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Abstract

We prove that the equational theory of Kleene algebra with commutativity
conditions on atomic terms is undecidable, thereby settling a longstanding open
question in the theory of Kleene algebra. In fact, we show that this undecidability
result holds even if we drop the induction axioms of Kleene algebra, which leads
to a simpler equational theory. This complements a recent result of Kuznetsov,
who independently established a similar undecidability result, but relying on in-
duction.

1 Introduction
Kleene algebra is an algebraic framework that generalizes the theory of regular lan-
guages while retaining its most fundamental equational properties. One of the main
features of Kleene algebra is that its equational theory is decidable. This enables nu-
merous applications in program verification, by first translating programs and speci-
fications into Kleene-algebra terms and then checking these terms for equality. Many
domains have benefited from this approach to verification, including networked sys-
tems [And+14; Fos+15], concurrency [Hoa+09; Kap+20; Kap+18], probabilistic pro-
gramming [MCM06; MRS11], relational verification [Ant+22], program schematol-
ogy [AK01], and program incorrectness [ZAG22].

In most applications, it is necessary to extend Kleene algebra with additional ax-
ioms. A popular choice of axioms is commutativity conditions of the form 𝑒1𝑒2 = 𝑒2𝑒1,
which state that the terms 𝑒1 and 𝑒2 can be composed in any order. In terms of pro-
gram analysis, the terms 𝑒1 and 𝑒2 correspond to sub-commands of a larger program,
and their commutativity ensures that they can be executed in any order without af-
fecting the final output. Such properties have been proven useful for relational rea-
soning [Ant+22] and concurrency [DM97].

Unfortunately, it is known that commutativity conditions can pose issues for the
decidability of the equational theory. In particular, if we are allowed to add arbitrary
commutativity conditions 𝑎𝑏 = 𝑏𝑎, where 𝑎 and 𝑏 are atomic terms (also known as
“primitives”), it is undecidable to test whether two regular languages given by Kleene
algebra terms are equivalent. Cohen proved this result by encoding the Post corre-
spondence problem (PCP) using such equivalences; Cohen’s proof was originally un-
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published, but eventually reported by Kozen [Koz96]. In fact, as observed by Kozen
[Koz97], the proof shows that the problem turns out to beΠ0

1-complete, or equivalent
to the complement of the halting problem.

Despite Cohen’s negative result, there was still some hope that we could de-
cide such equations in arbitrary Kleene algebras—or, equivalently, decide whether
an equation can be derived solely from the Kleene-algebra axioms. Indeed, since the
equational theory of Kleene algebras is generated by finitely many clauses, the set
of valid equations is recursively enumerable, or Σ01 . Since a set cannot be simultane-
ously Σ01 and Π0

1-complete, the problem of deciding equations under commutativity
conditions for all regular languages is not the same as the problem of deciding such
equations for all Kleene algebras. Theremust be equations that are valid for all regular
languages, but not for arbitrary Kleene algebras. Despite this intuition, the question
of decidability of the equational theory of Kleene algebra with commutativity condi-
tions remained open for almost 30 years, since Kozen’s work [Koz97].

This paper settles this question negatively, proving that it is impossible to decide
whether an equation between two terms holds only by using commutativity condi-
tions on atoms and the axioms of Kleene algebra. The question has been indepen-
dently settled by Kuznetsov [Kuz23], who showed that this problem is, in fact, Σ01-
complete (that is, equivalent to the halting problem for Turing machines). Though
our techniques overlap, we show actually that the undecidability result extends to
weaker version of Kleene algebra where we use only a subset of its axioms. More
precisely, we show that the theory of Kleene algebra with commutativity conditions
remains undecidable even if we drop its induction axioms, which are needed to prove
many identities involving the iteration operation.

At a high level, our proof works as follows. Given a Turing machine 𝑀 and an
input 𝑥, we define an inequality between Kleene algebra terms with the following
two properties: (1) if𝑀 halts on 𝑥 and accepts, the inequality holds, but (2) if𝑀 halts
on 𝑥 and rejects, the inequality does not hold. If such inequalities were decidable, we
would be able to computationally distinguish these two scenarios, which is impossible
by diagonalization.

Structure of the paper In Section 2, we recall basic facts about Kleene algebra and
related structures, and introduce an abstract framework for stating the problem of
Kleene algebra terms modulo commutativity conditions, using the language of cate-
gory theory.

In Section 3, we present the core of our undecidability proof. We use algebra
terms to model the transition relation of an abstract machine, and construct a set of
inequalities that allows us to tell whether amachine accepts a given input or not. If we
can decide such inequalities, we would be able to distinguish recursively inseparable
sets, which would lead to a contradiction. This argument hinges on a completeness
result (Theorem 3.8), which guarantees that, if a certain machine accepts an input,
then a corresponding inequality holds. In Section 4, we prove that an analog of the
completeness result holds for a large class of relations that can be represented with
terms, provided that they satisfy a technical condition that allows us to reason about
the image of a set by a relation.
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In Section 5, we develop techniques to prove that the machine transition relation
satisfies the required technical conditions for completeness. In Section 5.1, we show
how we can view Kleene algebra terms as automata, proving an expansion lemma
(Lemma 5.6) that guarantees thatmost terms can be expanded so that all of its matched
strings bounded by some maximum length can be identified. This framework gener-
alizes the usual definitions of derivative on Kleene algebra terms, but does not rely on
the induction axioms of Kleene algebra. In Section 5.2, we show howwe can refine the
expansion lemma when terms have bounded-output, which, roughly speaking, means
such terms represent relations that map a string to only finitely many next strings.
We prove that the transition relation satisfies these technical conditions (Section 5.3),
which concludes the undecidability proof.

We conclude in Section 6, providing a detailed comparison between our work and
the independent work of Kuznetsov [Kuz23], which proved a similar result for Kleene
algebra terms.

2 Kleene Algebra and Commutable Sets
To set the stage for our result, we recall some basic facts about Kleene algebra and
establish some common notation that we will use throughout the paper. We also
introduce a notion of commutable set, which we will use to express Kleene algebra
terms equipped with commutativity conditions on atoms.

A (left-biased) weak Kleene algebra is an idempotent semiring 𝑋 equipped with a
star operation. Spelled out explicitly, this means that 𝑋 has operations

1 ∶ 𝑋
0 ∶ 𝑋

(−) + (−) ∶ 𝑋 × 𝑋 → 𝑋
(−) ⋅ (−) ∶ 𝑋 × 𝑋 → 𝑋

(−)∗ ∶ 𝑋 → 𝑋,

which are required to satisfy the following equations:

1 ⋅ 𝑥 = 𝑥
𝑥 ⋅ 1 = 𝑥
0 ⋅ 𝑥 = 0
𝑥 ⋅ 0 = 0

𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅ 𝑦) ⋅ 𝑧
0 + 𝑥 = 𝑥
𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧
𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧
(𝑥 + 𝑦) ⋅ 𝑧 = 𝑥 ⋅ 𝑧 + 𝑦 ⋅ 𝑧

𝑥∗ = 1 + 𝑥 ⋅ 𝑥∗ left unfolding.
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A weak Kleene algebra carries the usual ordering relation on idempotent monoids:
𝑥 ≤ 𝑦 means that 𝑦 + 𝑥 = 𝑥. A Kleene algebra is a weak Kleene algebra that satisfies
the following properties:

𝑥𝑦 ≤ 𝑦 ⇒ 𝑥∗𝑦 ≤ 𝑦 left induction

𝑥𝑦 ≤ 𝑥 ⇒ 𝑥𝑦∗ ≤ 𝑥 right induction.

A ∗-continuous Kleene algebra is a weak Kleene algebra where, for all 𝑝, 𝑞 and 𝑟,
sup𝑛≥0 𝑝𝑞

𝑛𝑟 exists and is equal to 𝑝𝑞∗𝑟. We can show that every ∗-continuous algebra
is, in fact, a Kleene algebra.

Let 𝑋 and 𝑌 be weak Kleene algebras. A morphism of type 𝑋 → 𝑌 is a function
𝑓 ∶ 𝑋 → 𝑌 that commutes with all the algebra operations. This gives rise to a series of
categories KA∗ ⊆ KA ⊆ WKA of ∗-continuous algebras, Kleene algebras, and weak
Kleene algebras. Each category is a full subcategory of the next one.

The prototypical example of Kleene algebra is given by the set ℒ𝑋 of regular lan-
guages over some alphabet 𝑋. In program analysis applications, a regular language
describes the possible traces of events performed by some system. We use the mul-
tiplication operation to represent the sequential composition of two systems: if two
components produce traces 𝑡1 and 𝑡2, then their sequential composition produces the
concatenated trace 𝑡1𝑡2, indicating that the actions of the first component happen first.
Thus, by checking if two regular languages are equal, we can assert that the behav-
iors of two programs coincide. When 𝑋 is empty, ℒ𝑋 is isomorphic to the booleans
𝟚 ≜ {0 ≤ 1}. The addition operation is disjunction, the multiplication operation is
conjunction, and the star operation always outputs 1. This Kleene algebra is the initial
object in all three categories WKA, KA and KA∗.

The induction property of Kleene algebra allows us to derive several useful prop-
erties for terms involving the star operation. For example, they imply that the star
operation is monotonic, a right-unfolding rule 𝑥∗ = 1+𝑥∗𝑥, and also that 𝑥∗𝑥∗ = 𝑥∗.
This allows us to apply many of our intuitions about regular languages to the con-
text of a general Kleene algebra. Unfortunately, when working with a weak Kleene
algebra, most of these results cannot be directly applied, making reasoning about its
elements trickier. In practice, we can only reason about properties of the star opera-
tion that involve a finite amount of uses of the left-unfolding rule. Dealing with this
limitation is at the heart of the challenges we will face when proving our undecidabil-
ity result.

2.1 Commuting conditions
Sometimes, we would like to reason about a system where two actions can be re-
ordered without affecting its behavior. For example, we might want to say that a
program can perform assignments to separate variables in any order, or that actions
of separate threads can be executed concurrently. To model this, we can work with
algebra terms where some elements can be composed in any order. As we will see,
unfortunately, adding such hypotheses indiscriminately can lead to algebras where
it is not possible to check the equality of two terms algorithmically. The notion of
commutable set, which we introduce next, allows us to discuss such commutativity
hypotheses in generality.
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WKA

Comm Mon KA

Set KA∗

⊣
𝒮

⊣
𝒯

⊣
ℒ

⊣
𝒦

⊣⊢

⊣
𝒯′

⊣
𝒦′

⊣
ℒ′

Figure 1: Algebraic constructions on commutable sets

Definition 2.1. A commuting relation on a set 𝑋 is a reflexive symmetric relation
on 𝑋. A commutable set is a carrier set endowed with a commuting relation ∼. We
say that two elements 𝑥 and 𝑦 commute if 𝑥 ∼ 𝑦. A commutable set is commutative
if all two elements commute; it is discrete if the commuting relation is equality. A
morphism of commutable sets is a function between the carriers that preserves the
commuting relation. This data defines a category Comm. A commutable subset of a
commutable set 𝑋 is a commutable set 𝑌 whose carrier is a subset of 𝑋, and whose
commuting relation is obtained by restricting the corresponding relation of 𝑋. A com-
mutable subset of 𝑋 is the same thing as a regular subobject of 𝑋 in Comm—i.e., it is
the equalizer of a pair of maps; more precisely, the obvious maps into the two-element
set.We’ll often abuse notation and treat a subobject 𝑌 ↪ 𝑋 as a commutable subset if
its image in 𝑋 is a commutable subset.

Given a commutable set, we have various ways of building new algebraic struc-
tures, which can be summarized in the diagram of Figure 1 (which is commutative,
except for the dashed arrows). The right-pointing arrows, marked with a ⊣, denote
free constructions, in the sense that they have corresponding right adjoint functors
that forget structure. The first construction, 𝒮, is a functor fromComm to the category
Mon of monoids and monoid morphisms. It maps a commutable set 𝑋 to the monoid
𝒮𝑋 of strings of elements of 𝑋, where we equate two strings if they can be obtained
from each other by swapping adjacent elements that commute in 𝑋, according to ∼.
The monoid operation is string concatenation, and the neutral element is the empty
string. The corresponding right adjoint views a monoid 𝑌 as a commutable set where
𝑥 ∼ 𝑦 if and only if 𝑥𝑦 = 𝑦𝑥.

Another group of constructions extends a monoid 𝑋with the other Kleene algebra
operations, and quotient the resulting terms by the equations we desire. For exam-
ple, the elements of 𝒯′𝑋 are terms formed with Kleene algebra operations, where we
identify the monoid operation with the multiplication operation of the weak Kleene
algebra, and where we identify two terms if they can be obtained from each other
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by applying the weak Kleene algebra equations. The construction 𝒦′ is obtained by
imposing further equations on terms, while ℒ′ is given by the algebra of regular lan-
guages over a monoid [Koz97], which we’ll define soon. The right adjoints of these
constructions view an algebra as a multiplicative monoid. By composing these con-
structions with 𝒮, we obtain free constructions𝒯,𝒦 and ℒ that turn any commutable
set into some Kleene-algebra-like structure.

Being a free construction means, in particular, that we can embed the elements
of a commutable set 𝑋 into 𝒮𝑋, 𝒯𝑋, 𝒦𝑋 and ℒ𝑋, as depicted in this commutative
diagram:

𝒯𝑋

𝑋 𝒮𝑋 𝒦𝑋

ℒ𝑋.

𝑙

By abuse of notation, we’ll usually treat 𝑋 as a proper subset of the free algebras. The
vertical arrows take the elements of some algebra and impose the additional identities
required by a stronger algebra. The composite 𝑙 computes the language interpretation
of a term, and will play an important role in our development, as we will see.

Being a free construction allows us to define a morphism out of an algebra 𝒯𝑋
simply by specifying how the morphism acts on 𝑋. In other words, if 𝑓 ∶ 𝑋 → 𝑌 is
a morphism mapping a commutable set 𝑋 to a weak Kleene algebra 𝑌, there exists a
unique algebra morphism ̂𝑓 ∶ 𝒯𝑋 → 𝑌 such that the following diagram commutes:

𝒯𝑋 𝑌

𝑋

̂𝑓

𝑓

Since 𝑓 and ̂𝑓 correspond uniquely to each other, we will not bother distinguishing
between the two. We’ll employ similar conventions for other left adjoints such as 𝒮
or ℒ.

The last construction on Figure 1 allow us to turn any commutable set into a plain
set by forgetting its commuting relation. This construction has both a left and a right
adjoint: the right adjoint views a set as a commutative commutable set, by endowing
it with the total relation; the left adjoint views a set as a discrete commutative set,
by endowing it with the equality relation. By turning a set into a commutable set,
discrete or commutative, and then building an algebra on top of that commutable set,
we are able to express the usual notions of free algebra over a set, or of a free algebra
where all symbols are allowed to commute.

Remark 2.2 (Embedding algebras). We introduce some notation for embedding alge-
bras into larger ones. Suppose that 𝑋 is a commutable set and 𝑌 ⊆ 𝑋 is a commutable
subset. By functoriality, this inclusion gives rise to morphisms of algebras of types
𝒮𝑌 → 𝒮𝑋, 𝒯𝑌 → 𝒯𝑋, etc. These morphisms are all injective, because they can be
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inverted: we can define a projection 𝜋𝑌 that maps 𝑥 ∈ 𝑋 to itself, if 𝑥 ∈ 𝑌, or to 1,
if 𝑥 ∉ 𝑌. This definition is valid because, since 𝑌 inherits the commuting relation
from 𝑋, and since 1 commutes with everything in 𝒮𝑌, 𝒯𝑌, etc., we can check that the
commuting relation in 𝑋 is preserved.

2.2 Regular Languages
If 𝑋 is a monoid, we can view the set 𝒫𝑋 as a ∗-continuous algebra by using the
following operations:

0 ≜ ∅
1 ≜ {1}

𝐴 + 𝐵 ≜ 𝐴 ∪ 𝐵
𝐴 · 𝐵 ≜ {𝑥𝑦 ∣ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

𝐴∗ ≜ ⋃
𝑛∈ℕ

𝐴𝑛.

The ∗-continuous algebra ℒ′𝑋 of regular sets over 𝑋 is the smallest subalgebra of
𝒫𝑋 that contains the singletons. The language interpretation 𝑙 ∶ 𝒯𝑋 → ℒ𝑋 is the
morphism that maps a symbol 𝑥 ∈ 𝑋 to the singleton set {𝑥}. This allows us to view
a term as a set of strings over 𝑋, and we will often do this to simplify the notation; for
example, if 𝑒 is a term, we’ll write 𝑋 ⊆ 𝑒 to mean 𝑋 ⊆ 𝑙(𝑒). Indeed, as the next few
results show, it is often safe for us to view a term as a set of strings, in the sense that
we do not lose much information by doing so.

Theorem 2.3. Let 𝑠 ∈ 𝒮𝑋 be a string and 𝑒 ∈ 𝒯𝑋 be an arbitrary term. Then 𝑠 ≤ 𝑒 is
equivalent to 𝑠 ∈ 𝑙(𝑒).

Proof. Suppose that 𝑠 ≤ 𝑒. Then 𝑠 ∈ {𝑠} = 𝑙𝑋(𝑠) ⊆ 𝑙𝑋(𝑒) by monotonicity.
Conversely, suppose that 𝑠 ∈ 𝑙𝑋(𝑒). We proceed by induction on 𝑒.

• If 𝑒 = 𝑥 ∈ 𝑋, then 𝑠 ∈ 𝑙𝑋(𝑥) means that 𝑠 = 𝑥. Thus, we get 𝑠 ≤ 𝑒.

• If 𝑒 = 0, we get a contradiction.

• If 𝑒 = 1, we must have 𝑠 = 1, thus 𝑠 ≤ 𝑒.

• If 𝑒 = 𝑒1𝑒2, we must have 𝑠 = 𝑠1𝑠2, with 𝑠𝑖 ∈ 𝑙𝑋(𝑒𝑖). By the induction hypothe-
ses, 𝑠𝑖 ≤ 𝑒𝑖, and thus 𝑠 ≤ 𝑒.

• If 𝑒 = 𝑒1 + 𝑒2, then there is some 𝑖 such that 𝑠 ∈ 𝑙𝑋(𝑒𝑖). By the induction
hypothesis, 𝑠 ≤ 𝑒𝑖, and thus 𝑠 ≤ 𝑒1 + 𝑒2.

• Finally, suppose that 𝑒 = 𝑒∗1 . Thus, there exists some n such that 𝑠 ∈ 𝑙𝑥(𝑒1)𝑛.
This means that we can find a family (𝑠𝑖)𝑖∈{1,…,𝑛} such that 𝑠 = ∏𝑖 𝑠𝑖 and 𝑠𝑖 ∈
𝑙𝑥(𝑒1) for every 𝑖. By the induction hypothesis, 𝑠𝑖 ≤ 𝑒1 for every 𝑖. Therefore,
𝑠 = ∏𝑖 𝑠𝑖 ≤ 𝑒𝑛1 ≤ 𝑒∗1 = 𝑒.
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Theorem 2.4. We say that 𝑒 ∈ 𝒯𝑋 is finite if its language 𝑙(𝑒) is. In this case, then
𝑒 = ∑ 𝑙(𝑒).

Proof. By induction on 𝑒. We note that, if 𝑙(𝑒) is finite, then 𝑙(𝑒′) is also finite for every
immediate subterm 𝑒′, which allows us to apply the relevant induction hypotheses. If
𝑒 is of the form 𝑒1𝑒2 and 𝑙(𝑒) = ∅, this need not be the case, but at least one of the
factors 𝑒𝑖 satisfies 𝑙(𝑒𝑖) = ∅, which is good enough.

Corollary 2.5. The language interpretation 𝑙 is injective on finite terms: if 𝑙(𝑒1) = 𝑙(𝑒2)
is finite, then 𝑒1 = 𝑒2.

Proof. We have 𝑒1 = ∑ 𝑙(𝑒1) = ∑ 𝑙(𝑒2) = 𝑒2.

These results allow us to unambiguously view a finite set of strings over 𝑋 as a
finite term over 𝑋. We’ll extend this convention to other sets: 𝑌 is a (weak) Kleene
algebra, we are going to view a finite set of elements 𝐴 ⊆ 𝑌 as the element∑𝑎∈𝐴 𝑎 ∈
𝑌.

Corollary 2.6. For every term 𝑒 ≠ 0, there exists some string 𝑠 such that 𝑠 ≤ 𝑒.

Proof. Note that 𝑙(𝑒) ≠ ∅. Indeed, if 𝑙(𝑒) = ∅ = 𝑙(0), then 𝑒 = 0 by Corollary 2.5,
which contradicts our hypothesis. Therefore, we can find some 𝑠 such that 𝑠 ∈ 𝑙(𝑒).
But this is equivalent to 𝑠 ≤ 𝑒 by Theorem 2.3.

One useful property of Kleene algebra is that, if 𝑋 is finite, then 𝑋∗ ∈ 𝒦𝑋 is the
top element of the algebra. This result is generally not valid for𝒯𝑋, but the following
property will be good enough for our purposes.

Theorem 2.7. If 𝑋 is finite and 𝑒 ∈ 𝒯𝑋 is finite, then 𝑒𝑋∗ ≤ 𝑋∗.

To conclude our analogy between languages and terms, as far as ∗-continuous al-
gebras are concerned, elements of𝒯𝑋 are just as good as their corresponding languages—
if 𝑌 is ∗-continuous, then every morphism of algebras 𝑓 ∶ 𝒯𝑋 → 𝑌 can be factored
through the language interpretation 𝑙:

𝑋 ℒ𝑋

𝒯𝑋 𝑌.
𝑓

𝑙

This has some pleasant consequences. For example, let [−]0 ∶ 𝒯𝑋 → 𝟚 be the mor-
phism that maps every 𝑥 ∈ 𝑋 to 0. Then [𝑒]0 = 1 if and only if 1 ≤ 𝑒. Indeed, this
morphism must factor through ℒ𝑋. The corresponding factoring ℒ𝑋 must map any
nonempty string to 0 and the empty string to 1. Thus, [𝑒]0 = 1 if and only if 1 ∈ 𝑙(𝑒),
which is equivalent to 1 ≤ 𝑒.
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3 Undecidability via Inseparability
It is commonplace to prove that a language is undecidable by reducing the halting
problem to it. Our proof will use a variation on this theme, based on the following
basic fact from computability theory (we use the notation ⟨𝑥⟩ to refer to some effective
encoding of the object 𝑥 as a binary string).

Theorem 3.1. The following two languages are recursively inseparable:

𝐴 ≜ {⟨⟨𝑀⟩, 𝑥⟩ ∣ The Turing machine𝑀 halts on 𝑥 and outputs 1}
𝐵 ≜ {⟨⟨𝑀⟩, 𝑥⟩ ∣ The Turing machine𝑀 halts on 𝑥 and outputs 0}.

In other words, there does not exist a total computable function 𝑓 ∶ 2∗ → 2 such that
𝑓(𝐴) = {1} and 𝑓(𝐵) = {0}.

Proof. By diagonalization. Suppose that such an 𝑓 exists. Consider the following
decision procedure. Given an input 𝑥 ∈ 2∗, proceed as follows.

• If 𝑓(⟨𝑥, 𝑥⟩) = 1, then we output 0.

• If 𝑓(⟨𝑥, 𝑥⟩) = 0, then we output 1.

This decision procedure is total assuming that 𝑓 is. Therefore, it must be implemented
by some Turing machine𝑀. Since the machine halts on every input,𝑀(⟨𝑀⟩)must be
defined and be either 0 or 1.

• If 𝑀(⟨𝑀⟩) = 1, then ⟨⟨𝑀⟩, ⟨𝑀⟩⟩ ∈ 𝐴. By assumption, 𝑓(⟨⟨𝑀⟩, ⟨𝑀⟩⟩) = 1. But
by the definition of𝑀, this means that𝑀(⟨𝑀⟩) = 0; contradiction.

• If 𝑀(⟨𝑀⟩) = 0, then ⟨⟨𝑀⟩, ⟨𝑀⟩⟩ ∈ 𝐵. By assumption, 𝑓(⟨⟨𝑀⟩, ⟨𝑀⟩⟩) = 0. But
by the definition of𝑀, this means that𝑀(⟨𝑀⟩) = 1; contradiction.

Since𝑀 has no behavior on this input, 𝑓 cannot be total.

We will prove that, if the language of equations on terms with commutativity con-
ditions were decidable, we could construct such an 𝑓, thus contradicting Theorem 3.1.
To simplify our construction, we’ll use as a stepping stone the notion of two-counter
machine. Roughly speaking, a two-counter machine 𝑀 is an automaton that has a
control state and two counters. The machine can increment each counter, test if their
values are zero, and halt.

Two-counter machines and Turing machines are equivalent in expressive power:
any two-counter machine can simulate the execution of a Turing machine, and vice
versa; see Hopcroft, Motwani, and Ullman [HMU01, §8.5.3, §8.5.4] for an idea of how
this simulation works. In particular, given a Turing machine 𝑀, there exists a two-
counter machine that halts on every input where𝑀 halts, and yields the same output
for that input. To conclude, it suffices to reduce the output language for two-counter
machines to the problem of solving weak Kleene algebra inequalities.
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Definition 3.2. A two-counter machine is a tuple 𝑀 = (𝑄𝑀, ̇𝑞, 𝜄), where 𝑄𝑀 is a
finite set of control states, ̇𝑞 ∈ 𝑄𝑀 is an initial state, and 𝜄 ∶ 𝑄𝑀 → 𝐼𝑀 is a transition
function. The set 𝐼𝑀 is the set of instructions of the machine, defined as follows:

𝐼𝑀 ≜ {Inc(𝑟, 𝑞) ∣ 𝑟 ∈ {1, 2}, 𝑞 ∈ 𝑄𝑀}
∪ {If(𝑟, 𝑞1, 𝑞2) ∣ 𝑟 ∈ {1, 2}, 𝑞1, 𝑞2 ∈ 𝑄𝑀}
∪ {Halt(𝑥) ∣ 𝑥 ∈ {0, 1}}.

Two-countermachines act on configurations, which are strings of the form 𝑎𝑛𝑏𝑚𝑞,
where 𝑞 is a control state and 𝑎 and 𝑏 are counter symbols: the number of symbol oc-
currences determines which number is stored in a counter. When the machine halts,
it outputs either 1 or 0 to indicate whether its input was accepted or rejected.

Definition 3.3. Let 𝑀 be a two-counter machine. We define the following discrete
commutable sets and terms:

Σ𝑀 ≜ 𝑄𝑀 + {𝑎, 𝑏, 𝑐0, 𝑐1} symbols

𝐹Σ𝑀 ∋ 𝐶𝑀 ≜ 𝑎∗𝑏∗𝑄𝑀 running configurations

𝐹Σ𝑀 ∋ 𝑇𝑀 ≜ 𝐶𝑀 + {𝑐0, 𝑐1} all configurations.

To describe the execution of two-counter machines, we’ll use the following con-
struction.

Definition 3.4. Let 𝑋 and 𝑌 be commutable sets. We define a commutable set

𝑋 ⊕ 𝑌 ≜ {𝑥𝑙 ∣ 𝑥 ∈ 𝑋} ⊎ {𝑦𝑟 ∣ 𝑦 ∈ 𝑌},

where the commuting relation on 𝑋 ⊕ 𝑌 is generated by the following rules:

𝑥𝑙 ∼ 𝑦𝑟

𝑥 ∼ 𝑥′

𝑥𝑙 ∼ 𝑥′𝑙

𝑦 ∼ 𝑦′

𝑦𝑟 ∼ 𝑦′𝑟
The canonical injections (−)𝑙 ∶ 𝑋 → 𝑋 ⊕ 𝑌 and (−)𝑟 ∶ 𝑌 → 𝑋 ⊕ 𝑌 are morphisms
in Comm (and present commutable subsets). We’ll abbreviate 𝑋 ⊕ 𝑋 as ̈𝑋.

If 𝑋 and 𝑌 are commutable sets, we abuse notation and view the functions (−)𝑙 ∶
𝑋 → 𝑋 ⊕ 𝑌 and (−)𝑟 ∶ 𝑌 → 𝑋 ⊕ 𝑌 as having types 𝒯𝑋 → 𝒯(𝑋 ⊕ 𝑌) and 𝒯𝑌 →
𝒯(𝑋 ⊕ 𝑌). We have the corresponding projection functions 𝜋𝑙 ∶ 𝒯(𝑋 ⊕ 𝑌) → 𝒯𝑋
and 𝜋𝑟 ∶ 𝒯(𝑋 ⊕ 𝑌) → 𝒯𝑌, where 𝜋𝑙(𝑦𝑟) = 1 for 𝑦 ∈ 𝑌, and similarly for 𝜋𝑟 (cf.
Remark 2.2). If 𝑋 is a commutable set, view a term 𝑒 ∈ 𝒯𝑋 as an element 𝒯 ̈𝑋 by
mapping each symbol 𝑥 ∈ 𝑋 in 𝑒 to 𝑥𝑙𝑥𝑟. We’ll use a similar convention for strings 𝒮.

The idea behind this construction is that any string over 𝑋 ⊕ 𝑌 can be seen as a
pair of strings over 𝑋 and 𝑌. More precisely, the monoids 𝒮(𝑋 ⊕𝑌) and 𝒮𝑋 ×𝒮𝑌 are
isomorphic via the mappings

𝒮(𝑋 ⊕ 𝑌) ∋ 𝑠 ↦ (𝜋𝑙(𝑠), 𝜋𝑟(𝑠)) ∈ 𝒮𝑋 × 𝒮𝑌
𝒮𝑋 × 𝒮𝑌 ∋ (𝑠1, 𝑠2) ↦ (𝑠1)𝑙(𝑠2)𝑟 ∈ 𝒮(𝑋 ⊕ 𝑌).

Since term 𝑒 over 𝑋 ⊕ 𝑌 can be seen as a set of strings over 𝑋 ⊕ 𝑌, we can also view
it as a set of pairs of strings over 𝑋 and 𝑌—in other words, as a relation from 𝒮𝑋 to
𝒮𝑌. We write 𝑠 →𝑒 𝑠′ if two strings are related in this way; that is, if 𝑠𝑙𝑠′𝑟 ≤ 𝑒.
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Definition 3.5 (Running a two-counter machine). We interpret each instruction 𝑖 ∈
𝐼𝑀 as an element ⦇𝑖⦈ ∈ 𝐹Σ̈𝑀:

⦇Inc(1, 𝑞)⦈ ≜ 𝑎𝑟𝑎∗𝑏∗𝑞𝑟
⦇Inc(2, 𝑞)⦈ ≜ 𝑎∗𝑏𝑟𝑏∗𝑞𝑟

⦇If(1, 𝑞1, 𝑞2)⦈ ≜ 𝑏∗(𝑞1)𝑟 + 𝑎𝑙𝑎∗𝑏∗(𝑞2)𝑟
⦇If(2, 𝑞1, 𝑞2)⦈ ≜ 𝑎∗(𝑞1)𝑟 + 𝑎∗𝑏𝑙𝑏∗(𝑞2)𝑟

⦇Halt(𝑥)⦈ ≜ (𝑐𝑥)𝑟.

The transition relation of𝑀, 𝑅𝑀 ∈ 𝐹Σ̈𝑀, is defined as

𝑅𝑀 ≜ ∑
𝑞∈𝑄𝑀

⦇𝜄(𝑞)⦈𝑞𝑙.

We say that 𝑀 halts on 𝑛 if 𝑎𝑛𝑏0 ̇𝑞 →∗
𝑅𝑀 𝑐𝑥 for some 𝑥 ∈ {0, 1}. We refer to 𝑥 as the

output of𝑀 on 𝑛.

Lemma 3.6. The relation 𝑅𝑀 satisfies the following property: for every 𝑠 →𝑅𝑀 𝑠′, 𝑠 is
of the form 𝑎𝑛𝑏𝑚𝑞 ≤ 𝐶𝑀. Moreover, for any 𝑠 of this form, we have 𝑠′ = ⟦𝜄(𝑞)⟧(𝑛,𝑚),
where the function ⟦𝑖⟧ ∶ ℕ × ℕ → 𝑇𝑀 is defined as follows:

⟦Inc(1, 𝑞)⟧(𝑛,𝑚) ≜ 𝑎𝑛+1𝑏𝑚𝑞
⟦Inc(2, 𝑞)⟧(𝑛,𝑚) ≜ 𝑎𝑛𝑏𝑚+1𝑞

⟦If(1, 𝑞1, 𝑞2)⟧(𝑛,𝑚) ≜ {
𝑎𝑛𝑏𝑚𝑞1 if 𝑛 = 0
𝑎𝑝𝑏𝑚𝑞2 if 𝑛 = 𝑝 + 1

⟦If(2, 𝑞1, 𝑞2)⟧(𝑛,𝑚) ≜ {
𝑎𝑛𝑏𝑚𝑞1 if 𝑚 = 0
𝑎𝑛𝑏𝑝𝑞2 if 𝑚 = 𝑝 + 1

⟦Halt(𝑥)⟧(𝑛,𝑚) ≜ 𝑐𝑥.

In particular, this defines a functional relation.

This means that the encoding in Definition 3.5 accurately describes the execution
of two-counter machines, which allows us to analyze their properties algebraically.
Combining this encoding with Theorem 3.1, we can show that KA inequalities over
Σ̈𝑀 cannot be decided. More precisely, our aim is to prove the following results:

Theorem 3.7 (Soundness). Given a two-counter machine 𝑀 and a configuration 𝑠 ≤
𝑇𝑀, suppose that the following inequality holds in ℒΣ̈𝑀:

𝑠𝑟𝑅∗𝑀 ≤ Σ∗(𝐶𝑀 + 𝑐1)𝑟 + Σ∗𝑀Σ
≠
𝑀Σ̈∗𝑀,

where

Σ≠𝑀 ≜ ∑
𝑥,𝑦∈Σ
𝑥≠𝑦

𝑥𝑙𝑦𝑟,

then the machine accepts the input if it terminates. Formally, if 𝑠 →∗
𝑅𝑀 𝑐𝑥, then 𝑥 = 1.
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Theorem3.8 (Completeness). Given a two-counter machine𝑀 and some configuration
𝑠 ≤ 𝑇𝑀, we can compute a term 𝜌 with the following property. If 𝑠 →∗

𝑅𝑀 𝑐1, then the
following inequality is valid in weak Kleene algebra:

𝑠𝑅∗𝑀 ≤ Σ∗𝑀(𝐶𝑀 + 𝑐1)𝑟 + Σ∗𝑀Σ
≠
𝑀𝜌.

Recall that an inequality between terms is always stronger than the corresponding
inequality on languages. For soundness, we only need to assume that the inequality
holds between languages, but for completeness, we want to prove that we can estab-
lish a stronger inequality between terms. These two results combined yield our main
result.

Theorem 3.9 (Undecidability). Let Σ ≜ {0, 1} be a discrete commutable set. Suppose
that we have a diagram of sets

𝒯Σ̈ ℒΣ̈

𝑋,

𝑙

𝑒

where 𝑒 is computable. Then equality on 𝑋 is undecidable. In particular, equality is
undecidable on 𝒯Σ̈,𝒦Σ̈ and ℒΣ̈.

Proof. Assume that equality on 𝑋 is decidable. We are going to define a distinguishing
function 𝑓 for the languages 𝐴 and 𝐵 of Theorem 3.1. We can assume that those
sets are defined using two-counter machines instead of Turing machines. Given a
pair ⟨⟨𝑀⟩, ⟨𝑛⟩⟩, where 𝑀 is a machine and 𝑛 ∈ ℕ, we proceed as follows. First, we
compute the term 𝜌 of Theorem 3.8, using 𝑎𝑛𝑏0 ̇𝑞 as the initial configuration. Next,
we find a suitable encoding of the characters of Σ𝑀 as binary strings, which leads to
the following injective embeddings:

𝒯Σ̈𝑀 ℒΣ̈𝑀

𝒯Σ̈ ℒΣ̈

𝑋.

𝑙

𝑙

𝑒

Since the inequality in Theorem 3.8 is defined as an equality, we can convert that
inequality into a related equality 𝑎 = 𝑏 in 𝑋 by applying 𝑒 on both sides. We then
check if this equality is valid. It suffices to show that this yields a valid distinguishing
function.

If𝑀 outputs 1 on 𝑛, the inequality of Theorem 3.8 is valid, and thus 𝑎 = 𝑏 is valid,
which means that 𝑓⟨⟨𝑀⟩, ⟨𝑛⟩⟩ = 1.

Otherwise, if 𝑀 outputs 0, 𝑎 = 𝑏 cannot be valid. If the equation were valid, we
would get a corresponding valid inequality in ℒΣ̈. By diagram chasing, this would
yield a corresponding valid inequality in ℒΣ̈𝑀. Since 𝜌 ≤ Σ̈∗𝑀 is valid in languages,
the inequality of Theorem 3.7 would hold, which would imply that𝑀 actually outputs
1 on 𝑛; contradiction.
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Thus, to establish undecidability, we need to prove soundness and completeness.
The easiest part is proving soundness: we just need to adapt Cohen’s proof of unde-
cidability of equations of regular languages [Koz96].

Proof of Theorem 3.7. Suppose that we have some finite sequence of transitions 𝑠 =
𝑠0 →⋯→ 𝑠𝑛 = 𝑐𝑥. By definition, (𝑠𝑖)𝑙(𝑠𝑖+1)𝑟 ≤ 𝑅𝑀 for every 𝑖 ∈ {0,…, 𝑛−1}. Thus,
we have the following inequality on languages:

𝑝 ≜ (𝑠0)𝑟 · (𝑠0)𝑙(𝑠1)𝑟⋯(𝑠𝑛−1)𝑙(𝑠𝑛)𝑟
≤ (𝑠0)𝑟 · 𝑅𝑀 · ⋯ · 𝑅𝑀
≤ (𝑠0)𝑟𝑅∗𝑀
≤ Σ∗𝑀(𝐶𝑀 + 𝑐1)𝑟 + Σ∗𝑀Σ

≠
𝑀Σ̈∗𝑀.

On the other hand, by shuffling left and right characters,

𝑝 = (𝑠0)𝑟 · (𝑠0)𝑙(𝑠1)𝑟⋯(𝑠𝑛−1)𝑙(𝑠𝑛)𝑟
= (𝑠0)𝑟(𝑠0)𝑙 · (𝑠1)𝑟(𝑠1)𝑙⋯(𝑠𝑛−1)𝑟(𝑠𝑛−1)𝑙 · (𝑠𝑛)𝑟
= 𝑠0⋯𝑠𝑛−1(𝑠𝑛)𝑟
≤ Σ∗𝑀(Σ𝑀)+𝑟 .

We can check that the languages Σ∗𝑀(Σ𝑀)+𝑟 and Σ∗𝑀Σ
≠
𝑀Σ̈∗𝑀 are disjoint. Therefore, it

must be the case that 𝑝 ≤ Σ∗𝑀(𝐶𝑀 + 𝑐1)𝑟. By projecting out the right components,
we find that 𝜋𝑟(𝑝) = 𝑠0⋯𝑠𝑛 ≤ Σ∗𝑀(𝐶𝑀 + 𝑐1)𝑟. We cannot have 𝜋𝑟(𝑝) ≤ Σ∗𝑀𝐶𝑀, since
the last character 𝑐𝑥 cannot appear in a string in 𝐶𝑀. Therefore, 𝜋𝑟(𝑝) ≤ Σ∗𝑀𝑐1, from
which we conclude.

For completeness, however, we need to do some more work. Roughly speaking,
we first prove that 𝑅𝑀 satisfies an analogue of the completeness theorem for a single
transition, and then show that this version implies a more general one for an arbitrary
number of transitions (Section 4).

The main challenge for proving the single-step version of completeness is that
we can no longer leverage properties of regular languages, and must reason solely
using the laws of weak Kleene algebra. Our strategy is to show that 𝑅𝑀 is just as
good as its corresponding regular language if we want to reason about prefixes of
matched strings. Given any string 𝑠′ ≤ 𝑅𝑀 and a current state 𝑠, we can tell whether
𝑠′ encodes a valid sequence of transitions or not simply by looking at some finite prefix
determined by 𝑠. This finite prefix can be extracted by finitely unfolding 𝑅𝑀, which
can be done in the weak setting.

4 Representing Relations
In this section, we show that we can reduce the statement of completeness to a similar
statement about single transitions. If 𝑒 ∈ 𝒯Σ̈ and Λ ⊆ 𝒮Σ is a set of strings, we write
Next𝑒(Λ) to denote the image of Λ by→𝑒; that is, the set⋃𝑠∈Λ{𝑠

′ ∣ 𝑠 →𝑒 𝑠′}.
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Definition 4.1. Let 𝐿 ∈ 𝒯Σ be term. We say that a term 𝑒 ∈ 𝒯Σ̈ is a representable
relation on 𝐿 if the following conditions hold:

• 𝜋𝑙(𝑒) ≤ 𝐿;

• 𝜋𝑟(𝑒) ≤ 𝐿;

• Next𝑒(Λ) is finite if Λ is (note that we must have Next𝑒(Λ) ≤ 𝜋𝑟(𝑒) ≤ 𝐿);

• there exists some residue term 𝜌 such thatΛ𝑟𝑒 ≤ ΛNext𝑒(Λ)𝑟+Σ∗Σ≠𝜌 for every
finite Λ.

We write 𝑒 ∶ Rel(𝐿) to denote the type of 𝑒.

Given a representable relation 𝑒, we can iterate the above inequality several times
when reasoning about its reflexive transitive closure 𝑒∗:

Lemma 4.2. Suppose that 𝑒 ∶ Rel(𝐿). There exists some 𝜌 such that, for every 𝑛 ∈ ℕ
and every finite Λ ≤ 𝐿, we have the inequality

Λ𝑟𝑒∗ ≤ Σ∗ Next<𝑛𝑒 (Λ)𝑟 + Σ∗ Next𝑛𝑒 (Λ)𝑟𝑒∗ + Σ∗Σ≠𝜌,

where Next<𝑛𝑒 = ⋃𝑖<𝑛 Next𝑖𝑒(Λ).

Proof. Let 𝜌 ≜ 𝜌′𝑒∗, where 𝜌′ is the residue of 𝑒. Abbreviate Σ∗Σ≠𝜌 as 𝜀. We proceed
by induction on 𝑛. If 𝑛 = 0, then the goal becomes Λ𝑟𝑒∗ ≤ Σ∗ Next0𝑒 (Λ)𝑟𝑒∗+𝜀, which
holds because Next0𝑒 (Λ) = Λ.

Otherwise, for the inductive step, suppose that the goal is valid for 𝑛. We need to
prove that it is valid for 𝑛 + 1. Recall that Λ′ ≜ Next𝑒(Λ) ≤ 𝐿. We have

Λ𝑟𝑒∗

= Λ𝑟 + Λ𝑟𝑒𝑒∗

≤ Λ𝑟 + ΛNext𝑒(Λ)𝑟𝑒∗ + 𝜀 (𝑒 is representable)
= Λ𝑟 + ΛΛ′𝑟𝑒∗ + 𝜀
≤ Λ𝑟 + Λ (Σ∗ Next<𝑛𝑒 (Λ′)𝑟 + Σ∗ Next𝑛𝑒 (Λ′)𝑟𝑒∗ + 𝜀) + 𝜀 I.H.

= Λ𝑟 + ΛΣ∗ Next<𝑛𝑒 (Λ′)𝑟 + ΛΣ∗ Next𝑛𝑒 (Λ′)𝑟𝑒∗ + Λ𝜀 + 𝜀
≤ Σ∗Λ𝑟 + Σ∗ Next<𝑛𝑒 (Λ′)𝑟 + Σ∗ Next𝑛𝑒 (Λ′)𝑟𝑒∗ + 𝜀 + 𝜀 (Λ is finite)

= Σ∗ Next0𝑒 (Λ)𝑟 + Σ∗ Next<𝑛𝑒 (Λ′)𝑟 + Σ∗ Next𝑛𝑒 (Λ′)𝑟𝑒∗ + 𝜀

= Σ∗ Next<𝑛+1𝑒 (Λ)𝑟 + Σ∗ Next𝑛+1𝑒 (Λ)𝑟𝑒∗ + 𝜀.

If we know that the number of transitions from a given set of initial states is
bounded, we obtain the following result.

Theorem 4.3. If 𝑒 ∶ Rel(𝐿), there exists 𝜌 such that, given 𝑛 ∈ ℕ and a finite Λ ≤ 𝐿,
if Next𝑛𝑒 (Λ) = ∅, then

Λ𝑟𝑒∗ ≤ Σ∗ Next<𝑛𝑒 (Λ)𝑟 + Σ∗Σ≠𝜌.

14



Proof. Choose the same 𝜌 as in Lemma 4.2. Then

Λ𝑟𝑒∗

≤ Σ∗ Next<𝑛𝑒 (Λ)𝑟 + Σ∗ Next𝑛𝑒 (Λ)𝑟𝑒∗ + Σ∗Σ≠𝜌 by Lemma 4.2

= Σ∗ Next<𝑛𝑒 (Λ)𝑟 + Σ∗Σ≠𝜌.

5 Proving Representability
In this section, we prove that the transition relation 𝑅𝑀 of a two-counter machine is a
representable relation, which will allow us to derive completeness from Theorem 4.3.
To do this, we need to show how we can use finite unfoldings of a relation to pinpoint
certain terms that definitely match the “error” term Σ∗𝑀Σ

≠
𝑀𝜌.

5.1 Automata theory
One of the pleasant consequences of working with Kleene algebra is that many intu-
itions about regular languages can be applied to reason about them. In particular, we
can analyze terms by characterizing them as automata. This connection can be de-
fined algebraically by posing certain derivative operations 𝛿𝑥 on terms, which satisfy
a fundamental theorem: given a term 𝑒 ∈ 𝒦𝑋, we have 𝑒 = 𝑒0 + ∑𝑥 𝑥𝛿𝑥(𝑒), where
𝑒0 ∈ {0, 1}. Intuitively, each term in this equation corresponds to a state of some au-
tomaton. The term 𝑒 corresponds to the starting state of the automaton, the null term
𝑒0 states whether the starting state is accepting, and each 𝛿𝑥(𝑒) the state we transition
too after observing the character 𝑥 ∈ 𝑋. Derivatives can be iterated, describing the
behavior of the automaton as it reads larger and larger strings, and which of those
strings are accepted by it. This would be useful for our purposes, because such it-
erated derivatives would allow us to compute all prefixes up to a given length that
can match an expression. Unfortunately, this theory of derivatives hinges on the in-
duction properties of Kleene algebra, and it is unlikely that it can be adapted in all
generality to the weak setting. For example, the closest we can get to an expansion
for 1∗ is 1∗ = 1 + 1∗, which is not quite right.

To remedy this issue, we are going to carve out a set of so-called finite-state terms
of a weak Kleene algebra terms that enables this type of reasoning. Luckily, most
regular operations preserve finite-state terms; we just need to be a little bit careful
with the star operation. We start by defining derivable terms, which can be derived
at least once. Finite-state terms will then allow us to iterate derivatives.

Definition 5.1. Let 𝑒 ∈ 𝒯𝑋 be a term, where 𝑋 is finite. We say that 𝑒 is derivable if
there exists a family of terms {𝛿𝑥(𝑒)}𝑥∈𝑋 such that 𝑒 = [𝑒]0 +∑𝑥 𝑥𝛿𝑥(𝑒). We refer to
the term 𝛿𝑥(𝑒) as the derivative with respect to 𝑥.

The family 𝛿𝑥(𝑒) is not necessarily unique. Nevertheless, we’ll use the notation
𝛿𝑥(𝑒) to refer to specific derivatives of 𝑥 when it is clear from the context which one
we mean.
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Lemma 5.2. Derivable terms are closed under all the weak Kleene algebra operations,
with the following caveats: for 𝑒∗, we also require that [𝑒]0 = 0; for 𝑒1𝑒2, the term is also
derivable if 𝑒2 isn’t, provided that [𝑒1]0 = 0. We have the following choices of derivatives:

𝛿𝑥(0) = 0
𝛿𝑥(1) = 0
𝛿𝑥(𝑥) = 1
𝛿𝑥(𝑦) = 0 if 𝑦 ≠ 𝑥

𝛿𝑥(𝑒1 + 𝑒2) = 𝛿𝑥(𝑒1) + 𝛿𝑥(𝑒2)
𝛿𝑥(𝑒1𝑒2) = [𝑒1]0𝛿𝑥(𝑒2) + 𝛿𝑥(𝑒1)𝑒2
𝛿𝑥(𝑒∗) = 𝛿𝑥(𝑒)𝑒∗,

where, by abuse of notation, we treat [𝑒1]0𝛿𝑥(𝑒2) as 0 when 𝑒2 is not necessarily derivable
(since, by assumption, [𝑒1]0 = 0 in that case).

Proof. We prove the closure property for products and star. For products, we start by
expanding 𝑒1:

𝑒1𝑒2 = ([𝑒1]0 +∑
𝑥
𝑥𝛿𝑥(𝑒1)) 𝑒2

= [𝑒1]0𝑒2 +∑
𝑥
𝑥𝛿𝑥(𝑒1)𝑒2.

If [𝑒1]0 = 0, the first term gets canceled out, and we obtain ∑𝑥 𝑥𝛿𝑥(𝑒1)𝑒2 =
[𝑒1]0[𝑒2]0 +∑𝑥 𝑥𝛿𝑥(𝑒1)𝑒2. Otherwise, we know that 𝑒2 is derivable, and we proceed
as follows:

𝑒1𝑒2 = [𝑒1]0 ([𝑒2]0 +∑
𝑥
𝑥𝛿𝑥(𝑒2)) +∑

𝑥
𝑥𝛿𝑥(𝑒1)𝑒2

= [𝑒1]0[𝑒2]0 +∑
𝑥
[𝑒1]0𝑥𝛿𝑥(𝑒2) +∑

𝑥
𝑥𝛿𝑥(𝑒1)𝑒2

= [𝑒1]0[𝑒2]0 +∑
𝑥
𝑥([𝑒1]0𝛿𝑥(𝑒2) + 𝛿𝑥(𝑒1)𝑒2) (because [𝑒1]0𝑥 = 𝑥[𝑒1]0),

which allows us to conclude.
For star, assuming that [𝑒]0 = 0, we note that 𝑒∗ = 1 + 𝑒𝑒∗, and we apply the

closure properties for the other operations.

Definition 5.3. Suppose that 𝑋 is finite. A finite-state automaton is a finite set 𝑆
of elements of 𝒯𝑋 (the states) that contains 1, is closed under finite sums and under
derivatives (that is, every 𝑒 ∈ 𝑆 is derivable, and each 𝛿𝑥(𝑒) is a state). We say that a
term 𝑒 is finite state if it is a finite sum of states of some finite-state automaton 𝑆.

Requiring that the states of an automaton be closed under sums means, roughly
speaking, that we are working with non-deterministic rather than deterministic au-
tomata. This is convenient for the commutative setting, since a given string could be
matched by choosing different orderings of its characters.
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However, finite-state automata, as defined in Definition 5.3 can be hard to con-
struct directly. We remedy this difficulty by defining the notion of pre-automaton,
which is more flexible, and then prove that every pre-automaton can be naturally
extended to an automaton.

Lemma 5.4. Given a finite commutable set 𝑋, a pre-automaton is a finite set 𝑆 of terms
over 𝑋 such that every 𝑒 ∈ 𝑆 is derivable, and 𝛿𝑥(𝑒) is a sum of some elements in 𝑆∪ {1}.
The set ̄𝑆 ≜ {∑𝑛

𝑖=1 𝑒𝑖 ∣ 𝑛 ∈ ℕ, 𝑒 ∈ (𝑆 ∪ {1})𝑛} is a finite-state automaton. We refer to ̄𝑆
as the automaton generated by the pre-automaton 𝑆.

Proof. It is easy to show that ̄𝑆 is finite, contains 1 and is closed under finite sums.
We just need to show that it is closed under taking derivatives. This follows from
Lemma 5.2.

Finite-state terms can, in fact, be inductively constructed from the operations of
weak Kleene Algebra, thus making the identification of a finite-state term trivial.

Lemma 5.5. Let 𝑋 be a finite commutable set. Finite-state terms are preserved by all the
weak Kleene algebra operations (for 𝑒∗, we additionally require that [𝑒]0 = 0). Moreover,
the set of states of the corresponding automata can be effectively computed.

Proof. Let’s consider all the cases.

• The set {0, 1} is an automaton by Lemma 5.2. Therefore, 0 and 1 are finite state.

• By Lemma 5.2, if 𝑥 is a symbol, the set 𝑆 = {𝑥} is a pre-automaton. Therefore,
𝑥 is finite state because it belongs to the automaton ̄𝑆.

• Suppose that 𝑆1 and 𝑆2 are finite automata. By Lemma 5.2, the set 𝑆 = {𝑒1+𝑒2 ∣
𝑒1 ∈ 𝑆1, 𝑒2 ∈ 𝑆2} is a pre-automaton. Therefore, if we have finite-state terms
𝑒1 and 𝑒2 of 𝑆1 and 𝑆2, their sum 𝑒1 + 𝑒2 is finite state because it belongs to the
automaton ̄𝑆.

• Suppose that 𝑆1 and 𝑆2 are finite automata. By Lemma 5.2, the set 𝑆 = {𝑒1𝑒2 ∣
𝑒1 ∈ 𝑆1, 𝑒2 ∈ 𝑆2} is a pre-automaton. Indeed, 𝛿𝑥(𝑒1𝑒2) = [𝑒1]0𝛿𝑥(𝑒2) + 𝛿𝑥(𝑒1)𝑒2
is a sum of elements of 𝑆, since

[𝑒1]0 ∈ 𝑆1
𝛿𝑥(𝑒2) ∈ 𝑆2
𝛿𝑥(𝑒1) ∈ 𝑆1

𝑒2 ∈ 𝑆2.

Therefore, if we have finite-state terms 𝑒1 and 𝑒2 of 𝑆1 and 𝑆2, their product 𝑒1𝑒2
is finite state because it belongs to the automaton ̄𝑆.

• Suppose that 𝑒 is a state of some automaton 𝑆 such that [𝑒]0 = 0. Define 𝑆′ =
{𝑒′𝑒∗ ∣ 𝑒′ ∈ 𝑆}. By Lemma 5.2, this set is a pre-automaton. Indeed,

𝛿𝑥(𝑒′𝑒∗) = [𝑒′]0𝛿𝑥(𝑒∗) + 𝛿𝑥(𝑒′)𝑒∗

= [𝑒′]0𝛿𝑥(𝑒)𝑒∗ + 𝛿𝑥(𝑒′)𝑒∗

= ([𝑒′]0𝛿𝑥(𝑒) + 𝛿𝑥(𝑒′))𝑒∗.
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The terms 𝛿𝑥(𝑒) and 𝛿𝑥(𝑒′) are in 𝑆. Thus, [𝑒′]0𝛿𝑥(𝑒) ∈ 𝑆 and 𝛿𝑥(𝑒′𝑒∗) is a sum
of terms of 𝑆′. Since 𝑒∗ = 1𝑒∗ is an element of 𝑆′, then it is a state of ̄𝑆′, and 𝑒∗
is finite state.

Furthermore, since terms in a finite-state automaton are closed under derivatives,
we can unfold them via derivatives 𝑘 times. This unfolding will turn a term into a
sum of some strings that are shorter than 𝑘; and some strings 𝑠 with length exact
𝑘, followed the residual expressions 𝑒𝑠 indexed by 𝑠. Formally, we can express this
property as follows.

Lemma 5.6. Let 𝑒 ∈ 𝒯𝑋 be a state of a finite-state automaton 𝑆, and 𝑘 ∈ ℕ. We can
write

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠𝑒𝑠,

where each 𝑒𝑠 ∈ 𝑆 for all 𝑠, and the size |𝑠| ∈ ℕ of a string 𝑠 is defined by mapping every
symbol of 𝑠 to 1 ∈ ℕ.

Proof. By induction on 𝑘. When 𝑘 = 0, the equation is equivalent to 𝑒 = 𝑒, and we
are done. Otherwise, suppose that the result is valid for 𝑘. We need to prove that it is
also valid for 𝑘 + 1. Write

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠𝑒𝑠.

By deriving each 𝑒𝑠, we can rewrite this as

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠 ([𝑒𝑠]0 + ∑
𝑥∈𝑋

𝑥𝛿𝑥(𝑒𝑠))

= ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠[𝑒𝑠]0 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

∑
𝑥∈𝑋

𝑠𝑥𝛿𝑥(𝑒𝑠). (1)

We can see that [𝑒𝑠]0 = 1 if and only if 𝑠 ≤ 𝑒: by taking the language interpretation
of (1), we can see that a string of size 𝑘 can only belong to the middle term, since
the left and right terms can only account for strings of strictly smaller or larger size,
respectively. Thus, we can rewrite (1) as

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘
𝑠≤𝑒

𝑠[𝑒𝑠]0 + ∑
𝑠,|𝑠|=𝑘

∑
𝑥∈𝑋

𝑠𝑥𝛿𝑥(𝑒𝑠)

= ∑
𝑠∈𝒮𝑋
𝑠≤𝑒

|𝑠|<𝑘+1

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

∑
𝑥∈𝑋

𝑠𝑥𝛿𝑥(𝑒𝑠). (2)

Given some string 𝑠 with |𝑠| = 𝑘 + 1, define

𝑒′𝑠 ≜ ∑
(𝑠′,𝑥)∈𝒮𝑋×𝑋

𝑠=𝑠′𝑥

𝛿𝑥(𝑒𝑠′).
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This sum is well defined because there are only finitely many 𝑠′ and 𝑥 ∈ 𝑋 such that
𝑠 = 𝑠′𝑥: 𝑠′ must be of size 𝑘, and there are only finitely many such strings. Moreover,
𝑒′𝑠 is an element of 𝑆, since 𝑆 is closed under taking derivatives and finite sums. We
have

𝑠𝑒′𝑠 = ∑
(𝑠′,𝑥)
|𝑠′|=𝑘
𝑠=𝑠′𝑥

𝑠𝛿𝑥(𝑒𝑠′)

= ∑
(𝑠′,𝑥)
|𝑠′|=𝑘
𝑠=𝑠′𝑥

𝑠′𝑥𝛿𝑥(𝑒𝑠′).

Therefore,

∑
𝑠

|𝑠|=𝑘+1

𝑠𝑒′𝑠 = ∑
𝑠

|𝑠|=𝑘+1

∑
(𝑠′,𝑥)
|𝑠′|=𝑘
𝑠=𝑠′𝑥

𝑠′𝑥𝛿𝑥(𝑒𝑠′)

= ∑
(𝑠′,𝑥)
|𝑠′|=𝑘

𝑠′𝑥𝛿𝑥(𝑒𝑠′)

= ∑
𝑠′

|𝑠′|=𝑘

∑
𝑥∈𝑋

𝑠′𝑥𝛿𝑥(𝑒𝑠′).

Putting everything together, (2) becomes

𝑒 = ∑
𝑠≤𝑒,|𝑠|<𝑘+1

𝑠 + ∑
𝑠

|𝑠|=𝑘+1

𝑠𝑒′𝑠, (3)

which completes the inductive case.

5.2 Bounded-Output Terms
Lemma 5.6 gives us almost what we need to prove that the transition term 𝑅𝑀 is a
representable relation. It allows us to partition 𝑅𝑀 into strings 𝑠 of length bounded
by 𝑘 and terms of the form 𝑠𝑒𝑠, which match strings prefixed by 𝑠 of length greater
than 𝑘. The first component, the strings 𝑠, can be easily shown to satisfy theupper
bound required for being representable. However, the prefixes 𝑠 that appear in the
terms 𝑠𝑒𝑠 are arbitrary, and, since we are working with weak Kleene algebra, there
isn’t much we can leverage to show that such prefixes will yield a similar bound. The
issue is that, in principle, in order to tell whether 𝑠′𝑟𝑠𝑒𝑠 ≤ Σ∗𝑀Σ

≠
𝑀𝜌, we might need to

unfold 𝑒𝑠 arbitrarily deep, which we cannot do in the weak setting. To rule out these
issues, we introduce a notion of bounded-output terms, which guarantee that only a
finite amount of unfolding is necessary.

Definition 5.7. Let 𝑒 ∈ 𝒯Σ̈ be a term. We say that 𝑒 has bounded output if there exists
some 𝑘 ∈ ℕ (the fanout) such that, for every string 𝑠 ≤ 𝑒, |𝜋𝑟(𝑠)| ≤ (|𝜋𝑙(𝑠)| + 1)𝑘.
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Lemma 5.8. Let 𝑒 have bounded output with fanout 𝑘 and let Λ be finite. If 𝑠 ∈
Next𝑒(Λ), then |𝑠| ≤ (𝑚 + 1)𝑘, where 𝑚 = max{|𝑠′| ∣ 𝑠′ ∈ Λ}. Thus, since Σ is
finite, Next𝑒(Λ) is finite.

Proof. If 𝑠 ∈ Next𝑒(Λ), by definition, there exists 𝑠′ ∈ Λ such that 𝑠′𝑙𝑠𝑟 ≤ 𝑒. Since 𝑒
has fanout 𝑘, we have

|𝑠| = |𝜋𝑟(𝑠′𝑙𝑠𝑟)| ≤ (|𝜋𝑙(𝑠′𝑙𝑠𝑟)| + 1)𝑘 = (|𝑠| + 1)𝑘 ≤ (𝑛 + 1)𝑘.

Lemma 5.9. Bounded-output terms are closed under all the weak Kleene algebra oper-
ations. For 𝑒∗, we additionally require that |𝜋𝑙(𝑠)| ≥ 1 for all strings 𝑠 ≤ 𝑒.

Proof. Let’s focus on the last point. Suppose that 𝑒 has fanout 𝑘 and that |𝜋𝑙(𝑠)| ≥ 1
for every 𝑠 ≤ 𝑒. We are going to show that 𝑒∗ has bounded output with fanout 2𝑘.

Suppose that 𝑠 ≤ 𝑒∗. We can write 𝑠 = 𝑠1⋯𝑠𝑛 such that 𝑠𝑖 ≤ 𝑒 for every 𝑖 ∈
{1,…, 𝑛}. We have, for every 𝑖 ∈ {1,…, 𝑛}, |𝜋𝑟(𝑠𝑖)| ≤ (|𝜋𝑙(𝑠𝑖)| + 1)𝑘. Thus,

|𝜋𝑟(𝑠)| =
𝑛
∑
𝑖=1

|𝜋𝑟(𝑠𝑖)|

≤
𝑛
∑
𝑖=1
(|𝜋𝑙(𝑠𝑖)| + 1)𝑘

≤
𝑛
∑
𝑖=1

2|𝜋𝑙(𝑠𝑖)|𝑘 (because |𝜋𝑙(𝑠𝑖)| ≥ 1)

= (
𝑛
∑
𝑖=1

|𝜋𝑙(𝑠𝑖)|) 2𝑘

= |𝜋𝑙(𝑠0)⋯𝜋𝑙(𝑠𝑛)|2𝑘
= |𝜋𝑙(𝑠0⋯𝑠𝑛)|2𝑘
= |𝜋𝑙(𝑠)|2𝑘
≤ (|𝜋𝑙(𝑠)| + 1)2𝑘.

For bounded-output terms, we can improve the expansion of Lemma 5.6.

Lemma 5.10. Let 𝑒 ∈ 𝒯Σ̈ be a bounded-output term that is the state of some automaton
𝑆. There exists some 𝑘 ∈ ℕ such that 𝑒 has fanout 𝑘 and such that, for every 𝑛 ∈ ℕ, we
can write

𝑒 = ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠∈𝒮Σ̈
|𝑠|=𝑛

|𝜋𝑟(𝑠)|≤(|𝜋𝑙(𝑠)|+1)𝑘

𝑠𝑒𝑠,

where 𝑒𝑠 ∈ 𝑆 for every 𝑠.

Proof. Let 𝑘0 be the fanout of 𝑒. For each 𝑒′ ∈ 𝑆 such that 𝑒′ ≠ 0, choose some string
𝑤𝑒′ ≤ 𝑒′. Define 𝑚 ≜ max{|𝜋𝑙(𝑤𝑒′)| ∣ 𝑒′ ∈ 𝑆, 𝑒′ ≠ 0} and 𝑘 ≜ (𝑚 + 1)𝑘0. Since
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𝑘 ≥ 𝑘0, we know that 𝑒 has fanout 𝑘. Moreover, by Lemma 5.6, we have

𝑒 = ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑛

𝑠𝑒𝑠

= ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑛
𝑒𝑠≠0

𝑠𝑒𝑠,

where each 𝑒𝑠 is a state of 𝑆. If 𝑠 is such that |𝑠| = 𝑛 and 𝑒𝑠 ≠ 0, we have 𝑠𝑤𝑒𝑠 ≤ 𝑒.
Therefore,

|𝜋𝑟(𝑠)| ≤ |𝜋𝑟(𝑠𝑤𝑒𝑠)|
≤ (|𝜋𝑙(𝑠𝑤𝑒𝑠)| + 1)𝑘0
= (|𝜋𝑙(𝑠)| + |𝜋𝑙(𝑤𝑒𝑠)| + 1)𝑘0
≤ (|𝜋𝑙(𝑠)| + 𝑚 + 1)𝑘0
≤ (|𝜋𝑙(𝑠)| + 1)(𝑚 + 1)𝑘0
= (|𝜋𝑙(𝑠)| + 1)𝑘.

Thus,

𝑒 = ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠

|𝑠|=𝑛
𝑒𝑠≠0

|𝜋𝑟(𝑠)|≤(|𝜋𝑙(𝑠)|+1)𝑘

𝑠𝑒𝑠

= ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠

|𝑠|=𝑛
|𝜋𝑟(𝑠)|≤(|𝜋𝑙(𝑠)|+1)𝑘

𝑠𝑒𝑠.

Definition 5.11. A term 𝐿 over Σ is prefix free if for all strings 𝑠1 ≤ 𝐿 and 𝑠2 ≤ 𝐿, if
𝑠1 is a prefix of 𝑠2, then 𝑠1 = 𝑠2.

Lemma 5.12. Let 𝑠 and 𝑠′ be two strings over Σ such that one is not a prefix of the
other, or vice versa. Then we can write 𝑠 = 𝑠0𝑥𝑠1 and 𝑠′ = 𝑠0𝑥′𝑠′1 with 𝑥 ≠ 𝑥′. Thus,
𝑠𝑟𝑠′𝑙Σ̈∗ ≤ Σ∗Σ≠Σ̈∗.

Proof. By induction on the length of 𝑠.

Lemma 5.13. Suppose that 𝑒 ∈ 𝒯Σ̈ is such that 𝜋𝑙(𝑒) ≤ 𝐿 and 𝜋𝑟(𝑒) ≤ 𝐿, where 𝐿
is prefix free. Suppose, moreover, that 𝑒 is finite-state and has bounded output. Then
𝑒 ∶ Rel(𝐿).

Proof. We have already seen that Next𝑒(Λ) is finite when Λ is (Lemma 5.8). Thus, we
need to find some 𝜌 such that, for every finite Λ,

Λ𝑟𝑒 ≤ ΛNext𝑒(Λ)𝑟 + Σ∗Σ≠𝜌.
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Define 𝜌 ≜ Σ̈∗𝜌𝑒, where 𝜌𝑒 is the greatest element of the automaton of 𝑒. It suffices
to prove the result for the case Λ = {𝑠}. Indeed, if the result holds for singletons, we
have

Λ𝑟𝑒 = ∑
𝑠∈Λ

𝑠𝑟𝑒

≤ ∑
𝑠∈Λ

𝑠Next𝑒(𝑠)𝑟 + Σ∗Σ≠𝜌 by assumption

≤ ∑
𝑠∈Λ

ΛNext𝑒(𝑠)𝑟 + Σ∗Σ≠𝜌

= Λ ∑
𝑠∈Λ

Next𝑒(𝑠) + Σ∗Σ≠𝜌

= ΛNext𝑒(Λ) + Σ∗Σ≠𝜌.

Let 𝑘 be the constant of Lemma 5.10 for 𝑒, 𝑛 = |𝑠|, and let 𝑝 = (𝑘 + 1)(𝑛 + 1). Let

Λ̈ ≜ {𝑠′ ∈ 𝒮Σ̈ ∣ |𝑠′| = 𝑝 + 1, |𝜋𝑟(𝑠′)| ≤ (|𝜋𝑙(𝑠′)| + 1)𝑘}.

By applying Lemma 5.10 to 𝑒, we can write

𝑒 = ∑
𝑠′≤𝑒

|𝑠′|<𝑝+1

𝑠′ + ∑
𝑠′∈Λ̈

𝑠′𝑒𝑠′

= ∑
𝑠′≤𝑒,|𝑠′|≤𝑝

𝑠′ + ∑
𝑠′∈Λ̈

𝑠′𝑒𝑠′

= ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)=𝑠

𝑠′ + ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)≠𝑠

𝑠′ + ∑
𝑠′∈Λ̈

𝑠′𝑒𝑠′,

Thus, to prove the inequality, it suffices to prove

𝑠𝑟 ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)=𝑠

𝑠′ = 𝑠Next𝑒(𝑠)𝑟 (4)

𝑠𝑟 ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)≠𝑠

𝑠′ ≤ Σ∗Σ≠𝜌 (5)

𝑠𝑟 ∑
𝑠′∈Λ̈

𝑠′𝑒′𝑠 ≤ Σ∗Σ≠𝜌. (6)

Let us start with (4). Notice that, for any string 𝑠′ over Σ̈, we have 𝑠′ = 𝜋𝑙(𝑠′)𝑙𝜋𝑟(𝑠′)𝑟.
Therefore, there is a bijection between the set of indices 𝑠′ of the sum and the set of
strings Next𝑒(𝑠). The bijection is given by

𝑠′ ↦ 𝜋𝑟(𝑠′) ∈ Next𝑒(𝑠)
Next𝑒(𝑠) ∋ 𝑠′ ↦ 𝑠𝑙𝑠′𝑟.
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To prove that this is a bijection, we must show that the inverse produces indeed a
valid index. Notice that, if 𝑠′ ∈ Next𝑒(𝑠), by Lemma 5.8, we have |𝑠′| ≤ (𝑛 + 1)𝑘, and
thus |𝑠𝑙𝑠′𝑟| = |𝑠| + |𝑠′| ≤ (𝑛 + 1)(𝑘 + 1) = 𝑝.

By reindexing the sum in (4) with this bijection, we have

𝑠𝑟 ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)=𝑠

𝑠′ = 𝑠𝑟 ∑
𝑠′∈Next𝑒(𝑠)

𝑠𝑙𝑠′𝑟

= 𝑠𝑟𝑠𝑙 ∑
𝑠′∈Next𝑒(𝑠)

𝑠′𝑟

= 𝑠𝑟𝑠𝑙 ( ∑
𝑠′∈Next𝑒(𝑠)

𝑠′)
𝑟

= 𝑠Next𝑒(𝑠)𝑟.

Next, let us look at (5). Suppose that 𝑠′ is such that 𝑠′ ≤ 𝑒 and 𝜋𝑙(𝑠′) ≠ 𝑠. Since 𝐿
is prefix free, and 𝜋𝑙(𝑠′) ≤ 𝐿, Lemma 5.12 applied to 𝑠 and 𝑠′ yields

𝑠𝑙𝑠′ ≤ Σ∗Σ≠Σ̈∗ ≤ Σ∗Σ≠Σ̈∗𝜌𝑒 = Σ∗Σ≠𝜌,

where we use the fact that 𝜌𝑒 ≥ 1 because 1 is a state of the automaton of 𝑒. Summing
over all such 𝑠′, we get the desired inequality.

To conclude, we must show (6). By distributivity, this is equivalent to showing
that, for every 𝑠′ ∈ Λ,

𝑠𝑟𝑠′𝑒𝑠′ ≤ Σ∗Σ≠𝜌.

If 𝑒𝑠′ = 0, we are done. Otherwise, by Corollary 2.6, we can find some string 𝑠″ ≤ 𝑒𝑠′ .
We have 𝑠′𝑠″ ≤ 𝑠′𝑒𝑠′ ≤ 𝑒.

Note that we must have |𝜋𝑙(𝑠′)| > 𝑛. Indeed, suppose that |𝜋𝑙(𝑠′)| ≤ 𝑛. Since
𝑠′ ∈ Λ, we have

|𝑠′| = |𝜋𝑙(𝑠′)| + |𝜋𝑟(𝑠′)|
≤ |𝜋𝑙(𝑠′)| + (|𝜋𝑙(𝑠′)| + 1)𝑘
≤ (|𝜋𝑙(𝑠′)| + 1)(𝑘 + 1)
≤ (𝑛 + 1)(𝑘 + 1)
< 𝑝 + 1
= |𝑠′|,

which is a contradiction.
Since 𝜋𝑙(𝑠′𝑠″) ≤ 𝜋𝑙(𝑒) ≤ 𝐿 and 𝐿 is prefix free, by Lemma 5.12, we can write

𝑠 = 𝑠0𝑥𝑠1 and 𝜋𝑙(𝑠′𝑠″) = 𝜋𝑙(𝑠′)𝜋𝑙(𝑠″) = 𝑠0𝑥′𝑠′1, with 𝑥 ≠ 𝑥′. But |𝜋𝑙(𝑠′)| > 𝑛 = |𝑠| and
|𝑠0| < |𝑠|, thus 𝜋𝑙(𝑠′) must be of the form 𝑠0𝑥′𝑠′2. We find that 𝑠𝑟𝑠′ = 𝑠𝑟𝜋𝑙(𝑠′)𝜋𝑟(𝑠′) ≤
Σ∗Σ≠Σ̈∗, and thus

𝑠𝑟𝑠′𝑒𝑠′ ≤ Σ∗Σ≠Σ̈∗𝑒𝑠′ ≤ Σ∗Σ≠Σ̈∗𝜌𝑒 = Σ∗Σ≠𝜌.

23



5.3 Putting Everything Together
To derive completeness for two-counter machines (Theorem 3.8), it suffices to show
that the hypotheses of Lemma 5.13 are satisfied.

Lemma 5.14. We have the following properties:

• 𝑇𝑀 is prefix free.

• 𝜋𝑙(𝑅𝑀) ≤ 𝐶𝑀 ≤ 𝑇𝑀.

• 𝜋𝑟(𝑅𝑀) ≤ 𝑇𝑀.

• 𝑅𝑀 is finite state (Definition 5.3).

• 𝑅𝑀 has bounded output (Definition 5.7).

Thus, by Lemma 5.13, the term 𝑅𝑀 is a representable relation of type Rel(𝑇𝑀).

Proof. To show that 𝑇𝑀 is prefix free, we note that every string 𝑠 ≤ 𝑇𝑀 must be of the
form 𝑠′𝑥, where 𝑥 ∈ 𝑄𝑀 ∪ {𝑐1, 𝑐0} and 𝑠′ does not contain any such symbols. Thus,
any proper prefix of such a string cannot lie in 𝑇𝑀.

The assertions about 𝜋𝑙(𝑅𝑀) and 𝜋𝑟(𝑅𝑀) have similar proofs, so we focus on the
second one. First, we prove that, for any instruction 𝑖 ∈ 𝐼𝑀, 𝜋𝑟(⦇𝑖⦈) ≤ 𝑇𝑀. Let us
consider the example of Inc; the others are analogous:

𝜋𝑟(Inc(1, 𝑞)) = 𝜋𝑟(𝑎𝑟𝑎∗𝑏∗𝑞𝑟)
= 𝑎𝑎∗𝑏∗𝑞
≤ 𝑎∗𝑏∗𝑞 because 𝑎𝑎∗ ≤ 𝑎∗

≤ 𝐶𝑀
≤ 𝑇𝑀.

Thus,

𝜋𝑟(𝑅𝑀) = ∑
𝑞∈𝑄𝑀

𝜋𝑟(⦇𝜄(𝑞)⦈𝑞𝑙)

= ∑
𝑞∈𝑄𝑀

𝜋𝑟(⦇𝜄(𝑞)⦈)

≤ ∑
𝑞∈𝑄𝑀

𝑇𝑀

= 𝑇𝑀.

To show the next two points, we just have to appeal to the closure properties of
finite-state and bounded-output terms (Lemmas 5.5 and 5.9). These lemmas say that
these properties are always preserved by all the algebra operations, except possibly
for star. For star, we need to check that the starred sub-terms do not contain 1 and
that they only contain strings with at least one left symbol. The starred sub-terms are
just 𝑎𝑙𝑎𝑟 and 𝑏𝑙𝑏𝑟, both of which satisfy this property.
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We can finally conclude with the proof of completeness, thus establishing unde-
cidability (Theorem 3.9).

Proof of Theorem 3.8. If 𝑠 = 𝑠0 →𝑅𝑀 ⋯ →𝑅𝑀 𝑠𝑛 = 𝑐1, we can show that Next𝑖𝑒(𝑠) is
{𝑠𝑖} for 𝑖 ≤ 𝑛 and ∅ when 𝑖 > 𝑛, because the transition relation is deterministic and
because 𝑐1 does not transition. Moreover, by Lemma 5.14, we have 𝑠𝑖 ≤ 𝐶𝑀 for every
𝑖 < 𝑛 (since (𝑠𝑖)𝑙(𝑠𝑖+1)𝑟 ≤ 𝑅𝑀).

Choose 𝜌 as in Theorem 4.3. We have

𝑠𝑅∗𝑀 ≤ Σ∗ Next<𝑛+1𝑒 (𝑠)𝑟 + Σ∗Σ≠𝜌
= Σ∗(Next<𝑛𝑒 (𝑠) + Next𝑛𝑒 (𝑠))𝑟 + Σ∗Σ≠𝜌
≤ Σ∗(𝐶𝑀 + 𝑐1)𝑟 + Σ∗Σ≠𝜌.

6 Conclusion and Related Work
In his seminal work, Kozen [Koz97] established several hardness and completeness re-
sults for variants of Kleene algebra. He noted that a proof of Cohen’s [Koz96] showed
that deciding equality of regular languages with commutativity conditions on atoms
(ℒ𝑋) was not possible—more precisely, the problem isΠ0

1-complete, by reduction from
the complement of the Post correspondence problem (PCP). However, at the time, it
was unknown whether a similar result applied to the pure theory of Kleene algebra
with commutativity conditions (𝒦𝑋). The question had been left open since then.
Our work provides a solution, proving that the problem is undecidable, even for a
much weaker theory 𝒯𝑋, which omits the induction axioms of Kleene algebra.

As we were about to post publicly this work, we became aware of the work of
Kuznetsov [Kuz23], who independently proved a similar undecidability result. In
terms of techniques, both of our works draw inspiration from Cohen’s proof of Π0

1-
completeness. Leveraging the reduction of the halting problem to the PCP, Kuznetsov
extends Cohen’s idea and uses Kleene-algebra inequalities to describe self-looping
Turing machines—that is, Turing machines that run forever by reaching a designated
configuration that steps to itself. We can show that the language of pairs ⟨⟨𝑀⟩, 𝑥⟩ of
machines𝑀 that reach a self-looping state on input 𝑥 is recursively inseparable from
the set of such pairs where𝑀 halts on the input, which implies that we cannot decide
such inequalities.

The inequalities used by Kuznetsov are similar to ours, and can be proved by
unfolding finitely many times the starred term that defines the execution of Turing
machines. One important difference is that, in Kuznetsov’s work, this starred term
contains only ∗-free terms, which arise from the reduction of the halting problem to
the PCP. This requires somemorework to establish that the inequality indeed encodes
the execution of the Turing machine, but this work just replicates the ideas behind
the standard reduction from the halting problem to the PCP, so it does not need to be
belabored. On the other hand, we leverage the language of Kleene algebra to define
an execution model for two-counter machines, which can be encoded more easily.
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The downside of our approach is that our relation 𝑅𝑀 involves starred terms, which
require our notion of bounded output to be analyzed effectively.

In terms of the end results, Kuznetsov’s are stronger, in that he proves also Σ01-
completeness of the equational theory of𝒦𝑋 (not just undecidability), but alsoweaker,
in that his results are stated for𝒦𝑋, and do not work as is for a more general theory
like 𝒯𝑋. However, we believe that the two results could be reconciled. Kuznetsov’s
proof of Σ01-completeness uses effective inseparability, a refinement of recursive insep-
arability. Roughly speaking, two sets𝐴 and 𝐵 are effectively inseparable if there exists
a computable function 𝑓 such that, when each set is overapproximated by disjoint re-
cursively enumerable sets𝐴′ and 𝐵′, the function produces an output that does not be-
long to either𝐴′ or 𝐵′ (using codes for these sets as an input). According to a standard
result of computability theory (see Kuznetsov [Kuz23] for references), two effectively
inseparable sets that are recursively enumerable are Σ01-complete. The sets involved
in Theorem 3.1 are known to be effectively inseparable, so we believe that our results
could be adapted to show Σ01-completeness as well. On the other hand, Kuznetsov
does require the induction axiom of Kleene algebra to simplify some of the inequali-
ties involving starred terms—specifically, he needs the identity 𝐴∗(𝐴∗)+ ≤ 𝐴∗ and the
monotonicity of (−)∗. We believe that it might be possible to adapt his inequalities so
that these identities are not needed, perhaps by reusing our idea of keeping a residue
term 𝜌 in Theorem 3.8.
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