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We report the observation of the melting of a vortex lattice in a fast rotating quasi-two dimensional
Bose gas, under the influence of thermal fluctuations. We image the vortex lattice after a time-of-
flight expansion, for increasing rotation frequency at constant atom number and temperature. We
detect the vortex positions and study the order of the lattice using the pair correlation function and
the orientational correlation function. We evidence the melting transition by an abrupt change in
the decay of orientational correlations, associated to a proliferation of dislocations. Our findings are
consistent with the hexatic to liquid transition in the KTHNY scenario for two-dimensional melting.

The dimensionality in which a quantum system evolves
can play a crucial role for its properties, increasing the
role of fluctuations and challenging the establishment of
coherence [1]. While true long-range ordered crystals ex-
ist in three dimensions, the Mermin-Wagner-Hohenberg
theorem prevents the existence of long-range order in one
or two dimensions [2, 3]. However, for a sufficiently low
temperature, a quasi-long range order is expected and a
two-stage scenario for the melting of a two-dimensional
(2D) crystal has been proposed by Kosterlitz, Thouless,
Halperin, Nelson and Young [4–6] (KTHNY), involving
the thermal activation and unbinding of lattice defects.
This melting scenario of crystals in two dimensions has
attracted a lot of attention for classical as well as for
quantum systems.

The nature of the transition depends on the interac-
tion potential, and there has been an extensive numeri-
cal [7–11] and experimental [12–26] activity to define the
validity of this theory. Experiments are based mostly on
a large number of small particles such as colloidal solu-
tions [12–19], and air-fluidized dust or spheres [20, 21].
Whereas these systems are made of classical objects, the
melting of crystals according to the KTHNY scenario has
also been observed in the case of quantum vortex lat-
tices in thin superconductors [22–25] and for a lattice of
skyrmions [26]. A fast rotating superfluid also exhibits
a large number of quantized vortices that arrange in a
triangular lattice, as observed in superfluid helium [27]
and in dilute Bose-Einstein condensates (BEC) [28–30].

The specific case of vortex lattice melting in a rotat-
ing BEC confined in a rotationally invariant harmonic
trap has been discussed by Gifford and Baym [31] on
the basis of the KTHNY scenario. They give an eval-
uation of a melting temperature Tm, at fixed rotation
frequency Ω and for a given trap geometry. Interest-
ingly, the estimated melting temperature depends on the
trap anisotropy ωr/ωz, the ratio between the radial and
longitudinal trapping frequencies. For cigar-shaped traps
where ωr > ωz, as is the case in Ref. [28–30], the melting
temperature is close to the condensation temperature,
such that samples with a large superfluid fraction always
belong to the crystalline phase. This is favorable for the

FIG. 1. (color online) a) Integrated time-of-flight density pro-
file of a quasi-two-dimensional rotating Bose gas with vortices,
b) automatic detection of the vortex cores and Delaunay tri-
angulation and c) distribution of the vortex pair distances
P exp
v . In a) and b) the dashed circle indicates the Thomas-

Fermi radius RTF and the horizontal line is a 40 µm reference
scale. In b) the blue disks, magenta diamonds and red squares
indicate lattice sites with 6, 5 and 7 neighbors, respectively.
In c) the red dashed line is a Gaussian fit to the first peak.
The dashed-dotted yellow curve is the prediction Pv for a uni-
form continuous vortex distribution. See text for details.

observation of low energy excitations such as Tkachenko
modes [32], while making the observation of the transi-
tion to a vortex liquid phase challenging [31]. On the
other hand, Tm is expected to be significantly smaller
than the superfluid critical temperature for oblate gases
with ωr < ωz, giving room for the observation of the
melting transition of the vortex lattice deeply in the su-
perfluid phase. Vortex lattices in quasi-2D Bose gases are
thus particularly appealing for the study of the KTHNY
scenario of thermal melting.

In this Letter, we present the first observation of the
thermal melting of a vortex lattice in a rotating quasi-
2D superfluid Bose gas. For experimental convenience,
the parameter tuned to induce the melting is not the gas



2

temperature T but instead its rotation rate Ω at fixed
temperature. From the density distribution of the su-
perfluid imaged after a time-of-flight expansion, we re-
construct the positions of the vortices and identify their
nearest neighbors as shown in Fig. 1a) and b). We char-
acterize the vortex lattice translational order with the
pair correlation function g(r) and its orientational order
with the orientational correlation function G6(r) defined
below. We show that both functions display an evolu-
tion of their features with increasing Ω that evidences a
transition from a hexatic to a liquid phase. We compare
the transition threshold to the predictions of Gifford and
Baym [31]. We also show that the loss of orientational
order and the probability of finding lattice defects display
a threshold with Ω consistent with the KTHNY scenario.

In the KTHNY scenario, two threshold temperatures
T1 < T2 are involved. Below T1, the lattice exhibits a
quasi-long range order, with possible defects consisting
in bound pairs of dislocations. Dislocations are compos-
ite defects made of two adjacent sites with 5 and 7 nearest
neighbours. The temperature Tm estimated in Ref. [31]
corresponds to an upper bound for T1. Above T1, ther-
mal fluctuations activate the unbinding of the disloca-
tion pairs. The proliferation of free dislocations leads
to the loss of the quasi-long range translational order,
while maintaining a quasi-long range orientational order,
defining the hexatic phase [33]. Then, above the second
threshold T2, dislocations turn into free 5-fold and 7-fold
defects, which destroys the orientational order, and the
system enters the liquid phase.

The orientational order is characterized by the orien-
tational correlation function G6(r). It is defined from
the orientation order parameter, given for each vortex k

at position rk by: Ψ
(6)
k =

(∑Nk

j=1 e
6iθkj

)
/Nk, where the

sum runs over the Nk first neighbors and θkj is the angle
between a fixed axis and the bond linking the sites k and
j. The orientational correlation function is then

G6(r) = ⟨Ψ(6)∗
k Ψ(6)

p ⟩|rk−rp|∼r
(1)

where the average is taken over all pairs of vortices split
by a distance between r − δr/2 and r + δr/2 [34]. The
KTHNY theory predicts a transition from an algebraic
to an exponential decay of |G6(r)| at the transition from
the hexatic to the liquid phase.

To explore this transition for quantized vortices in a
superfluid, we prepare vortex lattices in rotating quasi-
2D Bose gases. The experimental setup is described
in [35]. Briefly, we use the radio-frequency (rf) dressed
adiabatic potentials technique [36, 37] to create an ellip-
soidal shell trap, rotationally invariant around the ver-
tical axis. In the presence of gravity, atoms gather at
the bottom of this shell, resulting in an oblate trap, well
described by a vertical harmonic potential of frequency
ωz = 2π× 360Hz and a radial potential of harmonic fre-
quency ωr = 2π×34Hz with a small quartic anharmonic-

ity [38]. We load this trap with a degenerate Bose gas of
approximately 2.5× 105 87Rb atoms. The vortex lattice
is obtained after rotating an elliptical deformation of the
trap for a fixed time, after which the gas relaxes into the
initial rotationally invariant trap [35]. The final effective
rotation rate Ω of the superfluid is tuned by adjusting
both the rotating rate and the ellipticity of the defor-
mation. The density profile integrated along the vertical
axis is recorded after a time-of-flight expansion with a
standard absorption imaging scheme. Figure 1a) shows
a typical image of a quasi-2D rotating Bose gas released
with a visible vortex lattice. We calibrate the rotation
rate Ω from a comparison of the measured Thomas-Fermi
radius RTF with a numerical simulation [38].

We repeat the experiment for various values of the stir-
ring frequency and trap anisotropy, corresponding to ef-
fective rotation frequencies Ω/ωr in the range (0.5, 1).
Reaching Ω ∼ ωr is made possible by the small radial
quartic anharmonicity [30, 35]. The final temperature
remains fixed at T = 18nK, imposed by a rf knife, and
we post select the realizations with a total atom number
N = 105 ± 10%. From the known trap geometry [38]
we estimate the quasi-2D critical temperature for the su-
perfluid transition TBKT(N,Ω) with a semi-classical ap-
proach [39] and label each realization of the experiment
by τ = T/TBKT(N,Ω). For all experiments reported
here, τ < 0.3 and the gas is deeply in the superfluid
phase, with a negligible thermal fraction.

The position of the vortex centers is detected automat-
ically from the density profile with a method adapted
from Ref. [40]: we first apply a Gaussian filtering to re-
move imaging noise, then compute the Laplacian of the
image and find all local maxima, corresponding to dips
in the initial density profile [38]. Fig. 1b) shows the re-
sult of the vortex detection algorithm. Once the vortices
are identified, we perform a Delaunay triangulation to
define the elementary cells of the lattice. We may then
label each vortex by its number of neighbors in the lat-
tice, to identify the defects. Because of the low signal to
noise ratio near the edge of the cloud we only consider
the vortices in a disk of radius R = 0.9×RTF.

To characterize qualitatively the order of the lattice
we first study the histogram of vortex pair distances, the
number P exp

v (r) of pairs of vortices split by a distance be-
tween r−δr/2 and r+δr/2 [34], which displays peaks cor-
responding to long range order in the lattice, see Fig. 1c).
By fitting the position of the first peak with a Gaussian
we extract the mean next-neighbor distance a that we
convert into a mean vortex density nv = 2/(

√
3a2). The

peaks sit on a background well captured by the dashed-
dotted yellow line, related to the finite size of the cloud.
This background, which spreads between 0 and 2R, cor-
responds to a similar histogram of pair distances, com-
puted in a disk of radius R for a continuous uniform
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FIG. 2. (color online) Pair correlation function g(r) evidenc-
ing a loss of order for increasing rotation frequency Ω/ωr =
{0.70, 0.75, 0.80, 0.85, 0.875, 0.90, 0.925, 0.95, 0.975, 1.0}, from
bottom to top. The black dashed curves show the fit of the
decaying oscillations. Each curve is shifted vertically by 1
for clarity, with the reduced temperature τ indicated on the
right-hand side.

vortex density nv [38]:

Pv(r) = 2πn2vR
2r δr

(
arccos

[ r
2R

]
− r

2R

√
1− r2

4R2

)
.

(2)

Figure 2 shows the evolution of the pair correlation
function g(r) = P exp

v /Pv, computed as the ratio between
the experimental histogram P exp

v (r) and the analytical
formula Pv(r) of Eq. (2), for increasing Ω [41]. The
curves are obtained by averaging at least three experi-
mental realizations, corresponding to the same rotation
frequency within ±1.25%. The data evidence several fea-
tures of a generic solid to liquid transition: at low effec-
tive temperature τ , g(r) displays oscillations characteris-
tic of long range order in the sample, while the amplitude
of the first peak decreases and the oscillations disappear
as τ increases. We fit the decay of the oscillations by
fg(r) = 1 +Ag cos [kr + δ]e−r/ℓg to extract a correlation
length ℓg [9], reflecting the translational order.

We now investigate the orientational order and com-
pute the orientational correlation functionG6(r), Eq. (1),
for each experimental realization. The nearest neighbors
are deduced from the Delaunay triangulation, as shown
in Fig. 1b). Figure 3a) displays the orientational corre-
lation function |G6(r)|, as a function of the vortex pair
distance for increasing rotation frequencies, evidencing
that the decay occurs on a shorter length scale as Ω in-
creases. We fit the decaying envelope by an exponential
model fe(r) = AG e

−r/ℓG + B and extract a correlation
length ℓG.
Figure 3b) compares the two correlation lengths ℓg and

ℓG as we increase the rotation frequency. We find that
ℓg is always significantly smaller than the typical system
size, given by the Thomas-Fermi radius and therefore
there is no long range translational order in our samples.
On the contrary, ℓG is of the order of RTF at low ro-
tation frequency, Ω ≤ 0.8 × ωr, and drops significantly
for Ω > 0.875 × ωr. This shows that at low rotation
frequency the orientational order extends on the size of
the system while translational order is already lost. This
is a signature that the vortex lattice is in the hexatic
phase and enters the liquid phase at higher rotation fre-
quency. From our measurements we identify a reduced
melting temperature of τm = 0.16± 0.01 (corresponding
to Ωm/ωr = 0.84 ± 0.04), significantly smaller than the
value τ ≃ 0.5 predicted by Gifford and Baym [31, 38].

Discussion One remarkable feature of Fig. 2 is that
the position of the first neighbor peak seems to be inde-
pendent of the rotation frequency Ω, leading to an ap-
parent constant vortex density nv. Using classical field
simulations [42] we have checked that this is a conse-
quence of the finite time-of-flight expansion [38]: the in
situ vortex density is equal to MΩ/(πℏ), as expected.
While a fast rotating quasi-2D Bose gas, in a potential

virtually free of any defects that could act as a pinning
potential for the lattice, offers an ideal platform to study
the KTHNY scenario, the main limitation of this system
comes from finite size effects: our data do not clearly
show a transition from an algebraic to an exponential
decay [38]; and the circular boundary of the condensate
itself induces defects in the lattice. As the density de-
creases with the radial coordinate, one can also expect
that the melting occurs first at the edge of the lattice,
possibly smearing out the transition.

In order to quantify the impact of finite size effects we
have studied the distribution of defects in the vortex lat-
tice, within a radius of R = 0.7×RTF, thus avoiding the
low density region at the edge of the cloud. Fig. 4a) and
b) show two typical lattices below and above the hexatic
to liquid phase melting transition. Fig. 4c) displays the
probability for a site to have a given number of neighbors
as a function of the rotation frequency. For Ω/ωr < 0.7
we find that a significant fraction of sites have less than
5 or more than 7 neighbors. We attribute this to the
frustration of small lattices by the circular boundary.

We also observe that the probability of finding sites
with 5 neighbors is almost constant and close to 20%.
We explain this by vortex detection errors when the algo-
rithm artificially counts a single vortex twice with nearby
positions. It is easy to check that it creates fictitious
pairs of 5-5 defects in a regular hexagonal lattice for in-
stance. However the continuous increase of the proba-
bility of finding sites with 7 neighbors is associated to
the proliferation of 5-7 dislocations, either bound or un-
bound, and to a significant decrease of the number of
sites with 6 neighbors for Ω > Ωm. This observation also
supports a melting according to the KTHNY scenario.
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FIG. 3. (color online) a) Decay of the orientational correlations |G6(r)| with increasing rotation frequency, for the same values
as in Fig. 2. Each curve is shifted vertically by 0.25 for clarity. The black dashed curves are fits by an exponential decaying
envelope. b) Correlation lengths ℓG and ℓg extracted from the fitted exponential decaying envelope of |G6(r)| (red open squares)
and g(r) (blue open circles), respectively, as a function of the rotation frequency (bottom axis) or reduced temperature (top
axis, notice the nonlinear scale). The solid lines connecting the points are guides to the eye. The light blue and red shaded
area indicate the uncertainty on the values extracted from the fit. The dashed magenta line shows the Thomas-Fermi radius
for each rotation frequency, which gives the system size. The shaded grey region indicates the crossover between the hexatic
and liquid phases. See text for details.
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FIG. 4. (color online) a) Vortex lattice for Ω/ωr = 0.76, b)
vortex lattice for Ω/ωr = 0.9. Blue disks, magenta diamonds
and red squares indicate lattice sites with 6, 5 and 7 neigh-
bors, respectively. The short horizontal black line gives a
40 µm reference scale. c) Probability to find a vortex with Nv

neighbors, as a function of the rotation frequency: blue cir-
cles Nv = 6, magenta diamonds Nv = 5, red squares Nv = 7
and black triangles all other values. The thick dashed vertical
black line indicates Ωm ≃ 0.84 × ωr. The light grey shaded
area indicates rotation frequencies below which finite size ef-
fects are dominant. See text for details.

Finally we emphasize that we observe the melting of
the lattice at a temperature significantly lower than the
upper bound given by the theoretical prediction [31].

Several factors may explain this discrepancy: firstly, the
system is not strictly 2D and the models should include
quasi-2D corrections, accounting for particles in the first
few vertical excited states; secondly, the density is in-
homogeneous such that we rely on local density approx-
imation to compare to the KTHNY predictions; then,
the vortex lattices have a finite extension and the melt-
ing scenario can be affected by the boundaries; finally,
the vortex lattice order may be altered by the time-of-
flight expansion. The first two effects are usually well
controlled in dilute atomic superfluids and should not
change significantly the theoretical predictions. To study
finite size effects it would be relevant to repeat the exper-
iment with larger lattices or at fixed rotation frequency
by changing the temperature, which is challenging in our
system. Instead, an option would be to investigate the
finite-size effects on the melting transition using intensive
classical field simulations. Finally, preliminary classical
field simulations suggest that the lattice deformation dur-
ing expansion is weak [38]. A direct way to eliminate
this effect would be to implement in situ vortex imaging
schemes [43], with a large field of view.

Conclusion We have evidenced the thermal melting
of a vortex lattice in a quasi-two-dimensional fast rotat-
ing Bose gas, characterized in terms of the pair corre-
lation function g(r) and of the orientational correlation
function G6(r). We have identified for the first time
the hexatic and liquid phases in superfluid vortex lat-
tices. We observe a transition from a slow to a fast decay
of G6(r) as we cross the melting point, associated with
a proliferation of dislocations above the melting point.
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This work paves the way for the study of thermal melt-
ing in the Ω ∼ ωr limit, where a description in terms of
lowest Landau levels becomes relevant. Decreasing the
atom number and the temperature would make possible
to investigate how the overlap between vortex cores af-
fects the KTHNY scenario.
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Supplementary Material

Experimental details

We prepare a degenerate Bose gas of rubidium 87
atoms in a shell-shaped dressed quadrupole trap [35, 44].
The horizontal quadrupole trap gradient in units of fre-
quency is α = 2π×3.93 kHz/µm, the rf dressing frequency
ω = 2π × 300 kHz and the rf coupling Ω0 = 2π × 49 kHz.
The cloud sits at the bottom of the shell and is highly
oblate, with oscillation frequencies in the harmonic limit
ωr = 2π × 34Hz and ωz = 2π × 360Hz. The rf field is
generated by three centimeter-scale coils with orthogonal
axes, fed by a multiple-output custom DDS source and
the polarization is optimized to be as close as possible to
circular with respect to the z axis. This ensures that the
trap is rotationally invariant. A fourth output of the rf
source is used to generate another rf field of initial fre-
quency ωkn = 2π × 80 kHz, that we use as an rf-knife to
control the temperature.

To set the atomic cloud into rotation we use the follow-
ing procedure. We first change slightly the rf polarization
to introduce a small in-plane anisotropy: ωx = ωr

√
1 + ϵ

and ωy = ωr

√
1− ϵ with ϵ ∈ (0.04, 0.2), then rotate

its axis at a frequency Ωstir for 10 full revolutions with
Ωstir ∈ (0.59, 0.88) × ωr, wait for 1 s, lower the rf-knife
to ωkn = 2π × 60 kHz in 1 s and wait for 8 s. The effec-
tive rotation frequency Ω of the atomic cloud is deduced
from the analysis of the density profile, see below, and is
determined by the interplay of the excitation procedure
and a spin-up evaporation due to the rf-knife [35]. We
obtain a similar atom number N = 105, within 10%, for
various final effective rotation frequencies Ω.

In the rotating frame the atoms tend to explore a larger
fraction of the rf-dressed shell trap. For the rotation fre-
quencies considered in this work we can model the trap
potential as a harmonic oscillator with a quartic correc-
tion in the horizontal plane [35]:

V (r, z) =
Mω2

rr
2

2

(
1 + κ

r2

a2r

)
+
Mω2

zz
2

2
, (3)

where κ ≃ 1.5 × 10−4 and ar =
√

ℏ/Mωr. The effec-
tive potential in the presence of rotation is modified by
the centrifugal potential, VΩ(r, z) = V (r, z)−MΩ2r2/2.
The equilibrium properties of a superfluid in this type of
potential are well known [45].

Finally we image the rotating gas after a 27ms time-
of-flight expansion, following an abrupt switch off of
the quadrupole coils currents and rf fields. Just before
the switch-off the rf dressing frequency ω is ramped to
ω′/(2π) = 340 kHz in 300 µs to transfer the atomic cloud
from the dressed state m′

F = 1 to the bare spin state
mF = −1 to avoid spin separation during the time-
of-flight expansion that would blur the vortex lattice.

O

R

r′

r
α

FIG. S1. (color online) Simple sketch to illustrate the problem
of counting how many vortex pairs are to be found within
a given distance of each other. Assuming a uniform vortex
density over a disk it is equivalent to finding the length of the
magenta arc, see text for details.

The cloud is imaged with a standard absorption imag-
ing scheme, with a magnification of 7.73 and a resolution
of σ = 4µm, resulting in a time-of-flight density pro-
file integrated along the rotation axis, with usually many
visible vortices. The expansion is essential to magnify
the vortex core size and make it visible given the optical
resolution.

Uniform vortex distribution

Here we derive Eq. (2) of the main text. We want to
compute the number of pairs split by a distance r±δr/2,
assuming a uniform continuous density nv in a disk of
radius R. Considering a point at a distance r′ from the
center, the number of points inside the disk at a distance
r is given by nv × r δr× 2α, where the angle α is defined
on the sketch of Fig. S1. This angle, between 0 and π, is
uniquely defined by the relations:

cosα =
r2 + r′2 −R2

2rr′
for r′ > |R− r|,

α = 0 for r′ < r −R, with R < r,
α = π for r′ < R− r, with R > r.

Finally we have to average over all initial values for r′

inside the disk:

Pv = 2πnv

∫ R

0

r′dr′ nv r δr × 2α,

which gives the result of Eq. (2) after straightforward
integration.

Estimation of the melting temperature

In Ref. [31] the melting criterion for a quasi two-
dimensional superfluid is given as:

Tm
TBKT

=
1

4π
√
3

ns(Tm)

ns(TBKT)
.
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This relation can be written in terms of superfluid phase-
space densities: Ds(Tm) = 4π

√
3Ds(TBKT). Using the

known value for the superfluid jump at the transition
Ds(TBKT) = 4 [33], we arrive at Ds(Tm) ≃ 87. Eval-
uating precisely the superfluid phase-space density for a
quasi two-dimensional quantum gas is not simple [46–48],
however we may obtain an upper bound by using a zero-
temperature Thomas-Fermi model as an ansatz for the
density. Using a two-dimensional model for a harmonic
plus quartic potential [45] we write:

ρ(r) = ρ0

(
1− r2

R2
+

)(
1− r2

R2
−

)
,

where ρ0 = µ×M/(ℏ2g̃) and

R2
± =

a2r
2κ

Ω2

ω2
r

− 1±

√(
Ω2

ω2
r

− 1

)2

+
8κµ

ℏωr

 .
Here, µ is the chemical potential and g̃ =

√
8πas/az the

dimensionless two-dimensional interaction constant [1],
as the scattering length and az =

√
ℏ/(Mωz the size of

the vertical harmonic ground state. We consider only
the case Ω < ωr such that R2

− < 0 while R2
+ > 0 always

holds. The normalization N = 2π
∫ R+

0
rdr ρ(r) fixes the

chemical potential µ which in turns gives the peak density
ρ0. We finally obtain Tm ≤ 2πℏ2ρ0/[MkBDs(Tm)], from
which we evaluate Tm numerically.

We may also compare this value with a simpler model
based on a two-dimensional harmonic trap, for which an-
alytical formulas for a Bose-Einstein condensate (BEC)
exist. In this case the Thomas-Fermi chemical potential
is given by µ = ℏωr[

√
8/π ×N0as/az × (1−Ω2/ω2

r)]
1/2,

where N0 is the condensed atom number. The phase-
space density then reads:

Ds = 2π
T 0
c

T

√
πfc
6g̃

where fc = N0/N is the condensed fraction and T 0
c =

ℏωr/(πkB)× [6N(1− Ω2/ω2
r)]

1/2 is the two-dimensional
ideal gas BEC critical temperature. Evaluating the
phase-space density at the melting temperature gives:
Tm ≃ 0.24T 0

c , where we have taken into account the
small correction coming from the condensed fraction:
fc(Tm) = 1− (Tm/T

0
c )

2, for a 2D harmonic trap.
Figure S2 shows the values of the critical and melt-

ing temperatures estimated using the different models
discussed above, for our experimental parameters. Con-
cerning the melting temperature, there is an excellent
agreement between the numerical estimation using the
full semi-classical BKT model [39], including the quartic
correction, and the simple analytical formula for the 2D
harmonic oscillator model. For this quantity, the effect
of the quartic correction is important only for rotation

� �✁✂ �✁✄ �✁☎ �✁✆ ✝

�

✝��

✂��

✞��

✄��

✟��

✠✡☛☞☛✌✡✍ ✎✏✑✒✓✑✍✔✕ ✖✗✘✙✚✛

✜
✢
✣
✤
✢
✥✦
✧★
✥✢
✩✪
✫
✬

✭✮✯✰✱✲✳✴ ✵✶

✭✮✯✰✱✲✳✴ ✷✸✹✺ ✻✹✮✯✼✳✴ ✻✵✶ ✽✾✿❀❁

✭✮✯✰✱✲✳✴ ❂✶
❃❄✸✼✳✲❅

FIG. S2. (color online) Estimation of the critical temper-
atures for superfluidity with N = 105 atoms according to
different models: the semi-classical BKT quasi-2D model for
a harmonic plus quartic trap (solid blue curve), a 2D ideal
gas in a harmonic trap (dashed red curve) and a 3D ideal
gas in a harmonic trap (dotted yellow curve). The two solid
and dashed curves labelled as ‘Melting’ indicate the melting
temperature estimated for the semi-classical BKT and ideal
2D models, respectively. The horizontal dashed-dotted black
line indicates the temperature measured in the experiments.

frequencies Ω > 0.9ωr. As mentioned in the main text,
the estimation of the melting temperature is much higher
than the measured one.
Figure S2 also suggests that performing experiments

at fixed rotation frequency and atom number by vary-
ing the temperature implies to take into account fully
the dimensional crossover, for our trap geometry. Indeed
the semi-classical BKT temperature is closer to the 3D
ideal gas prediction whereas the superfluid (or conden-
sate) density is essentially confined to the ground state
of the harmonic confinement to the surface.

Classical field simulations

We use a simple growth stochastic projected Gross-
Pitaevskii equation (SPGPE) to sample the finite tem-
perature equilibrium state of the system in a rotating
frame [42], evolving a classical field ψC from a vacuum
state, according to:

iℏ
∂ψC

∂t
= PC

[
(1− iγ)

(
H0 + g|ψC |2 − µ− ΩLz

)
ψC + η

]
,

where H0 = −ℏ2/(2M)×∇2 + V (r, z) is the single par-
ticle Hamiltonian with V (r, z) given at Eq. (3), and the
fluctuating field η is characterized by its second order cor-
relations: ⟨η(r, t)∗η(r′, t′)⟩ = 2ℏkBTγδ(r − r′)δ(t − t′).
The approximate potential is separable, which enables
an efficient implementation of the projector PC using a
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FIG. S3. (color online) a) Density computed using a
SPGPE simulation of the equilibrium state for N = 105

atoms, a harmonic plus quartic trap with κ = 1.5 × 10−4,
Ω/ωr = 0.9 and T = 18 nK. b) Same density after a
28 ms time-of-flight expansion. The dashed red circles iden-
tify the Thomas-Fermi radius. The length are scaled by√

1 + (Ωttof)2. In both pictures the positions of the vortices
are identified with the blue circles and red squares, respec-
tively. c) Comparison between the two vortex lattices, after
scaling by Rtof

TF/R
in situ
TF and rotating by an optimal angle θ1

slightly smaller (in magnitude) than the naive expectation

θ0 = − arctan (
√

1 + (Ωttof)2 ×Rtof
TF/R

in situ
TF ). d) Evolution

of the Thomas-Fermi radius during the time of flight ttof from
the full GPE simulation (blue line) and comparison with the

ballistic scaling
√

1 + (Ωttof)2 (red dashed line).

mixed Laguerre-Gauss / Gauss-Hermite basis along r and
z respectively and an exact evaluation of the non-linear
term with the appropriate quadrature [42].

We then evaluate the equilibrium state on a regular
three dimensional grid in real space and use a split-
step Fourier based numerical scheme to solve the Gross-
Pitaevskii equation (GPE) describing the free expansion,
using scaled coordinates: r̃ ≡ (x/λr(t), y/λr(t), z/λz(t)),
where λr(t) =

√
1 + (Ωt)2 takes into account a ballistic

scaling due to the rotation and λz(t) =
√

1 + (ωzt)2 re-
flects the fast vertical expansion. This allows to track
the full dynamics on a fixed grid of size 512 × 521 × 16,
despite the large magnification of all scales during the
expansion.

Orientational correlations

We present here the same data as in Fig. 3a) of the
main text, using a log-log scale and comparing explic-
itly with a fit by an algebraically decaying function. Due
to the finite size of our system we cannot plot |G6(r)|
over more than a decade. The small number of vortices
also impacts the dynamical range of the signal, that sat-
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FIG. S4. (color online) Benchmark of the SPGPE simulation:

in situ Thomas-Fermi radius in units of ar =
√

ℏ/(Mωr) as
a function of the rotation frequency (symbols). Comparison
with the two-dimensional T = 0 Thomas-Fermi solution. For
Ω/ωr > 0.85 the SPGPE simulation is effectively 2D. Inset:
scaling factor compared to the ballistic expansion. At low
rotation frequency the 3D character results in a faster than
ballistic expansion.
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FIG. S5. (color online) Decay of the orientational correlation
function |G6(r)| with increasing rotation frequency Ω/ωr =
{0.70, 0.75, 0.80, 0.85, 0.875, 0.90, 0.925, 0.95, 0.975, 1.0}, from
top to bottom, shown in log-log scale (same data as in Fig. 3a)
of the main text). The dashed lines show a fit by an alge-
braically decaying envelope, see text for details. The curves
are shifted vertically for clarity.

urates obviously at long distances at a non-zero value,
motivating our choice of a model fa(r) = C/rη +D. For
Ω ≤ 0.85 × ωr the exponent is close to η ≃ 0.5, sig-
nificantly larger than the expected value of 0.25 at the
hexatic to liquid transition.
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