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Abstract. Electric micro-vehicles including scooters, bicycles, and mopeds
are gaining popularity as a preferred shared mode of transportation due
to their environmental sustainability and cost-effectiveness. However, de-
spite their numerous benefits, these micro-mobility services face several
challenges that may limit their adoption. In this paper, we provide a com-
prehensive discussion of shared micro-mobility services as well as the
associated challenges, including maintenance difficulties, infrastructure
regulation, safety concerns, and imbalance issues. We also explore the po-
tential solutions that have been implemented to address these challenges
and the available datasets that can be used to optimize micro-mobility
services.

Keywords: Micro-mobility devices · Connected micro-mobility · Micro-
mobility datasets · Challenges · Service optimization

1 Introduction

Shared micro-mobility services have become increasingly popular in recent years
as a flexible and sustainable alternative to traditional transportation options
[39, 14, 25]. Companies like Bird, Lime, and Voi offer electric bikes, scooters, and
other small vehicles for short trips in urban areas. These services are partic-
ularly useful for tourists, workers, and anyone seeking a quick and convenient
transportation mode for their daily needs [13]. In addition to being cost-effective
and affordable with low rental fees, micro-mobility services are eco-friendly, re-
quiring significantly less energy to operate than traditional cars. Furthermore,
they help alleviate traffic congestion and parking demand in urban areas, mak-
ing them a more practical and efficient transportation option [39]. However, the
reliability of these services is often challenged by various issues, such as mainte-
nance difficulties, infrastructure regulation, safety, and imbalance problems [38,
26, 40, 23]. These issues can severely impact user satisfaction and company rev-
enue. Therefore, it is crucial for micro-mobility operators to implement effective
strategies to enhance the services and the overall user experience. Fortunately,
researchers have shown that collected data from shared micro-mobility systems,
such as trips, locations, and traffic data, can help solve these problems. For
example, trip data or location can be utilized to optimize fleet placement and
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reduce maintenance costs [37]; while vehicle sensor data or traffic data can be
used to identify collision risks and improve user safety [26, 22].

This paper offers a comprehensive analysis of micro-mobility services, with a
particular focus on the devices and technologies used for communication between
them. It presents a detailed overview of the challenges facing these services, with
the existing datasets that can be leveraged to address them. By synthesizing
the latest research and insights, it offers practical guidance for researchers and
practitioners in this field. In addition, we perform an analysis of a real-world
dataset obtained from the Bird company’s micro-vehicle fleet usage in Bordeaux
to determine the key factors that can enhance the services and improve the
overall user experience.

The remainder of this paper is organized as follows: In Section 2, we introduce
the micro-mobility service, including the different modes that are commonly
used and the technologies that enable their communication. Section 3 provides
an overview of the challenges faced by micro-mobility services, while Section 4
outlines how collected data from micro-mobility services can be used to solve
these problems and optimize the services.

2 Overview of shared micro-mobility services and
technologies

As the demand for urban transportation solutions has increased, shared micro-
mobility services have emerged as a viable and sustainable option for short-
distance trips. To support the efficient operation of these services, various com-
munication methods are used to enable real-time tracking, monitoring, and man-
agement of the micro-mobility devices. This ensures that users have access to
accurate and up-to-date information on vehicle availability, location, and route
planning. Additionally, it enables operators to effectively manage and maintain
their fleets, optimize vehicle allocation and charging, and respond quickly to any
issues or incidents. This section will cover the characteristics of the commonly
used devices in shared micro-mobility services, as well as the communication
technologies that enable their effective deployment and operation.

2.1 Micro-mobility devices

In recent years, the availability of shared micro-mobility services has greatly ex-
panded, covering a variety of frequently used modes like bicycles and e-scooters
[11, 1]. These modes of transportation differ in terms of design, cost, and op-
eration mode. Figure 1 shows an example of micro-mobility devices, including
e-scooters, e-bikes, e-mopeds, and segways.

Bikes are typically the most affordable and widely available mode of shared
micro-mobility transportation. They are simple to use and provide a low-impact
workout. Electric bikes, or pedelecs, on the other hand, offer a smoother ride
thanks to a pedal assist feature that makes it easier for users to travel further
and faster. A speed-pedelec (S-pedelec) is a type of electric bike that is designed
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to provide assistance up to higher speeds, typically up to 45 km/h, and may
have different legal requirements than traditional e-bikes. Electric scooters are
also common and practical to use, with their straightforward design making it
simple for users to park them anywhere in free-floating systems. Although more
expensive and requiring a valid driver’s license to operate, electric mopeds offer
a more powerful and effective form of transportation. Finally, electric skate-
boards and segways are the newer additions to the micro-mobility market, offer-
ing unique and fun transportation modes that are popular among young adults;
however, they are not yet widely available for shared use. In the end, a person’s
choice of transportation depends on their preference, budget, and intended use.

Fig. 1. Example of micro-mobility devices

These shared micro-vehicles allow users to rent vehicles for a limited time at
an affordable cost. Most shared micro-mobility services are accessed through a
mobile app that lets users find nearby vehicles, unlock them with their phones,
and pay for their use. Shared micro-mobility services can be classified into two
main categories: fleet services (where the vehicles are managed and provided
by a company) and peer-to-peer services (where individual vehicle owners make
their vehicles available to other users for a fee) [9, 32]. Fleet services can be both
docked and dockless, with or without charging stations, depending on the type
of vehicle.
Table 1 represents a comparison of micro-mobility devices, their features, and
specifications like average weight, power supply, range (the distance that the
device can travel in a single charge), legal requirements, etc. The values presented
in the table are indicative averages and may not accurately represent the precise
specifications of each micro-mobility device.
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Table 1. Micro-mobility devices and their features

Feature

Device
E-scooter E-bike S-pedelec E-moped Segway

Average weight (kg) 10-25 15-25 30-35 30-70 50-60

Max speed (km/h) 25 25 45 45 20

Operable pedal no possible yes possible no

Power supply (watts) 250-500 250-750 500-750 500-2000 400-800

Range (km/h) 40-100 40-80 50-100 50-100 20-30

Average charging time 4-8h 3-6h 3-6h 4-8h 4-8h

Occupants single rider single rider single rider multiple riders single rider

Legal requirements none none license/helmet license/helmet possible

Age requirements 14-16 14-16 >16 >16 14-16

2.2 Micro-mobility Companies

There are several shared micro-mobility companies that have gained popularity
around the world, with some of the most well-known being:

1. Bird provides electric scooters and bikes and operates in around 50 metropoli-
tan areas across the United States, 14 cities in Europe, and 3 cities in
the Middle East. Their micro-vehicles are available for short-term rentals
through the Bird mobile app and are designed to be a sustainable transporta-
tion option. Bird’s electric scooters and bikes are designed to be lightweight
and easy to use, with a top speed of 32 km/h and a range of up to 50 km/h
on a single charge [3].

2. Lime provides electric bikes, scooters, and mopeds in over 100 cities world-
wide. Lime’s electric vehicles are designed to be easy to use and are equipped
with safety features such as lights and brakes [13, 17].

3. Voi is a Swedish shared micro-mobility company that provides a variety of
electric vehicles, including bikes, scooters, and mopeds. Voi’s mobile app is
also designed with sustainability in mind, with features such as a carbon
footprint calculator that shows users how much CO2 is saved [34].

4. Spin is a popular shared micro-mobility company that provides electric
scooters, bikes, and e-assist bikes. It operates in over 70 cities worldwide,
including Europe, Canada, and the United States. Spin’s micro-vehicles are
designed to be reliable, with a focus on safety and durability. Spin’s mobile
application is also user-friendly, with clear instructions on where to locate
and how to unlock the fleet, as well as helpful riding safety tips [31].
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Various systems are used by micro-mobility companies to handle their fleets.
Docking is a common system in which vehicles are picked up and dropped off at
designated stations. These stations can be fixed physical stations or virtual sta-
tions. Virtual stations refer to well-defined zones without physical boundaries,
with an obligation to park the fleet inside these zones. Alternatively, the dock-
less system allows users to park vehicles anywhere within a specific operating
zone. Some companies use a hybrid system that offers both docked and undocked
parking options. The choice of a system depends on several factors, such as the
city’s size and metropolis, user demand, and regulatory requirements. Each sys-
tem has its own advantages and disadvantages, making it essential for companies
to assess their needs before deciding on the most suitable option.

Micro-mobility companies also adapt to the specific needs and expectations of
their customers and focus on specific purposes such as Bird for leisure, Lime for
work, and Voi for tourism [4, 21]. However, this choice can also depend on various
factors, including personal needs, distances, available transportation options,
traffic conditions, and individual preferences.

2.3 Technologies used in connected micro-mobility devices

Shared micro-mobility vehicles, such as e-scooters, e-bikes, and e-mopeds, are
typically equipped with wireless communication systems, such as embedded SIM
cards, Global Positioning System (GPS) receivers, and sensors [24, 6, 8]. These
technologies not only allow companies to track the vehicles’ location and con-
dition, but they also enable direct communication between the vehicles using
short-range or low-power technologies such as Bluetooth, Zigbee, LoRa, or Wi-
Fi [5, 33, 36]. Some shared micro-mobility vehicles can also be equipped with
Vehicle-to-Vehicle (V2V) technology for short-range and direct communication.
It enables the exchange of information between vehicles and can be used for
collision avoidance, traffic optimization, and platooning. This technology can be
especially useful in densely populated areas where there is a high demand for
short-distance transportation.

To connect micro-mobility vehicles to the internet or to the central control
system, cellular communication technologies such as 4G and 5G can be used for
long-range communication [28]. 4G allows for high-speed remote communication,
enabling operators to monitor in real-time the status of vehicles, such as their
battery level, speed, track status, and other key components. With the arrival of
5G, the infrastructure is expected to further improve road safety with a compre-
hensive vision of traffic and roads in real-time, allowing for more advanced safety
features [28]. Additionally, 5G will enable faster and more reliable communica-
tion for monitoring, control, and management of micro-mobility fleets, which can
lead to more efficient operations and better overall user experience. Some other
technologies including Near Field Communication (NFC), or QR codes can also
be used to connect the device to the user’s mobile phone or unlock the fleet [8].
Table 2 represents a comparison of communication technologies used in shared
micro-mobility systems.
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Table 2. Comparison of communication technologies in micro-mobility

Technology Range/power
consumption

Data transfer
rate

Communica- tion
mode

Typical use case

Bluetooth 10m / low 1 Mbps device-to-device data tracking and
control

Wi-Fi 100m / moder-
ate

10 Gbps device-to-
hub/router

data exchange, nav-
igation, and remote
management

Zigbee 100m / low 250 kbps device-to-
device/to hub

data exchange, track-
ing and control

LoRa 10 km / low 50 kbps device-to-
device/gateway

track location and
usage /monitoring in
real-time

V2V 300m /low 27 Mbps device-to-device collision avoidance,
traffic optimization,
and platooning

4G/5G 6-10 km /high 10 Gbps device-to-cellular
networks

high-speed data
transfer, and remote
control

Regarding shared micro-mobility companies, Bird and Lime, use a combi-
nation of communication technologies including Wi-Fi, Bluetooth, and cellular
communication depending on the region’s infrastructure and local conditions
[33]. Ultimately, the choice of communication technologies depends on each com-
pany’s needs, the availability, and quality of wireless networks in a given region,
the transmission range, and local regulatory requirements. Companies may also
adopt new technologies as they evolve to meet the changing needs of users and
improve the overall experience of shared micro-mobility.

3 Challenges Facing the micro-mobility Industry: An
Overview

The field of micro-mobility faces various challenges related to infrastructure,
regulation, system imbalance, and safety. One of the major issues is the lack
of proper infrastructure for micro-mobility vehicles, such as bike lanes, park-
ing areas, and charging stations [20, 35, 19]. This makes it difficult for users to
use and park their vehicles safely and conveniently, which increases the number
of improperly parked fleets. Another challenge is the need for regulations that
balance the benefits of micro-mobility with issues of public safety, privacy, and
property rights. For example, some cities have imposed restrictions on the num-
ber of shared micro-vehicles allowed on their streets or required companies to
share private data on their operations. Additionally, safety is a concern as ac-
cidents involving micro-mobility vehicles have increased. [30]. This requires the
implementation of safety measures such as helmets and educational campaigns
for both users and drivers.
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Micro-mobility vehicles require regular maintenance to remain secure and in
excellent operating condition [19]. For example, the batteries in electric micro-
vehicles need to be recharged regularly, but their life span can decrease over
time, reducing their capacity and performance. Tires on rubber-tired vehicles
can suffer damage, punctures, and wear, which also affects their safety and per-
formance. Brakes and brake pads should be checked and replaced if needed.
Electrical components may also need maintenance to function properly, and all
vehicles experience general wear and tear over time, requiring repair and main-
tenance. These maintenance issues can be costly and time-consuming, especially
for individual owners of micro-mobility vehicles [19].

Regarding the communication technologies in micro-mobility systems, they
pose potential security risks. For example, bike and scooter companies utilize a
combination of Bluetooth and internet connections to communicate with users’
mobile phones and central servers. This can make them vulnerable to hacking
and the potential mobilization of numerous vehicles in an urban setting. The
authors in [29, 28], propose a wireless communication technology designed to
enable long-range communication between devices with low power consumption,
namely Low-Power Wide-Area Network (LPWAN). This technology can improve
safety and reduce accidents.

Fleet maldistribution and system imbalance are major challenges that affect
the availability and accessibility of micro-mobility services and, ultimately, user
satisfaction [40, 23, 16, 15]. In the case of dockless systems, fleet maldistribution
can result in certain regions or zones being underserved while other areas are
oversaturated with vehicles. In physical dock-based systems, system imbalance
can lead to empty or full docking stations, which can inconvenience users and
undermine the usefulness of the service. When docking stations are completely
empty, users are unable to access the service and may be forced to seek alter-
native transportation methods. On the other hand, when docking stations are
completely full, users may have difficulty finding a parking spot, which can result
in frustration and discourage further usage of the service. These issues have a
negative impact on customer satisfaction, with customers suffering from unfavor-
able effects like longer wait times, farther travel in finding fleets, and difficulty
accessing the service. Furthermore, a decrease in service quality could result in
lower customer adoption rates and revenue for the company. To overcome these
challenges, micro-mobility providers must develop effective strategies to opti-
mize the distribution of fleets and the management of docking stations while
leveraging real-time data and analytics to improve the overall user experience.

4 How can micro-mobility datasets be beneficial?

Data gathering from shared micro-mobility systems can help solve some issues
with user satisfaction and safety, while also significantly improving services. For
example, trajectory data or location data can be used to optimize fleet place-
ment, reducing imbalance issues and improving user accessibility. Vehicle sen-
sor data or traffic can be used to detect collision risks and potential accidents,
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enabling preventive measures to reduce these risks and ensure user safety. In
addition, data on users’ usage patterns can be used to improve pricing models,
service offerings, and user satisfaction.

4.1 Using data for better problem-solving and services

The use of collected data from shared micro-mobility systems may offer many
opportunities to improve the quality and efficiency of services while ensuring
a more satisfying and safer user experience. Table 3, presents a comprehensive
overview of datasets used by articles to address micro-mobility challenges, in-
cluding information on data availability statements, collection years, system and
fleet type, targeted issues, and data analysis country.

Table 3. Used datasets for addressing micro-mobility challenges

Ref Data type Statement Year Fleet type Problem Country

[15] trip/weather public 2015-2017 docked bike imbalance Korea

[18] trip public 2013-2016 docked bike imbalance NewYork

[16] trip/weather public 2016 docked bike imbalance China

[25] trip private 2019 dockless scooter relocation Canada

[12] trip/weather private 2019 dockless scooter relocation Korea

[37] trip open 2019 dockless bike maintenance/relocation NewYork

[41] trip open 2017 dockless bike maintenance/relocation China

[14] trip/weather private 2020 dockless scooter relocation Korea

[26] sensor open 2020-2021 dockless scooter infrastructure/safety Italy

[38] trip/weather public 2013-2017 docked pedelec maintenance cost NewYork

[7] trip open 2018-2019 dockless scooter infrastructure/safety Texas

[22] region/traffic private 2018 dockless scooter relocation Turkey

[2] sensor/traffic private 2015 docked bike station placement US

[10] crashes/trips private 2019-2021 dockless infrastructure safety Italy

[27] trip/weather private 2020 dockless scooter relocation Chicago

The authors in [15, 18], describe a method for solving placement problems in
physical dock-based systems by utilizing trip data and advanced deep-learning
architectures. The solution relies on predicting user demand and using graph
networks to model the connections between stations as nodes and the dependen-
cies between them as edges, with the ultimate goal of balancing the fleet. In [16],
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the researchers propose a reinforcement learning 1 framework based on recorded
trips between docked stations. This would help the system find a good balance.
The solution consists of loading from a blocked predicted station and unloading
at an empty station. In [25, 12], the researchers use real-world trip data, tak-
ing into account weather and temporal criteria, to enhance the fleet locations
and decrease the research time to find a fleet. They represented the demand
using heatmap images as a strategy to identify future frequent areas. They em-
ployed machine learning forecasting techniques to predict the demand density at
each hour within the operational zone. This strategy can help operators choose
the best locations for their fleets and enhance the user experience by analyzing
demand density images. To address both maintenance and redistribution chal-
lenges, the authors, in [37], propose a reinforcement learning-based multi-agent
system that enhances micro-vehicle availability while minimizing the need for re-
location and battery replacements. This solution is designed using a trip dataset
and is capable of improving operational efficiency. In [41], the researchers prove
the effectiveness of initiating users to balance dockless systems and aggregate
low-battery fleet together, saving the cost of maintenance. They propose a pre-
diction tool capable of estimating user demand from recorded trips within an
area using machine learning. In [14], the authors show that weather data can be
used to predict how many users will want to use dockless systems. The solution
can increase user satisfaction by minimizing the research time required to find a
fleet.

To enhance micro-mobility safety as well as improve infrastructure, authors
in [26], propose a safety-based efficiency indicator for urban areas, using a data
envelopment analysis. This indicator allows evaluation of the safety efficiency for
each studied area according to factors such as road intersections, vehicle speed,
and the presence of bicycle lanes. The authors, in [38], focus on the develop-
ment of an efficient prediction machine learning model that predicts the demand
for pedelec use every 48 hours and an optimal route plan for pedelec battery
charging using real-world datasets. In [7], a method is presented for estimating
street segment-level e-scooter flows using an open-source dataset that includes
millions of trip origins and destinations. The authors prove that the proposed
model can help cities better support the emerging shared micro-mobility service.
Researchers, in [22], suggest a decision support system for e-scooter sharing sys-
tems that helps dynamically place e-scooters in urban areas where they are
required. The goal of this system is to provide select options by combining real-
time social media data with traffic density information and region data given by
the multi-criteria analysis made using the Analytical Hierarchy Process (AHP).
In [2], a station placement strategy is proposed in order to determine the best
locations for 5 new bike-sharing stations in Fargo, North Dakota. The workflow
combines a geographic information system (GIS), level of traffic stress (LTS)
ratings, and location-allocation optimization models. Authors in [10] highlight

1 Reinforcement learning is a branch of machine learning that involves the training
of artificial agents to interact with their environments and learn the best actions to
take using a deep neural network to increase reward and solve the problem.
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the inefficiency of ad-hoc planning in developing safe infrastructure for micro-
mobility, which is essential for creating climate-friendly, sustainable, and livable
cities. They propose an automated network planning process that utilizes data
from various empirical sources, including existing infrastructure networks, bicy-
cle crashes, and trip data from Bird company. The modeling framework presented
in the study is applied specifically to the city of Turin, Italy, but it can be ex-
tended to other cities as long as similar data is available. It is able to create new
cycling tracks that prioritize both travel demand and cycling safety and can be
integrated into the existing infrastructure. The authors, in [27], focus on redis-
tribution fleet optimization by predicting user demand using a trip dataset. The
solution can help operators pick the ideal areas for fleet deployment according
to user needs. Additionally, it can be adapted to any redistribution strategy and
can be used in various ways like reducing collision risks in areas where the model
predicts high demand or optimizing pricing strategies by analyzing the number
of future demands.

This last solution and the majority of solutions proposed to address micro-
mobility issues such as relocation problems, infrastructure safety, or mainte-
nance costs rely on predicting user demand using advanced machine learning
techniques. By leveraging this prediction, operators can optimize their services
to better align with user needs and improve overall satisfaction. To accomplish
this, data collected from shared micro-mobility systems, such as trip data, fleet
positions, and infrastructure-related data, is processed using data science, data
cleaning, and analysis techniques to prepare it for modeling. In this context, data
visualization techniques can also be used to help in identifying other influential
factors that should be prioritized in predicting user demand, like weather or traf-
fic data. Through visualization, patterns, and trends within the data can be more
easily identified, leading to a better understanding of the complex relationships
between different variables.

4.2 A review of a real-world micro-mobility dataset (Bordeaux,
2021/2022)

We are delighted to collaborate with Bird [3], a leading operator in the micro-
mobility space, to analyze their recent dataset on self-service fleet usage. This
dataset provides a unique opportunity to explore real-world mobility trends in
the city of Bordeaux, France, and address micro-mobility challenges, including
user satisfaction and fleet availability. However, the dataset is not yet publicly
available due to privacy concerns. In this section, we present the features of this
dataset as well as strategies for leveraging it to improve service quality and meet
user needs. Figure 2 shows the operating zone in Bordeaux, which covers a 36.56
Km2 area and includes more than 100 virtual stations for e-bikes and e-scooters.
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Fig. 2. Bird’s operating area in Bordeaux city

Bird is one of the companies that rely on virtual stations to park its fleets
in Bordeaux for regulatory reasons, in which users are obligated to park in well-
defined georeferenced areas without physical boundaries with a radius of 15
meters [3].

Fig. 3. Example of Bird virtual station

Bird provides us with a trip dataset for electric scooters and bikes that have
been recorded, with the beginning and ending GPS positions collected in the city
of Bordeaux. It includes over 71 thousand recorded trips between arrival and
departure stations over the twelve 2021 months and the three winter months of
2022. Each transaction record includes the following details:

– Trip ID (Object): refers to the trip identifier.

– Vehicle checks out/in time (Object): refers to the date of reservation and the
return of the fleet.

– Start and End position latitudes and longitudes (Float64): refers to the pre-
cise GPS start and end positions of the trip.
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A list of fixed virtual stations is also given because trips are recorded with the
exact GPS departure and arrival position rather than the virtual station to
which they belong. This list includes the latitudes and longitudes positions and
the identifier of the station.

The graphs shown in Figure 4 illustrates the average demand (number of
trips) for Bird’s micro-mobility services during different times of the day across
different seasons.

Fig. 4. Average demand for each season by hour and day (from Bird’s data)

Table 4 represents the average number of demands made up to the maximum
during each time period, categorized by day type (weekday vs. weekend) and
season. This data is derived from Graph 4, which provides a visual representation
of the same information.

Table 4. Average number of trips by the time of day, day type, and season

Season Day Morning(5am - 12pm) Afternoon(12pm - 6pm) Evening(6pm - 12am)

Summer
Weekday 132-180 215-230 200-300
Weekend 90-175 187-240 225-300

Fall
Weekday 70-150 120-150 100-300
Weekend 60-100 140-150 120-160

Winter
Weekday 45-80 85-120 40-50
Weekend 35-40 60-80 35-40

Spring
Weekday 100-175 137-250 75-100
Weekend 60-100 100-180 75-100



Shared micro-mobility: technologies, challenges, and prospects 13

As expected, the demand for trips during the summer increases significantly
in the afternoon and evening hours, especially on weekends, with a peak demands
of up to 300. In contrast, there is relatively low demand during the morning rush
hour. During spring and winter, however, the demand is lower during the evening
rush hours and higher in the morning or afternoon, particularly on weekdays,
with demand reaching up to 250. The data demonstrate that Bird’s customers
use the services primarily for leisure purposes, as demand consistently peaks
during the evening rush hour or evening hours, in each season. Figure 5 shows
a heatmap visualization for user demand. We can easily notice from the maps
that the majority of the frequented areas are touristic or commercial.

(a) Heatmap visualization for starting
Bird positions

(b) Heatmap visualization for starting
Bird positions zoomed

Fig. 5. Heatmap visualization for Bird demand density

We can notice, from figures 3 and 5, that the area’s type and period have a
great impact on user demand. However, regarding the imbalance problem, it is
not sufficient to determine the exact ideal locations to place the fleets dynam-
ically according to the user’s needs and enhance user satisfaction and service.
Recent studies have demonstrated that using advanced prediction techniques,
such as machine learning, can help predict the user demand for an area or a
station. These predictions can be based on temporal criteria, such as specific
days or time periods of the week [41, 18, 12]. Given also that weather variables
have a significant impact on the use of micro-mobility modes [38, 21]; it enables
more accuracy in the prediction of user demand by taking into consideration a
variety of variable factors like temperature, humidity level or wind speed.

In consequence, we can say that the use of real trips, that have been recorded
over time, can effectively help increase the availability of fleets in areas where
high future demand is predicted; this helps to reduce the amount of time that
users must spend searching for a fleet. This forecast enables operators to prop-
erly assess their demand and can provide additional virtual stations in popular
regions during specific times, like the summertime, close to tourist areas. By en-
hancing the user experience, these techniques help operators boost their revenue
and improve their services.
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Additionally, the user demand prediction tool can improve various aspects,
such as pricing strategies and offers, during peak demand periods. It can also
improve safety and reduce collisions in areas predicted to be in high demand,
or decrease the cost of maintaining devices and replacing batteries. This can
be achieved by planning collection operations during times when there is little
demand.

5 Conclusion

Shared micro-mobility services face numerous challenges that can negatively
impact user satisfaction and company revenue. These challenges include system
imbalance, high maintenance costs, infrastructure problems, and safety concerns.
To overcome these challenges, machine learning techniques, analytical systems,
and decision support systems have been proposed as solutions. These approaches
rely on the collected data from shared micro-mobility services, and it has been
demonstrated their significance as a crucial element in enhancing service usage.
In this study, we analyzed a real-world dataset of recorded trips in Bordeaux,
France. The goal was to explore how to leverage this data to improve fleet avail-
ability and service quality. By identifying patterns and insights within this data,
we can make informed decisions and implement targeted strategies to create a
better experience for users and drive greater revenue for companies [27].
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