1a), which shows instead a rather smooth density profile.

In the right panel of Fig. 3 and in the Figs. 4 and 5 we have compared some of our large N theoretical predictions
with the results from an explicit numerical calculation of the Hessian. We find that the convergence in N is very fast
in the bulk (∝ N−1) and slower at the edge (∝ N−1/3). Our large N analytical predictions can also be compared
with the results of [24], more precisely with their Figs. 3a, 6a, 8a, 10a and 10b. For instance we provide the exact
analytical value for the scaled variance of the midpoint in the large N limit, which is π2/32 ≃ 0.308425 for β = 4
which turns out to be amazingly close to the quoted measured value 0.3084 (see their Fig. 6a and our Fig. 4 (left
panel)).

Finally, note that the Figs. 3, 4 and 5 contain comparison of our large N prediction with the results from an explicit
numerical calculation of the Hessian, hence they also provide a check of our predictions for the active DBM presented
in the previous section.

III. DERIVATION OF THE RESULTS FOR FINITE N

A. Active Dyson Brownian motion

The goal of this section is to derive equation (10) which relates the covariance of particle displacements in the
active DBM with respect to their equilibrium position, δxi = xi − xeq,i, to the Hessian of the potential. We start by
recalling that the vector of equilibrium positions x⃗eq is the solution of the equation

∂V ADBM

∂x⃗
(x⃗eq) = 0 with V ADBM (x⃗) =

λ

2

∑
i

x2i −
2g

N

∑
i<j

log |xi − xj | . (37)

which satisfies xeq,1 > ... > xeq,N . It is well known that the solution of this system is given by the roots of the Hermite
polynomial HN (x) as [14, 42]

xeq,i =

√
2g

λN
yi with HN (yi) = 0 . (38)
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FIG. 5. Left: The left figure shows the covariance between the edge particle 1 and particle i as a function of i/N for N = 104.
The edge and bulk predictions at large N are also shown. For i = O(1) it matches quite well with the edge analytical result,
while for i = O(N) it matches well with the bulk result. This figure corresponds to Fig. 10a in [24]. Right: The right figure

shows a similar plot versus the scaled equilibrium positions yi/
√
2N of the scaled covariance between the central particle and

particle i. It corresponds to Fig. 10b in [24].

We will denote δx⃗ the vector formed by the displacements δxi, and σ⃗ the vector of σi. The first assumption that
we make is that the typical fluctuations of the gaps δxi − δxi+1 are small compared to the typical size of the gaps

xeq,i − xeq,i+1 ∼
√
g/λ/N . This allows us to linearize the dynamics around x⃗eq:

∂δx⃗

∂t
= −∂V

ADBM

∂x⃗
(x⃗eq + δx⃗) + v0σ⃗(t) ≃ −λHδx⃗+ v0σ⃗(t) , (39)

with the Hessian matrix

λHij =
∂2V ADBM

∂xi∂xj
(x⃗eq) = δij

λ+
2g

N

∑
k ̸=i

1

(xeq,i − xeq,k)2

− (1− δij)
2g

N

1

(xeq,i − xeq,j)2

= λ

δij
1 +

∑
k ̸=i

1

(yi − yk)2

− (1− δij)
1

(yi − yj)2

 . (40)

Note that the matrix H is only a function of the Hermite roots yi, and is thus independent of the model parameters.
We then make a second assumption by considering the limit γ → 0. In [14] we showed that, as long as σ⃗ remains

fixed, (39) has a unique fixed point, towards which the system converges (with a relaxation time ∼ 1/λ) until one of
the σi changes, at which time the system starts to converge to a new fixed point. Thus, if γ is small enough (typically
γ ≪ λ/N), the system will spend most of its time close to a fixed point. Therefore we can write that at any given
time

δx⃗ ≃ v0
λ
H−1σ⃗ , (41)

where σ⃗ is drawn uniformly among all possible values (since all the σ⃗ have the same probability to be visited over a
sufficiently large time window), i.e. the σi’s are independent and take the value ±1 with equal probability. From (41)
we can compute the mean and covariance of δxi = xi − xeq,i (using ⟨σi⟩ = 0 and ⟨σiσj⟩ = δij), leading to

⟨δxi⟩ ≃ 0 , (42)

⟨δxiδxj⟩ ≃
v20
λ2

∑
k,l

(H−1)ik(H−1)jl⟨σkσl⟩ =
v20
λ2

(H−2)ij . (43)

The relation in Eq. (43) is the first important result of this paper. The rest of the paper will mainly focus on the
inversion of the matrix H to obtain more explicit expressions for the covariance and related quantities. Before that,
let us make two important comments on this result.

First, we need to go back to the two assumptions that we made, namely δxi − δxi+1 ≪
√
g/λ/N and γ → 0. The

domain of validity of the first assumption was discussed in Section IIA and it is confirmed by numerical simulations, see
Fig. 6. The second approximation seems quite restrictive. However, numerical simulations show that the covariance
is a monotonically decreasing function of γ, so that (43) gives an upper-bound on the covariance for generic γ (see
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FIG. 6. Test of the range of validity of the weak noise and small γ regimes at finite N . Left: Ratio between the variance
obtained from numerical simulations of Eq. (1) at T = 0 with N = 100 particles and the theoretical prediction (43) at γ = 0,
as a function of γ, for different particle indices. We used v0 = 0.1, g = 1 and λ = 1. For every particle the variance is a
decreasing function of γ, and exhibits a plateau for γ ≤ 1. More precisely, for the edge particle (i = 1) it is very well fitted by
a (1 + cγ)−1 decay with c = 1

2
, while for bulk particles a larger value of c (of the order of 1) gives a reasonable agreement. For

a single particle, this functional form (1 + cγ)−1 with c = 2 is exact for all γ [43]. Center: Variance of the position of particle
1 for N = 2, as a function of γ, for different values of v0 (and g and λ = 1). The horizontal red solid line shows the prediction

for γ → 0 given in (59). For small v0 the data is fitted very well by the function 5/8
1+c2γ

with c2 ≃ 1.648.... Right: Same plot
for the covariance of particle 1 and 2.

Fig. 6 where a fit for the dependence in γ is also proposed). Although we were not able to prove this analytically, one
can get a good intuition of why this is true by looking at the N = 1 case [43]. Indeed, in this case the distribution
of positions has a finite support [x−, x+], where x± = ±v0/λ is the fixed point corresponding to σ = ±1 respectively.
When γ ≪ λ, the density is concentrated at the edges x±, but as γ increases it becomes more and more concentrated
around 0. For arbitrary N , this effect can be understood by the fact that, when γ becomes large, particles will
not have time to reach fixed points which are far away from their equilibrium position before σ⃗ changes again, and
therefore they will become more and more localized. In the limit γ → +∞, the σ⃗ term in (39) averages to zero and
δx⃗ simply relaxes to 0.

Finally, note that (43) has a fairly general form and could also apply to other systems of interacting run-and-tumble
particles in the weak noise, long persistence time limit. The only restrictive requirement is that the particles should
remain close to their equilibrium position when v0 is small. Keeping this in mind, this result should remain valid in
some regime when considering other types of confining potential and other forms of diverging repulsive interactions
(e.g. interaction forces of the form sgn(xi − xj)|xi − xj |−α with α > 0 as in the Riesz gas).

B. Calogero-Moser model

We now turn to the CM model, for which a relation very similar to (43) was proved in [24]. For this model the
potential reads

V CM (X⃗) =
λ

2

∑
i

X2
i +

4g̃2

N2

∑
i<j

1

(Xi −Xj)2
. (44)

Recalling that Xeq,i =
1

λ1/4

√
2g̃
N yi, where the yi are the zeros of the Hermite polynomial HN (y), the Hessian of this

potential is

∂2V CM

∂Xi∂Xj
(X⃗eq) = δij

λ+
24g̃2

N2

∑
k ̸=i

1

(Xeq,i −Xeq,k)4

− (1− δij)
24g̃2

N2

1

(Xeq,i −Xeq,j)4
(45)

= λ

δij
1 +

∑
k ̸=i

6

(yi − yk)4

− (1− δij)
6

(yi − yj)4

 = λ(H2)ij . (46)

The last equality is non trivial and uses the fact that the yi are the zeroes of the Hermite polynomials. It was proved
in [24].
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As discussed in detail below in Section III C, it turns out that the eigenvalues of H are simply the N first strictly
positive integers k = 1, 2, · · · , N . We denote by ψk the corresponding normalized eigenvectors, with components (ψk)i
with i = 1, 2, · · · , N such that

N∑
j=1

Hij(ψk)j = k (ψk)i . (47)

For small displacements δXi = Xi − Xeq,i one can linearize the equations of motion (2) around the equilibrium
positions, which gives

d

dt
δXi(t) = −λ

N∑
j=1

(H2)ij δXj +

√
2T

N
ξi(t) . (48)

Taking the Fourier transform with respect to time one thus obtains by inversion in the frequency domain

δX̂i(ω) =

√
2T

N

N∑
j=1

[iω1N + λH2]−1
ij ξ̂j(ω) , (49)

where 1N is the N × N identity matrix, δX̂i(ω) =
∫∞
−∞ eiωtδX̂i(ω) dt and ξ̂j(ω) is a Gaussian white noise with

correlations ⟨ξ̂i(ω)ξ̂j(ω′)⟩ = 2πδij δ(ω + ω′). We thus obtain the correlations at equilibrium

⟨δXi(t)δXj(t
′)⟩ =

2T

N

∫
dω

2π
e−iω(t−t′)[ω21N + (λH2)2]−1

ij

=
2T

N

N∑
k=1

(ψk)i(ψk)j

∫
dω

2π

e−iω(t−t′)

ω2 + (λk2)2

=
T

λN

N∑
k=1

e−λk2|t−t′|

k2
(ψk)i(ψk)j . (50)

In the following sections, we will discuss the equal time correlations (hence forgetting the time dependence δXi(t) →
δXi). We will come back to the time-dependent correlations in Sec. VI. In the case of equal time correlations, t = t′,
(50) simply becomes (see also [24])

⟨δXiδXj⟩ =
T

λN
(H−2)ij . (51)

Surprisingly, this is the same as (43) for the active DBM with only a different prefactor. Therefore the fluctuations
in the two models can be studied simultaneously by inverting the matrix H. Note however that this result is more
general in the case of the CM model, since here we only assumed that the parameter T/g̃

√
λ is small. We will see

that (51) actually gives quite accurate results up to relatively high temperatures.

C. Inverting the Hessian: a general formula

From now on we will present the derivation of the results for the active DBM. Everything that follows can be easily
transposed to the overdamped CM model by replacing the prefactor v20/λ

2 by T/(λN).
It turns out that the matrix H can be diagonalized exactly using Hermite polynomials (see [24, 36]). Its eigenvalues

are simply the integers from 1 to N , and the normalized eigenvector ψk associated to the eigenvalue k has components
given by

(ψk)i =
uk(yi)√∑N
j=1 uk(yj)

2
, uk(y) =

H
(k)
N (y)

H ′
N (y)

= 2k−1 (N − 1)!

(N − k)!

HN−k(y)

HN−1(y)
. (52)

The proof is recalled in Appendix A. Using the eigenvector decomposition

(H−2)ij =

N∑
k=1

(ψk)i(ψk)j
k2

, (53)
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we obtain, in the case of the active DBM

⟨δxiδxj⟩ =
v20
λ2

N∑
k=1

1

k2
uk(yi)uk(yj)∑N

l=1 uk(yl)
2

with uk(y) =
H

(k)
N (y)

H ′
N (y)

. (54)

In particular the variance of the displacement for a single particle is given by

⟨δx2i ⟩ =
v20
λ2

N∑
k=1

1

k2
uk(yi)

2∑N
l=1 uk(yl)

2
. (55)

Note that, since HN (−x) = (−1)NHN (x), we have the symmetry ⟨δxiδxj⟩ = ⟨δxN−i+1δxN−j+1⟩. From (55) we can
already deduce the average of the variance over all particles for any N , as well as its large N limit

1

N

N∑
i=1

⟨δx2i ⟩ =
v20
λ2N

N∑
k=1

1

k2
≃ π2

6

v20
λ2N

. (56)

The goal of the next sections is to simplify the expressions (54)-(55) in different limits. A convenient starting point
is the differential equation satisfied by the Hermite polynomials

H ′′
N (x) = 2xH ′

N (x)− 2NHN (x) . (57)

Differentiating k times the above equation, evaluating it at x = yi and dividing both sides by H ′
N (yi) we obtain the

recurrence relation

uk+2(yi) = 2yiuk+1(yi)− 2(N − k)uk(yi) , (58)

with initial conditions u0(yi) = 0 and u1(yi) = 1, which allows to determine uk(yi) (note that the recursions stops
since uN+1(yi) = 0). Although this recursion relation does not have a simple solution in general, we will see in the
next section how an approximate version of this equation can be used to obtain an asymptotic expression for (54)-(55)
in the large N limit.

As a side remark, a different approach would consist in diagonalizing H approximately for large N , as done e.g. in
[26] (chap. 5.4) for the DBM, by assuming the density to be uniform in the bulk, using plane waves, and computing
the inverse of the Hessian (very much as a calculation of displacements using phonons in a solid). This approach gives
less accurate results than the one presented below, but it is somewhat simpler to implement and also more general,
so we give the main ideas in Appendix D.

The special cases N = 1 and N = 2. Below we will mainly focus on large values of N . However, (54) is also valid

at small N . In particular for N = 1 it gives ⟨δx21⟩ =
v2
0

λ2 . This is indeed the γ → 0 limit of the result obtained in [43],

⟨δx21⟩ =
v2
0

λ2
1

1+2 γ
λ
. Note that the variance is a decreasing function of γ, as discussed previously. For N = 2 one obtains

⟨δx2i ⟩ =
5

8

v20
λ2

(i = 1, 2) , ⟨δx1δx2⟩ =
3

8

v20
λ2

. (59)

These results are compared to simulations in Fig. 6. Both the variance and covariance seem to converge to the
predicted result as γ → 0 for small values of v0.

IV. LARGE N LIMIT IN THE BULK

We first notice that the factor uk(yi)uk(yj)/
∑N

l=1 uk(yl)
2 in (54) is always smaller than 1 (this can be shown using

uk(yi)uk(yj) <
1
2 (uk(yi)

2 + uk(yj)
2)). Hence the sum over k in (54) is convergent and bounded by

∑
k≥1 1/k

2. As a
result we can obtain an asymptotic expression for N → +∞ by focusing on values of k such that k ≪ N . In fact, we
will see that it is dominated by k = O(1) in the bulk, and k = O(N1/3) at the edge.

We will now simplify Eqs. (54) and (55) in the limit of large N . There is a systematic method to study the
recursion relation (58) at large N , which is presented in Appendix H. We give here only the leading order which is
sufficient for our present considerations. The results below can also be obtained using the Plancherel-Rotach formula
(see Appendix E).
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FIG. 7. Results for the active DBM: comparison of the numerical simulations of Eq. (1) at T = 0, with our analytical
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√
g for N = 100, λ = 1, g = 1, v0 = 0.1

and different values of γ. The results of the simulations are compared with those (i) obtained by exact inversion of the Hessian
matrix and (ii) with the asymptotic expression for large N given in (67). As expected the agreement is good for small values
of γ. Center: Same plot for the large value v0 = 1. The agreement decreases near the edges but remains good in the bulk.
Right: Expansion of Vb(x) around x = 0 [see Eq. (68)] and around x = 1 the edges [see Eq. (69)].

We start by rescaling (58), introducing yi =
√
2Nri and uk(yi) = (2N)

k−1
2 vk(ri) to obtain

vk+2(ri) = 2rivk+1(ri)−
(
1− k

N

)
vk(ri) . (60)

Since we can focus on k ≪ N , we can simplify the recurrence relation (60) and get rid of the term proportional to
k/N in (60), leading to

vk+2(ri) = 2rivk+1(ri)− vk(ri) . (61)

It turns out that this scaling together with this approximation are adapted to the bulk, i, j ∼ N , to which we now
focus on (and we recall that the relevant values of k are of order unity). One can check that this approximation
leads to a relative error of order O( 1

N ) in the bulk. We then recognize that the simplified equation (61) is the
recursion relation satisfied by the Chebyshev polynomials of the second kind Uk(ri) [44]. Since v1(ri) = 1 = U0(ri)
and v2(ri) = 2ri = U1(ri), we obtain vk(ri) = Uk−1(ri) for all k ≥ 1, i.e.

uk(yi) ≃ (2N)
k−1
2 Uk−1

(
yi√
2N

)
= (2N)

k−1
2

sin(k arccos( yi√
2N

))√
1− y2

i

2N

, (62)

up to an error of order O( 1
N ) (for the second identity we have used the fact that |yi| <

√
2N for all i). When plugging

this result into Eq. (54) we see that the factors (2N)
k−1
2 simplify between the numerator and the denominator.

Additionally, for large N , the density of the roots of Hermite polynomials converges to the Wigner semi-circle density.
Therefore, we can replace the sum over all Hermite roots in the denominator of Eq. (54) by an integral over the
semi-circle density to obtain

N∑
l=1

Uk−1

(
yl√
2N

)2

≃ N

∫ 1

−1

dx
2
√
1− x2

π
Uk−1(x)

2 = N , (63)

(the error made by replacing the sum by an integral is again of order O( 1
N )). The last equality comes from the fact

that the Chebyshev polynomials of the second kind are orthonormal with respect to the Wigner semicircle measure
(but it can also be shown through an explicit computation using the second expression in (62)).

This leads to the following expressions for the covariances, valid in the large N limit away from the edges (extending
the sum to +∞ instead of N again leads to an error of order O( 1

N ))

⟨δxiδxj⟩ ≃
v20
λ2N

Cb

(
xeq,i

2
√
g/λ

,
xeq,j

2
√
g/λ

)
, Cb(x, y) =

∞∑
k=1

1

k2
Uk−1(x)Uk−1(y) =

∞∑
k=1

1

k2
sin(k arccosx)√

1− x2
sin(k arccos y)√

1− y2
.

(64)
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This can also be written (see Appendix B for a derivation)

Cb(x, y) =
π arccos(max(x, y))− arccos(x) arccos(y)

2
√
1− x2

√
1− y2

. (65)

For x ≥ y this reads

Cb(x, y) =
arccos(x)(π − arccos(y))

2
√
1− x2

√
1− y2

. (66)

For the variance of the position for a single particle, one finds

⟨δx2i ⟩ ≃
v20
λ2N

Vb

(
xeq,i

2
√
g/λ

)
, Vb(x) =

∞∑
k=1

1

k2
Uk−1(x)

2 =

∞∑
k=1

1

k2
sin2(k arccosx)

1− x2
=

arccos(x)(π − arccos(x))

2(1− x2)
, (67)

the total relative error being of order O( 1
N ) in both cases. We recall that xeq,i =

√
2g
λN yi ∈ (−2

√
g/λ, 2

√
g/λ) and

therefore Cb(x, y) and Vb(x) are defined on (−1, 1)2 and (−1, 1) respectively. Near x = 0, the function Vb(x) has a
minimum and behaves as

Vb(x) =
π2

8
+

(
π2

8
− 1

2

)
x2 +O(x4) . (68)

For particles which are close to the edge (i.e. i ≪ N), x is very close to 1 and therefore Cb(x, y) and Vb(x) diverge.
For instance one finds

Vb(1− ϵ) =
π

2
√
2ϵ

− 1

2
+

7π

24
√
2

√
ϵ− ϵ

3
+O(ϵ3/2) . (69)

For Cb(x, y) with x = 1− ϵ ≥ y, one finds

Cb(1− ϵ, y) =
(π − arccos y)

2
√

1− y2
+O(1) , (70)

which remains finite at the edge when considering only one of the particle near the edge. By contrast, if one considers
two particles near the edge, i.e. if in addition y = 1− δ, one finds the diverging expression

Cb(1− ϵ, 1− δ) =
π

2
√

2max(ϵ, δ)
+O(1) . (71)

We will come back to this limit in the next section where we study the edge region.
One can also write the expansion for Cb(x, 0) for x ≪ 1, i.e. for the covariance between a particle at x = 0 and a

particle close to x = 0. In this case one gets

Cb(x, 0) =


π arccos x
4
√
1−x2

, x ≥ 0

π(π−arccos x)

4
√
1−x2

x ≤ 0

=
π2

8
− π

4
|x|+ π2

16
x2 − π

6
|x|3 +O(x4) , (72)

which explains the cusp observed in Figs. 5 and 9. In general when x and y are small and of the same order, one has

Cb(x, y) =
π2

8
− π

4
|x− y|+ π2

16
(x2 + y2)− xy

2
+ higher order . (73)

In the bulk these expressions are in very good agreement with the results obtained by diagonalizing the Hessian
numerically, as well as with numerical simulations for the active DBM for small γ, even for large values of v0, of order
O(1) (see Fig. 7 for the one-particle variance and the left panel of Fig. 9 for the covariance). As one gets closer to
the edges, the large N approximation above becomes less accurate.
Finally the expression of the covariance can be used to obtain the variance of the distance between two particles.

Indeed

⟨(δxi − δxi+n)
2⟩ = ⟨δx2i ⟩+ ⟨δx2i+n⟩ − 2⟨δxiδxi+n⟩ . (74)
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FIG. 8. Left: Variance of the distance between the central particle i = N/2 and the particle i = N/2 + n as a function of n
for λ = 1, g = 1, v0 = 1 and N = 100. The numerical simulations are performed for different values of γ. They are compared

with (i) the numerical inversion of the Hessian (black crosses), (ii) the analytical prediction Db

(
xeq,N/2

2
√

g/λ
,
xeq,N/2+n

2
√

g/λ

)
from (75)

at large N (red line) and, (iii) the plane wave (linear)approximation (79) (blue line). The behavior of the variance is linear in
n in the range 1 ≪ n ≪ N . Center: zoom of the left figure on the small values of n. Right: Variance of the central gap as
a function of N computed using the exact inverse of the Hessian (black crosses) versus using the large N bulk approximation

(75), NDb

(
xeq,N/2

2
√

g/λ
,
xeq,N/2+1

2
√

g/λ

)
, with the sum truncated at N (full red line) or at 100 N (dashed red line). This approximation

does not converge to the exact result as N increases.

For 1 ≪ n≪ N it turns out that one can use the above results to estimate the r.h.s of (74). This leads to

⟨(δxi − δxi+n)
2⟩ ≃ v20

λ2N
Db

(
xeq,i

2
√
g/λ

,
xeq,i+n

2
√
g/λ

)
, Db(x, y) = Vb(x) + Vb(y)− 2Cb(x, y) . (75)

This expression is valid for n = αN with α = O(1), i.e. on mesoscopic scales in the bulk. In the limit where α → 0,
i.e. when x− y ≪ 1, one has

Db(x, y) =
π

2

|x− y|
(1− x2)3/2

+O
(
(x− y)2

)
. (76)

Using the expression for the semi-circle density ρ(x) =
√

λ
g

√
1−(x/(2

√
g/λ))2

π together with the fact that xeq,i−xeq,i+n ≃
n/(Nρ(xeq,i)), Eqs. (75) and (76) lead to

⟨(δxi − δxi+n)
2⟩ ≃ v20

4π2g2ρ(xeq,i)4
n

N2
. (77)

As shown in Appendix D, this expression coincides with the result obtained by a plane wave approximation given in
Eq. (D2). In the case where x and y are close to 0, one can easily get the next order of the expansion, namely

Db(x, y) =
π

2
|x− y| − 1

2
(x− y)2 + higher order , (78)

which leads to

⟨(δxi − δxi+n)
2⟩ ≃ π2

4

v20
λ2N

(
n

N
− 1

2

( n
N

)2)
, i = N/2 . (79)

Let us recall that the above results are valid for n = αN with α ≪ 1. However it is important to note that it is
incorrect for n = 1, i.e. to compute the variance of the gaps, and more generally for n = O(1). This is because we
have studied the recursion (60) only to leading order at large N . This is sufficient to obtain the covariance at large
N , but in the calculation of (75) for n = O(1) there are cancellations of the leading order of each term and one needs
a more precise estimate (which we have not obtained here). A more detailed analysis of the problems encountered
to compute the gaps is given in Appendix F. These considerations are in agreement with numerical simulations, see
Fig. 8.
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In the range 1 ≪ n≪ N however, the prediction (79) agrees very well with numerical simulations for small values
of γ (see the left panel of Fig. 8). The result in (77) gives us two important pieces of information. First we see
that the variance of the distance between two particles increases linearly with the distance. This is to be compared
with the standard DBM for which it increases logarithmically [26]. Second, while the variance in the position of a
particle scales as 1/N , the variance of the gap between two neighboring particles scales as 1/N2. This means that
the particles fluctuate collectively.

Remark on linear statistics in the stationary state of the ADBM. Our method allows to obtain the leading
order at large N and for weak noise of the variance of the linear statistics. Defining, for any smooth function f(x),
the random variable

LN =

N∑
i=1

f(xi) . (80)

To compute its variance one can expand around the equilibrium positions, which leads to

VarLN =

N∑
i,j=1

f ′(xeq,i)f
′(xeq,j)⟨δxiδxj⟩ (81)

In the large N limit, in the bulk and in the steady state, using Eq. (64) this leads to the leading order estimate

VarLN ≃ v20N

λ2
4

π2

∫ 1

−1

dx

∫ 1

−1

dy
√
1− x2

√
1− y2f ′

(
2

√
g

λ
x

)
f ′
(
2

√
g

λ
y

)
Cb(x, y) (82)

=
v20N

λ2
8

π2

∫ 1

−1

dx

∫ x

−1

dyf ′
(
2

√
g

λ
x

)
f ′
(
2

√
g

λ
y

)
arccos(x)(π − arccos(y)) (83)

Note that the first line in (82) can also be written using (64) as

VarLN ≃ v20N

λ2

∞∑
k=1

f̂2k , kf̂k =
2

π

∫ 1

−1

dx
√
1− x2f ′

(
2

√
g

λ
x

)
Uk−1(x) . (84)

Let us notice that since the Uk−1(x) form an orthonormal basis w.r.t to the measure 2
πdx

√
1− x2 (for x ∈ [−1, 1]) one

has the decomposition f ′(2
√

g
λ x) =

∑
k≥1 kf̂kUk−1(x). Hence the coefficients f̂k are the so-called Chebyshev-Fourier

coefficients of f(2
√

g
λ x). These coefficients also appear in the linear statistics of the Gaussian β-ensembles in the

bulk [45]. In this case, the variance is proportional to
∑

k≥1 kf
2
k . In fact, using the results for the correlations in the

forthcoming sections, the same method allows to obtain the variance of the linear statistics in the case of the CM
model and of the DBM at equilibrium.

V. LARGE N LIMIT AT THE EDGE

In the previous section we focused on particles which are inside the bulk of the distribution. We now want to look
at particles which are located close to the edges, i.e. with a label i ≪ N . Obtaining the behavior of the variance
and covariance near the edge is more difficult since Vb(x) and Cb(x, y) diverge as x→ ±1 [see Eq. (69)]. This implies
that the scaling δx2i ∼ 1/N breaks down in this limit. A first way to see this is to start from the bulk result for the
covariance and use the asymptotic expansion for the largest roots of the Hermite polynomials [46, 47]. The equilibrium
positions near the edge read

xeq,i = 2

√
g

λ

(
1 +

ai
2
N−2/3 +O(N−1)

)
, (85)

where ai is the ith zero of the Airy function, which for large i is given by ai = −( 3π8 (4i − 1))2/3 + O(i−4/3). For
simplicity we focus on the case of the variance. Inserting this expansion in (64) and using the asymptotic behavior in
Eq. (71), we obtain for i ≤ j,

⟨δxiδxj⟩ ≃
π

2
√−aj

v20
λ2N2/3

≃
j≫1

(
π2

3(4j − 1)

)1/3
v20

λ2N2/3
. (86)
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FIG. 9. Left: Correlations between the central particle and particle i for N = 100, v0 = 0.1, g = 1 and λ = 1. The red line

shows the prediction for Cb

(
xeq,N/2

2
√

g/λ
,

xeq,i

2
√

g/λ

)
from (64). Right: Correlations between the edge particle and particle i for the

same parameters. The results from simulations and numerical inversion of the Hessian are compared both with the edge-edge

expression (94) and the edge-bulk expression (103), 1
N

π−arccos
(

xeq,i

2
√

g/λ

)
2

√
1−

(
xeq,i

2
√

g/λ

)2 (red line).

Therefore we find that the variance of the position of the rightmost particle scales as N−2/3 for the active DBM,
and as N−5/3 for the Calogero-Moser model (versus N−4/3 for the standard DBM). This is confirmed by numerical
simulations for the active DBM for small values of v0 and γ (see Fig. 8). For the Calogero-Moser model this result
once again agrees with [24].

The expression (86) works very well in the intermediate regime 1 ≪ i≪ N . However, for i of order 1 it is possible
to obtain a more precise formula. Let us go back to (52)-(54) and again use the k ≪ N approximation to compute
the normalization factor, but this time keeping the Hermite polynomials at the numerator and using (63) to evaluate
the denominator (which is identical to its value in the bulk)

⟨δxiδxj⟩ ≃
v20
λ2N

∞∑
k=1

1

k2
1

(2N)k−1

(
2k−1 (N − 1)!

(N − k)!

)2
HN−k(yi)

HN−1(yi)

HN−k(yj)

HN−1(yj)
. (87)

We then use the asymptotic expression of Hermite polynomials near the edge [48],

e−x2/2Hn(x) = π1/42n/2+1/4
√
n! n−1/12(Ai(t) +O(n−2/3)) (88)

with x =
√
2n(1 + n−2/3t/2). Denoting tn,i = 2n2/3(yi/

√
2n− 1) we get

HN−k(yi)

HN−1(yi)
≃ 2(1−k)/2

√
(N − k)!

(N − 1)!

(
N − k

N − 1

)−1/12
Ai(tN−k,i)

Ai(tN−1,i)
. (89)

Using Stirling’s formula (87) simplifies to (at first order in 1/N)

⟨δxiδxj⟩ ≃
v20
λ2N

∞∑
k=1

1

k2
Ai(tN−k,i)

Ai(tN−1,i)

Ai(tN−k,j)

Ai(tN−1,j)
. (90)

We can then apply (85) (yi ≃
√
2N
(
1 + 1

2N
−2/3ai

)
) to obtain

tN−k,i ≃ ai + kN−1/3 . (91)

Until now we only assumed k = o(N). For k = 1, we can Taylor expand the Airy function to first order and write

Ai(tN−1,i) ≃ N−1/3Ai′(ai) . (92)

This allows to estimate the denominator in Eq. (90). In the numerator we need to take into account the terms up to
k ∼ N1/3 and we can approximate the sum as a Riemann integral

⟨δxiδxj⟩ ≃ v20
λ2N1/3

1

Ai′(ai)Ai′(aj)

∞∑
k=1

Ai(ai + kN−1/3)Ai(aj + kN−1/3)

k2
(93)

≃ v20
λ2N2/3

1

Ai′(ai)Ai′(aj)

∫ +∞

0

dx
Ai(ai + x)Ai(aj + x)

x2
, (94)
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where we recall that ai is the i
th zero of the Airy function. We recover the N−2/3 scaling discussed above (86). Note

that the leading correction term is of order 1/N since going from the integral to the sum introduces a relative error of
order N−1/3. Once again, this result directly applies to the Calogero-Moser model after replacing v20 by T/N . This
result is very similar to the expression proved for the DBM in [25] where the factor 1/k2 is replaced by 1/k. Note
that here it is obtained via different methods. For the one-particle variance, equation (94) reads

⟨δx2i ⟩ ≃
v20

λ2N2/3

1

Ai′(ai)2

∫ +∞

0

dx
Ai(ai + x)2

x2
. (95)

As in the bulk regime, one can directly deduce from (94) an expression for the variance of inter-particle distances
near the edge

⟨(δxi − δxi+n)
2⟩ = ⟨δx2i ⟩+ ⟨δx2i+n⟩ − 2⟨δxiδxi+n⟩ ≃

v20
λ2N2/3

∫ +∞

0

dx

x2

[
Ai(ai + x)

Ai′(ai)
− Ai(ai+n + x)

Ai′(ai+n)

]2
. (96)

This expression is valid for i and n of order 1. Contrary to the bulk, the variance of the gap between two particles
is of the same order as the variance of δxi. This shows that the correlations are much weaker at the edge than in
the bulk, as one would expect. In this case the leading order terms do not cancel and this expression is valid even
for n = 1, as can be seen in Fig. 10 right panel. Interestingly, the leading relative error seems to be of order N−2/3

(versus N−1/3 when looking at ⟨δx2i ⟩, see Fig. 4).

Matching from the edge to the bulk. In the limit of large i, the expression (95) for the one-point variance
should reduce to the result (86) obtained above in the bulk. In this limit, −ai is large and one can use the asymptotic
expression of the Airy function to write

Ai′(ai) ≃ − (−ai)1/4√
π

cos

(
2

3
(−ai)3/2 +

π

4

)
≃ (−1)i+1 (−ai)1/4√

π
, (97)

where in the second step we used ai ≃ −( 3π8 (4i − 1))2/3. To evaluate the integral we further approximate x ≪ −ai
(since the integral decays as 1/x2 for x≪ −ai and then exponentially for x≫ −ai)

Ai(ai + x) ≃ (−ai − x)−1/4

√
π

sin

(
2

3
(−ai − x)3/2 +

π

4

)
≃ (−1)i

sin(
√
−ai x)√

π (−ai)1/4
. (98)

Thus we obtain ∫ +∞

0

dx
Ai(ai + x)2

x2
≃ 1

π

∫ +∞

0

dx
sin2(

√
−ai x)√

−ai x2
≃ 1

π

∫ +∞

0

du
sin2(u)

u2
=

1

2
, (99)

and we indeed recover (86). This shows that (95) is a refinement of (86) valid for any i≪ N . It is more precise than
the previous formula when i is of order 1. In addition

1

Ai′(ai)Ai′(aj)

∫ +∞

0

dx
Ai(ai + x)Ai(aj + x)

x2
≃ 1√

−ai
√−aj

∫ +∞

0

dx
sin(

√
−ai x) sin(

√−aj x)
x2

(100)

≃ π

4

√
−ai +

√−aj − |
√
−ai −

√−aj |√
−ai

√−aj
, (101)

and thus for i ≤ j, (94) becomes

⟨δxiδxj⟩ ≃
π

2
√−aj

v20
λ2N2/3

(102)

and we indeed recover (86).

Correlation between the edge and the bulk. One may also want to consider the covariance between an
edge particle and a bulk particle (or between two particles at opposite edges). For this we can go back to the bulk
expression (64), in the limit (70). Although one particle is at the edge, using this expression does not lead to any
divergence and we obtain accurate results. One finds

⟨δxiδxj⟩ ≃
v20
λ2N

π − arccos
( xeq,j

2
√

g/λ

)
2

√
1−

( xeq,j

2
√

g/λ

)2 . (103)
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FIG. 10. Left: Variance of the position of the rightmost particle x1 as a function of N , for λ = 1, g = 1, v0 = 0.1 and γ = 0.01.
The simulation results are in good agreement with the approximate expression for large N given in (95) which scales as N−2/3.
Center: Same plot for the 10th particle x10. The result is in good agreement with both (95) and (86). Right: Difference
between the scaled variance of the gap between particles 1 and 2, computed by exact numerical inversion of the Hessian matrix,

and the predicted value Ig =
∫ +∞
0

dx
x2

[
Ai(a1+x)
Ai′(a1)

− Ai(a2+x)
Ai′(a2)

]2
≃ 0.345302... (see (96)), as a function of N . The approximation

error seems to decrease as N−2/3 at large N . Simulation results for γ = 0.01 are also plotted for moderate values of N .

Two cases of particular interest are the covariance between an edge particle and a particle at the center (xeq,j = 0),

for which ⟨δxiδxj⟩ ≃ v2
0

λ2N
π
4 , and the covariance between two particles at opposite edges, (obtained by taking the limit

xeq,j

2
√

g/λ
→ −1), which gives, for i and j = O(1),

⟨δxiδxN+1−j⟩ ≃
v20

2λ2N
. (104)

This also provides a lower bound for the covariance between two arbitrary particles in the system.
We have tested the prediction (95) for the variance of edge particles with numerical simulations, see Fig. 10 left

and middle panels. In addition we have also studied the correlations between the rightmost particle and the particle
xi both at the edge and in the bulk. This is shown in the right panel of Fig. 9. The edge prediction (94) is only
valid when both particles are in the bulk, and for very large values of N (due to the N−1/3 error) which explains the
discrepancy. The bulk prediction (103) on the other hand gives quite accurate results as soon as the particle i is far
enough from the edge.

VI. FINITE TIME CORRELATIONS FOR THE CALOGERO-MOSER MODEL

In this section, we extend the previous analysis to the study of time correlations in the CMmodel at low temperature,
i.e., T/(g̃

√
λ) ≪ N , see Fig. 2. The starting point of our analysis is the formula given in Eq. (50). Substituting the

explicit expression of the eigenvectors (ψk)i given in (52) into (50) one obtains

⟨δXi(t)δXj(t
′)⟩ = T

λN

N∑
k=1

e−k2λ|t−t′|

k2
uk(yi)uk(yj)∑N

l=1 uk(yl)
2

with uk(y) =
H

(k)
N (y)

H ′
N (y)

. (105)

We now analyse this formula in the large N limit, both in the bulk and at the edge.

Bulk. In the bulk, the extension of the derivation for equal-time correlations presented in Sec. IV is rather straight-
forward. It yields (keeping the same notation for the scaling function Cb for simplicity)

⟨δXi(t)δXj(t
′)⟩ ≃ T

λN2
Cb
(
λ1/4Xeq,i

2
√
g̃

,
λ1/4Xeq,j

2
√
g̃

, λ|t− t′|
)

with Cb(x, y, t̃) =
∞∑
k=1

e−k2 t̃

k2
Uk−1(x)Uk−1(y) . (106)

In particular, at large times, |t− t′| ≫ λ−1, one has (keeping only the term k = 1 in Eq. (106))

⟨δXi(t)δXj(t
′)⟩ ≃ T

λN2
e−λ|t−t′| , (107)
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where we have used U0(x) = 1. Interestingly, this large time behavior of correlations is independent of the position,
which indicates that it arises from a collective mode.

One can study the motion of the i-th particle. Let us recall that λH2 has N eigenvalues λk2, k = 1, . . . N . Hence
there are N relaxation times which are the inverses 1/(λk2). One has the exact formula

⟨(δXi(t)− δXi(0))
2⟩ = 2

T

λN2

N∑
k=1

(1− e−k2t)

k2
uk(yi)

2∑N
l=1 uk(yl)

2
. (108)

For t≪ 1/(λN2), i.e. for extremely short time, one can expand the exponential and one obtains

⟨(δXi(t)− δXi(0))
2⟩ ≃ 2

T

N
t , (109)

i.e., the single particle diffusion dominates. For larger times, t≫ 1/(λN2) one has, using (62)

⟨(δXi(t)− δXi(0))
2⟩ ≃ 2

T

λN2

+∞∑
k=1

(1− e−k2λt)

k2
sin2(kθi)

sin2 θi
, (110)

where θi = arccos
λ1/4Xeq,i

2
√
g̃

. If 1/(λN2) ≪ t ≪ 1/λ one can approximate the sum by an integral. Denoting p = k
√
λt

one obtains

⟨(δXi(t)− δXi(0))
2⟩ ≃ 2

T

λN2

√
λt

sin2 θi

∫ +∞

0

dp
1− e−p2

p2
sin2

(
p θi√
λt

)
. (111)

Since λt≪ 1 one can replace sin2
(

p θi√
λt

)
→ 1

2 and one obtains

⟨(δXi(t)− δXi(0))
2⟩ ≃ T

N2 sin2 θi

√
πt

λ
=

T

N2
(
1− (

λ1/4Xeq,i

2
√
g̃

)2
)√πt

λ
(112)

= π−3/2 T

g̃ρ̃2i

√
t , (113)

with ρ̃i = Nρeq(Xeq,i) and where ρeq(X) is the equilibrium density at the position of particle i, normalized to N , given

in the r.h.s. of Eq. (7). Thus in this time window the diffusion of the particle is anomalous, with δXi(t)−δXi(0) ∼ t1/4.
This behavior is similar to the anomalous diffusion of a tracer in single file diffusion problems, see [49, 50] and references
therein. The prefactor shows a 1/ρ2 behavior as a function of the density which is in agreement with the prediction
for non-crossing Brownian particles with sufficiently short range interactions at equilibrium, see [51]. This result is
in agreement with the fact that the interaction force in the CM model is short range, i.e. it decays faster than 1/x2,
(for longer range interactions the exponent is modified, see [52] for the Riesz gas and [51] for the DBM).

The anomalous diffusion holds until time t ∼ 1/λ, at which the displacement saturates at its asymptotic value
⟨(δXi(t)− δXi(0))

2⟩ ≃ 2⟨δX2
i ⟩ ∼ T/(λN2) given in Eq. (23). The crossover behavior between the t1/4 diffusion and

the saturation is described by the discrete sum in Eq. (110). Note that the approximations made in this section does
not allow us to obtain the crossover between the diffusive and anomalous t1/4 regime.

Edge. In the edge regime, using again the approximation (88) in Eq. (105) and performing the same computations
as in Sec. V leads to

⟨δXi(t)δXj(t
′)⟩ ≃ T

λN4/3

1

Ai′(ai)Ai′(aj)

∞∑
k=1

Ai(ai + kN−1/3)Ai(aj + kN−1/3)

k2
e−k2λ|t−t′| (114)

≃ T

λN5/3

1

Ai′(ai)Ai′(aj)

∫ +∞

0

dx
Ai(ai + x)Ai(aj + x)

x2
e−x2N2/3λ|t−t′| . (115)

Hence we see that it is natural to rescale the times by a scale O(N−2/3), which leads to the scaling form

⟨δXi(t)δXj(t
′)⟩ ≃ T

λN5/3
Ce(ai, aj , N2/3λ|t−t′|) , Ce(ai, aj , τ) =

1

Ai′(ai)Ai′(aj)

∫ +∞

0

dx
Ai(ai + x)Ai(aj + x)

x2
e−x2τ .

(116)
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Our results allow for a general discussion of the relaxation mechanisms and regimes. From (116) we see that, at the
edge, the typical time-scale of the correlations te is of order O(N−2/3), which is much smaller than its counterpart
in the bulk, which is of order O(1) – see Eq. (106). The relaxation time scale te = O(N−2/3) can be understood
by comparing the effect of free diffusion with the equilibrium fluctuations, i.e., DN te ∼ ⟨δX2

i ⟩ ∼ N−5/3, where
DN ∼ T/N is the single particle diffusion coefficient (see Eq. (2)). By contrast the relaxation in the bulk has a
collective nature, resulting in longer relaxation time scale of O(1). To test this picture let us compute the large time
asymptotics of the correlations at the edge. There are actually two regimes. The first regime corresponds to τ = O(1)
but large τ ≫ 1 (i.e. |t − t′| ≫ N−2/3λ−1). Then one can perform the change of variable u = x

√
τ and expand for

large τ . This yields, to leading order,

Ce(ai, aj , τ) ≃
τ→∞

1√
τ

∫ +∞

0

du e−u2

=
1

2

√
π

τ
, (117)

which is also independent of the positions, as in the bulk (105). This algebraic decay of the scaling function at the
edge is consistent with pure diffusion and is very different for the exponential tail found in the bulk (105). There is
however a second large time regime for τ ≫ N2/3 (i.e, |t − t′| = O(1) in N but |t − t′| ≫ λ−1). In that regime the
Riemann integral approximation in (116) breaks down (the integral becomes dominated by very small values of x)
and the sum in (114) is then dominated by the k = 1 term. This thus leads to the same large time exponential decay
as in the bulk (107). Once again one sees that the large time correlations are uniform in space, with no difference
between the edge and the bulk.

The variance of the displacement of a particle between time 0 and t can be computed in the same way. One has
with t = τ/(λN2/3),

⟨(δXi(t)− δXi(0))
2⟩ ≃ 2T

λN5/3

1

Ai′(ai)2

∫ +∞

0

dx
Ai(ai + x)2

x2
(1− e−x2τ ) . (118)

For τ ≪ 1 one can expand the exponential and one finds simply

⟨(δXi(t)− δXi(0))
2⟩ ≃ 2T

N
t (119)

where we used the identity
∫ +∞
0

dxAi(ai + x)2 = Ai′(ai)
2. Hence one recovers the single particle diffusion at small

time, as in the bulk [see Eq. (109)]. For large τ the variance of the displacement saturates and converges to its
asymptotic value ∼ T/(λN5/3) as ⟨(δXi(t) − δXi(0))

2⟩ ≃ 2⟨δX2
i ⟩ − T

λN5/3

√
π
τ , from (117). Thus the intermediate

regime with anomalous diffusion obtained in the bulk does not exist at the edge.
We have checked numerically some of the above predictions, see Fig. 11. The agreement is perfect in the bulk, see

the left panel. At the edge, one clearly sees the two regimes in time discussed above for N = 50 and N = 500, see
the middle and right panel.

Note that, contrary to the above sections, the results of this section are only valid for the CM model. Indeed, since
we have taken the limit γ → 0 it is not obvious how to treat the exact dynamics for the active DBM to obtain a
similar result.

VII. COMPARISON WITH THE (PASSIVE) DBM

Let us consider now the standard DBM, to which our method can also be applied. It is obtained by setting v0 = 0
in (1), which corresponds to parameters βDBM = 2g/T , and with a support at large N with edges at ±2

√
g/λ.

The fluctuations at low temperature at the edge have been studied before in [25]. There are also some results for
βDBM = 1, 2, 4, e.g. in Ref. [37]. We will compare our results to these works.

We start by noting that for the DBM the stationary correlations at low temperature T read (by the same calculation
as in (50))

⟨δxi(t)δxj(t′)⟩ =
T

λN

N∑
k=1

e−kλ|t−t′|

k

uk(yi)uk(yj)∑N
l=1 uk(yl)

2
with uk(y) =

H
(k)
N (y)

H ′
N (y)

, (120)

and in particular for equal time correlations one has

⟨δxiδxj⟩ =
T

λN
(H−1)ij , (H−1)ij =

N∑
k=1

1

k

uk(yi)uk(yj)∑N
l=1 uk(yl)

2
. (121)
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FIG. 11. Left: Time correlations of the position of the central particle in the CM model as a function of the time difference.
The results obtained by simulating the Langevin dynamics for N = 50 particles at T = 0.01 (λ = 1 and g = 1) are in excellent
agreement with the large N expression for the bulk (106). Center: Same plot for the rightmost particle. The simulation result
is in good agreement with the exact analytical formula (105) and the large time asymptotics (107), but the comparison with the

integral expression (116) would require larger values of N , and as discussed in the text is valid only for times of order N−2/3.
Right: Same plot (rightmost particle) for N = 500 in log-log scale. Here the exact analytical formula (105) is compared with

the integral expression (116) (valid for τ ≪ N2/3), the intermediate τ−1/2 regime (117) (valid for 1 ≪ τ ≪ N2/3, but which

is not very visible for this value of N), and the large time exponential decay (107) (valid for τ ≫ N2/3). The two relaxation
regimes at the edge discussed in the text are thus clearly visible.

Starting from this point we can perform the same large N approximations as before. The difference is that now the
series does not converge, and therefore we expect the approximation to be worse in this case. Indeed, we find that,
inside the bulk, the variance and covariance can be given by equivalents of the above formulas, namely

⟨δxi(t)δxj(t′)⟩ ≃
T

λN2
C̃b

(
xeq,i

2
√
g/λ

,
xeq,j

2
√
g/λ

, λ|t− t′|

)
with C̃b(x, y, t̃) =

+∞∑
k=1

e−kt̃

k
Uk−1(x)Uk−1(y) . (122)

This formula is valid for t̃ = O(1) in N and t̃ > 0. It is important to note that for equal time correlations, i.e. t̃ = 0,
the sum over k has a logarithmic divergence and the formula breaks down. It is possible to obtain an approximate
formula for t̃ = 0 and large N using the proper cutoff kmax = N . This leads to (see calculation in the Appendix G)

⟨δx2i ⟩ ≃
T

λN2

lnN

2(1− (
xeq,i

2
√

g/λ
)2)

+O(N−2) . (123)

To obtain the next term O(N−2) requires a priori to study the recursion (60) at large N in more details and goes
beyond the scope of this paper. Our prediction Eq. (123) can be compared with the result in [37]. In that paper
the stationary DBM for eigenvalues λi is considered. It is proved in theorem 5 of [37] that for βDBM = 1, 2, 4 the
distribution of the centered variable λi − yi converges to a Gaussian distribution at large N with

Varλi ≃
logN

2βN(1− y2
i

2N )
. (124)

If we take into account the connection with our notations, one has

xi = 2

√
g

λ

λi√
2N

, (125)

and one can check that (124) is identical to (123). This is remarkable since our result is a priori derived for βDBM ≫ 1,
as can be seen from the simple estimate of the dimensionless ratio (for n = O(1)) given in (D5). It is thus tempting
to conjecture that in the case of the DBM this formula (124) is valid for any β.

At the edge our method applied to the DBM gives the stationary two time correlations as

⟨δxi(t)δxj(t′)⟩ ≃
T

λN4/3
C̃e(ai, aj , N1/3λ|t− t′|) , C̃e(ai, aj , τ) =

1

Ai′(ai)Ai′(aj)

∫ +∞

0

dx
Ai(ai + x)Ai(aj + x)

x
e−xτ

(126)
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and in that case there is no problem to extend this formula to |t − t′| = 0. The equal-time correlations are thus
given by

⟨δxiδxj⟩ ≃
T

λN4/3
C̃e(ai, aj) , C̃e(ai, aj) =

1

Ai′(ai)Ai′(aj)

∫ +∞

0

dx
Ai(ai + x)Ai(aj + x)

x
. (127)

Our predictions (126) and (127) have the same form as the results obtained by different methods in Ref. [25], where
the non-stationary version of the DBM was studied.

It is interesting to note that the result (127) for the DBM can also be obtained by yet another completely different
method, using the stochastic Airy operator and perturbation theory, in an alternative form (I7). The derivation is
detailed in Appendix I.

Remark. Note also that Theorem 6 in [37] gives an estimate of the variance of the DBM for βDBM = 1, 2, 4 at the
edge, which behaves as

Varλi ≃
(

1

12π

)2/3
2 log i

βDBMi2/3N1/3
. (128)

This result can be recovered by taking the limit of large i in (127) with i = j. The computation is the same as in
Sec. V, except that one needs to add a cutoff at x = −ai corresponding to the exponential decay of the Airy function
for positive values, since the integral diverges otherwise. This gives (for 1 ≪ i≪ N)

⟨δx2i ⟩ ≃ T

λN4/3

1

Ai′(ai)2

∫ −ai

0

dx
Ai(ai + x)2

x
≃ T

λN4/3

1

−ai

∫ (−ai)
3/2

0

dx
sin2 x

x
(129)

≃ 3

4

T

λN4/3

ln(−ai)
−ai

≃
(

1

12π

)2/3
T

λN4/3

ln i

i2/3
(130)

which after a rescaling using (125) coincides with (128). Once again, it is tempting to conjecture the formula (128) is
valid for any βDBM.

VIII. CONCLUSION

In this paper we have studied in detail the active DBM model introduced by us in [14]. We have focused on
the regime of weak active noise and large persistence time. In that regime we have obtained the covariance of the
particle positions in the non-equilibrium stationary state to lowest order in v20/(gλ) and for γ → 0+, for arbitrary
N . This was achieved first by relating the small displacements (the active phonons) to the Hessian matrix, and in a
second stage using the exact spectrum of this matrix to obtain an exact expression for the covariance matrix of these
displacements in terms of Hermite polynomials. Using the large order asymptotics of these polynomials we were able
to show that in the large N limit these formulae for the covariance take nontrivial scaling forms which we obtained
explicitly. We found two distinct regimes. In the bulk of the “active crystal” we find that the covariance scales as
1/N and the scaling function involves polylogarithm functions. In addition, we obtained a formula for the variance
of the relative displacements between two particles of rank difference n ∼ N (i.e., separated by n − 1 particles). It
remains a challenge however to extend this formula for n = O(1), in particular to obtain the statistics of the gaps. At
the edge, the covariance of the positions is larger, i.e. it scales as N−2/3 and, the scaling function involves the Airy
function and its zeroes. In this case, we obtain a formula for the variance of the relative displacements which is valid
for any n = O(1).

These predictions are consistent with the existence of three regimes as a function of v20/(gλ), which are displayed
in Fig. 1, confirming the results in [14]. We have performed detailed numerical simulations to confirm our finite N
and large N predictions. In addition these simulations have allowed us to ascertain the range of parameters where
the weak active noise, and large persistence time is numerically accurate. In particular, although our results are valid
only for very small tumbling rates, the covariance appears to be a monotonously decreasing function of γ. Hence the
results of this paper provide upper bounds for the case of arbitrary tumbling rates. It would be interesting in the
future to understand better the effect of this parameter.

Interestingly we have unveiled a connection between the weak noise regime of the active DBM and the low tem-
perature regime of a priori unrelated equilibrium problem (i.e with passive noise), namely the overdamped dynamics
of the CM model. This connection allowed us to use our predictions for the active DBM to obtain directly the co-
variance matrix for the displacements in the CM model both at finite N and at large N . In particular, the bulk and
edge scaling functions are identical in both models. We have compared these analytical predictions with the results,
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mostly numerical, of Ref. [24], and found very good agreement even up to values of the inverse temperature parameter
β = O(1).
The above connection between the active DBM and the CM model in the weak noise regime was possible because

the covariance matrices of the displacements in both models is proportional to the same matrix H−2 where H is the
Hessian of the DBM. Since the exact diagonalization of this matrix is possible, the covariance could be obtained in
closed form. As an immediate extension, we also obtained the covariance for the passive DBM which is proportional
to H−1. This allowed us to recover by a different method the result of [25] for the passive DBM. Along similar lines,
an interesting extension of the present work would be to consider the active CM model, i.e. the CM model with
Brownian noise replaced by run-and-tumble noise. Indeed in that case the covariance matrix will be proportional to
H−4 and very similar formulae could be derived for the covariances at low temperature. Because of the resulting 1/k4

spectrum, we anticipate that this will lead to interesting so-called giant fluctuations in the number of particles in an
interval, see e.g. [53]. Such fluctuations are commonly observed in active systems, see e.g. [53], but are suppressed in
the case of the active DBM (1/k2 spectrum) because of the rigidity of the logarithmic interaction.

Acknowledgments. We thank Manas Kulkarni for stimulating discussions.
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Appendix A: Proof of (52)

For the sake of completeness we briefly recall the proof of the expression for the eigenvectors of the Hessian matrix
H given in [36], based on the residue theorem. The statement is that the matrix

Aij = Hij − δij = δij

∑
k ̸=i

1

(yi − yk)2

− (1− δij)
1

(yi − yj)2
(A1)

where the yi’s are the N roots of the Hermite polynomial HN (x) verifies

Aψk = (k − 1)ψk with (ψk)i =
H

(k)
N (yi)

H ′
N (yi)

(i = 1, . . . , N) (A2)

for k = 1, ..., N . For this we introduce the function

V
(k)
i (z) = (z − yi)

−2H
(k)
N (z)

HN (z)
, i = 1, . . . , N and k = 1, . . . , N. (A3)

This is a meromorphic function of z (with N − 1 simple poles at z = yj , j = 1, ..., i− 1, i+ 1, ..., N , and a triple pole
at z = yi) that vanishes at least as |z|−3 when |z| → +∞, therefore the sum of its residues vanishes. Computing the
residues yields:

Resyj
V

(k)
i = (yi − yj)

−2H
(k)
N (yj)

H ′
N (yj)

for j ̸= i (A4)

ResyiV
(k)
i =

−∑
j ̸=i

(yi − yj)
−2 + k − 1

 H(k)
N (yi)

H ′
N (yi)

(A5)

where we have used the differential equation satisfied by the Hermite polynomials (57) as well as the identity
∑

j ̸=i(yi−
yj)

−2 = 2
3 (N−1)− y2

i

3 (see [36]). Summing the residues and equating the sum to zero then yields the desired result (A2).
Finally, normalizing the eigenvectors and using the fact that H is symmetric, hence its eigenvectors are orthogonal,
we obtain the formula for H−2 given in (53).

Appendix B: Explicit formula for the correlations in the bulk

In this Appendix, we derive the following formula, for u and v in (0, π):

∞∑
k=1

sin(ku) sin(kv)

k2
=

1

2
(πmin(u, v)− uv) , (B1)

from which one obtains the formula (13) given in the text. Before providing the derivation of this relation, let us note
that it is related to the correlator of the standard Brownian bridge B(t), with B(1) = B(0) = 0, which reads

B(t)B(s) = min(s, t)− st . (B2)

Here one has u = πt, v = πs and
∑∞

k=1
sin(ku) sin(kv)

k2 = π2

2 B(t)B(s). To understand the connection, let us
recall that B(t) admits the Fourier decomposition B(t) =

∑
k≥1 bk sin(πkt), where the bk are independent cen-

tered Gaussian random variables of variance Var(bk) = 2/(π2k2) (which follows from the Brownian measure ∼
exp(−1/2

∫ 1

0
dx(dB(x)/dx)2) [54].

Note that one can write, with θx = arccosx

Cb(x, y) =
dθx
dx

dθy
dy

1

2
(πmin(θx, θy)− θxθy) (B3)

This formula is reminiscent of the ones obtained in [55] for the correlations of fermions in a quadratic well. Apart
from the two density factors, it is the analog of the formula (16) in [55], for the correlations of the Gaussian free field
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on a circle (with vanishing conditions at the boundary). Here this logarithmically correlated field is replaced by a
Brownian bridge, as discussed above (since 1/k there is replaced by 1/k2 here). Note also the resemblance with the
formula in Eq. (15) in [55] which likewise contains two density factors.

Let us first show for θ ∈ (0, 2π)

∞∑
k=1

sin(kθ)

k
= Im

( ∞∑
k=1

eikθ

k

)
= Im(− ln(1− eiθ)) = −Im

(
iθ

2
+ ln(−2i sin(

θ

2
))

)
= −1

2
(θ − π) . (B4)

There is a discontinuity at θ = 2nπ for any n ∈ Z (including θ = 0). In particular for θ ∈ (−2π, 0) one should replace
θ → θ + 2π, leading to

∞∑
k=1

sin(kθ)

k
= −1

2
(θ + π) . (B5)

Then, for u, v ∈ ([0, π), one has

∞∑
k=1

sin(ku) sin(kv)

k2
=

1

2

∞∑
k=1

cos(k(u− v))

k2
− 1

2

∞∑
k=1

cos(k(u+ v))

k2
. (B6)

We thus need to compute
∑∞

k=1
cos(kθ)

k2 for θ ∈ (−2π, 2π). But we know that

∂θ

∞∑
k=1

cos(kθ)

k2
= −

∞∑
k=1

sin(kθ)

k
=

{
1
2 (θ − π) for θ ∈ (0, 2π)
1
2 (θ + π) forθ ∈ (−2π, 0)

(B7)

Integrating over θ (the discontinuity at θ = 0 becomes a cusp) and using that the sum should be π2

6 for θ = 0 to fix
the integration constant, we obtain

∞∑
k=1

cos(kθ)

k2
=

|θ|
2

(
|θ|
2

− π

)
+
π2

6
. (B8)

Replacing θ by u± v, one finds for u, v ∈ (0, π)

∞∑
k=1

sin(ku) sin(kv)

k2
=

1

2

(
(u− v)2

4
− π

2
|u− v| − (u+ v)2

4
− π

2
(u+ v)

)
=

1

2
(πmin(u, v)− uv) . (B9)

which shows (B4).

Appendix C: Absence of particle crossings in the Calogero-Moser model

Consider the CM model for N = 2. The difference between the positions of the two particles y = x2 − x1 follows
the equation

ẏ(t) = −λy(t) + 4g̃2

y3
+
√
2Tξ(t) (C1)

where
√
2ξ(t) = ξ1(t) + ξ2(t), hence ξ(t) is Gaussian white noise with zero mean and variance 1. We set λ = 1 and

g̃ = 1. Discretizing time with a time-step ∆t we obtain:

yt+∆t = (1−∆t)yt +
4∆t

y3t
+

√
2T∆t ηt (C2)

where ηt is a Gaussian random variable with zero mean and unit variance. Let us assume that at time t y > 0. We
want to know the probability that at time t+∆t, y < 0, i.e. the two particles have crossed. This is given by:

P(yt+∆t < 0|yt > 0) = P

(
ηt < − (1−∆t)yt√

2T∆t
− 4∆t√

2T∆t y3t

)
= P (ηt > f∆t(yt)) =

1

2
erfc

(
f∆t(yt)√

2

)
(C3)

f∆t(yt) =
(1−∆t)yt√

2T∆t
+

4
√
∆t√

2T y3t
(C4)
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where we have used the parity of the distribution of ηt, and erfc(x) = 2√
π

∫ +∞
x

dte−t2 . Since f∆t(y) has a minimum

on (0,+∞), we can get an upper bound on the probability by simply minimizing f∆t(yt) over yt. This gives

y∗ =

(
12∆t

1−∆t

)1/4

⇒ min
y>0

f∆t(y) = f∆t(y
∗) =

4

33/4
(1−∆t)3/4√
T ∆t1/4

(C5)

Thus one has (reintroducing g̃ and λ)

P(yt+∆t < 0|yt > 0) ≤ 1

2
erfc

(
2
√
2

33/4

√
g̃

T

(1− λ∆t)3/4

∆t1/4

)
∼

∆t→0
C1

√
∆t e

− C2√
∆t (C6)

with C1 = 33/4

4
√
2π

√
T
g̃ and C2 = 8

33/2
g̃
T . Since the number of time steps during a fixed time interval only increases as

1/∆t, this proves that in the continuous time limit ∆t → 0 the particles cannot cross. For larger values of N , when
two particles become very close to each other the effect of the other particles can be neglected, and so the reasoning
above still holds. Finally note that, performing the same computation for the Dyson Brownian motion, one finds that
the minimum of f∆t(y) is independent of ∆t, and therefore one cannot conclude in this case. More generally, if one
takes an interaction force of the form sgn(xi − xj)|xi − xj |−α and an arbitrary external potential, one gets for small
enough ∆t

P(yt+∆t < 0|yt > 0) ≤ 1

2
erfc

(
K∆t

1
α+1−

1
2

)
(C7)

with K > 0, and therefore the probability of crossing goes to zero in the continuous time limit for any α > 1.

Appendix D: Approximate plane wave diagonalization approach

Another approach is to diagonalize H approximately for large N , as done e.g. in [26] (chap. 5.4) for the DBM, by
assuming the density to be uniform in the bulk, using plane waves, and computing the inverse of the Hessian (very
much as a calculation of displacements using phonons in a solid). This yields with ρ the mean density (normalized to
unity), i.e. ρ = 1/(Na) where a is typical interparticle distance

(H−2)ij ≃
1

N

1 + 2

N/2−1∑
k=1

cos
(

2πk|i−j|
N

)
(1 + 4π2gρ2k/λ)2

 . (D1)

Using this result as well as (74) and (10), and replacing the sum by an integral, one can first compute the variance of
the distance between two particles in the bulk

⟨(δxi − δxi+n)
2⟩ = 4v20

λ2N

N/2−1∑
k=1

1− cos
(

2πk|i−j|
N

)
(1 + 4π2gρ2k/λ)2

≃ v20
2π2g2ρ4N2

∫ π

0

dq

π

1− cos(nq)

q2
≃ v20n

4π2g2ρ4N2
(D2)

where ρ is the density both at xi and xi+n, which are assumed to be close (n≪ N). In the last step we have assumed
n ≫ 1. Comparing with the numerics one finds that it is indeed a good approximation at short distances, where it
coincides with the result of the main text (77). Note that the momentum integral in (D2) behaves as 1/q2 at small
q, at variance with the DBM where it is 1/q. Note that for this quantity the momentum integral is convergent since
the factor (1− cos qn) regularises it at small q. This results in deformations of the equilibrium crystal growing as

√
n

with the distance n, instead of logarithmically for the DBM. In both cases this can be related to the fluctuations of
the number of particles in an interval.

Another interesting quantity which usually measures the degree of translational order in a solid is the variance

⟨δx2i ⟩ =
v20
λ2

(H−2)ii ≃
v20
N

λ−2 + 2

N/2−1∑
k=1

1

(λ+ 4π2gρ2k)2

 ≃ v20
N2

∫ π

0

dq

π

1

(λN−1 + 2πgρ2q)2
≃ v20

2π2gλρ2N
(D3)

where as a first step we have approximated the sum by an integral, which would be valid for gρ2 ≪ λ (the more
realistic case gρ2/λ = O(1) is treated below). Here by contrast, for infinite N , the momentum integral is divergent at
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small q. This reflects the translational invariance of the system. This invariance however is broken by the quadratic
well which leads to an additional term λ/N in the denominator. That term regularizes the integral at small q, leading
to the above result. Although the scaling is correct, the amplitude turns out to be inaccurate when compared with
numerical simulations. The reason for this is that this observable is dominated by large scales and is very sensitive to
the details e.g. of the variations of the density (and of the confining potential) at large scale. As shown in the rest of
the paper it is possible to make a more accurate calculation which includes these effects.

However, in the bulk gρ2/λ = O(1) one needs to keep the sum in (D3). Extending this sum to N = +∞ we obtain

⟨δx2i ⟩ ≃
v20
N

(
1

λ2
+

1

8π4g2ρ4
ψ′(1 +

λ

4π2gρ2
)

)
(D4)

where ψ(z) is the digamma function. Note that indeed, for λ≫ gρ2 this formula matches the estimate (D3). However
this estimation, which is more accurate in the bulk, does not significantly improve the agreement with numerical
simulations.

Let us recall that for the DBM this computation gives [26] for n = O(1) ≫ 1

⟨(δxi − δxi+n)
2⟩

⟨xi − xi+n⟩2
≃ 2

βDBMπ2n2
log n (D5)

where in our notations βDBM = 2g/T .

Appendix E: Connection with the Plancherel-Rotach formula

An alternative way to obtain an approximate expression for uk(y) at large N , for k ≪ N , is to use the Plancherel-
Rotach formula (see e.g. [48])

HN+m(
√
2NX) =

(
2

π

)1/4
2m/2+N/2

(1−X2)1/4
Nm/2−1/4(N !)1/2eNX2

cos(ϕN (X)−m arccos(x))
(
1 +O(N−1)

)
(E1)

ϕN (X) = NX
√
1−X2 + (N +

1

2
) arcsin(X)−N

π

2
(E2)

Taking m = −k (or m = −1) and
√
2NX = yi, this leads to (using Stirling’s formula to write (N−1)!

(N−k)! ≃ Nk−1)

uk(yi) = 2k−1 (N − 1)!

(N − k)!

HN−k(yi)

HN−1(yi)
≃ (2N)

k−1
2

cos(ϕN ( yi√
2N

) + k arccos( yi√
2N

))

cos(ϕN ( yi√
2N

) + arccos( yi√
2N

))
(E3)

In addition, since HN (yi) = 0 we must have cos(ϕN ( yi√
2N

)) = 0, i.e. ϕN ( yi√
2N

) = (2p+ 1)π2 for some integer p. This

implies

uk(yi) ≃ (2N)
k−1
2

sin(k arccos( yi√
2N

))

sin(arccos( yi√
2N

))
= (2N)

k−1
2

sin(k arccos( yi√
2N

))√
1− y2

i

2N

(E4)

which is the same as (62).

Appendix F: Problems in the evaluation of the variance of the gaps

In this appendix we give an alternative derivation for the leading order of (79), i.e. the variance of interparticle
distance for two particles near x = 0. This gives a better understanding of why our approximation fails when n = O(1).
We start again from (75), but we do not extend the sum to +∞ for reasons that will become clear later. Since the
denominator only gives subleading corrections in ϵ we have, writing ψ = θ − ϵ (with ϵ = O(1/N))

Db,N (x, y) =

N∑
k=1

1

k2

[
sin(kθ)

sin θ
− sin(kψ)

sinψ

]2
≃ 1

sin2 θ

N∑
k=1

1

k2
[sin(kθ)− sin(kθ) cos(kϵ) + cos(kθ) sin(kϵ)]

2
(F1)
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Specialising to θ = π
2 (i.e. x = 0) this simplifies to

Db,N (x, y) ≃
⌊N/2⌋∑
k=0

(1− cos((2k + 1)ϵ))2

(2k + 1)2
+

⌊N/2⌋∑
k=1

sin2(2kϵ)

4k2
(F2)

We then use the fact that ϵ≪ 1 to approximate the sums by Riemann integrals. This gives

Db,N (x, y) ≃ |ϵ|
2

(∫ Nϵ

0

dx
(1− cosx)2

x2
+

∫ Nϵ

0

dx
sin2 x

x2

)
= |ϵ|

∫ Nϵ

0

dx
1− cosx

x2
(F3)

Since we look at particles around x = 0 we have ϵ = π
2

n
N , which finally gives

Db,N (x, y) ≃ π

2

n

N

∫ nπ
2

0

dx
1− cosx

x2
−−−−−→
n→+∞

π2

4

n

N
(F4)

And we get back (79) for n ≫ 1. For n = O(1) this result is not better than the one above, but it shows that, for
the computation of the gap variance for n = O(1), the sum is dominated by the terms with k of order N , and this
is why neglecting the k/N term gives very bad results in this case. Qualitatively, this is due to the fact that uk(y)
is a polynomial of order k − 1, and so its oscillations become bigger and bigger as k increases, so that the difference
uk(yi)−uk(yi+1) becomes larger and larger. It is not even sure that going to higher order in 1/N will give significantly
better results, in particular for n = 1. One probably needs to find a different method or to solve the recursion exactly.

Appendix G: Equal time correlations for the DBM

We give here some details on the equal time correlations for the position of bulk particles in the case of the DBM.
As mentioned in the text, taking t = t′ in (122) leads to a logarithmically diverging sum. Thus in this case we do not
extend the sum to infinity and we write instead

⟨δxiδxj⟩ ≃
T

λN2
C̃b,N

(
xeq,i

2
√
g/λ

,
xeq,j

2
√
g/λ

)
with C̃b,N (x, y) =

N∑
k=1

1

k
Uk−1(x)Uk−1(y) , (G1)

and for the variance

⟨δx2i ⟩ ≃
T

λN2
Ṽb,N

(
xeq,i

2
√
g/λ

)
with Ṽb,N (x) =

N∑
k=1

1

k
Uk−1(x)

2 =
1

1− x2

N∑
k=1

sin2(k arccosx)

k
. (G2)

Note that in this case the functions C̃b,N (x, y) and Ṽb,N (x) depend on N (they are of order lnN at large N). As can
be seen in Fig. 12, these results are still correct to leading order, but the leading relative error is now of order 1/N2

(i.e. logarithmic w.r.t. the leading order).
In the case of the variance, equation (G2) can be easily approximated to leading order, yielding the result (123)

mentioned in the text. Indeed, one has

∞∑
k=1

(sin2(kθ)− 1/2)

k
=

1

4
ln(4(sin2(θ)) (G3)

and thus

N∑
k=1

sin2(k arccosx)

k
=

1

2

N∑
k=1

1

k
+O(1) =

1

2
lnN +O(1) (G4)

which leads to

⟨δx2i ⟩ ≃
T

λN2

lnN

2(1− (
xeq,i

2
√

g/λ
)2)

+O(N−2) . (G5)
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FIG. 12. Difference between the scaled variance of the central particle in the DBM computed from the Hessian and the function

prediction Ṽb,N

(
yN/2√

2N

)
(blue) as well as with its approximation to order o(1) (red). The difference converges to a constant,

while the leading behaviour in each of the compared terms behaves as lnN .

Note that the presence of the O(N−2) correction can be understood, e.g. by assuming that neglecting the k/N
term in the recursion is a good approximation for k < αcN (0 < αc < 1) which leads to such a correction.

Remark: One can show that for any β and any N (see e.g. 6.18 in [26], see [56] for generalizations) the following
expectation value

⟨
∏
i

(z − xi)⟩ =
√

2g

λN
HN

(
z

√
λN

2g

)
(G6)

is independent of β. This implies that the expectation values of all the elementary symmetric polynomials,
⟨ep(x1, . . . , xN )⟩, are independent of β. This implies a series of identities for the moments of δxi = xi − xeqi
such as ∑

i

⟨δxi⟩ = 0 (G7)

2
∑
i ̸=j

xeqi ⟨δxj⟩+
∑
i ̸=j

⟨δxiδxj⟩ = 0 (G8)

Appendix H: Generating function for the recursion relation (58)

Let us start from the recurrence relation (60) for the rescaled series vk(ri) and write down the differential equation
satisfied by its generating function (in this section we drop the index i in ri and the ri dependence in v(ri))

GN (z) =

N∑
k=1

vkz
k . (H1)

Multiplying (60) by xk+2, summing over k for k = 1 to N and using v1 = 1, v2 = 2r and vN+1 = vN+2 = 0, we obtain

z3

N
∂zGN (z) + (2rz − z2 − 1)GN (z) + z = 0. (H2)

This differential equation can be solved exactly, yielding

GN (z) = NzNeN(−
1

2z2
+ 2r

z )
∫ 1/z

a

dt tNe
N

(
t2

2 −2rt
)

(H3)

with a some constant. Alternatively, we can compute an expansion of the solution in 1/N , vk = v0k + 1
N v

1
k + ...

Omitting the 1/N term leads to

GN (z) =
z

1 + z2 − 2rz
+O

(
1

N

)
(H4)
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from which we can get back the solution v0k(r) = Uk−1(r), starting from

G0
N (z) = z

∞∑
k=0

zk(2r − z)k = z

∞∑
k=0

zk
k∑

i=0

(
k

i

)
(−z)i(2r)k−i = z

∞∑
k=0

(2rz)k
k∑

i=0

(
k

i

)(
− z

2r

)i
(H5)

=

∞∑
k=0

zk+1

⌊n/2⌋∑
i=0

(−1)i
(
k − i

i

)
(2r)k−2i =

∞∑
k=0

zk+1Uk(r) (H6)

(see [44] for the last equality). Computing the derivative of (H4) and feeding back into (H2), we find

GN (z) =
z

1 + z2 − 2rz

(
1 +

z2

N

(1− z)(1 + 2r − z)

(1 + z2 − 2rz)2

)
+O

(
1

N2

)
(H7)

from which we get, using Cauchy products

G1
N (z) = z3(1− z)(1 + 2r − z)

( ∞∑
k=0

zkUk(r)

)3

(H8)

= z3(1 + 2r − 2(1 + r)z + z2)

∞∑
k=0

zk
∑

0≤i≤j≤k

Ui(r)Uj−i(r)Uk−j(r) (H9)

=

∞∑
k=3

zk[(1 + 2r)Sk−3(r)− 2(1 + r)Sk−4(r) + Sk−5(r)] (H10)

and thus

v1k(r) = (1 + 2r)Sk−3(r)− 2(1 + r)Sk−4(r) + Sk−5(r) , Sk(r) =
∑

0≤i≤j≤k

Ui(r)Uj−i(r)Uk−j(r) (H11)

with Sk(r) = 0 if k < 0. This result could in theory be used to compute 1/N corrections to (64) and (67).

Appendix I: Covariance at the edge for the (passive) Dyson Brownian motion from the stochastic Airy
operator: large β expansion

It is useful to reconsider the stationary measure of the DBM and study the fluctuations of the particle positions at
the edge of the gas, by the method of the stochastic Airy operator (SAO), see [57–59]. In a second stage one considers
the large β limit, which, in that framework, amounts to perform standard perturbation theory in quantum mechanics.

At the edge, the position of particle i, for i ≥ 1, can be rescaled as

xi =
xe
2
(2 + aiN

−2/3) (I1)

where xe is the position of the edge, here xe = 2
√
g/λ and in the limit of large N the ai form the Airy process with

Dyson parameter β = 2g/T . We now use the fact that the Airy process ai has the same statistics as ai = −ϵi where
the ϵi are the eigenvalues of the SAO defined as

HSAO = −∂2y + y +
2√
β
w(y) (I2)

for y > 0 and Dirichlet boundary conditions at y = 0. Here w(y) is a standard Gaussian white noise in y, i.e. with
correlations ⟨w(y)w(y′)⟩ = δ(y − y′). For β = +∞ the normalized eigenfunctions of HSAO are given by

ψi(x) =
Ai(x+ ai)

Ai′(ai)
(I3)

where the ai is the i-th zero of the Airy function. One can thus perform standard perturbation expansion to obtain,
to second order

−ai = ϵi = −ai +
2√
β

∫ +∞

0

dy

(
Ai(y + ai)

Ai′(ai)

)2

w(y) +
4

β

∑
k ̸=i

(
∫ +∞
0

dyAi(y + ai)Ai(y + ak)w(y))
2

Ai′(ai)2Ai′(ak)2(ak − ai)
+O(w3) (I4)
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Let us first obtain the covariances to lowest order in 1/β. For this one does not need the terms O(w2). One obtains

⟨xixj⟩c =
x2e
4
N−4/3⟨aiaj⟩c (I5)

and one has

⟨aiaj⟩c =
4

β

∫ +∞

0

dy

(
Ai(y + ai)

Ai′(ai)

)2(
Ai(y + aj)

Ai′(aj)

)2

(I6)

Hence we find, using xe = 2
√
g/λ and β = 2g/T

⟨xixj⟩c =
2T

λN4/3

∫ +∞

0

dy

(
Ai(y + ai)

Ai′(ai)

)2(
Ai(y + aj)

Ai′(aj)

)2

(I7)

If we compare with formula (127), i.e. ⟨xixj⟩c = T
λN4/3 C̃e(ai, aj) for the two formula to agree we need the following

identity, which we have checked numerically on some values of i and j using Mathematica

2

∫ +∞

0

dy

(
Ai(ai + y)

Ai′(ai)

)2(
Ai(aj + y)

Ai′(aj)

)2

=
1

Ai′(ai)Ai′(aj)

∫ +∞

0

dy
Ai(ai + y)Ai(aj + y)

y
(I8)

It would be interesting to prove this identity. The formula (I4) allows to compute easily the first correction to the
mean. One finds

⟨−ai⟩ = −ai +
4

β

∑
k ̸=i

∫ +∞
0

dyAi(y + ai)
2Ai(y + ak)

2

Ai′(ai)2Ai′(ak)2(ak − ai)
(I9)

Leading to

⟨δxi⟩ =
2xe
βN2/3

∑
k ̸=i

∫ +∞
0

dyAi(y + ai)
2Ai(y + ak)

2

Ai′(ai)2Ai′(ak)2(ai − ak)
(I10)

For i = 1 one finds ⟨δx1⟩ > 0. Hence the size of the gas increases as T increases (eventually at high T ∼ N the
support of the density extends to infinity [60]). Since a1 is distributed according to the β-Tracy Widom distribution
[57–59], the quantities ⟨δx1⟩ and ⟨δx21⟩c can be related to the mean and variance of that distribution.
Finally, to obtain the covariance to the next order O(T 2) one would need to push the perturbation theory to order

O(w3).

Appendix J: High temperature limit of the Calogero-Moser model

In this appendix we study, in a more general setting, the high temperature limit of the CM model (denoting here

xi and zi the variables X̃i and ζi used in the text). Consider the joint PDF

P (x1, . . . , xN ) = N ! p(x1) . . . p(xN )θ(x1 > x2 > ... > xN ) (J1)

where
∫ +∞
−∞ dx p(x) = 1. For p(x) = e−

x2

2√
2π

this corresponds to the joint distribution of the rescaled positions of

particles in the CM model in the large temperature limit. This PDF can be seen as drawing N i.i.d random variables
from the distribution p(x) and ordering them such that x1 > ... > xN . Then the marginal distribution of xi (for
i = 1, . . . , N) is given by (see e.g. [41])

qi(x) =
N !

(i− 1)!(N − i)!
p(x)

(∫ +∞

x

dy p(y)

)i−1(∫ x

−∞
dy p(y)

)N−i

. (J2)

Similarly, for 1 ≤ i < j ≤ N the two-point marginal is

qij(x, z) =
N !

(i− 1)!(j − i− 1)!(N − j)!
p(x)p(z)θ(z < x)

(∫ +∞

x

dy p(y)

)i−1(∫ x

z

dy p(y)

)j−i−1(∫ z

−∞
dy p(y)

)N−j

(J3)
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The cumulants of qi(x) can be obtained in the largeN limit, for i = O(N), by computing the large deviation generating
function

1

N
log⟨eNλxi⟩ ≃ max

x
(Gu(x) + λx)− ((1− u) log(1− u) + u log u) (J4)

Gu(x) = u logQ(x) + (1− u) log(1−Q(x)) , Q(x) =

∫ +∞

x

dy p(y) , u = i/N . (J5)

In the Gaussian case one has

Q(x) =
1

2
erfc

(
x√
2

)
(J6)

Let us define

ϕu(λ) = max
x

(Gu(x) + λx) = Gu(xλ) + λxλ , G′
u(xλ) = −λ . (J7)

One has

ϕ′u(λ) = xλ , ϕ′′u(λ) = − 1

G′′
u(xλ)

. (J8)

Let us denote x∗ = x0, which is given by the equation G′(x∗) = 0. We obtain

⟨xi⟩ = ϕ′u(0) = x∗ , x∗ = Q−1(u) , u = i/N (J9)

and for the second cumulant

N⟨x2i ⟩c = ϕ′′u(0) =
u(1− u)

[Q′(Q−1(u))]2
, u = i/N . (J10)

These results are in agreement with [38] (up to a factor 2π which seems to be missing there). The higher cumulants

are given by Np−1⟨xki ⟩c = ϕ
(p)
u (0), hence the marginal distribution of the rescaled position x̃i = N1/2(xi − ⟨xi⟩) of a

bulk particle is Gaussian at large N .
Similarly one can obtain the two-point covariance for two particles in the bulk separated by a distance of order N

by computing, for 1 ≤ i < j ≤ N , with i and j = O(N) and j − i = O(N),

1

N
ln eN(λixi+λjxj) = max

x,z|x>z
[Hu,v(x, z) + λix+ λjz]− cu,v (J11)

Hu,v(x, z) = u lnQ(x) + (v − u) ln(Q(z)−Q(x)) + (1− v) ln(1−Q(z)) (J12)

where u = i/N < v = j/N , and cu,v = u log u+ (v − u) log(v − u) + (1− v) log(1− v). We introduce

ψu,v(λi, λj) = max
x,z|x>z

[Hu,v(x, z) + λix+ λjz] = Hu,v(xλi,λj
, zλi,λj

) + λixλi,λj
+ λjzλi,λj

(J13)

∂xHu,v(xλi,λj
, zλi,λj

) = −λi , ∂zHu,v(xλi,λj
, zλi,λj

) = −λj (J14)

We find in particular

Q(x0,0) = u , Q(z0,0) = v (J15)

We will denote x∗ = x0,0 and z∗ = z0,0. One has

∂λi
ψu,v(λi, λj) = xλi,λj

, ∂λj
ψu,v(λi, λj) = zλi,λj

(J16)

from which one can show that

∂λi
∂λj

ψu,v(0, 0) = ∂λj
xλi,λj

∣∣∣
λi=0,λj=0

=
∂x∂zHu,v

∂2xHu,v∂2zHu,v − (∂x∂zHu,v)2

∣∣∣
x∗,z∗

=
u(1− v)

Q′(x∗)Q′(z∗)
(J17)

where to obtain the second equality one takes a derivative w.r.t. λj of both equations in (J14) and eliminate ∂λj
zλi,λj

.
Inserting the explicit form of Hu,v(x, z) given in (J12) we finally obtain

N⟨xixj⟩c =
u(1− v)

Q′(x∗)Q′(z∗)
, Q(x∗) = u =

i

N
, Q(z∗) = v =

j

N
(J18)
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which yields back (J10) when j − i≪ N .
We now focus on the right edge regime, i.e. i = O(1). In this regime one can apply standard results from extreme

value theory [39, 40]. We restrict ourselves to the Gaussian case p(x) = e−x2/2/
√
2π, which falls into the Gumbel

universality class. One has the standard result at large N

xj =
√
2 logN(1 +

zj + cN
2 logN

+ . . . ) , cN = − log(
√
4π logN) . (J19)

The general case for the Gumbel class is obtained simply from the change of variable NQ(x) ≃ e−z. The JPDF of
the k largest zj ’s, denoted here wk, is then universal and given by [39–41]

wk(z1, . . . , zk) = θ(zk < · · · < z1) e
−

∑k
j=1 zje−e−zk

(J20)

which is normalized to unity. The marginal of zk is then

qk(z) =
1

(k − 1)!
e−kz−e−z

. (J21)

Note that this JPDF can be rewritten as

wk(z1, . . . , zk) = θ(zk < · · · < z1)
k−1∏
ℓ=1

ℓe−ℓ(zℓ−zℓ+1) × 1

(k − 1)!
e−kzk−e−zk

. (J22)

Hence to generate the k largest points, one first chooses zk and then the successive gaps as independent exponentially
distributed variables, with distinct parameters. It is then easy to compute the generating function

⟨eλ1z1+···+λkzk⟩k =
Γ(k − λ1 − · · · − λk)

(1− λ1)(2− λ1 − λ2) . . . (k − 1− λ1 − · · · − λk−1)
(J23)

where ⟨. . . ⟩k denotes an average w.r.t. wk in (J22). From that formula all joint moments and cumulants can be
obtained. For instance one obtains that for j ≤ k

⟨eλzj ⟩k =
Γ(j − λ)

Γ(j)
(J24)

independently of k as required. The two-point generating function with j < k is then

⟨eλjzj+λkzk⟩k =
Γ(j − λj)

Γ(j)

Γ(k − λj − λk)

Γ(k − λj)
(J25)

from which the joint two point cumulants are obtained. For λj = −λk = λ one obtains

⟨zk⟩ = −ψ0(k) , ⟨z2k⟩c = ψ1(k) , (J26)

where ψ0(x) = Γ′(x)/Γ(x) and ψ1(x) = ψ′
0(x) are the digamma and trigamma functions respectively. The second

cumulants at distinct points are given, for j < k, by (see also [61])

⟨zjzk⟩c = ψ1(k) = ⟨z2k⟩c (J27)

which is compatible with zk and zj − zk being independent variables (see the remark above).
One can check that these results correctly match the results for the bulk at the boundary between the two regimes.

Indeed for k ≪ N the first cumulant in the bulk (J9) becomes

⟨xk⟩ = x∗k = Q−1

(
k

N

)
≃

√
2 lnN

(
1− ln

√
4π lnN + ln k

2 lnN

)
, (J28)

which matches the edge result (J26) for k ≫ 1 (using that at large k, ψ0(k) = ln(k) + O(1/k)). Using the same
asymptotic expression for x∗k, we get for the covariance in the bulk (J18) with k ≪ N and j ≪ N with j < k

⟨xjxk⟩c ≃
j/N

Q′(x∗k)Q
′(x∗j )

≃ 1

2k lnN
(J29)
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FIG. 13. Rescaled average (left) and variance (right) of the position of particle i as a function of i/N at high temperatures.
The dashed black lines show the infinite temperature predictions (27).

where we have used Q′(x∗k) ≃ k
N

√
2 logN . This expression (J29) is the same as the one obtained from the edge

expression (J27) in the limit k ≫ 1 (using the fact that at large k ψ1(k) ≃ 1/k).
Finally the distribution ρk(d) of the gap between two successive particles d = dk = xk − xk+1 in the large N limit

can be obtained (see e.g. [38]). In the bulk region one has

ρk(d) ≃ NQ′(x∗k) e
−NQ′(x∗

k)d (J30)

which is a universal result valid for any p(x), while near the edge one has for the Gaussian case (using the expression
of Q′(x∗k) given below (J29), see also [41])

ρk(d) ≃ k
√
2 lnN e−k

√
2 lnNd . (J31)

One can again check that the two expressions (J30) and (J31) match for 1 ≪ k ≪ N .

The results are compatible with simulations (see Fig. 13, where we used u =
i− 1

2

N for symmetry since i = 1, ..., N)
and with an existing result for the variance of the central particle (see [62]).
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