
HAL Id: hal-04534715
https://hal.science/hal-04534715v1

Preprint submitted on 5 Apr 2024 (v1), last revised 24 Nov 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kleene algebra with commutativity conditions is
undecidable

Arthur Azevedo de Amorim, Marco Gaboardi, Cheng Zhang

To cite this version:
Arthur Azevedo de Amorim, Marco Gaboardi, Cheng Zhang. Kleene algebra with commutativity
conditions is undecidable. 2024. �hal-04534715v1�

https://hal.science/hal-04534715v1
https://hal.archives-ouvertes.fr


Kleene algebra with commutativity conditions is
undecidable

Arthur Azevedo de Amorim Marco Gaboardi Cheng Zhang

April 5, 2024

Abstract

We prove that the equational theory of Kleene algebra with commutativity
conditions on atomic terms is undecidable, thereby settling a longstanding open
question in the theory of Kleene algebra. In fact, we show that this undecidability
result holds even if we drop the induction axioms of Kleene algebra, which leads
to a simpler equational theory. This complements a recent result of Kuznetsov,
who independently established a similar undecidability result, but relying on the
full power of induction.

1 Introduction
Kleene algebra is an algebraic framework that generalizes the equational properties of
operations on regular languages. One of the pleasant properties of Kleene algebra is
that its equational theory is decidable, which enables several applications. In partic-
ular, there are several program analyses that can be defined by translating programs
into Kleene algebra terms, and then checking which terms are equal.

Often, it is convenient to enrich the definition of Kleene algebra with additional
axioms. One popular class of axioms are commutativity conditions of the form 𝑒1𝑒2 =
𝑒2𝑒1, which state that the terms 𝑒1 and 𝑒2 can be composed in any order. In terms
of program analysis, the terms 𝑒1 and 𝑒2 correspond to sub-commands of a larger
program, and their commutativity ensures that they can be executed in any order
without affecting the final output.

Unfortunately, it is known that such conditions can pose issues for the decidabil-
ity. In particular, if we are allowed to add arbitrary commutativity conditions between
atomic Kleene algebra terms, it is undecidable to test if two Kleene algebra equations
hold for all language models [Koz97]—in fact, it has been known that this problem is
Π0
1-complete. Such language models are particularly important for program analy-

sis applications, which hinders the applicability of Kleene algebra in these contexts.
Nevertheless, for a long time, it was unknown if this undecidability result still held if
we considered arbitrary Kleene algebras with commutativity conditions on atoms—
in other words, if we wanted to consider only equations in freely generated Kleene
algebras.

1



This paper settles this question by proving that it is impossible to decide whether
an equation between two terms holds only by using commutativity conditions on
atoms and the axioms of Kleene algebra. The question has been independently settled
by Kuznetsov [Kuz23], who showed that this problem is, in fact, Σ01-complete (that
is, equivalent to the halting problem for Turing machines). Though our techniques
overlap, we show actually that the undecidability result extends to weaker version of
Kleene algebra where we use only a subset of its axioms. More precisely, we show
that the theory of Kleene algebra remains undecidable even if we drop its induction
axioms, which are needed to prove many identities involving the iteration operation
on Kleene algebras.

Like prior results on this question, our development views uses Kleene algebra
terms to model certain transition systems—in particular, automata like Turing ma-
chines that operate on strings. Given a final state 𝑥 for a transition system, we can
construct an inequality on Kleene algebra terms that roughly means “if the system
reaches a final state from a given initial state, the final state must be 𝑥”. This in-
equality can be proved if 𝑥 is indeed a final state, and can be refuted if the transition
system reaches some other final state 𝑦. This means that we can use Kleene alge-
bra terms to decide a language on that is reminiscent of the acceptance problem for
Turing machines, which implies that it is undecidable.

Structure of the paper In Section 2, we introduce an abstract framework for stat-
ing the problem of Kleene algebra terms modulo commutativity conditions, using the
language of category theory. In Section 3, we recall basic facts about Kleene algebra
and related structures.

In Section 4, we show howwe can viewKleene algebra terms as automata, proving
an expansion lemma (Lemma 4.8) that guarantees that most terms can be expanded
so that all of its matched strings bounded by some maximum length can be identi-
fied. This framework generalizes the usual definitions of derivative on Kleene algebra
terms, but does not rely on the induction axioms of Kleene algebra.

In Section 5, we develop a framework for representing relations using Kleene al-
gebra terms. Our results apply to so-called bounded-output terms, which, roughly
speaking, represent relations that map a string to only finitely many next strings.
This restriction allows us to represent the transitive closure of a transition relation
using Kleene algebra iteration, and also to analyze the behavior of the transition re-
lation on paths of finite length. We prove a partial reachability result (Theorem 5.23),
which shows that we can construct an inequality on Kleene algebra terms to upper
bound the set of strings that can be reached from some input configuration.

In Section 6, we use our framework of relations to represent two-counter ma-
chines, a computation formalism that is equivalent to Turing machines in expressive-
ness. Our partial reachability result implies that, if we could decide equalities between
Kleene algebra terms, we could solve an undecidable problem on Turing machines.

2



2 Commutable Sets
To discuss properties of Kleene algebras with commutativity conditions, it will be
useful to have an abstract notion of what it means for two elements to commute.

Definition 2.1. A commuting relation on a set 𝑋 is a reflexive symmetric relation on
𝑋. A commutable set is a carrier set endowed with a commuting relation ∼. We say
that two elements 𝑥 and 𝑦 commute if 𝑥 ∼ 𝑦. A commutable set is commutative if all
two elements commute; it is discrete if the commuting relation is equality.

Definition 2.2. A morphism of commutable sets is a function between the carriers
that preserves the commuting relation. This data defines a category Comm.

Lemma 2.3. Let 𝑈Comm ∶ Comm → Set be the forgetful functor that forgets the
commuting relation of a commutable set. This functor has a left adjoint 𝐷 ∶ Set →
Comm, which views a set as a discrete commutable set, and a right adjoint 𝐾 ∶ Set →
Comm, which views a set as a commutative set.

Definition 2.4. A commutable subset of a commutable set 𝑋 is a commutable set 𝑌
whose carrier is a subset of𝑋, andwhose commuting relation is obtained by restricting
the corresponding relation of 𝑋. We’ll often abuse notation and treat a subobject
𝑌 ↪ 𝑋 as a commutable subset if its image in 𝑋 is a commutable subset.

Definition 2.5. Given two commutable sets𝑋 and𝑌, their sum is given by the disjoint
union 𝑋 +𝑌 endowed with the commuting relation generated by the following rules:

𝑥 ∼ 𝑥′

𝜄1(𝑥) ∼ 𝜄1(𝑥′)
𝑦 ∼ 𝑦′

𝜄2(𝑦) ∼ 𝜄2(𝑦′)

This yields a binary coproduct on Comm.

Definition 2.6. Let𝑋 and𝑌 be objects ofComm. We define the object𝑋⊕𝑌 ∈ Comm
as follows. The carrier of𝑋⊕𝑌 is the disjoint union𝑋+𝑌. We use 𝑥𝑙 and 𝑦𝑟 to indicate
the copies of 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 in 𝑋 ⊕ 𝑌. The relation on 𝑋 ⊕ 𝑌 is generated by the
following rules:

𝑥𝑙 ∼ 𝑦𝑟

𝑥 ∼ 𝑥′

𝑥𝑙 ∼ 𝑥′𝑙

𝑦 ∼ 𝑦′

𝑦𝑟 ∼ 𝑦′𝑟

The canonical injections (−)𝑙 ∶ 𝑋 → 𝑋 ⊕ 𝑌 and (−)𝑟 ∶ 𝑌 → 𝑋 ⊕ 𝑌 are morphisms
in Comm (and present commutable subsets). We’ll abbreviate 𝑋 ⊕ 𝑋 as ̈𝑋.

3 Basic Kleene Algebra
Here we collect some basic facts about Kleene algebra.

3



Definition 3.1. A (left-biased) weak Kleene algebra is an idempotent semiring 𝑋
equipped with a star operation. Spelled out explicitly, this means that 𝑋 has oper-
ations of types

1 ∶ 𝑋
0 ∶ 𝑋

(−) + (−) ∶ 𝑋 × 𝑋 → 𝑋
(−) ⋅ (−) ∶ 𝑋 × 𝑋 → 𝑋

(−)∗ ∶ 𝑋 → 𝑋.

which are required to satisfy the following equations:

1 ⋅ 𝑥 = 𝑥
𝑥 ⋅ 1 = 𝑥
0 ⋅ 𝑥 = 0
𝑥 ⋅ 0 = 0

𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅ 𝑦) ⋅ 𝑧
0 + 𝑥 = 𝑥
𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧
𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧
(𝑥 + 𝑦) ⋅ 𝑧 = 𝑥 ⋅ 𝑧 + 𝑦 ⋅ 𝑧

𝑥∗ = 1 + 𝑥 ⋅ 𝑥∗ left unfolding.

We view a weak Kleene algebra as a partial order by using the usual ordering relation
on idempotent monoids: 𝑥 ≤ 𝑦 means that 𝑦 + 𝑥 = 𝑥. A Kleene algebra is a weak
Kleene algebra that satisfies the following properties:

𝑥𝑦 ≤ 𝑦 ⇒ 𝑥∗𝑦 ≤ 𝑦 left induction

𝑥𝑦 ≤ 𝑥 ⇒ 𝑥𝑦∗ ≤ 𝑥 right induction.

A ∗-continuous Kleene algebra is a weak Kleene algebra where sup𝑛≥0 𝑝𝑞
𝑛𝑟 = 𝑝𝑞∗𝑟

holds for all 𝑝, 𝑞 and 𝑟.

Definition 3.2. Let 𝑋 and 𝑌 be weak Kleene algebras. A morphism of type 𝑋 → 𝑌 is
a function 𝑓 ∶ 𝑋 → 𝑌 that commutes with all the algebra operations. In what follows,
we let WKA denote the category of weak Kleene algebras. We denote by KA and KA∗

the full subcategories of Kleene algebras and ∗-continuous algebras.

The booleans 𝟚 ≜ {0 ≤ 1} form a Kleene algebra. The addition operation is
disjunction, themultiplication operation is conjunction, and the star operation always
outputs 1. This Kleene algebra is the initial object in all three categories WKA, KA
and KA∗.

These categories have various relationships that can be visualized in the follow-
ing diagram, where the dashed arrows indicate places where the diagram does not
necessarily commute.

4



WKA

Comm Mon KA

KA∗

⊣
𝒮

⊣
𝒯

⊣
ℒ

⊣
𝒦

⊣
𝒯′

⊣
𝒦′

⊣
ℛ

First, we can show that every ∗-continuous algebra is actually a Kleene algebra, so
KA∗ is actually a full subcategory of KA. Given a monoid 𝑋, we can view it as a
commutable set by saying that 𝑥 ∼ 𝑦 if and only if 𝑥𝑦 = 𝑦𝑥. This assignment can be
lifted to a functor, and that functor has a left adjoint 𝒮, which maps 𝑋 ∈ Comm to
the monoid of strings of 𝑋 modulo the commuting relation of 𝑋. Each weak Kleene
algebra can be seen as amonoid by keeping its multiplication operation and forgetting
the rest of its structure. These yield forgetful functors fromWKA, KA andKA∗ toMon
that all have left adjoints.

For weak Kleene algebras and usual Kleene algebras, these left adjoints can be de-
scribed by building terms over monoid elements, quotienting these terms by provable
equalities between terms, and also by identifying the multiplicative structure of the
free algebra with the monoid structure.

For ∗-continuous algebras, the left adjoint ℛ is given by so-called regular lan-
guages [Koz97]. Explicitly, if 𝑋 is a monoid, we can view the set𝒫𝑋 as a ∗-continuous
algebra by using the following operations:

0 ≜ ∅
1 ≜ {1}

𝐴 + 𝐵 ≜ 𝐴 ∪ 𝐵
𝐴 · 𝐵 ≜ {𝑥𝑦 ∣ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

𝐴∗ ≜ ⋃
𝑛∈ℕ

𝐴𝑛.

The ∗-continuous algebra ℛ𝑋 of regular sets over 𝑋 is the smallest subalgebra of 𝒫𝑋
that contains the singletons. We write 𝑙𝑋 ∶ 𝒯𝑋 → ℒ𝑋 for the unique algebra mor-
phism that maps a symbol 𝑥 ∈ 𝑋 to the singleton set {𝑥}. We refer to this morphism
as the language interpretation of𝒯𝑋. By abuse of notation, we’ll often identify Kleene
algebra terms with their corresponding language interpretations; e.g. if 𝑒 is a term,
we’ll write 𝑋 ⊆ 𝑒 to mean 𝑋 ⊆ 𝑙(𝑒).

To simplify the notation, we will never bother explicitly mentioning these right
adjoints. In other words, we will always view 𝒯𝑋 as a monoid or as a commutable
set by using the structure given by the right adjoints. We can also show that the unit

5



of all the involved adjunctions is an injection, so we’ll treat 𝑋 ∈ Comm as a subset of
𝒮𝑋, 𝒯𝑋, etc. For example, the unit 𝑋 → ℒ𝑋 maps an element 𝑥 ∈ 𝑋 to the singleton
set {𝑥}. By direct calculation, we can show that this unit factors through the unit
𝑋 → 𝒯𝑋, so this unit is an injection as well.

Theorem 3.3. The following diagram commutes:

𝒮𝑋 𝒯𝑋

ℒ𝑋,
{−}

𝑙

where the diagonal arrow is the monoid morphism that sends 𝑠 ∈ 𝒮𝑋 to {𝑠} ∈ ℒ𝑋.

Proof. A monoid morphism on 𝒯𝑋 is uniquely determined by its action on elements
of 𝑋. Thus, we just have to note that both paths map 𝑥 ∈ 𝑋 to {𝑥} ∈ ℒ𝑋.

Theorem 3.4. Let 𝑠 ∈ 𝒮𝑋 be a string and 𝑒 ∈ 𝒯𝑋 be an arbitrary term. The following
conditions are equivalent:

• 𝑠 ≤ 𝑒

• 𝑠 ∈ 𝑙(𝑒).

Proof. Suppose that 𝑠 ≤ 𝑒. Then 𝑠 ∈ {𝑠} = 𝑙𝑋(𝑠) ⊆ 𝑙𝑋(𝑒) by monotonicity (cf. Theo-
rem 3.3). Conversely, if 𝑠 ∈ 𝑙(𝑒), we proceed by induction on 𝑒.

One useful fact about the fact that ℒ has an adjoint is that, if 𝑌 is ∗-continuous,
then every morphism of algebras 𝑓 ∶ 𝒯𝑋 → 𝑌 can be factored through the language
interpretation 𝑙:

𝒯𝑋 ℒ𝑋

𝑌.
𝑓

𝑙

This has some pleasant consequences. For example, if [−]0 ∶ 𝒯𝑋 → 𝟚 be the algebra
morphism that maps every 𝑥 ∈ 𝑋 to 0, then [𝑒]0 = 1 if and only if 1 ≤ 𝑒. Indeed, this
morphism must factor through ℒ𝑋. The corresponding factoring ℒ𝑋 must map any
nonempty string to 0 and the empty string to 1. Thus, [𝑒]0 = 1 if and only if 1 ∈ 𝑙(𝑒),
which is equivalent to 1 ≤ 𝑒.

Definition 3.5. A term 𝑒 ∈ 𝒯𝑋 is finite if 𝑙(𝑒) is finite.

Theorem 3.6. If 𝑒 ∈ 𝒯𝑋 is finite, then 𝑒 = ∑ 𝑙(𝑒).

Proof. By induction on 𝑒. We note that, if 𝑙(𝑒) is finite, then 𝑙(𝑒′) is also finite for every
immediate subterm 𝑒′, which allows us to apply the relevant induction hypotheses.

Corollary 3.7. The language interpretation 𝑙 is injective on finite terms: if 𝑙(𝑒1) = 𝑙(𝑒2)
is finite, then 𝑒1 = 𝑒2.

6



Proof. We have 𝑒1 = ∑ 𝑙(𝑒1) = ∑ 𝑙(𝑒2) = 𝑒2.

Corollary 3.8. If 𝑒 ≠ 0, then there exists some string 𝑠 such that 𝑠 ≤ 𝑒.

Proof. Note that 𝑙(𝑒) ≠ ∅. Indeed, if 𝑙(𝑒) = ∅ = 𝑙(0), then 𝑒 = 0 by Corollary 3.7,
which contradicts our hypothesis. Therefore, we can find some 𝑠 such that 𝑠 ∈ 𝑙(𝑒).
But this is equivalent to 𝑠 ≤ 𝑒 by Theorem 3.4.

Lemma 3.9. 𝒮𝑋 is a cancellative monoid: if 𝑠𝑠1 = 𝑠𝑠2 or 𝑠1𝑠 = 𝑠2𝑠, then 𝑠1 = 𝑠2.

Proof. Suppose that 𝑠𝑠1 = 𝑠𝑠2; the other case follows analogously. We prove the result
by induction on 𝑠. There are three cases to consider.

• If 𝑠 = 1, the result follows immediately.

• If 𝑠 = 𝑠′1𝑠′2, then write

𝑠𝑠1 = 𝑠′1(𝑠′2𝑠1)
𝑠𝑠2 = 𝑠′1(𝑠′2𝑠2).

The induction hypothesis applied to 𝑠′1 shows that 𝑠′2𝑠1 = 𝑠′2𝑠2. Then, another
use of the induction hypothesis on 𝑠′2 allows us to conclude.

• Otherwise, 𝑠 must be an element 𝑥 of 𝑋. Thus, we need to show that 𝑥𝑠1 = 𝑥𝑠2
implies 𝑠1 = 𝑠2. TODO

As usual, if 𝑋 is a (weak) Kleene algebra, we are going to view a finite set of
elements 𝐴 of 𝑋 as the element∑𝑎∈𝐴 𝑎 ∈ 𝑋.

Lemma 3.10. Let 𝑋 be a commutable set, and 𝑌 be a commutable subset of 𝑋. The
following is a morphism of commutable sets:

𝜋𝑌 ∶ 𝑋 → 𝒯𝑌

𝜋𝑌 = {
𝑐 if 𝑐 ∈ 𝑌
1 otherwise.

A similar result holds if we replace 𝒯 with 𝒮. When 𝑋 = 𝑋𝑙⊕𝑋𝑟 and 𝑌 is one of the two
summands, we’ll use the notations 𝜋𝑙 and 𝜋𝑟 to refer to these projections.

Proof. We just need to show that the commuting relation is preserved. This follows
because 1 commutes with anything in 𝒯𝑌 or 𝒮𝑌 and because the commuting relation
in 𝑌 is inherited from 𝑋.

Lemma 3.11. Let 𝑋 be a commutable set, and 𝑌 be a commutable subset of 𝑋. The
canonical inclusion

𝑌 𝑋 𝒯𝑋,

7



gives rise to a morphism of algebras of type𝒯𝑌 → 𝒯𝑋. This morphism has a left inverse
𝜋𝑌 ∶ 𝒯𝑋 → 𝒯𝑌, given by lifting the morphism of the same name in Lemma 3.10.

Convention 3.12. If 𝑋 and 𝑌 are commutable sets, we lift the functions (−)𝑙 ∶ 𝑋 →
𝑋 ⊕ 𝑌 and (−)𝑟 ∶ 𝑌 → 𝑋 ⊕ 𝑌 and view them as having types 𝒯𝑋 → 𝒯(𝑋 ⊕ 𝑌)
and 𝒯𝑌 → 𝒯(𝑋 ⊕ 𝑌). We’ll also view them as having types 𝒮𝑋 → 𝒮(𝑋 ⊕ 𝑌) and
𝒮𝑌 → 𝒮(𝑋 ⊕ 𝑌).

If 𝑋 is a commutable set, view a term 𝑒 ∈ 𝒯𝑋 as an element 𝒯(𝑋 ⊕𝑋) by mapping
each symbol 𝑥 ∈ 𝑋 in 𝑒 to 𝑥𝑙𝑥𝑟.

Any string over𝑋⊕𝑌 can be seen as a pair of strings over𝑋 and 𝑌. More precisely,
the monoids 𝒮(𝑋 ⊕ 𝑌) and 𝒮𝑋 × 𝒮𝑌 are isomorphic via the mappings

𝒮(𝑋 ⊕ 𝑌) ∋ 𝑠 ↦ (𝜋𝑙(𝑠), 𝜋𝑟(𝑠)) ∈ 𝒮𝑋 × 𝒮𝑌
𝒮𝑋 × 𝒮𝑌 ∋ (𝑠1, 𝑠2) ↦ (𝑠1)𝑙(𝑠2)𝑟 ∈ 𝒮(𝑋 ⊕ 𝑌).

4 Automata theory
Definition 4.1. Let 𝑒 ∈ 𝒯𝑋 be a term, where 𝑋 is finite. We say that 𝑒 is derivable if
there exists a family of terms {𝛿𝑥(𝑒)}𝑥∈𝑋 such that 𝑒 = [𝑒]0 +∑𝑥 𝑥𝛿𝑥(𝑒). We refer to
the term 𝛿𝑥(𝑒) as the derivative with respect to 𝑥.

The family 𝛿𝑥(𝑒) is not necessarily unique. Nevertheless, we’ll use the notation
𝛿𝑥(𝑒) to refer to specific derivatives of 𝑥 when it is clear from the context which one
we mean.

Lemma 4.2. Derivable terms are closed under all the weak Kleene algebra operations,
with the following caveats: for 𝑒∗, we also require that [𝑒]0 = 0; for 𝑒1𝑒2, the term is also
derivable if 𝑒2 isn’t, provided that [𝑒1]0 = 0. We have the following choices of derivatives:

𝛿𝑥(0) = 0
𝛿𝑥(1) = 1
𝛿𝑥(𝑥) = 1
𝛿𝑥(𝑦) = 0 if 𝑦 ≠ 𝑥

𝛿𝑥(𝑒1 + 𝑒2) = 𝛿𝑥(𝑒1) + 𝛿𝑥(𝑒2)
𝛿𝑥(𝑒1𝑒2) = [𝑒1]0𝛿𝑥(𝑒2) + 𝛿𝑥(𝑒1)𝑒2
𝛿𝑥(𝑒∗) = 𝛿𝑥(𝑒)𝑒∗,

where, by abuse of notation, we treat [𝑒1]0𝛿𝑥(𝑒2) as 0 when 𝑒2 is not necessarily derivable
(since, by assumption, [𝑒1]0 = 0 in that case).

Proof. We prove the closure property for products and star. For products, we start by
expanding 𝑒1:

𝑒1𝑒2 = ([𝑒1]0 +∑
𝑥
𝑥𝛿𝑥(𝑒1)) 𝑒2

= [𝑒1]0𝑒2 +∑
𝑥
𝑥𝛿𝑥(𝑒1)𝑒2.

8



If [𝑒1]0 = 0, the first term gets canceled out, and we obtain ∑𝑥 𝑥𝛿𝑥(𝑒1)𝑒2 =
[𝑒1]0[𝑒2]0 +∑𝑥 𝑥𝛿𝑥(𝑒1)𝑒2. Otherwise, we know that 𝑒2 is derivable, and we proceed
as follows:

𝑒1𝑒2 = [𝑒1]0 ([𝑒2]0 +∑
𝑥
𝑥𝛿𝑥(𝑒2)) +∑

𝑥
𝑥𝛿𝑥(𝑒1)𝑒2

= [𝑒1]0[𝑒2]0 +∑
𝑥
[𝑒1]0𝑥𝛿𝑥(𝑒2) +∑

𝑥
𝑥𝛿𝑥(𝑒1)𝑒2

= [𝑒1]0[𝑒2]0 +∑
𝑥
𝑥([𝑒1]0𝛿𝑥(𝑒2) + 𝛿𝑥(𝑒1)𝑒2) (because [𝑒1]0𝑥 = 𝑥[𝑒1]0),

which allows us to conclude.
For star, assuming that [𝑒]0 = 0, we note that 𝑒∗ = 1 + 𝑒𝑒∗, and we apply the

closure properties for the other operations.

Definition 4.3. Suppose that 𝑋 is finite. A finite-state automaton is a finite set 𝑆
of elements of 𝒯𝑋 (the states) that contains 1, is closed under finite sums and under
taking derivatives (that is, every 𝑒 ∈ 𝑆 is derivable, and each 𝛿𝑥(𝑒) is a state). We say
that a term 𝑒 is finite state if it if a finite sum of states of some finite-state automaton
𝑆. The residue of 𝑒, written 𝜌(𝑒), is the greatest element of 𝑆.

Remark 4.4. In the usual theory of Kleene algebra, regular expressions satisfy a funda-
mental theorem that guarantees that every term is finite state. Because we are working
with weak Kleene algebra, however, not every term is finite state. For example, be-
cause we cannot show that 1∗ is equal to 1, we cannot show that 1∗ is finite state.
Indeed, we can expand 1∗ = 1 + 11∗ = 1 + 1∗, but since 1∗ is not preceded by any
symbol 𝑥, this is not a valid derivation of 1∗.

Lemma 4.5. Suppose that 𝑋 is finite. A pre-automaton is a finite set 𝑆 of terms over
𝑋 such that every 𝑒 ∈ 𝑆 is derivable, and 𝛿𝑥(𝑒) is a sum of elements of 𝑆 ∪ {1}. The set
̄𝑆 ≜ {∑𝑛

𝑖=1 𝑒𝑖 ∣ 𝑛 ∈ ℕ, 𝑒 ∈ (𝑆 ∪ {1})𝑛} is a finite-state automaton. We refer to ̄𝑆 as the
automaton generated by the pre-automaton 𝑆.

Proof. It is easy to show that ̄𝑆 is finite, contains 1 and is closed under finite sums.
We just need to show that it is closed under taking derivatives. This follows from
Lemma 4.2.

Lemma 4.6. Let 𝑆 be an automaton and 𝑆0 ⊆ 𝑆 be a subset of states. Let 𝑆′ be the set
of states reachable from 𝑆0, which is the smallest set satisfying

• 𝑆0 ⊆ 𝑆′;

• If 𝑒 ∈ 𝑆′ and 𝛿𝑥(𝑒) ∈ 𝑆 is some derivative, then 𝛿𝑥(𝑒) ∈ 𝑆′.

The set 𝑆′ is a pre-automaton. We refer to its generated automaton as the automaton of
states reachable from 𝑆0.

Lemma 4.7. Let 𝑋 be a finite commutable set. Finite-state terms are preserved by all the
weak Kleene algebra operations (for 𝑒∗, we additionally require that [𝑒]0 = 0). Moreover,
the set of states of the corresponding automata can be effectively computed.

9



Proof. Let’s consider all the cases.

• The set {0, 1} is an automaton by Lemma 4.2. Therefore, 0 and 1 are finite state.

• By Lemma 4.2, if 𝑥 is a symbol, the set 𝑆 = {𝑥} is a pre-automaton. Therefore,
𝑥 is finite state because it belongs to the automaton ̄𝑆.

• Suppose that 𝑆1 and 𝑆2 are finite automata. By Lemma 4.2, the set 𝑆 = {𝑒1+𝑒2 ∣
𝑒1 ∈ 𝑆1, 𝑒2 ∈ 𝑆2} is a pre-automaton. Therefore, if we have finite-state terms
𝑒1 and 𝑒2 of 𝑆1 and 𝑆2, their sum 𝑒1 + 𝑒2 is finite state because it belongs to the
automaton ̄𝑆.

• Suppose that 𝑆1 and 𝑆2 are finite automata. By Lemma 4.2, the set 𝑆 = {𝑒1𝑒2 ∣
𝑒1 ∈ 𝑆1, 𝑒2 ∈ 𝑆2} is a pre-automaton. Indeed, 𝛿𝑥(𝑒1𝑒2) = [𝑒1]0𝛿𝑥(𝑒2) + 𝛿𝑥(𝑒1)𝑒2
is a sum of elements of 𝑆, since

[𝑒1]0 ∈ 𝑆1
𝛿𝑥(𝑒2) ∈ 𝑆2
𝛿𝑥(𝑒1) ∈ 𝑆1

𝑒2 ∈ 𝑆2.

Therefore, if we have finite-state terms 𝑒1 and 𝑒2 of 𝑆1 and 𝑆2, their product 𝑒1𝑒2
is finite state because it belongs to the automaton ̄𝑆.

• Suppose that 𝑒 is a state of some automaton 𝑆 such that [𝑒]0 = 0. Define 𝑆′ =
{𝑒′𝑒∗ ∣ 𝑒′ ∈ 𝑆}. By Lemma 4.2, this set is a pre-automaton. Indeed,

𝛿𝑥(𝑒′𝑒∗) = [𝑒′]0𝛿𝑥(𝑒∗) + 𝛿𝑥(𝑒′)𝑒∗

= [𝑒′]0𝛿𝑥(𝑒)𝑒∗ + 𝛿𝑥(𝑒′)𝑒∗

= ([𝑒′]0𝛿𝑥(𝑒) + 𝛿𝑥(𝑒′))𝑒∗.

The terms 𝛿𝑥(𝑒) and 𝛿𝑥(𝑒′) are in 𝑆. Thus, [𝑒′]0𝛿𝑥(𝑒) ∈ 𝑆 and 𝛿𝑥(𝑒′𝑒∗) is a sum
of terms of 𝑆′. Since 𝑒∗ = 1𝑒∗ is an element of 𝑆′, then it is a state of ̄𝑆′, and 𝑒∗
is finite state.

Lemma 4.8. Let 𝑒 ∈ 𝒯𝑋 be a state of a finite-state automaton 𝑆, and 𝑘 ∈ ℕ. We can
write

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠𝑒𝑠,

where each 𝑒𝑠 ∈ 𝑆 for all 𝑠, and the size |𝑠| ∈ ℕ of a string 𝑠 is defined by mapping every
symbol of 𝑠 to 1 ∈ ℕ.

10



Proof. By induction on 𝑘. When 𝑘 = 0, the equation is equivalent to 𝑒 = 𝑒, and we
are done. Otherwise, suppose that the result is valid for 𝑘. We need to prove that it is
also valid for 𝑘 + 1. Write

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠𝑒𝑠.

By deriving each 𝑒𝑠, we can rewrite this as

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠 ([𝑒𝑠]0 + ∑
𝑥∈𝑋

𝑥𝛿𝑥(𝑒𝑠))

= ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

𝑠[𝑒𝑠]0 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

∑
𝑥∈𝑋

𝑠𝑥𝛿𝑥(𝑒𝑠). (1)

We can see that [𝑒𝑠]0 = 1 if and only if 𝑠 ≤ 𝑒: by taking the language interpretation
of (1), we can see that a string of size 𝑘 can only belong to the middle term, since
the left and right terms can only account for strings of strictly smaller or larger size,
respectively. Thus, we can rewrite (1) as

𝑒 = ∑
𝑠∈𝒮𝑋
𝑠≤𝑒
|𝑠|<𝑘

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘
𝑠≤𝑒

𝑠[𝑒𝑠]0 + ∑
𝑠,|𝑠|=𝑘

∑
𝑥∈𝑋

𝑠𝑥𝛿𝑥(𝑒𝑠)

= ∑
𝑠∈𝒮𝑋
𝑠≤𝑒

|𝑠|<𝑘+1

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑘

∑
𝑥∈𝑋

𝑠𝑥𝛿𝑥(𝑒𝑠). (2)

Given some string 𝑠 with |𝑠| = 𝑘 + 1, define

𝑒′𝑠 ≜ ∑
(𝑠′,𝑥)∈𝒮𝑋×𝑋

𝑠=𝑠′𝑥

𝛿𝑥(𝑒𝑠′).

This sum is well defined because there are only finitely many 𝑠′ and 𝑥 ∈ 𝑋 such that
𝑠 = 𝑠′𝑥: 𝑠′ must be of size 𝑘, and there are only finitely many such strings. Moreover,
𝑒′𝑠 is an element of 𝑆, since 𝑆 is closed under taking derivatives and finite sums. We
have

𝑠𝑒′𝑠 = ∑
(𝑠′,𝑥)
|𝑠′|=𝑘
𝑠=𝑠′𝑥

𝑠𝛿𝑥(𝑒𝑠′)

= ∑
(𝑠′,𝑥)
|𝑠′|=𝑘
𝑠=𝑠′𝑥

𝑠′𝑥𝛿𝑥(𝑒𝑠′).

11



Therefore,

∑
𝑠

|𝑠|=𝑘+1

𝑠𝑒′𝑠 = ∑
𝑠

|𝑠|=𝑘+1

∑
(𝑠′,𝑥)
|𝑠′|=𝑘
𝑠=𝑠′𝑥

𝑠′𝑥𝛿𝑥(𝑒𝑠′)

= ∑
(𝑠′,𝑥)
|𝑠′|=𝑘

𝑠′𝑥𝛿𝑥(𝑒𝑠′)

= ∑
𝑠′

|𝑠′|=𝑘

∑
𝑥∈𝑋

𝑠′𝑥𝛿𝑥(𝑒𝑠′).

Putting everything together, (2) becomes

𝑒 = ∑
𝑠≤𝑒,|𝑠|<𝑘+1

𝑠 + ∑
𝑠

|𝑠|=𝑘+1

𝑠𝑒′𝑠, (3)

which completes the inductive case.

5 Representing Relations
We are going to develop a framework for representing relations on strings as Kleene
algebra terms. More specifically, if Σ is a finite, discrete commutable set, consider the
commutable set Σ̈ = Σ ⊕ Σ. A string 𝑠 ∈ 𝒮Σ̈ can be seen as a pair of strings 𝑠1 and
𝑠2 over Σ: one corresponds to the left symbols, the other one corresponds to the right
symbols. Thus, via the language interpretation 𝑙, we can view an expression 𝑒 ∈ 𝒯Σ̈
as a set of pairs of strings over Σ—in other words, a relation on strings. Given a term
𝑒 ∈ 𝒯Σ̈, we will write 𝑠

𝑒
−→ 𝑠′ to say that 𝑠𝑙𝑠′𝑟 ≤ 𝑒 (or, equivalently, that 𝑠𝑙𝑠′𝑟 ∈ 𝑙(𝑒)).

We write 𝑠
𝑒
−→

𝑛
𝑠′ to denote that 𝑠′ can be reached from 𝑠 via 𝑒 in exactly 𝑛 steps, and

𝑠
𝑒
−→

<𝑛
𝑠′ when they are related some number of steps below 𝑛. We write 𝑠

𝑒
−→

∗
𝑠′ for

the reflexive-transitive closure of
𝑒
−→.

Definition 5.1. Let 𝑒 ∈ 𝒯(𝑋⊕𝑌) be a term. We say that 𝑒 has bounded output if there
exists some 𝑘 ∈ ℕ (the fanout) such that, for every string 𝑠 ≤ 𝑒, |𝜋𝑟(𝑠)| ≤ (|𝜋𝑙(𝑠)|+1)𝑘.

Lemma 5.2. If 𝑒 has fanout 𝑘 and 𝑘′ ≥ 𝑘, then 𝑒 has fanout 𝑘.

Lemma 5.3. Bounded-output terms are closed under all the weak Kleene algebra oper-
ations. For 𝑒∗, we additionally require that |𝜋𝑙(𝑠)| ≥ 1 for all strings 𝑠 ≤ 𝑒.

Proof. Let’s focus on the last point. Suppose that 𝑒 has fanout 𝑘 and that |𝜋𝑙(𝑠)| ≥ 1
for every 𝑠 ≤ 𝑒. We are going to show that 𝑒∗ has bounded output with fanout 2𝑘.

Suppose that 𝑠 ≤ 𝑒∗. We can write 𝑠 = 𝑠1⋯𝑠𝑛 such that 𝑠𝑖 ≤ 𝑒 for every 𝑖 ∈
{1,…, 𝑛}. We have, for every 𝑖 ∈ {1,…, 𝑛},

|𝜋𝑟(𝑠𝑖)| ≤ (|𝜋𝑙(𝑠𝑖)| + 1)𝑘.

12



Thus,

|𝜋𝑟(𝑠)| =
𝑛
∑
𝑖=1

|𝜋𝑟(𝑠𝑖)|

≤
𝑛
∑
𝑖=1
(|𝜋𝑙(𝑠𝑖)| + 1)𝑘

≤
𝑛
∑
𝑖=1

2|𝜋𝑙(𝑠𝑖)|𝑘 (because |𝜋𝑙(𝑠𝑖)| ≥ 1)

= (
𝑛
∑
𝑖=1

|𝜋𝑙(𝑠𝑖)|) 2𝑘

= |𝜋𝑙(𝑠0)⋯𝜋𝑙(𝑠𝑛)|2𝑘
= |𝜋𝑙(𝑠0⋯𝑠𝑛)|2𝑘
= |𝜋𝑙(𝑠)|2𝑘
≤ (|𝜋𝑙(𝑠)| + 1)2𝑘.

Lemma 5.4. Let 𝑒 ∈ 𝒯Σ̈ be a bounded-output term that is the state of some automaton
𝑆. There exists some 𝑘 ∈ ℕ such that 𝑒 has fanout 𝑘 and such that, for every 𝑛 ∈ ℕ, we
can write

𝑒 = ∑
𝑠∈𝒮𝑋
|𝑠|<𝑛
𝑠≤𝑒

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑛

|𝜋𝑟(𝑠)|≤(|𝜋𝑙(𝑠)|+1)𝑘

𝑠𝑒𝑠,

where 𝑒𝑠 ∈ 𝑆 for every 𝑠.
Proof. Let 𝑘0 be the fanout of 𝑒. For each 𝑒′ ∈ 𝑆 such that 𝑒′ ≠ 0, choose some string
𝑤𝑒′ ≤ 𝑒′. Define 𝑚 ≜ max{|𝜋𝑙(𝑤𝑒′)| ∣ 𝑒′ ∈ 𝑆, 𝑒′ ≠ 0} and 𝑘 ≜ (𝑚 + 1)𝑘0. Since
𝑘 ≥ 𝑘0, we know that 𝑒 has fanout 𝑘. Moreover, by Lemma 4.8, we have

𝑒 = ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑛

𝑠𝑒𝑠

= ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠∈𝒮𝑋
|𝑠|=𝑛
𝑒𝑠≠0

𝑠𝑒𝑠,

where each 𝑒𝑠 is a state of 𝑆. If 𝑠 is such that |𝑠| = 𝑛 and 𝑒𝑠 ≠ 0, we have 𝑠𝑤𝑒𝑠 ≤ 𝑒.
Therefore,

|𝜋𝑟(𝑠)| ≤ |𝜋𝑟(𝑠𝑤𝑒𝑠)|
≤ (|𝜋𝑙(𝑠𝑤𝑒𝑠)| + 1)𝑘0
= (|𝜋𝑙(𝑠)| + |𝜋𝑙(𝑤𝑒𝑠)| + 1)𝑘0
≤ (|𝜋𝑙(𝑠)| + 𝑚 + 1)𝑘0
≤ (|𝜋𝑙(𝑠)| + 1)(𝑚 + 1)𝑘0
= (|𝜋𝑙(𝑠)| + 1)𝑘.

13



Thus,

𝑒 = ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠

|𝑠|=𝑛
𝑒𝑠≠0

|𝜋𝑟(𝑠)|≤(|𝜋𝑙(𝑠)|+1)𝑘

𝑠𝑒𝑠

= ∑
𝑠≤𝑒
|𝑠|<𝑛

𝑠 + ∑
𝑠

|𝑠|=𝑛
|𝜋𝑟(𝑠)|≤(|𝜋𝑙(𝑠)|+1)𝑘

𝑠𝑒𝑠.

Definition 5.5. A term 𝐿 over Σ is prefix free if for all strings 𝑠1 ≤ 𝐿 and 𝑠2 ≤ 𝐿, if 𝑠1
is a prefix of 𝑠2, then 𝑠1 = 𝑠2.

Lemma 5.6. Let 𝑠 and 𝑠′ be two strings over Σ such that one is not a prefix of the other,
or vice versa. Then we can write 𝑠 = 𝑠0𝑥𝑠1 and 𝑠′ = 𝑠0𝑥′𝑠′1 with 𝑥 ≠ 𝑥′.

Lemma 5.7. Consider strings 𝑠 over Σ and 𝑠′ over Σ̈ such that 𝜋𝑙(𝑠′) is not a prefix of 𝑠,
or vice versa. Then 𝑠𝑟𝑠′ ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟 , where Σ≠ = ∑𝑥,𝑦∈Σ,𝑥≠𝑦 𝑥𝑙𝑦𝑟.

Lemma 5.8. Let 𝑠 and 𝑠′ be strings over Σ, 𝑝 be a string over Σ̈, and 𝑒 be a term over Σ̈.
Suppose that 𝑠 and 𝑠′ belong to some prefix free 𝐿 and that 𝑠𝑝 ≤ 𝑠′𝑒. Then 𝑠 = 𝑠′ and
𝑝 ≤ 𝑒.

Proof. By interpreting the inequality over languages, we see that 𝑠𝑝 must be of the
form 𝑠′𝑝′ for some 𝑝′ ≤ 𝑒. Thus, 𝑠𝜋𝑙(𝑝) = 𝜋𝑙(𝑠𝑝) = 𝜋𝑙(𝑠′𝑝′) = 𝑠′𝜋𝑙(𝑝′). This
is an equality between strings over a discrete alphabet, so either 𝑠 is a prefix of 𝑠′,
or the other way around. But 𝐿 is prefix free, so we must have 𝑠 = 𝑠′. Moreover,
string concatenation is a cancellative operation, so we must have 𝜋𝑙(𝑝) = 𝜋𝑙(𝑝′).
An analogous reasoning shows that 𝜋𝑟(𝑝) = 𝜋𝑟(𝑝′). We conclude by noting that
𝑝 = 𝜋𝑙(𝑝)𝑙𝜋𝑟(𝑝)𝑟 = 𝜋𝑙(𝑝′)𝑙𝜋𝑟(𝑝′)𝑟 = 𝑝′.

Definition 5.9. Let 𝐿1 and 𝐿2 be terms over Σ. A term 𝑒 ∈ 𝐹Σ̈ is a representable
relation of type 𝐿1 → 𝐿2 if it is finite state, has bounded output, 𝜋𝑙(𝑒) ≤ 𝐿1 and
𝜋𝑟(𝑒) ≤ 𝐿2. We write 𝑒 ∶ 𝐿1 → 𝐿2 to denote the type of 𝑒.

Lemma 5.10. If 𝑒 ∶ 𝐿1 → 𝐿2 is representable, 𝐿1 ≤ 𝐿′1 and 𝐿2 ≤ 𝐿′2, then 𝑒 is also of
type 𝐿′1 → 𝐿′2.

Definition 5.11. Let 𝑒 ∶ 𝐿1 → 𝐿2 be representable, andΛ be some set of strings. The
image of Λ by 𝑒 is the set Next𝑒(Λ) ⊆ 𝐿2 defined as follows:

Next𝑒(Λ) ≜ ⋃
𝑠∈Λ

{𝑠′ ≤ 𝐿2 ∣ 𝑠
𝑒
−→ 𝑠′}.

By abuse of notation, if 𝑠 is a string, we write Next𝑒(𝑠) to mean Next𝑒({𝑠}). When
𝑛 ∈ ℕ, we write Next𝑛𝑒 (Λ) for the iterates. We also write Next<𝑛𝑒 (Λ) for the set
⋃0≤𝑖<𝑛 Next𝑖𝑒(Λ), and similarly for Next≤𝑛𝑒 (Λ).

14



Lemma 5.12. If 𝑒 ∶ 𝐿1 → 𝐿2 is representable and Next𝑒(𝑠) ≠ 0, then 𝑠 ≤ 𝐿1.

Lemma 5.13. If 𝑒 ∶ 𝐿1 → 𝐿2 is representable and 𝑠
𝑒
−→ 𝑠′, then 𝑠 ≤ 𝐿1 and 𝑠′ ≤ 𝐿2.

Thus, 𝑠′ ∈ Next𝑒(𝑠).

Proof. We have, by definition 𝑠𝑙𝑠′𝑟 ≤ 𝑒, and thus 𝑠 = 𝜋𝑙(𝑠𝑙𝑠′𝑟) ≤ 𝜋𝑙(𝑒) ≤ 𝐿1. An
analogous reasoning yields 𝑠′ ≤ 𝐿2. We conclude by expanding the definition of
Next𝑒(𝑠).

Lemma 5.14. Let 𝑒 ∶ 𝐿1 → 𝐿2 be representable with fanout 𝑘 and let Λ be finite. If
𝑠 ∈ Next𝑒(Λ), then |𝑠| ≤ (𝑚 + 1)𝑘, where 𝑚 = max{|𝑠′| ∣ 𝑠′ ∈ Λ}. Thus, the sets
Next𝑛𝑒 (Λ) and Next<𝑛𝑒 (Λ) are finite for every 𝑛 ∈ ℕ.

Proof. The last observation follows from the bound because Σ is finite. To prove the
first part, note that, if 𝑠 ∈ Next𝑒(Λ), by definition, there exists 𝑠′ ∈ Λ such that
𝑠′𝑙𝑠𝑟 ≤ 𝑒. Since 𝑒 has fanout 𝑘, we have

|𝑠| = |𝜋𝑟(𝑠′𝑙𝑠𝑟)| ≤ (|𝜋𝑙(𝑠′𝑙𝑠𝑟)| + 1)𝑘 = (|𝑠| + 1)𝑘 ≤ (𝑛 + 1)𝑘.

In the following, we are going to fix some representable relation 𝑒 ∶ 𝐿1 → 𝐿2
where 𝐿1 ≤ 𝐿2 and 𝐿2 is prefix free (which implies that 𝐿1 is prefix free as well). By
Lemma 5.10, we can also view it as a relation of type 𝑒 ∶ 𝐿2 → 𝐿2.

Lemma 5.15. If 𝑠 ∈ 𝐿2, we have

𝑠Next𝑒(𝑠) ≤ 𝑠𝑟𝑒 ≤ 𝑠Next𝑒(𝑠) + Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒),

where 𝜌(𝑒) is the residue of 𝑒; cf. Definition 4.3.

Proof. Let 𝑘 be the constant of Lemma 5.4 for 𝑒, 𝑛 = |𝑠|, and let 𝑝 = (𝑘 + 1)(𝑛 + 1).
Let

Λ ≜ {𝑠′ ∈ 𝑀Σ̈ ∣ |𝑠′| = 𝑝 + 1, |𝜋𝑟(𝑠′)| ≤ (|𝜋𝑙(𝑠′)| + 1)𝑘}.

By applying Lemma 5.4 to 𝑒, we can write

𝑒 = ∑
𝑠′≤𝑒

|𝑠′|<𝑝+1

𝑠′ + ∑
𝑠′∈Λ

𝑠′𝑒𝑠′

= ∑
𝑠′≤𝑒,|𝑠′|≤𝑝

𝑠′ + ∑
𝑠′∈Λ

𝑠′𝑒𝑠′

= ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)=𝑠

𝑠′ + ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)≠𝑠

𝑠′ + ∑
𝑠′∈Λ

𝑠′𝑒𝑠′,

15



Thus, to prove the inequality, it suffices to prove

𝑠𝑟 ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)=𝑠

𝑠′ = 𝑠Next𝑒(𝑠)𝑟 (4)

𝑠𝑟 ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)≠𝑠

𝑠′ ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒) (5)

𝑠𝑟 ∑
𝑠′∈Λ

𝑠′𝑒′𝑠 ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒). (6)

Let us start with (4). Notice that, for any string 𝑠′ over Σ̈, we have 𝑠′ = 𝜋𝑙(𝑠′)𝑙𝜋𝑟(𝑠′)𝑟.
Therefore, there is a bijection between the set of indices 𝑠′ of the sum and the set of
strings Next𝑒(𝑠). The bijection is given by

𝑠′ ↦ 𝜋𝑟(𝑠′) ∈ Next𝑒(𝑠)
Next𝑒(𝑠) ∋ 𝑠′ ↦ 𝑠𝑙𝑠′𝑟.

To prove that this is a bijection, we must show that the inverse produces indeed a
valid index. Notice that, if 𝑠′ ∈ Next𝑒(𝑠), by Lemma 5.14, we have |𝑠′| ≤ (𝑛+1)𝑘, and
thus |𝑠𝑙𝑠′𝑟| = |𝑠| + |𝑠′| ≤ (𝑛 + 1)(𝑘 + 1) = 𝑝.

By reindexing the sum in (4) with this bijection, we have

𝑠𝑟 ∑
𝑠′≤𝑒
|𝑠′|≤𝑝
𝜋𝑙(𝑠′)=𝑠

𝑠′ = 𝑠𝑟 ∑
𝑠′∈Next𝑒(𝑠)

𝑠𝑙𝑠′𝑟

= 𝑠𝑟𝑠𝑙 ∑
𝑠′∈Next𝑒(𝑠)

𝑠′𝑟

= 𝑠𝑟𝑠𝑙 ( ∑
𝑠′∈Next𝑒(𝑠)

𝑠′)
𝑟

= 𝑠Next𝑒(𝑠)𝑟.

Next, let us look at (5). Suppose that 𝑠′ is such that 𝑠′ ≤ 𝑒 and 𝜋𝑙(𝑠′) ≠ 𝑠. Since 𝐿1
is prefix free, and 𝜋𝑙(𝑠′) ≤ 𝐿1, Lemma 5.7 applied to 𝑠 and 𝑠′ yields

𝑠𝑙𝑠′ ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟 ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒).

Summing over all such 𝑠′, we get the desired inequality.
To conclude, we must show (6). By distributivity, this is equivalent to showing

that, for every 𝑠′ ∈ Λ,

𝑠𝑟𝑠′𝑒𝑠′ ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒).

If 𝑒𝑠′ = 0, we are done. Otherwise, by Corollary 3.8, we can find some string 𝑠″ ≤ 𝑒𝑠′ .
We have 𝑠′𝑠″ ≤ 𝑠′𝑒𝑠′ ≤ 𝑒.

16



Note that we must have |𝜋𝑙(𝑠′)| > 𝑛. Indeed, suppose that |𝜋𝑙(𝑠′)| ≤ 𝑛. Since
𝑠′ ∈ Λ, we have

|𝑠′| = |𝜋𝑙(𝑠′)| + |𝜋𝑟(𝑠′)|
≤ |𝜋𝑙(𝑠′)| + (|𝜋𝑙(𝑠′)| + 1)𝑘
≤ (|𝜋𝑙(𝑠′)| + 1)(𝑘 + 1)
≤ (𝑛 + 1)(𝑘 + 1)
< 𝑝 + 1
= |𝑠′|,

which is a contradiction.
Since 𝜋𝑙(𝑠′𝑠″) ≤ 𝜋𝑙(𝑒) ≤ 𝐿1 and 𝐿1 is prefix free, by Lemma 5.6, we can write

𝑠 = 𝑠0𝑥𝑠1 and 𝜋𝑙(𝑠′𝑠″) = 𝜋𝑙(𝑠′)𝜋𝑙(𝑠″) = 𝑠0𝑥′𝑠′1, with 𝑥 ≠ 𝑥′. But |𝜋𝑙(𝑠′)| > 𝑛 = |𝑠|
and |𝑠0| < |𝑠|, thus 𝜋𝑙(𝑠′) must be of the form 𝑠0𝑥′𝑠′2. By Lemma 5.7, we find that
𝑠𝑟𝑠′ = 𝑠𝑟𝜋𝑙(𝑠′)𝜋𝑟(𝑠′) ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟 , and thus

𝑠𝑟𝑠′𝑒𝑠′ ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝑒𝑠′ ≤ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒).

We are now going to use this theory to reason about the reflexive-transitive clo-
sure of a relation.

Definition 5.16. Let Λ be a set of strings, and 𝑛 ∈ ℕ. We define Path𝑛𝑒 (Λ) ∈ 𝐿𝑛+12 ,
the set of 𝑒-paths of length 𝑛 starting at Λ, as follows:

Path0𝑒 (Λ) ≜ ⋃
𝑠∈Λ

{(𝑠)}

Path𝑖+1𝑒 (Λ) ≜ ⋃
𝑠∈Λ

{(𝑠, 𝑝) ∣ 𝑝 ∈ Path𝑖𝑒(Next𝑒(𝑠))}.

By abuse of notation, if 𝑠 is a string, we write Path𝑛𝑒 (𝑠) to denote Path𝑛𝑒 ({𝑠}). We will
write Path<𝑛𝑒 (Λ) for the set⋃0≤𝑖<𝑛 Path𝑖𝑒(Λ), and similarly for Path≤𝑛𝑒 (Λ).

Lemma 5.17. If Λ is finite, then Path𝑛𝑒 (Λ) (and thus Path<𝑛𝑒 (Λ)) are finite.

Proof. By induction on 𝑛, noting that Next𝑒(𝑠) is also finite by Lemma 5.14.

Convention 5.18. We view a path (𝑠0,…, 𝑠𝑛) as a string over Σ̈ by mapping it to
(∏0≤𝑗<𝑛 𝑠𝑗) (𝑠𝑛)𝑟. By analogy, we view a set of paths such as Path𝑛𝑒 (Λ) as a set of
strings over Σ̈.

Lemma 5.19. The following properties hold of paths.

1. Path𝑖𝑒(∅) = ∅.

2. Path𝑖𝑒(Λ) = ⋃𝑠∈Λ Path𝑖𝑒(𝑠).

17



3. Seen as a term, Path0𝑒 (Λ) = Λ𝑟.

4. Seen as a term, Path𝑖+1𝑒 (Λ) = ∑𝑠∈Λ 𝑠Path𝑖𝑒(Next𝑒(𝑠)).

5. If Path𝑖𝑒(Λ) = ∅, then Path𝑗𝑒(Λ) = ∅ for 𝑗 ≥ 𝑖.

6. Path<𝑛+1𝑒 (Λ) = Path0𝑒 (Λ) +∑𝑠∈Λ 𝑠Path<𝑛𝑒 (Next𝑒(𝑠)).

Proof. We just show the last item. We have

Path<𝑛+1𝑒 (Λ)

= Path0𝑒 (Λ) + ∑
𝑖<𝑛

Path𝑖+1𝑒 (Λ)

= Path0𝑒 (Λ) + ∑
𝑖<𝑛

∑
𝑠∈Λ

𝑠Path𝑖𝑒(Next𝑒(𝑠))

= Path0𝑒 (Λ) + ∑
𝑠∈Λ

𝑠 ∑
𝑖<𝑛

Path𝑖𝑒(Next𝑒(𝑠))

= Path0𝑒 (Λ) + ∑
𝑠∈Λ

𝑠Path<𝑛𝑒 (Next𝑒(𝑠)).

Lemma 5.20. Let Λ be some finite set of strings. We have the following inequalities:

Path𝑛𝑒 (Λ) ≤ 𝐿𝑛1 Next𝑛𝑒 (Λ)𝑟 ≤ 𝐿∗1 Next𝑛𝑒 (Λ)𝑟
Path<𝑛𝑒 (Λ) ≤ 𝐿∗1 Next<𝑛𝑒 (Λ)𝑟.

Proof. We prove the first one by induction on 𝑛. If 𝑛 = 0, then

Path0𝑒 (Λ) = Λ𝑟

= 𝐿01Λ𝑟

= 𝐿01 Next0𝑒 (Λ)𝑟.

18



If the result holds for some arbitrary 𝑛, then

Path𝑛+1𝑒 (Λ)

= ∑
𝑠∈Λ

𝑠Path𝑛𝑒 (Next𝑒(𝑠))

= ∑
𝑠∈Λ

Next𝑒(𝑠)=∅

𝑠Path𝑛𝑒 (Next𝑒(𝑠)) + ∑
𝑠∈Λ

Next𝑒(𝑠)≠∅

𝑠Path𝑛𝑒 (Next𝑒(𝑠))

= ∑
𝑠∈Λ

Next𝑒(𝑠)≠∅

𝑠Path𝑛𝑒 (Next𝑒(𝑠)) by Lemma 5.19

≤ ∑
𝑠∈Λ
𝑠≤𝐿1

𝑠Path𝑛𝑒 (Next𝑒(𝑠)) by Lemma 5.12

≤ ∑
𝑠∈Λ
𝑠≤𝐿1

𝐿1 Path𝑛𝑒 (Next𝑒(𝑠))

≤ ∑
𝑠∈Λ

𝐿1 Path𝑛𝑒 (Next𝑒(𝑠))

≤ ∑
𝑠∈Λ

𝐿1𝐿𝑛1 Next𝑛𝑒 (Next𝑒(𝑠)) by the I.H.

= ∑
𝑠∈Λ

𝐿𝑛+11 Next𝑛+1𝑒 (𝑠)

= 𝐿𝑛+11 Next𝑛+1𝑒 (Λ).

The other results follow by using 𝐿𝑛1 ≤ 𝐿∗1 and by iterating over the sums.

Lemma 5.21. Consider some arbitrary 𝑝 ∈ Path𝑛𝑒 (Λ) with Λ ≤ 𝐿2.

1. For any term 𝑒′ and any 𝑚 > 𝑛, we cannot have 𝑝 ≤ Path𝑚𝑒 (Λ)𝑒′.

2. If 𝑝 ≤ (𝐿1)∗(𝐿𝑓)𝑟, then the last element of 𝑝 is in 𝐿𝑓.

3. For any term 𝑒′, we cannot have 𝑝 ≤ Σ∗Σ≠𝑒′.

Proof. 1. We proceed by induction on 𝑛.

• If 𝑛 = 0, then 𝑝 is of the form 𝑠𝑟 for some 𝑠 ≤ Λ. Since 𝑚 > 𝑛 ≥ 0, by
Lemma 5.19, we have

Path𝑚𝑒 (Λ)𝑒′ = ∑
𝑠′∈Λ

𝑠′ Path𝑚−1
𝑒 (Next𝑒(𝑠′))𝑒′.

Since Λ is prefix free, these 𝑠′ cannot be empty, and thus the language
corresponding to right-hand side only contains strings that have at least
one left symbol. This is not the case for 𝑝, so the inequality cannot hold.

• Otherwise, suppose that the result holds for 𝑛, and we want to prove it
for 𝑛 + 1. The path 𝑝 seen as a string must be of the form 𝑠𝑝′, where

19



𝑠 ∈ Λ is some string, and 𝑝 ≤ Path𝑛𝑒 (Next𝑒(𝑠)). Since 𝑚 > 𝑛 + 1 ≥ 0, by
Lemma 5.19, we have

Path𝑚𝑒 (Λ)𝑒′ = ∑
𝑠′∈Λ

𝑠′ Path𝑚−1
𝑒 (Next𝑒(𝑠′))𝑒′.

Suppose that the inequality holds. Thus, there exists some 𝑠′ ∈ Λ such
that 𝑠𝑝 belongs to the language interpretation of 𝑠′ Path𝑚−1

𝑒 (Next𝑒(𝑠′))𝑒′—or,
equivalently, 𝑠𝑝 ≤ 𝑠′ Path𝑚−1

𝑒 (Next𝑒(𝑠′)𝑒′. By Lemma 5.8, we find that
𝑝 ≤ Path𝑚−1

𝑒 (Next𝑒(𝑠′))𝑒′, which contradicts the induction hypothesis.

2. If 𝑝 = (𝑠0,…, 𝑠𝑛), with 𝑠𝑖 ≤ 𝐿2 for every 𝑖 ≤ 𝑛, then the representation of 𝑝
as a string is (∏𝑖<𝑛 𝑠𝑖) (𝑠𝑛)𝑟. On the other hand, if 𝑝 ≤ (𝐿1)∗(𝐿𝑓)𝑟, by taking

language interpretations on both sides, we can write it as (∏𝑖<𝑚 𝑠′𝑖) (𝑠′𝑚)𝑟, with
𝑠′𝑖 ≤ 𝐿1 for every 𝑖 < 𝑚 and, additionally, 𝑠′𝑚 ≤ 𝐿𝑓. Thus, it suffices to show
that 𝑠𝑛 = 𝑠′𝑚, and thus that (𝑠𝑛)𝑟 = (𝑠′𝑚)𝑟. By projecting on both sides, we find
that

(∏
𝑖<𝑛

𝑠𝑖) = 𝜋𝑙 ((∏
𝑖<𝑛

𝑠𝑖) (𝑠𝑛)𝑟)

= 𝜋𝑙 ((∏
𝑖<𝑚

𝑠′𝑖) (𝑠′𝑚)𝑟)

= (∏
𝑖<𝑚

𝑠′𝑖) .

This implies

(∏
𝑖<𝑛

𝑠𝑖) (𝑠𝑛)𝑟 = (∏
𝑖<𝑛

𝑠𝑖) (𝑠′𝑚)𝑟,

which yields the sought result by cancellation (Lemma 3.9).

3. Seen as a string, the path 𝑝 is of the form 𝑠𝑠′𝑟 for two strings strings 𝑠 and 𝑠′ over
Σ. Thus, we can write 𝑠𝑠′𝑟 = 𝑠1𝑥𝑙𝑦𝑟𝑠2, where 𝑥 ≠ 𝑦 are elements of Σ, 𝑠1 ≤ Σ∗
and 𝑠2 ≤ 𝑒′. By unfolding the language interpretation of Σ∗, we see that 𝑠1 must
be the image of some string 𝑠′1 in Σ. At this point, we can conclude by induction
on the size of 𝑠.

Lemma 5.22. For every 𝑛 ∈ ℕ and every finite Λ ≤ 𝐿2, we have the inequality

Path<𝑛𝑒 (Λ) ≤ Λ𝑟𝑒∗ ≤ Path<𝑛𝑒 (Λ) + Path𝑛𝑒 (Λ)𝑒∗ + 𝜀,

where 𝜀 ≜ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒)𝑒∗ can be effectively computed.

Proof. By induction on 𝑛. If 𝑛 = 0, then the goal becomes, by Lemma 5.19,

0 ≤ Λ𝑟𝑒∗ ≤ Path0𝑒 (Λ)𝑒∗ + 𝜀,

20



which holds because Path0𝑒 (Λ) = Λ𝑟.
Otherwise, for the inductive step, suppose that the goal is valid for 𝑛. We need to

prove that it is valid for 𝑛+1. Recall that Next𝑒(𝑠) ≤ 𝐿2 for every 𝑠. Now we compute

Path<𝑛+1𝑒 (Λ)

= Path0𝑒 (Λ) + ∑
𝑠∈Λ

𝑠Path<𝑛𝑒 (Next𝑒(𝑠)) by Lemma 5.19

≤ Path0𝑒 (Λ) + ∑
𝑠∈Λ

𝑠Next𝑒(𝑠)𝑟𝑒∗ by the I.H.

≤ Path0𝑒 (Λ) + ∑
𝑠∈Λ

𝑠𝑟𝑒𝑒∗ by Lemma 5.15

= Λ𝑟 + ∑
𝑠∈Λ

𝑠𝑟𝑒𝑒∗

= Λ𝑟 + Λ𝑟𝑒𝑒∗

= Λ𝑟𝑒∗.

This shows the first inequality. As for the second inequality, by Lemma 5.15, we have

Λ𝑟𝑒∗ = Λ𝑟 + ∑
𝑠∈Λ

𝑠𝑟𝑒𝑒∗

≤ Λ𝑟 + ∑
𝑠∈Λ

(𝑠Next𝑒(𝑠)𝑟 + Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒))𝑒∗

≤ Λ𝑟 + ∑
𝑠∈Λ

𝑠Next𝑒(𝑠)𝑟𝑒∗ + Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒)𝑒∗

≤ Λ𝑟 + ∑
𝑠∈Λ

𝑠Next𝑒(𝑠)𝑟𝑒∗ + 𝜀

= Path0𝑒 (Λ) + ∑
𝑠∈Λ

𝑠Next𝑒(𝑠)𝑟𝑒∗ + 𝜀.

Let us focus on the middle term. We have

∑
𝑠∈Λ

𝑠Next𝑒(𝑠)𝑟𝑒∗

≤ ∑
𝑠∈Λ

𝑠 [Path<𝑛𝑒 (Next𝑒(𝑠)) + Path𝑛𝑒 (Next𝑒(𝑠))𝑒∗ + 𝜀] by the I.H.

= ∑
𝑠∈Λ

𝑠Path<𝑛𝑒 (Next𝑒(𝑠)) + ∑
𝑠∈Λ

𝑠Path𝑛𝑒 (Next𝑒(𝑠))𝑒∗ + 𝜀

= ∑
𝑠∈Λ

𝑠Path<𝑛𝑒 (Next𝑒(𝑠)) + Path𝑛+1𝑒 (Λ)𝑒∗ + 𝜀 by Lemma 5.19.

Thus,

Λ𝑟𝑒∗

≤ Path0𝑒 (Λ) + ∑
𝑠∈Λ

𝑠Path<𝑛𝑒 (Next𝑒(𝑠)) + Path𝑛+1𝑒 (Λ)𝑒∗ + 𝜀

= Path<𝑛+1𝑒 (Λ) + Path𝑛+1𝑒 (Λ)𝑒∗ + 𝜀 by Lemma 5.19.

21



We arrive at our final result. To make the result self-contained, we explicit state
all the involved hypotheses.

Theorem 5.23. Let Σ be a finite set, which we view as a discrete commutable set. Let
𝑒 ∶ 𝐿1 → 𝐿2 be a representable relation, where 𝐿1 ≤ 𝐿2 ∈ 𝑇Σ and 𝐿2 is prefix free.
We can compute a term 𝜀 that expresses partial reachability statements for 𝑒, in the
following sense.

Let 𝐿𝑖 ≤ 𝐿1 be a finite term over Σ and 𝐿𝑓 be an arbitrary term. Suppose that the
language interpretation of Σ̈ factors through some set 𝐴:

𝑇Σ̈

𝐴 ℒΣ̈.

𝑓
𝑙

𝑔

Consider the equation

𝑓((𝐿𝑖)𝑟𝑒∗ + 𝐿∗1(𝐿𝑓)𝑟 + 𝜀) = 𝑓(𝐿∗1(𝐿𝑓)𝑟 + 𝜀). (7)

The following two results hold.

• Soundness: if (7) holds and we have a sequence 𝑠𝑖
𝑒
−→

∗
𝑠𝑓 of transitions, with

𝑠𝑖 ≤ 𝐿𝑖, then 𝑠𝑓 ≤ 𝐿𝑓.

• Completeness for terminating executions: if there is some 𝑘 such that 𝑠𝑖
𝑒
−→

𝑛
𝑠𝑓

implies 𝑛 < 𝑘 whenever 𝑠𝑖 ∈ 𝐿𝑖, and if all such sequences end in 𝐿𝑓, then (7)
holds.

Proof. Define 𝜀 ≜ Σ∗Σ≠Σ∗𝑙 Σ∗𝑟𝜌(𝑒)𝑒∗. We reason as follows.

• Soundness Suppose that (7) holds. By applying 𝑔 to both sides of the equation,
and by unfolding the definition of the semiring order relation, we find

𝑙((𝐿𝑖)𝑟𝑒∗) ⊆ 𝑙(𝐿∗1(𝐿𝑓)𝑟 + 𝜀).

Suppose that we have some sequence of transitions 𝑠𝑖
𝑒
−→

𝑛
𝑠𝑓 of length 𝑛.

We can represent this sequence as an element 𝑝 of the set Path<𝑛+1𝑒 (𝐿𝑖). By
Lemma 5.22, this element must lie in (𝐿𝑖)𝑟𝑒∗, and thus, by (7), either in 𝐿∗1(𝐿𝑓)𝑟
or in 𝜀. However, by Lemma 5.21, it cannot be in 𝜀, so it must be in 𝐿∗1(𝐿𝑓)𝑟. We
conclude by applying Lemma 5.21 again.

• Completeness for terminating executions Suppose that there is some strict upper
bound 𝑘 on the number of transitions starting at 𝐿𝑖. We can prove by induction
that Next𝑘𝑒 (𝐿𝑖) = 0. Moreover, if we assume that every sequence of transitions
ends with an element of 𝐿𝑓, we can also prove by induction that Next<𝑘𝑒 (𝐿𝑖) ≤
𝐿𝑓. By Lemma 5.22, we have

Λ𝑟𝑒∗ ≤ Path<𝑛𝑒 (Λ) + Path𝑛𝑒 (Λ)𝑒∗ + 𝜀.

22



By Lemma 5.20, we have

Λ𝑟𝑒∗ ≤ 𝐿∗1 Next<𝑘𝑒 (Λ)𝑟 + 𝐿∗1 Next𝑘𝑒 (Λ)𝑒∗+ <

= 𝐿∗1 Next<𝑘𝑒 (Λ)𝑟 + 𝐿∗10𝑒∗ + 𝜀

= 𝐿∗1 Next<𝑘𝑒 (Λ)𝑟 + 𝜀
≤ 𝐿∗1(𝐿𝑓)𝑟 + 𝜀.

6 Machines
We are now ready to show our undecidability result by building upon the infrastruc-
ture of the last section. More precisely, we will show that, if we can decide equations
betweenweakKleene algebra termswith commutativity conditions, thenwe can solve
an undecidable problem on Turing machines. We’ll use a slightly non-standard no-
tion of reduction, which we’ll introduce here. We use the notation ⟨𝑥⟩ to refer to some
effective encoding of the object 𝑥 as a binary string.

Definition 6.1. A bisected language is a pair 𝐿 = (𝐴, 𝐵) of disjoint sets of strings.
Given a string 𝑥, we say that 𝐿 accepts 𝑥, written 𝐿(𝑥) = y, if 𝑥 ∈ 𝐴, and we say that
𝐿 rejects 𝑥, written 𝐿(𝑥) = n, if 𝑥 ∈ 𝐵.

We say that a bisected language 𝐿 is decidable if there exists some Turing machine
𝑀 such that:

• 𝑀 halts on every input.

• If 𝐿(𝑥) = y, then𝑀 accepts 𝑥.

• If 𝐿(𝑥) = n, then𝑀 rejects 𝑥.

A bisected language is total if every string is in either 𝐴 or 𝐵. In this case, the
notion of decidability for bisected languages coincides with the usual notion of decid-
ability.

Lemma 6.2. Suppose that 𝐸 ∶ 2∗ → 2∗ is a computable function. We say that 𝐸 is a
reduction from the bisected language (𝐴, 𝐵) to (𝐴′, 𝐵′) if 𝐸(𝐴) ⊆ 𝐴′ and 𝐸(𝐵) ⊆ 𝐵′. In
this case, if (𝐴′, 𝐵′) is decidable, so is (𝐴, 𝐵). Conversely, if (𝐴, 𝐵) is undecidable, then
(𝐴′, 𝐵′) is undecidable.

Theorem 6.3. Define the output (bisected) language of Turing machines 𝐿OUT as the
pair (𝐴, 𝐵), where

𝐴 ≜ {⟨⟨𝑀⟩, 𝑥⟩ ∣ 𝑀 outputs “yes” on 𝑥}
𝐵 ≜ {⟨⟨𝑀⟩, 𝑥⟩ ∣ 𝑀 outputs “no” on 𝑥}.

The language 𝐿OUT is undecidable.

23



Proof. By adapting the usual diagonalization proof for the halting problem.

To use Theorem 6.3, we need to find some reduction of the output language of
Turing to an inequality onweakKleene algebras. For simplicity, we’ll use as a stepping
stone the notion of two-countermachine. Roughly speaking, a two-countermachine𝑀
is an automaton that has a control state and two counters. Themachine can increment
each counter, test if their values are zero, and halt; we will give a formal definition of
its behavior using the formalism of representable relations (Section 5).

Two-counter machines and Turing machines are equivalent in expressive power:
any two-counter machine can simulate the execution of a Turing machine, and vice
versa; see Hopcroft, Motwani, and Ullman [HMU01, §8.5.3, §8.5.4] for an idea of how
this simulation works. In particular, given a Turing machine 𝑀, there exists a two-
counter machine that halts on every input where𝑀 halts, and yields the same output
for that input. To conclude, it suffices to reduce the output language for two-counter
machines to the problem of solving weak Kleene algebra inequalities.

Definition 6.4. A two-counter machine is a tuple𝑀 = (𝑄𝑀, ̇𝑞, 𝜄), where 𝑄 is a finite
set of control states, ̇𝑞 ∈ 𝑄𝑀 is an initial state, and 𝜄 ∶ 𝑄𝑀 → 𝐼𝑀 is a transition
function. The set 𝐼𝑀 is the set of instructions of the machine, defined as follows:

𝐼𝑀 ≜ {Inc(𝑟, 𝑞) ∣ 𝑟 ∈ {1, 2}, 𝑞 ∈ 𝑄𝑀}
∪ {If(𝑟, 𝑞1, 𝑞2) ∣ 𝑟 ∈ {1, 2}, 𝑞1, 𝑞2 ∈ 𝑄𝑀}
∪ {Halt(𝑥) ∣ 𝑥 ∈ {y, n}}.

Two-countermachines act on configurations, which are strings of the form 𝑎𝑛𝑏𝑚𝑞,
where 𝑞 is a control state and 𝑎 and 𝑏 are counter symbols: the number of symbol oc-
currences determines which number is stored in a counter. When the machine halts,
it outputs either y or n to indicate whether its input was accepted or rejected.

Definition 6.5. Let 𝑀 be a two-counter machine. We define the following discrete
commutable sets and terms:

Σ𝑀 ≜ 𝑄𝑀 + {𝑎, 𝑏, y, n} symbols

𝐹Σ𝑀 ∋ 𝐶𝑀 ≜ 𝑎∗𝑏∗𝑄𝑀 running configurations

𝐹Σ𝑀 ∋ 𝑇𝑀 ≜ 𝐶𝑀 + {y, n} all configurations.

Lemma 6.6. We have 𝐶𝑀 ≤ 𝑇𝑀, and 𝑇𝑀 is prefix free.

Proof. The first point is trivial. As for the second one, we note that every string 𝑠 ≤ 𝑇𝑀
must be of the form 𝑠′𝑥, where 𝑥 ∈ 𝑄𝑀 ∪ {y, n} and 𝑠′ does not contain any such
symbols. Any proper prefix of such a string cannot lie in 𝑇𝑀.

Definition 6.7 (Running a two-counter machine). We interpret each instruction 𝑖 ∈

24



𝐼𝑀 as an element ⦇𝑖⦈ ∈ 𝐹Σ̈𝑀:

⦇Inc(1, 𝑞)⦈ ≜ 𝑎𝑟𝑎∗𝑏∗𝑞𝑟
⦇Inc(2, 𝑞)⦈ ≜ 𝑎∗𝑏𝑟𝑏∗𝑞𝑟

⦇If(1, 𝑞1, 𝑞2)⦈ ≜ 𝑏∗(𝑞1)𝑟 + 𝑎𝑙𝑎∗𝑏∗(𝑞2)𝑟
⦇If(2, 𝑞1, 𝑞2)⦈ ≜ 𝑎∗(𝑞1)𝑟 + 𝑎∗𝑏𝑙𝑏∗(𝑞2)𝑟

⦇Halt(𝑥)⦈ ≜ 𝑥𝑟.

The transition relation of𝑀 is defined as

𝐹Σ̈𝑀 ∋ 𝑅𝑀 ≜ ∑
𝑞∈𝑄𝑀

⦇𝜄(𝑞)⦈𝑞𝑙.

We say that𝑀 terminates on 𝑛 if 𝑎𝑛𝑏0 ̇𝑞
𝑅𝑀−−→

∗
𝑥 for some 𝑥 ∈ {y, n}. We refer to 𝑥 as

the output of𝑀 on 𝑛. We say that𝑀 accepts 𝑛 if it terminates on 𝑛 outputting y, and
we say that𝑀 rejects 𝑛 if it does not accept 𝑛.

Lemma 6.8. The term 𝑅𝑀 is a representable relation of type 𝐶𝑀 → 𝑇𝑀 (Definition 5.9).
Explicitly,

• 𝜋𝑙(𝑅𝑀) ≤ 𝐶𝑀

• 𝜋𝑟(𝑅𝑀) ≤ 𝑇𝑀

• 𝑅𝑀 is finite state (Definition 4.3)

• 𝑅𝑀 has bounded output (Definition 5.1)

Proof. The first point is analogous to the second one, so we focus on that one. First,
we prove that, for any instruction 𝑖 ∈ 𝐼𝑀, 𝜋𝑟(⦇𝑖⦈) ≤ 𝑇𝑀. Let us consider the example
of Inc; the others are analogous:

𝜋𝑟(Inc(1, 𝑞)) = 𝜋𝑟(𝑎𝑟𝑎∗𝑏∗𝑞𝑟)
= 𝑎𝑎∗𝑏∗𝑞
≤ 𝑎∗𝑏∗𝑞 because 𝑎𝑎∗ ≤ 𝑎∗

≤ 𝐶𝑀∗
≤ 𝑇𝑀.

Thus,

𝜋𝑟(𝑅𝑀) = ∑
𝑞∈𝑄𝑀

𝜋𝑟(⦇𝜄(𝑞)⦈𝑞𝑙)

= ∑
𝑞∈𝑄𝑀

𝜋𝑟(⦇𝜄(𝑞)⦈)

≤ ∑
𝑞∈𝑄𝑀

𝑇𝑀

= 𝑇𝑀.

25



To show the remaining two points, we just have to appeal to the closure properties
of finite-state and bounded-output terms (Lemmas 4.7 and 5.3). These lemmas say that
these properties are always preserved by all the algebra operations, except possibly
for star. For star, we need to check that the starred sub-terms do not contain 1 and
that they only contain strings with at least one left symbol. The starred sub-terms are
just 𝑎𝑙𝑎𝑟 and 𝑏𝑙𝑏𝑟, both of which satisfy this property.

Lemma 6.9. The relation 𝑅𝑀 satisfies the following property: for every 𝑎𝑛𝑏𝑚𝑞 ≤ 𝐶𝑀,

if 𝑎𝑛𝑏𝑚𝑞
𝑅𝑀−−→ 𝑠, then 𝑠 = ⟦𝜄(𝑞)⟧(𝑛,𝑚), where the function ⟦𝑖⟧ ∶ ℕ×ℕ → 𝑇𝑀 is defined

as follows

⟦Inc(1, 𝑞)⟧(𝑛,𝑚) ≜ 𝑎𝑛+1𝑏𝑚𝑞
⟦Inc(2, 𝑞)⟧(𝑛,𝑚) ≜ 𝑎𝑛𝑏𝑚+1𝑞

⟦If(1, 𝑞1, 𝑞2)⟧(𝑛,𝑚) ≜ {
𝑎𝑛𝑏𝑚𝑞1 if 𝑛 = 0
𝑎𝑝𝑏𝑚𝑞2 if 𝑛 = 𝑝 + 1

⟦If(2, 𝑞1, 𝑞2)⟧(𝑛,𝑚) ≜ {
𝑎𝑛𝑏𝑚𝑞1 if 𝑚 = 0
𝑎𝑛𝑏𝑝𝑞2 if 𝑚 = 𝑝 + 1

⟦Halt(𝑥)⟧(𝑛,𝑚) ≜ 𝑥.

In particular, this defines a functional relation.

Theorem 6.10. Suppose that we have a diagram of sets:

𝑇Σ̈

𝐴 ℒΣ̈.

𝑓
𝑙

𝑔

Then the following is a reduction from the output language of two-counter machines to
the (total) language of equations in 𝐴:

⟨⟨𝑀⟩, ⟨𝑛⟩⟩ ↦ ⟨𝑓((𝑎𝑛𝑏0 ̇𝑞)𝑟𝑅∗𝑀 + (𝐶𝑀)∗(𝐶𝑀 + y)𝑟 + 𝜀), 𝑓((𝐶𝑀)∗(𝐶𝑀 + y)𝑟 + 𝜀)⟩,

where 𝜀 is computed as in Theorem 5.23, by setting

𝐿1 ≜ 𝐶𝑀
𝐿2 ≜ 𝑇𝑀
𝐿𝑖 ≜ 𝑎𝑛𝑏0 ̇𝑞
𝐿𝑓 ≜ 𝐶𝑀 + y.

In particular, the language of equations of 𝐴 is undecidable.

Proof. Suppose that ⟨⟨𝑀⟩, ⟨𝑛⟩⟩ is accepted by 𝐿OUT. Thus, 𝑎𝑛𝑏0 ̇𝑞
𝑅𝑀−−→

𝑘
y for some

𝑘. Since y does not transition, and since the relation 𝑅𝑀 is a (partial) function, all

26



transition sequences starting from 𝐿𝑖 are strictly bounded by 𝑘+1. By completeness,
this means that the equation holds.

Otherwise, suppose that ⟨⟨𝑀⟩, ⟨𝑛⟩⟩ is rejected by 𝐿OUT. Thus, 𝑎𝑛𝑏0 ̇𝑞
𝑅𝑀−−→

∗
n. Then

the equation cannot hold. For suppose that it did hold. By soundness, we should have
n ≤ 𝐶𝑀 + y, which is not the case.

References
[HMU01] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley series in computer sci-
ence. Addison-Wesley, 2001. isbn: 9780201441246. url: https://books.
google.com/books?id=omIPAQAAMAAJ.

[Koz97] Dexter Kozen. “On the Complexity of Reasoning in Kleene Algebra”. In:
Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science,
Warsaw, Poland, June 29 - July 2, 1997. IEEEComputer Society, 1997, pp. 195–
202. doi: 10.1109/LICS.1997.614947. url: https://doi.org/10.
1109/LICS.1997.614947.

[Kuz23] Stepan L. Kuznetsov. “On the Complexity of Reasoning in Kleene Alge-
bra with Commutativity Conditions”. In: Theoretical Aspects of Comput-
ing - ICTAC 2023 - 20th International Colloquium, Lima, Peru, December
4-8, 2023, Proceedings. Ed. by Erika Ábrahám, Clemens Dubslaff, and Sil-
via Lizeth Tapia Tarifa. Vol. 14446. Lecture Notes in Computer Science.
Springer, 2023, pp. 83–99. doi: 10.1007/978-3-031-47963-2\_7. url:
https://doi.org/10.1007/978-3-031-47963-2%5C_7.

A Addenda on Kleene Algebra
Theorem A.1. Let 𝑋 ∈ Comm be discrete and 𝑌 ∈ Comm be commutative.

𝑙𝑋 ∶ 𝒦𝑋 → ℒ𝑋
𝑙𝑌 ∶ 𝒦𝑌 → ℒ𝑌

are isomorphisms.

Proof. These are standard results of Kleene algebra.

Lemma A.2. Let 𝑥 be an element of a Kleene algebra 𝑋 such that

1 ≤ 𝑥
𝑥𝑥 ≤ 𝑥.

Then the set 𝑋𝑥 ≜ {𝑦 ∈ 𝑋 ∣ 𝑦 ≤ 𝑥} is a subalgebra of 𝑋.

Proof. Since all Kleene algebra operations are monotonic, they automatically preserve
𝑋𝑥. For example, if 𝑦 ≤ 𝑥 and 𝑧 ≤ 𝑥, then 𝑦𝑧 ≤ 𝑥𝑥 ≤ 𝑥, so 𝑦𝑧 ∈ 𝑋𝑥. Furthermore,
notice that 𝑥∗ ≤ 𝑥 by induction. Therefore, 𝑦∗ ≤ 𝑥∗ ≤ 𝑥, so 𝑦∗ ∈ 𝑋𝑥.

27

https://books.google.com/books?id=omIPAQAAMAAJ
https://books.google.com/books?id=omIPAQAAMAAJ
https://doi.org/10.1109/LICS.1997.614947
https://doi.org/10.1109/LICS.1997.614947
https://doi.org/10.1109/LICS.1997.614947
https://doi.org/10.1007/978-3-031-47963-2\_7
https://doi.org/10.1007/978-3-031-47963-2%5C_7


As a subalgebra, when 𝑌 is finite, 𝒦𝑌 is canonically isomorphic to (𝒦𝑋)𝑌∗ (cf.
Lemma A.2).

Lemma A.3. Let 𝑋 be a Kleene algebra. The set𝑀𝑛,𝑛(𝑋) of 𝑛×𝑛matrices with coeffi-
cients in 𝑋 is a Kleene algebra when endowed with matrix addition and multiplication.
The star of a block matrix is given by the formula

[𝐴 𝐵
𝐶 𝐷]

∗
= [ 𝐹∗ 𝐹∗𝐵𝐷∗

𝐷∗𝐶𝐹∗ 𝐷∗ + 𝐷∗𝐶𝐹∗𝐵𝐷∗] ,

where 𝐹 = 𝐴 + 𝐵𝐷∗𝐶. In particular, if 𝐶 = 0 (that is, if the matrix is block upper
triangular), then 𝐹 = 𝐴, and thus

[𝐴 𝐵
0 𝐷]

∗
= [𝐴

∗ 𝐴∗𝐵𝐷∗

0 𝐷∗ ] .

TheoremA.4. Let𝑌1 and𝑌2 be finite commutable sets. Given 𝑎1 ∈ 𝒦𝑌1 and 𝑎2 ∈ 𝒦𝑌2,
we have 𝑎1𝑎2 = 𝑎2𝑎1 in𝒦(𝑌1⊕𝑌2). In other words, we have the following factorization:

𝒦𝑌1

𝒦𝑌1 ⊕𝒦𝑌2 𝒦(𝑌1 ⊕ 𝑌2)

𝒦𝑌2

Proof. By induction on 𝑎1.
If 𝑎1 ∈ 𝑌1, we proceed by induction on 𝑎2. If 𝑎2 ∈ 𝑌2, then 𝑎1𝑎2 = 𝑎2𝑎1 in

𝒦(𝑌1 ⊕ 𝑌2) because 𝑎1 ∼ 𝑎2 in 𝑌1 ⊕ 𝑌2. If 𝑎2 ∈ {0, 1}, the result is trivial. If 𝑎2 =
𝑎21+𝑎22, we reason 𝑎1(𝑎21+𝑎22) = 𝑎1𝑎21+𝑎1𝑎22 = 𝑎21𝑎1+𝑎22𝑎1 = (𝑎21+𝑎22)𝑎1.
If 𝑎2 = 𝑎21𝑎22, we reason 𝑎1𝑎21𝑎22 = 𝑎21𝑎1𝑎22 = 𝑎21𝑎22𝑎1. Finally, if 𝑎2 = 𝑏∗2 , we
use the Kleene algebra theorem 𝑥𝑦 = 𝑧𝑥 ⇒ 𝑥𝑦∗ = 𝑧∗𝑥.

The other cases for 𝑎1 follow a similar pattern.

Theorem A.5. Let 𝑌 ⊆ 𝑋 be a commutable subset. We have the following pullback
square:

𝒦𝑌 ℒ𝑌

𝒦𝑋 ℒ𝑋.

𝑙

𝑙

In other words, if 𝑒 ∈ 𝒦𝑋 is such that 𝑙(𝑒) ⊆ 𝑌∗, then 𝑒 must be in the image of𝒦𝑌 in
𝒦𝑋.

Proof. By induction on 𝑒.

28



• If 𝑒 = 0 or 𝑒 = 1, then 𝑒 is trivially in the image.

• Suppose that 𝑒 = 𝑥 ∈ 𝑋. Since 𝑙(𝑒) ⊆ 𝑌∗, we have 𝑥 ∈ 𝑌, from which the result
follows.

• Suppose that 𝑒 = 𝑒1 + 𝑒2. Then 𝑙(𝑒𝑖) ⊆ 𝑌∗ for every 𝑖. By the induction
hypotheses, this means that, for every 𝑖, 𝑒𝑖 is in the image of 𝒦𝑌. Thus, so is
𝑒1 + 𝑒2.

• Suppose that 𝑒 = 𝑒1𝑒2. Let us begin by showing that 𝑙(𝑒1) ⊆ 𝑌∗. We can
assume that 𝑙(𝑒2) is nonempty; otherwise, the result follows trivially, because
Theorem 3.6 implies 𝑒2 = 0 and thus 𝑒 = 0, which is in the image of 𝒦𝑌.
Thus, we have some 𝑠2 ∈ 𝑙(𝑒2). Now, consider some arbitrary 𝑠1 ∈ 𝑙(𝑒1). Since
𝑠1𝑠2 ∈ 𝑙(𝑒1𝑒2) ⊆ 𝑌∗ , we conclude that 𝑠1 can only have symbols in 𝑌. This
implies that 𝑙(𝑒1).
By a symmetric reasoning, we can show that 𝑙(𝑒2) ⊆ 𝑌∗. Thus, our induction
hypotheses show that both 𝑒1 and 𝑒2 are in the image of𝒦𝑌, and so is 𝑒1𝑒2.

• Finally, suppose that 𝑒 = 𝑒∗1 . We have 𝑙(𝑒1) ⊆ 𝑙(𝑒∗1 ) ⊆ 𝑌∗. Thus, our induction
hypothesis says that 𝑒1 is in the image of𝒦𝑌, implying that so is 𝑒.

B Decomposition
Let 𝑋 be a finite commutable set and 𝑌 and 𝑍 be two disjoint commutable subsets of 𝑋.
We are going to show that every term of 𝑇𝑋 can be written uniquely as a sum of two
components: one that only contains symbols from 𝑌, and another one that contains
at least one symbol from 𝑍. Consider the following matrix:

𝑈𝑋,𝑌 ≜ [𝑌
∗ 𝑌∗𝑍𝑋∗

0 𝑋∗ ] .

We can check 1 ≤ 𝑈𝑋,𝑌 and𝑈𝑋,𝑌𝑈𝑋,𝑌 ≤ 𝑈𝑋,𝑌, hencewe can consider the ideal Kleene
algebra𝑀2,2(𝒦𝑋)𝑈𝑋,𝑌 .

Lemma B.1. Let

𝐷𝑋,𝑌 ≜ {[𝑎 𝑏
0 𝑎 + 𝑏] ∣ 𝑎 ≤ 𝑌∗, 𝑏 ≤ 𝑌∗𝑍𝑋∗} .

This is a Kleene subalgebra of𝑀2,2(𝒦𝑋)𝑈𝑋,𝑌 .

Proof. It suffices to check closure for all the Kleene algebra operations. We focus on
two interesting cases. Let

𝑥1 = [𝑎1 𝑏1
0 𝑎1 + 𝑏1

]

𝑥2 = [𝑎2 𝑏2
0 𝑎2 + 𝑏2

] .

29



Then

𝑥1𝑥2 = [𝑎1𝑎2 𝑎1𝑏2 + 𝑏1(𝑎2 + 𝑏2)
0 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑏1(𝑎2 + 𝑏2))

] ,

which is of the desired form.
Otherwise, suppose

𝑥 = [𝑎 𝑏
0 𝑎 + 𝑏] ,

then

𝑥∗ = [𝑎
∗ 𝑎∗𝑏(𝑎 + 𝑏)∗
0 (𝑎 + 𝑏)∗ ] .

Since 𝑎∗ + 𝑎∗𝑏(𝑎 + 𝑏)∗ = (𝑎 + 𝑏)∗ by a standard theorem of Kleene algebra, we are
done.

Lemma B.2. Define a morphism of type 𝑖 ∶ 𝒦𝑋 → 𝐷𝑋,𝑌 by lifting

𝑐 ↦
⎧
⎪
⎨
⎪
⎩

[
𝑐 0
0 𝑐

] if 𝑐 ∈ 𝑌

[
0 𝑐
0 𝑐

] otherwise.

This morphism has a left inverse 𝑗 given by

𝑗 [𝑎 𝑏
0 𝑎 + 𝑏] = 𝑎 + 𝑏.

Corollary B.3 (Existence of decomposition). Every 𝑥 ∈ 𝒦𝑋must be of the form 𝑎+𝑏
for some 𝑎 ≤ 𝑌∗ and some 𝑏 ≤ 𝑌∗𝑍𝑋∗.

Proof. By Lemma B.2, 𝑥 = 𝑗(𝑖(𝑥)), which must be of this form.

We are now going to show that the decomposition is unique.

Lemma B.4. Suppose 𝑎 ≤ 𝑌∗ and 𝑏 ≤ 𝑌∗𝑍𝑋∗. Then

𝑖(𝑎) ≜ [𝑎 0
0 𝑎] 𝑖(𝑏) ≜ [0 𝑏

0 𝑏] .

Proof. Notice that

𝑖(𝑌∗) ≜ [𝑌
∗ 0
0 𝑌∗] 𝑖(𝑌∗𝑍𝑋∗) ≜ [0 𝑌∗𝑍𝑋∗

0 𝑌∗𝑍𝑋∗] .

Since 𝑖(𝑎) ≤ 𝑖(𝑌∗) and 𝑖(𝑏) ≤ 𝑖(𝑌∗𝑍𝑋∗), these matrices must be of the form

𝑖(𝑎) ≜ [𝑎
′ 0
0 𝑎′] 𝑖(𝑏) ≜ [0 𝑏′

0 𝑏′] .

But by Lemma B.2, we must have 𝑎′ = 𝑎 and 𝑏′ = 𝑏, from which the result follows.

30



Corollary B.5 (Decomposition is unique). Suppose that 𝑎1 + 𝑏1 = 𝑎2 + 𝑏2, when
𝑎𝑖 ≤ 𝑌∗ and 𝑏𝑖 ≤ 𝑌∗𝑍𝑋∗. Then 𝑎1 = 𝑎2 and 𝑏1 = 𝑏2.

Proof. By Lemma B.4,

𝑖(𝑎𝑖 + 𝑏𝑖) = 𝑖(𝑎𝑖) + 𝑖(𝑏𝑖)

= [𝑎𝑖 0
0 𝑎𝑖

] + [0 𝑏𝑖
0 𝑏𝑖

]

= [𝑎𝑖 𝑏𝑖
0 𝑎𝑖 + 𝑏𝑖

] .

Since 𝑖(𝑎1 + 𝑏1) = 𝑖(𝑎2 + 𝑏2), we must have 𝑎1 = 𝑎2 and 𝑏1 = 𝑏2.

Corollary B.6. 𝑖 ∶ 𝒦𝑋 ≅ 𝐷𝑋,𝑌.

Proof. By the previous results, 𝑖(𝑗(𝑥)) must be equal to 𝑥, so 𝑖 and 𝑗 are two-sided
inverses of each other.

With this decomposition, we can define and compute the empty word property of
a word. We can instantiate 𝑌 = ∅, and 𝑍 = 𝑋, in this case:

𝑖(𝑒) = [𝑎 𝑏
0 𝑎 + 𝑏] ,

and 𝑎 ≤ 𝑌∗, and 𝑏 ≤ 𝑋𝑋∗. Since the projection of first diagonal element 𝜋1,1 is a
homomorphism, 𝜋1,1 ∘ 𝑖 ∶ 𝐹𝑋 → 𝐹𝑋 is also a homomorphism, and thus the range of
𝜋1,1∘𝑖 forms a KA. Since the element in this range is smaller than𝑌∗, the range is a sub-
KA of 𝐹𝑌, also because 𝑌 = ∅ is the initial object in the category of commutable set,
thus 𝐹𝑌 is also the initial element in KA, which is 2, and such a KA contains no proper
sub-KA. Therefore, the range of 𝜋1,1 ∘ 𝑖 is 2, and we will denote the homomorphism
𝜋1,1 ∘ 𝑖 restricted to its range as 𝐸 ∶ 𝐹𝑋 → 2.

TODO: prove term under 𝑌∗ is isomorphic to 𝐹𝑌.

Corollary B.7 (Completeness of 𝐸). For all term 𝑒 ∈ 𝐹𝑋:

𝐸(𝑒) = 1⟺ 𝜖 ∈ 𝑙(𝑒)⟺ 𝑒 ≥ 1.

Proof. Recall that 𝑒 can be decomposed into 𝐸(𝑒) + 𝑏, where 𝑏 ∈ 𝑋𝑋∗. We consider
the language interpretation of 𝑒:

𝑙(𝑒) = 𝑙(𝐸(𝑒)) + 𝑙(𝑏).

Notice that 𝑏 ≤ 𝑋𝑋∗, hence 𝜖 ∉ 𝑙(𝑏). And because {𝜖} ⊈ 𝑙(𝑏), therefore 1 ≰ 𝑏.
We first show 𝐸(𝑒) = 1⟺ 𝜖 ∈ 𝑙(𝑒). If 𝐸(𝑒) = 1, then 𝜖 ∈ 𝑙(𝐸(𝑒)), and

𝜖 ∈ 𝑙(𝐸(𝑒)) ⊆ 𝑙(𝐸(𝑒)) + 𝑙(𝑏) = 𝑙(𝑒).

If 𝐸(𝑒) ≠ 1, i.e. 𝐸(𝑒) = 0, then 𝜖 ∉ 𝑙(𝐸(𝑒)). Because 𝜖 ∉ 𝑙(𝐸(𝑒)) and 𝜖 ∉ 𝑙(𝑏), therefore

𝜖 ∉ 𝑙(𝐸(𝑒)) + 𝑙(𝑏) = 𝑙(𝑒).

31



We then show 𝐸(𝑒) = 1⟺ 𝑒 ≥ 1. If 𝐸(𝑒) = 1, then

𝑒 = 𝐸(𝑒) + 𝑏 ≥ 1.

If 𝐸(𝑒) ≠ 1, then 𝐸(𝑒) = 0,
𝑒 = 𝐸(𝑒) + 𝑏 = 𝑏 ≱ 1.

Corollary B.8 (Decidability of 𝐸). For all term 𝑒 ∈ 𝐹𝑋, 𝐸(𝑒) = 1 is decidable.

Proof. Because the KA 2 is decidable, that is every expression in 2 can be reduced
to either 0 or 1 in finite time. Therefore, we can simply compute the result of 𝐸(𝑒)
following the structure of 𝑒, and then the result of 𝐸(𝑒) to see if it equals to 1.

TODO: I don’t think the fact that ”𝑖 is an isomorphism” is necessary?

Corollary B.9. Given any 𝑥 ∈ 𝒦𝑋, it is decidable whether 1 ≤ 𝑥.

Proof. Let’s instantiate the previous results with 𝑌 = ∅ and 𝑍 = 𝑋. Since 𝑖 ∶ 𝒦𝑋 ≅
𝐷𝑋,𝑌, 1 ≤ 𝑥 is equivalent to

[1 0
0 1] ≤ 𝑖(𝑥).

We can determine this by checking that 1 ≤ 𝑖(𝑥)1,1. Since ∅ is the initial object
of Comm, 𝐹∅ must also be initial in KA, and thus isomorphic to {0 ≤ 1}, which is
a decidable Kleene Algebra. So, we just have to see if 𝑖(𝑥)1,1 is equal to 1 via the
canonical isomorphism coming from initiality.

C Derivative

C.1 Term Derivative
Let 𝑋 be a finite commutable set. We prove that the derivative of a term 𝑎 ∈ 𝒦𝑋 is
well-defined with respect to any 𝑥 ∈ 𝑋. Define the following commutable subsets of
𝑋:

𝑌 ≜ {𝑦 ∼ 𝑥 ∣ 𝑦 ≠ 𝑥}
𝑍 ≜ {𝑧 ≁ 𝑥 ∣ 𝑧 ≠ 𝑥}.

Define the following matrix

𝑈𝑥 ≜ [
𝑌∗ 𝑌∗𝑍𝑋∗ 𝑋∗

0 𝑋∗ 0
0 0 𝑋∗

] .

Note that 1 ≤ 𝑈𝑥 and 𝑈𝑥𝑈𝑥 ≤ 𝑈𝑥. Thus, we can consider the ideal Kleene algebra
𝑀3,3(𝒦𝑋)𝑈𝑥 .

32



Lemma C.1. The set 𝐷𝑥 ⊆ 𝑀3,3(𝒦𝑋)𝑈𝑥 defined as

𝐷𝑥 ≜ {[
𝑎 𝑏 𝑐
0 𝑑 0
0 0 𝑑

] ∣ 𝑑 = 𝑎 + 𝑏 + 𝑥𝑐}

is a Kleene subalgebra.

Proof. We just need to check closure for the Kleene algebra operations. We focus on
two cases: multiplication and star.

Suppose that we have 𝑚1 and 𝑚2 with

𝑚𝑖 = [
𝑎𝑖 𝑏𝑖 𝑑𝑖
0 𝑑𝑖 0
0 0 𝑑𝑖

] ,

where 𝑑𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝑥𝑐𝑖, and similarly for 𝑑2. Hence

𝑚1𝑚2 = [
𝑎1𝑎2 𝑎1𝑏2 + 𝑏1𝑑2 𝑎1𝑐2 + 𝑐1𝑑2
0 𝑑1𝑑2 0
0 0 𝑑1𝑑2

] .

We have

𝑑1𝑑2 = 𝑎1𝑎2 + [𝑎1𝑏2 + 𝑏1𝑎2 + 𝑏1𝑏2 + 𝑏1𝑥𝑐2] + [𝑎1𝑥𝑐2 + 𝑥𝑐1𝑎2 + 𝑥𝑐1𝑏2 + 𝑥𝑐1𝑥𝑐2]
= 𝑎1𝑎2 + [𝑎1𝑏2 + 𝑏1𝑎2 + 𝑏1𝑏2 + 𝑏1𝑥𝑐2] + [𝑥𝑎1𝑐2 + 𝑥𝑐1𝑎2 + 𝑥𝑐1𝑏2 + 𝑥𝑐1𝑐2]
= 𝑎1𝑎2 + [𝑎1𝑏2 + 𝑏1𝑎2 + 𝑏1𝑏2 + 𝑏1𝑥𝑐2] + 𝑥[𝑎1𝑐2 + 𝑐1𝑎2 + 𝑐1𝑏2 + 𝑐1𝑥𝑐2]
= 𝑎1𝑎2 + [𝑎1𝑏2 + 𝑏1𝑑2] + 𝑥[𝑎1𝑐2 + 𝑐1𝑑2],

which is what we seek.
On the other hand, we have

𝑚∗
1 ≜ [

𝑎∗1 𝑎∗1𝑏1𝑑∗1 𝑎∗1𝑐1𝑑∗1
0 𝑑∗1 0
0 0 𝑑∗1

] .

Since

𝑑∗1 = (𝑎1 + 𝑏1 + 𝑥𝑐1)∗

= 𝑎∗1 + 𝑎∗1𝑏1𝑑∗1 + 𝑎∗1𝑥𝑐1𝑑∗1
= 𝑎∗1 + 𝑎∗1𝑏1𝑑∗1 + 𝑥(𝑎∗1𝑐1𝑑∗1 ),

(note that 𝑎∗1𝑥 = 𝑥𝑎∗1 ) we are done.

33



Theorem C.2. Define a morphism of type 𝑖 ∶ 𝒦𝑋 → 𝐷𝑥 by lifting

𝛼 ↦

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

⎡
⎢
⎢
⎣

𝛼 0 0
0 𝛼 0
0 0 𝛼

⎤
⎥
⎥
⎦

if 𝛼 ∈ 𝑌

⎡
⎢
⎢
⎣

0 𝛼 0
0 𝛼 0
0 0 𝛼

⎤
⎥
⎥
⎦

if 𝛼 ∈ 𝑍

⎡
⎢
⎢
⎣

0 0 1
0 𝑥 0
0 0 𝑥

⎤
⎥
⎥
⎦

if 𝛼 = 𝑥

This morphism has a left inverse 𝑗 given by

𝑗 [
𝑎 𝑏 𝑐
0 𝑑 0
0 0 𝑑

] = 𝑑.

Corollary C.3. Every 𝑒 ∈ 𝑇𝑋 is of the form 𝑎 + 𝑏 + 𝑥𝑐 for some 𝑎 ≤ 𝑌∗, 𝑏 ≤ 𝑌∗𝑍𝑋∗

and 𝑐 ≤ 𝑋∗.

Lemma C.4. Let 𝑎 ≤ 𝑌∗, 𝑏 ≤ 𝑌∗𝑍𝑋∗ and 𝑐 ≤ 𝑋∗. Then

𝑖(𝑎) = [
𝑎 0 0
0 𝑎 0
0 0 𝑎

] 𝑖(𝑏) = [
0 𝑏 0
0 𝑏 0
0 0 𝑏

] 𝑖(𝑥𝑐) = [
0 0 𝑐
0 𝑥𝑐 0
0 0 𝑥𝑐

] .

Proof. By linearity,

𝑖(𝑌) = [
𝑌 0 0
0 𝑌 0
0 0 𝑌

] 𝑖(𝑍) = [
0 𝑍 0
0 𝑍 0
0 0 𝑍

] 𝑖(𝑋) = [
𝑌 𝑍 1
0 𝑋 0
0 0 𝑋

] .

34



Therefore,

𝑖(𝑌∗) = [
𝑌∗ 0 0
0 𝑌∗ 0
0 0 𝑌∗

]

𝑖(𝑋∗) = [
𝑌∗ 𝑌∗𝑍𝑋∗ 𝑌∗1𝑋∗

0 𝑋∗ 0
0 0 𝑋∗

]

= [
𝑌∗ 𝑌∗𝑍𝑋∗ 𝑋∗

0 𝑋∗ 0
0 0 𝑋∗

]

𝑖(𝑌∗𝑍𝑋∗) = [
𝑌∗ 0 0
0 𝑌∗ 0
0 0 𝑌∗

] [
0 𝑍 0
0 𝑍 0
0 0 𝑍

] [
𝑌∗ 𝑌∗𝑍𝑋∗ 𝑋∗

0 𝑋∗ 0
0 0 𝑋∗

]

= [
0 𝑌∗𝑍 0
0 𝑌∗𝑍 0
0 0 𝑌∗𝑍

][
𝑌∗ 𝑌∗𝑍𝑋∗ 𝑋∗

0 𝑋∗ 0
0 0 𝑋∗

]

= [
0 𝑌∗𝑍𝑋∗ 0
0 𝑌∗𝑍𝑋∗ 0
0 0 𝑌∗𝑍𝑋∗

]

𝑖(𝑥𝑋∗) = [
0 0 1
0 𝑥 0
0 0 𝑥

] [
𝑌∗ 𝑌∗𝑍𝑋∗ 𝑌∗1𝑋∗

0 𝑋∗ 0
0 0 𝑋∗

]

= [
0 0 𝑋∗

0 𝑥𝑋∗ 0
0 0 𝑥𝑋∗

] .

We conclude by noting that 𝑖(𝑎) ≤ 𝑖(𝑌∗), 𝑖(𝑏) ≤ 𝑖(𝑌∗𝑍𝑋∗) and 𝑖(𝑥𝑐) ≤ 𝑖(𝑥𝑋∗), like
we did for the proof of Lemma B.4.

Corollary C.5. The morphism 𝑖 ∶ 𝑇𝑋 → 𝐷𝑥 is surjective, and thus an isomorphism.
In particular, every 𝑒 ∈ 𝑇𝑋 can be uniquely written as a sum 𝑎 + 𝑏 + 𝑥𝑐 with 𝑎 ≤ 𝑌∗,
𝑏 ≤ 𝑌∗𝑍𝑋∗ and 𝑐 ≤ 𝑋∗.

Proof. We have

[
𝑎 𝑏 𝑐
0 𝑎 + 𝑏 + 𝑥𝑐 0
0 0 𝑎 + 𝑏 + 𝑥𝑐

]

= [
𝑎 0 0
0 𝑎 0
0 0 𝑎

] + [
0 𝑏 0
0 𝑏 0
0 0 𝑏

] + [
0 0 𝑐
0 𝑥𝑐 0
0 0 𝑥𝑐

]

= 𝑖(𝑎) + 𝑖(𝑏) + 𝑖(𝑥𝑐)
= 𝑖(𝑎 + 𝑏 + 𝑥𝑐).

35



Definition C.6. Suppose that

𝑖(𝑒) = [
𝑎 𝑏 𝑐
0 𝑑 0
0 0 𝑑

] .

We define the following terms:

𝜌𝑥(𝑒) ≜ 𝑎 + 𝑏 residue of 𝑒 with respect to 𝑥
𝛿𝑥(𝑒) ≜ 𝑐 derivative of 𝑒 with respect to 𝑥.

Theorem C.7. The derivative and the residue satisfy the following properties.

𝑒 = 𝜌𝑥(𝑒) + 𝑥𝛿𝑥(𝑒)
𝜌𝑥(𝑒) ≤ 𝑌∗ + 𝑌∗𝑍𝑋∗

𝜌𝑥(𝑥𝑒) = 0
𝜌𝑥(𝑦𝑒) = 𝑦𝜌𝑥(𝑒) 𝑦 ∈ 𝑌
𝜌𝑥(𝑧𝑒) = 𝑧𝑒 𝑧 ∈ 𝑍
𝜌𝑥(1) = 1
𝜌𝑥(0) = 0

𝜌𝑥(𝑒1 + 𝑒2) = 𝜌𝑥(𝑒1) + 𝜌𝑥(𝑒2)
𝛿𝑥(𝑥) = 1
𝛿𝑥(𝑥𝑒) = 𝑒
𝛿𝑥(𝑦) = 0 𝑦 ≠ 𝑥
𝛿𝑥(𝑦𝑒) = 𝑦𝛿𝑥(𝑒) 𝑦 ∈ 𝑌
𝛿𝑥(𝑧𝑒) = 0 𝑧 ∈ 𝑍
𝛿𝑥(1) = 0
𝛿𝑥(0) = 0

𝛿𝑥(𝑒1 + 𝑒2) = 𝛿𝑥(𝑒1) + 𝛿𝑥(𝑒2)
𝛿𝑥(𝑒1𝑒2) = 𝛿𝑥(𝑒1)𝑒2 + 𝜋𝑌(𝑒1)𝛿𝑥(𝑒2)
𝛿𝑥(𝑒∗) = 𝜋𝑌(𝑒)∗𝛿𝑥(𝑒)𝑒∗

𝜌𝑥(𝜌𝑥(𝑒)) = 𝜌𝑥(𝑒)
𝛿𝑥(𝜌𝑥(𝑒)) = 0
𝛿𝑥(𝑒) = 0⟺ 𝜌𝑥(𝑒) = 𝑒
𝑒1 ≤ 𝑒2 ⟹𝛿𝑥(𝑒1) ≤ 𝛿𝑥(𝑒2)
𝑒1 ≤ 𝑒2 ⟹𝜌𝑥(𝑒1) ≤ 𝜌𝑥(𝑒2).

Corollary C.8. Given any 𝑒, 𝑒′ ∈ 𝒦𝑋, we have

𝑥𝑒 ≤ 𝑒′ ⟺𝑒 ≤ 𝛿𝑥(𝑒′).

In particular, 𝑥𝛿𝑥(𝑒) ≤ 𝑒.

36



Proof. We first show that 𝛿𝑥 is monotonic. Because 𝑖 is a homomorphism, hence
monotonic. Recall the order on matrix model is the point-wise order, and because
𝛿𝑥 is a component of 𝑖:

𝑒1 ≥ 𝑒2 ⟹𝑖(𝑒1) ≥ 𝑖(𝑒2)⟹ 𝛿𝑥(𝑒1) ≥ 𝛿𝑥(𝑒2).

The⟹ direction:

𝑥𝑒 ≤ 𝑒′ ⟹𝛿𝑥(𝑥𝑒) ≤ 𝛿𝑥(𝑒′)⟹ 𝑒 ≤ 𝛿𝑥(𝑒′).

The⟸ direction:
𝑒 ≤ 𝛿𝑥(𝑒′)⟹ 𝑥𝑒 ≤ 𝑥𝛿𝑥(𝑒′) ≤ 𝑒′

TODO: can we prove the minimality of 𝜌𝑥(𝑒), that is 𝜌𝑥(𝑒) is the least 𝑒′ s.t. 𝑒 =
𝑒′ + 𝑥𝛿𝑥(𝑒)

Definition C.9. The definition of derivative and residue can be extended to words
as follows:

𝛿𝜖(𝑒) ≜ 𝑒 and 𝛿𝑤⋅𝑥(𝑒) = 𝛿𝑤(𝛿𝑥(𝑒))
𝜌𝜖(𝑒) ≜ 0 and 𝜌𝑤⋅𝑥(𝑒) = 𝜌𝑤(𝑒) + 𝛿𝑤(𝜌𝑥(𝑒))

TheoremC.10 (soundness). The following property still holds on derivative and residue
for word:

𝑒 = 𝜌𝑤(𝑒) + 𝑤 ⋅ 𝛿𝑤(𝑒)
𝑤𝑒 ≤ 𝑒′ ⟺𝑒 ≤ 𝛿𝑤(𝑒′)

Corollary C.11. Given any string 𝑠 ∈ 𝑇𝑋 and any term 𝑒 ∈ 𝑇𝑋, it is decidable to
check whether 𝑠 ≤ 𝑒.

Proof. Write 𝑠 as a product of the form ∏𝑥𝑖, where 𝑥𝑖 ∈ 𝑋. By Corollaries B.9
and C.8, we can check 1 ≤ 𝛿𝑥𝑛(⋯𝛿𝑥1(𝑒)⋯).

Lemma C.12. We have 𝛿𝑥(𝑒) = 0 if and only if 𝑒 ≤ 𝑌∗ + 𝑌∗𝑍𝑋∗.

Proof. If 𝑒 ≤ 𝑌∗ + 𝑌∗𝑍𝑋∗, then 𝛿𝑥(𝑒) ≤ 𝛿𝑥(𝑌∗ + 𝑌∗𝑍𝑋∗) = 0. Conversely, suppose
that 𝛿𝑥(𝑒) = 0. By Corollary C.5, we can write 𝑒 = 𝑎 + 𝑏 + 𝑥𝛿𝑥(𝑒), with 𝑎 ≤ 𝑌∗ and
𝑏 ≤ 𝑌∗𝑍𝑋∗, which allows us to conclude.

We can iterate this procedure finitely many times.

Theorem C.13. Suppose that 𝑋 is a commutable set and 𝐴 ⊆ 𝑋 is a discrete finite
commutable subset. Every 𝑒 ∈ 𝑇𝑋 can be written in the form

𝑒 = 𝑒0 + ∑
𝑥∈𝐴

𝑥𝛿𝑥(𝑒),

where 𝛿𝑥(𝑒0) = 0 for every 𝑥 ∈ 𝐴. Moreover, the 𝛿𝑥(𝑒) are the unique terms that enable
this decomposition.

37



Proof. We prove this by induction on the cardinality of 𝐴. If 𝐴 is empty, we can take
𝑒0 to be 𝑒. Otherwise, assume that 𝐴 = 𝐴′ ∪ {𝑥}, where 𝑥 ∉ 𝐴′. By the induction
hypothesis, we can write 𝑒 as

𝑒 = 𝑒0 + ∑
𝑦∈𝐴′

𝑦𝛿𝑦(𝑒),

where 𝛿𝑥(𝑒0) = 0 for every 𝑥 ∈ 𝐴′. By Theorem C.7, we have

𝛿𝑥(𝑒) = 𝛿𝑥(𝑒0) + 𝛿𝑥 ( ∑
𝑦∈𝐴′

𝑦𝛿𝑦(𝑒))

= 𝛿𝑥(𝑒0) + ∑
𝑦∈𝐴′

𝛿𝑥(𝑦𝛿𝑦(𝑒))

= 𝛿𝑥(𝑒0) + ∑
𝑦∈𝐴′

0

= 𝛿𝑥(𝑒0).

Thus,

𝑒 = 𝜌𝑥(𝑒0) + 𝑥𝛿𝑥(𝑒0) + ∑
𝑦∈𝐴′

𝑦𝛿𝑦(𝑒)

= 𝜌𝑥(𝑒0) + 𝑥𝛿𝑥(𝑒) + ∑
𝑦∈𝐴′

𝑦𝛿𝑦(𝑒)

= 𝜌𝑥(𝑒0) + ∑
𝑦∈𝐴

𝑦𝛿𝑦(𝑒).

We have 𝛿𝑥(𝜌𝑥(𝑒0)) = 0 and 𝛿𝑦(𝜌𝑥(𝑒0)) ≤ 𝛿𝑦(𝑒0) = 0 if 𝑦 ∈ 𝐴′. So this decomposition
has the desired form.

To show that the decomposition is unique, suppose that we can write

𝑒 = 𝑒′ + ∑
𝑦∈𝐴

𝑦𝑒𝑦 = 𝑒′ + 𝑥𝑒𝑥 + ∑
𝑦∈𝐴′

𝑦𝑒𝑦.

where 𝛿𝑦(𝑒′) = 0 for 𝑦 ∈ 𝐴′. This means that 𝛿𝑦(𝑒′ + 𝑥𝑒𝑥) = 0 for every 𝑦 ∈ 𝐴′.
Since the decomposition with respect to 𝐴′ is unique, we find that 𝑒′ + 𝑥𝑒𝑥 = 𝑒0 and
𝑒𝑦 = 𝛿𝑦(𝑒) for every 𝑦 ∈ 𝐴′. And, since 𝛿𝑥(𝑒′) = 0, the decomposition of 𝑒0 with
respect to 𝑥 is unique, and 𝑒′ = 𝜌𝑥(𝑒0) and 𝑒𝑥 = 𝛿𝑥(𝑒0).

C.2 Language Derivative
Definition C.14. Let 𝐿 ∈ ℒ𝑋 and 𝑥 ∈ 𝑋. Define 𝛿𝑥(𝐿) as follows:

𝛿𝑥(𝐿) ≜ {𝑠 ∈ 𝑇𝑋 ∣ 𝑥𝑠 ∈ 𝐿}.

Theorem C.15. The following diagram commutes for every 𝑥 ∈ 𝑋:

𝑇𝑋 𝑇𝑋

ℒ𝑋 ℒ𝑋.

𝛿𝑥

𝑙 𝑙
𝛿𝑥

38



Proof. Let 𝑎 ∈ 𝑇𝑋 and 𝑠 ∈ 𝑇𝑋 be a string. We have

𝑠 ∈ 𝑙(𝛿𝑥(𝑎))
⇔ 𝑠 ≤ 𝛿𝑥(𝑎) by Theorem 3.4

⇔ 𝑥𝑠 ≤ 𝑎 by Corollary C.8

⇔ 𝑥𝑠 ∈ 𝑙(𝑎) by Theorem 3.4

⇔ 𝑠 ∈ 𝛿𝑥(𝑙(𝑎)) by Corollary C.8.

C.3 Fundamental Theorem And Word Decomposition
Given a commutable set 𝑋, we consider its carrier as a discrete commutable set 𝑋≁.
There is a canonical homomorphism between these commutable sets

[−]∼ ∶ 𝑋≁ → 𝑋 (8)

[𝑥]∼ ≜ 𝑥 (9)

And this map lifts to [−]∼ ∶ 𝐹𝑋≁ → 𝐹𝑋, which simply maps each term to syntacti-
cally the same term. Furthermore, this homomorphism can be lifted into matrices by
point-wise application.

Since 𝑋≁ is a discrete commutable set, 𝐹𝑋≁ is simply the free Kleene Algebra over
𝑋≁. It is well known that the fundamental theorem holds for free Kleene Algebras:

∀𝑒 ∈ 𝐹𝑋≁, 𝑒 = 𝐸(𝑒) + ∑
𝑎∈𝑋≁

𝑎 ⋅ 𝛿𝑎(𝑒).

Thus, the fundamental theorem holds over discrete commutative set. To extend the
fundamental theorem over any commutable set 𝑋, We need a simple lemma:

Lemma C.16. For any 𝑥 ∈ 𝑋 Consider the homomorphism 𝑖 from the last section,

[𝑖(𝑒)]∼ ≤ 𝑖([𝑒]∼).

Proof. The proof is a simple inductive the structure of 𝑒, the base case is apparent by
inspecting the definition of 𝑖. And the induction case is trivial by the fact that both 𝑖
and [−]∼ are homomorphism, and all KA operations preserves order.

We will take the star case as an example, assume 𝑒 ≜ 𝑒′∗, given [𝑖(𝑒′)]∼ ≤ 𝑖([𝑒′]∼),
by the fact that star operation preserves order:

[𝑖(𝑒′∗)]∼ = ([𝑖(𝑒′)]∼)∗ ≤ (𝑖([𝑒′]∼))∗ = 𝑖([𝑒′∗]∼).

TODO: we can probably prove this as a general lemma, order of the homomor-
phism are uniquely determined by order on primitives.

TODO: prove [−]∼ preserves 𝐸.
Since [𝑖(𝑒)]∼ ≤ 𝑖([𝑒]∼), and the derivative is a component of 𝑖, we have

∀𝑥 ∈ 𝑋, [𝛿𝑥(𝑒)]∼ ≤ 𝛿𝑥([𝑒]∼).

39



Theorem C.17 (Fundamental Theorem). For all term 𝑒∼ ∈ 𝐹𝑋, we have the following
equation:

𝑒 = 𝐸(𝑒) + ∑
𝑎∈𝑋

𝑎 ⋅ 𝛿𝑎(𝑒).

Proof. Since [−]∼ is surjective, we let 𝑒 = [𝑒≁]∼ for some 𝑒≁ ∈ 𝐹𝑋≁.
We first show that 𝑒 ≤ 𝐸(𝑒)+∑𝑎∈𝑋 𝑎⋅𝛿𝑎(𝑒). Given that the fundamental theorem

hold for 𝑒≁, we have the following inequality:

𝑒≁ ≤ 𝐸(𝑒≁) + ∑
𝑎∈𝑋

𝑎 ⋅ 𝛿𝑎(𝑒≁)

We apply the homomorphism [−]∼ to both side, and get:

𝑒 ≤ [𝐸(𝑒≁)]∼ + ∑
𝑎∈𝑋

𝑎 ⋅ [𝛿𝑎(𝑒≁)]∼.

Because [𝐸(𝑒≁)]∼ = 𝐸([𝑒≁]∼) and [𝛿𝑥(𝑒≁)]∼ ≤ 𝛿𝑥([𝑒≁]∼), we have

𝑒 ≤ 𝐸(𝑒) + ∑
𝑎∈𝑋

𝑎 ⋅ 𝛿𝑎(𝑒).

The other direction 𝑒 ≥ 𝐸(𝑒) +∑𝑎∈𝑋 𝑎 ⋅ 𝛿𝑎(𝑒) is straightforward:
Since 𝑒 = 𝜌𝑥(𝑒) + 𝑎𝛿𝑎(𝑒), therefore 𝑒 ≥ 𝑎𝛿𝑎(𝑒) for all 𝑎. And because 𝑒 ≥ 𝐸(𝑒),

we have
𝑒 ≥ 𝐸(𝑒) + ∑

𝑎∈𝑋
𝑎 ⋅ 𝛿𝑎(𝑒).

Corollary C.18 (Word Decomposition). Given an expression 𝑒 ∈ 𝐹𝑋, and a word
𝑤 ∈ 𝑙(𝑒), the following equality holds:

𝑒 = 𝑤 + 𝜌𝑤(𝑒) + ∑
𝑥∈𝑋

𝑤 ⋅ 𝑥 ⋅ 𝛿𝑤⋅𝑥(𝑒).

Proof.

𝑒 = 𝑤 ⋅ 𝛿𝑤(𝑒) + 𝜌𝑤(𝑒)

= 𝑤 ⋅ (1 + ∑
𝑥∈𝑋

𝑥 ⋅ 𝛿𝑤⋅𝑥(𝑒)) + 𝜌𝑤(𝑒)

= 𝑤 + 𝜌𝑤(𝑒) + ∑
𝑥∈𝑋

𝑤 ⋅ 𝑥 ⋅ 𝛿𝑤⋅𝑥(𝑒)

The word decomposition theorem can be seen as a more explicit proof of the com-
pleteness of word inhabitant. We can derive a similar but less explicit result without
using the fundamental theorem, by applying the decomposition in Corollary B.9. Al-
though such result is more opaque, it is enough for proving the decidability and un-
decidability results.

40


	Introduction
	Commutable Sets
	Basic Kleene Algebra
	Automata theory
	Representing Relations
	Machines
	Addenda on Kleene Algebra
	Decomposition
	Derivative
	Term Derivative
	Language Derivative
	Fundamental Theorem And Word Decomposition


