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Abstract

This paper is dedicated to the experimental analysis of discrete-time differentiators implemented in closed-loop

control systems. To this end, an electro-pneumatic system has been employed as the case study to implement 25

different differentiators including the exact differentiators and linear filters. The validity of several theoretical results,

which have been already reported in the literature based on the analytical analysis and numerical simulations, has been

investigated experimentally, and several comments are provided to allow one to select an appropriate differentiation

scheme in practical closed-loop control systems.

Keywords: discrete-time differentiator, implicit discretization, explicit discretization, electro-pneumatic system,

experimental data
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1. Introduction

Online differentiation is an unavoidable subject in most

closed-loop control systems. Considering a typical control

loop shown in Fig. 1, controllers usually need the error sig-

nal f0 = r − y as well as its differentiations f (i)0 (t), i ∈ N.

Since the error signal is always polluted by a stochastic

noise ñ(t), design of a differentiator can be challenging be-

cause the differentiator should filter out the noise. Design
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of such a differentiator under different conditions was the

topic of the first part of this study [1, 2].

While the differentiators have been widely studied us-

ing analytical calculations and numerical simulations [1,

2, 3, 4], their practical implementations are barely ad-

dressed in the literature. References [5, 6] are proba-

bly the only ones on this topic, according to our inves-

tigation, where the aim was to provide an experimental

analysis among a sliding-mode-based differentiator, kernel-

based method, high-gain differentiator, ALIEN differentia-

tor, extended Kalman filter, and homogeneous differentia-

tor. Since the differentiators are nowadays implemented

on digital processors, their time-discretization should be

addressed clearly.

Some differentiators employ discontinuous (set-valued)

terms to improve their exactness. Such terms can be po-
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tentially a source of numerical chattering1 if they are not

implemented on digital processors correctly. According to

the literature, time-discretization of the differentiators can

be divided into two main categories, i.e., explicit and im-

plicit Euler schemes. While the explicit time-discretization

has long been used for sliding-mode control (SMC) as

the unique discretization method, the implicit method has

been developed recently for SMC [12, 13, 14, 15, 16, 17, 18]

(see [19] for a survey) and for differentiators [1, 2, 3, 4].

In this context, few experimental validations of implicitly

implemented SMC can also be found [20, 13, 12, 15]. How-

ever, implicit discretization has not been experimentally

studied for the differentiators yet.

Numerical chattering suppression under noise-free con-

ditions is one of the main advantages of using implicit dis-

cretization as reported by [12, 13, 14, 15, 19, 20]. This is

specifically validated for the differentiators (see Lemma 3

in [1], the numerical simulations in [4], and the conclusions

made in Section 6 of [3]). This property is called Feature

1 throughout the manuscript. Note that this result was

specifically obtained for the noise-free case. However, in a

practical system, the chattering can also be caused by the

measurement noise, in addition to the numerical chatter-

ing, which affects both explicit and implicit schemes. One

of the objectives of this work is to study Feature 1 using

practical experiments.

Another issue corresponding to implicit discretization

is practicability. This topic has been addressed for the

differentiators in [1, 2] in case of causality and uniqueness

of the solutions. Moreover, unlike the explicit schemes,

implicit discretization needs an iterative solver to com-

pute the roots of a polynomial equation at each time step.

The effect of the solver and its parameters on the perfor-

1Chattering refers to finite-amplitude oscillations where the fre-

quency depends on the sampling time. While many factors including

measurement noise and dynamical uncertainties can lead to chatter-

ing [7], the numerical chattering refers to a specific kind of chatter-

ing that only appears due to the time-discretization of the set-valued

terms [8, 9, 10, 11].

mances of a specific type of implicit differentiator has been

addressed before and it is concluded that the implicit dif-

ferentiators can also be implemented if enough calculation

resources are available (see [2] Sec. 5.8.5, and [3]). How-

ever, the amount of the required calculation resources has

not been reported. This is considered as Feature 2 in this

manuscript and will be evaluated on the laboratory setup.

As reported by [12, 13, 14, 15, 19], the implicit dis-

cretization of SMC can be insensitive to the gains under

noise-free cases and during the sliding phase. This has

been specifically validated for the implicit arbitrary-order

super-twisting differentiator (I-AO-STD) (see Remark 7 in

[1]). This is considered as Feature 3 in this study, and the

gain sensitivity of both implicit and explicit schemes will

be studied on the setup where measurement noise always

exists.

According to Corollary 1 in [1], increasing the order

of the I-AO-STD leads to a longer transient time. More

clearly, when the state variables of the I-AO-STD are in a

specific region, defined by case 2 in [1], the differentiator

converges to the exact differentiation after n+1 time step,

where n is the order of the differentiator. Hence, increasing

the order of the differentiator leads to a larger transient

time. Remark that this is proved when the derivative of

order n + 1 of the input signal vanishes. This result is

named Feature 4 in this study and it will be studied ex-

perimentally. In addition, that the transient response of a

differentiator depends on several other factors, including

the initial conditions and the parameters.

Following the literature, Feature 1 and Feature 3 have

been evaluated experimentally for the SMCs before in

[12, 20, 13, 15]. However, the validity of the mentioned

results for the differentiators has not been experimentally

addressed yet. The main contribution of this work is

to investigate the above-mentioned theoretical results

in the closed-loop systems, based on practical experi-

ments. Moreover, the behavior of the total number of

25 known differentiators will be analyzed in practice,
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and several remarks will be drawn to allow one to select

the most appropriate differentiator in practical control

systems. To this end, a laboratory setup, i.e., an electro-

pneumatic setup (EPS) has been used to implement the

25 differentiators which have been studied in [1, 2].

The structure of this manuscript is as follows. The

continuous-time differentiators and the corresponding dis-

cretization schemes are briefly reviewed in Secs. 2 and 3,

respectively. The experimental results are presented in

Sec. 4. Finally, general conclusions and remarks are pro-

vided in Sec. 5. Remark that the colors red, black, and

blue are used in some tables to help showing the worst,

moderate and the best results, respectively.

2. Review of the continuous-time differentiators

The purpose of this section is to briefly review the

known continuous-time differentiators which have been re-

cently analyzed in [1, 2]. Depending on the structure, dif-

ferentiators can be categorized into several classes as indi-

cated in Table 1. Some useful vocabulary is introduced:

• SMB (sliding-mode-based) differentiator refers to

a kind of differentiator where discontinuous or

set-valued (SV) terms are used to provide a sliding

regime to achieve the exactness.

• Some differentiators can calculate higher-order

differentiations (HOD) (second, third,...). Without

such an ability, cascade configurations of first-order

differentiators may be used to estimate higher-order

derivatives.

• Differentiators may have multiple outputs (MO),

meaning that an MO differentiator with the order

n can calculate derivatives of order 0, . . . , n − 1.

Remark that zero-order differentiation means the es-

timation of the noise-free input. Some differentiators

possess this capability.

• Depending on the structure, differentiators may have

one or more tuning parameters (TP) that should be

tuned to ensure proper operation.

• Some differentiators use a kind of adaptation mech-

anism (AM) to tune their parameters in an online

manner.

From Table 1, it can be seen that the differentiators are

mostly designed based on sliding-mode algorithms. The

Slotine-Hedrick-Misawa differentiator (SHMD) has been

the first invented SMB differentiator [33]. The general

form of the SHMD is as follows [33]: żi(t) ∈ zi+1(t)− αi sgn(σ0(t))− κiσ0(t)

żn(t) ∈ −αn sgn(σ0(t))− κnσ0(t), i = 0, . . . , n− 1,

(1)

where σ0(t) = z0(t) − f(t) is the sliding-variable, f(t) =

f0(t) + ñ(t) is the input of the differentiator, f0(t) is the

base signal before being polluted by noise ñ(t), zi(t) is

the estimation of f (i)0 (t), αi and κi, i = 0, 1, . . . , n are

positive constants, n is the order of the differentiator, ∈ is

written instead of = to indicate that the right-hand side is

set-valued (sgn(0) = [−1, 1]). The existence of the sliding

phase and the behavior of the system in the reaching phase

for the SHMD are studied in [33].

Arbitrary-order super-twisting differentiator (AO-

STD) is another SMB differentiator introduced in [35],

that exhibits several useful properties including homo-

geneity and finite-time convergence [36, 37]. It is designed

as follows:
żi(t) = −λiL

i+1
n+1 ⌈σ0(t)⌋

n−i
n+1 + zi+1(t), i = 0, . . . , n− 1

żn(t) ∈ −λnL sgn(σ0(t)),

(2)

where the notation is as before, L is a tuning parame-

ter, the parameters λi, i = 0, . . . , n are provided in Table 2

[35, 21, 38, 39] (notice that the λi’s may also be considered

as tunable parameters, however this is out of the scope of

this study), and ⌈x⌋n = |x|n sgn(x). For n = 1, AO-

STD turns into the super-twisting differentiator (STD)
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Nomenclature

AO-STD [21] arbitrary-order super-twisting differentiator

E-AO-STD [21] explicit arbitrary-order super-twisting differentiator

E-GHDD [22] explicit generalized homogeneous discrete-time differentiator

E-HDD [23] explicit homogeneous discrete-time differentiator

E-URED [24] explicit uniform robust exact differentiator

E-QD [25] explicit quadratic differentiator

E-STD [26] explicit super-twisting differentiator

E-STDAC [27] explicit super-twisting differentiator with adaptive coefficients

GE generalized equation

GHDD [22] generalized homogeneous discrete-time differentiator

HD [28, 29] homogeneous differentiator

HDD [23] homogeneous discrete-time differentiator

HGD [30] high-gain differentiator

I-AO-FDFF [31] implicit arbitrary-order differentiator with first-order sliding-mode filtering

I-AO-STD [3, 4] implicit arbitrary-order super-twisting differentiator

I-FDFF [32] implicit first-order differentiator with first-order sliding-mode filtering

I-GHDD implicit generalized homogeneous discrete-time differentiator

I-HDD implicit homogeneous discrete-time differentiator

I-URED implicit uniform robust exact differentiator

I-QD [25] implicit quadratic differentiator

I-STD implicit super-twisting differentiator

LF linear filter

ODE ordinary differential equation

QD [25] quadratic differentiator

SI-AO-STD semi-implicit arbitrary-order super-twisting differentiator

SI-URED semi-implicit uniform robust exact differentiator

SI-STD semi-implicit super-twisting differentiator

SHMD [33] Slotine-Hedrick-Misawa differentiator

SMB sliding-mode-based

SNR signal-to-noise ratio

STD [26] super-twisting differentiator

STDAC [27] super-twisting differentiator with adaptive coefficients

URED [24] uniform robust exact differentiator

VGED [34] variable gain exponent differentiator
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0 uf = r − y − ñ yr(t)

y + ñ

Figure 1: A typical control loop.

Table 1: Overview of the continuous-time differentiators [1, 2].

Method SMB SV HOD MO TP AM Source Remarks

SHMD ✓ ✓ ✓ ✓ 2(n+ 1) ✗ [1] (S2.1) existence of the sliding phase

STD ✓ ✓ ✗ ✓ 1 ✗ [1] (S2.2) finite-time convergence

AO-STD ✓ ✓ ✓ ✓ 1 ✗ [1] (S2.3) finite-time convergence

URED ✓ ✓ ✗ ✓ 2 ✗ [1] (S2.4) uniform convergence

QD ✓ ✓ ✗ ✓ 2 ✗ [1] (S2.5) improved transient

STDAC ✓ ✓ ✗ ✓ 2 ✓ [1] (S2.7.1) adaptive coefficients

VGED ✓ ✗ ✗ ✓ 4 ✓ [1] (S2.7.2) adaptive exponent

ALIEN ✗ ✗ ✓ ✗ 3 ✗ [1] (S2.8) algebraic formula

HGD ✗ ✗ ✓ ✓ 1 ✗ [1] (S2.9) linear structure

SMB: sliding-mode-based SV: set-valued

AM: adaptation mechanism HOD: higher-order differentiations

TP: tunable parameters MO: multiple outputs

n: order of a differentiator
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[26]. Uniform robust exact differentiator (URED) [24] is

a modification of the STD, where the aim is to ensure the

uniform convergence of the differentiator by adding extra

terms as follows:
ż0(t) = −λ0L

1
2

(
⌈σ0(t)⌋

1
2+µ⌈σ0(t)⌋

3
2

)
+ z1(t)

ż1(t) ∈ −λ1L
(

1
2 sgn(σ0(t))+2µσ0(t) +

3
2⌈µσ0(t)⌋

2
)
.

(3)

The notation is similar to the above one, and µ ∈ R > 0.

Note that the original form of the URED was introduced

with L = 1 [24].

Quadratic differentiator (QD) is another SMB differen-

tiator where the aim is to improve the transient by modi-

fying the sliding surface as follows.

ż0(t) = z1(t)

ż1(t) ∈

 −αF sgn(σ0(t)) if σ0(t)z1(t) > 0

−F sgn(σ0(t)) if σ0(t)z1(t) < 0

σ0(t) = 2F (z0(t)− f(t)) + |z1(t)|z1(t),

(4)

where F > 0 and α > 0 are parameters to be tuned. The

sliding variable σ0(t) of this differentiator has been further

modified [40] to improve its convergence rate.

Some adaptation laws have been developed for the

SMB differentiators to tune their parameters automati-

cally. In this context, two different adaptation techniques,

namely adaptive coefficients and adaptive exponents, have

been introduced. Some studies [27, 41, 42] deal with the

adaptive laws for the coefficients, while in other studies

[43, 44, 34], the adaptation mechanisms are considered for

the exponents.

One of the latest adaptation mechanisms for the co-

efficients has been developed in [27], where the following

adaptive differentiator has been proposed. This differen-

tiator is named super-twisting differentiator with adaptive

coefficients (STDAC). It reads as:ż0(t) = −λ0γ(t)⌈σ0(t)⌋
1
2 + z1(t)

ż1(t) ∈ −λ1γ2(t) sgn(σ0(t)).

(5a)

(5b)

It can be seen that for γ(t) =
√
L, (5) leads to the stan-

dard STD. The following adaptation law γ(t) is proposed

Table 2: Constant parameters used for the SMB differentiators.

Order λ0 λ1 λ2 λ3 λ4 λ5

0 1.1

1 1.5 1.1

2 2 2.12 1.1

3 3 4.16 3.06 1.1

4 5 10.03 9.30 4.57 1.1

5 7 23.72 32.24 20.26 6.75 1.1

[27]:

γ̇(t) =
γ(t)

2
α


|σ0(t)|−

1
2 for |σ0(t)| ≥ 1

|σ0(t)| for 1.1ϵ < |σ0(t)| < 1

1
γ(t) − 1 for |σ0(t)| < 1.1ϵ,

(6)

where γ(0) = 1, 0 < α < λ0, and ϵ is a positive design

constant which is selected based on the amplitudes of the

chattering and noise. The idea of adaptive exponent comes

from the observation that by changing the exponent of an

SMB differentiator, a trade-off can be made between the

exactness and robustness to noise. The most recent study

on the variable gain exponent differentiator (VGED) has

been conducted in [34]. The continuous-time VGED reads

as:



ż0(t) = −λ0µ|σ0(t)|α(t) sgn(σ0(t)) + z1(t)

ż1(t) = −λ1α(t)µ2|σ0(t)|2α(t)−1 sgn(σ0(t))

γ̇(t) = −τγ(t) + τ |ff (t)|

α(t) =
1

2

(
1 +

γq

γq + ϵ

)
,

(7a)

(7b)

(7c)

(7d)

where ff (t) corresponds to high-frequency components

of the input. A fourth-order Butterworth high-pass filter

with cutoff frequency ωc is used to calculate ff (t) from

the input f(t). To decrease the number of parameters, it

is assumed that ϵ = 1
µ [34], and λ0 and λ1 are presented in

Table 2. In this case, the VGED only has four parameters

to be tuned, i.e., µ, τ , ωc, q.

The high-gain differentiator (HGD) is a special case of

the VGED with α = 1, introduced in [30]. The design of
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this differentiator was further addressed in [45]. In this

study, a second-order HGD will be considered as follows

(see [5, 46]). 
ż0(t) = −Lλ0σ0(t) + z1(t)

ż1(t) = −L2λ1σ0(t) + z2(t)

ż2(t) = −L3λ2σ0(t).

(8)

Obtaining the error band of the HGD in the presence of

noise was the topic of [45].

Algebraic continuous-time differentiators are also pro-

posed in the control literature. ALIEN [47] is one of these

differentiators, which calculates an arbitrary-order differ-

entiation based on annihilators. In fact, it calculates the

differentiation using integration to attenuate the noise ef-

fect. The ALIEN differentiator is given as [48]:

z(n)(t) =
(−1)nγκ,µ,n

Tn

1∫
0

dn

dτn
{τκ+n(1− τ)µ+n}f(τ T̄ )dτ,

(9)

where z(n)(t) is the n-th order differentiation of f0(t),

γκ,µ,n = (κ+µ+2n+1)!
(κ+n)!(µ+n)! , n is the differentiation order, T̄ is

called the estimation window, κ and µ are two parameters

which are designed according to simulations [48].

3. Time-discretization of the differentiators

To implement the continuous-time differentiators in-

troduced in Sec. 2 on a digital processor, it is necessary

to use a discretization method. Let ẋ = g(x) be an ODE,

where g(·) is a function. The Euler discretization of this

ODE gives

xk+1 = h((1− α)g(xk) + αg(xk+1)) + xk, (10)

where h > 0 is the sampling time, α = 0, α ∈ (0, 1), and

α = 1 lead to explicit, semi-implicit and (full) implicit dis-

cretizations, respectively. As can be seen, for α ∈ (0, 1],

xk+1 appears in the input argument. To obtain this im-

plicit argument (here xk+1) at the time-step k, some extra

manipulations are required (see [1, 2, 3, 4] for detailed

explanation of time-discretization methods applied to the

continuous-time differentiators).

Remark 1. Assuming that g(·) in (10) is a discontinuous
(set-valued) function, the implicit discretization allows to
suppress the numerical chattering caused by the discretiza-
tion effect based on the selection procedure. Moreover im-
plicit discretization can provide several useful properties
for discrete-time sliding-mode controllers and differentia-
tors, e.g., finite-time convergence, Lyapunov stability (see
[1, 3, 14, 20, 49, 50] and [19] for a survey).

Throughout the manuscript, the notations E-X,

SI-X, and I-X are for the explicit (α = 0), semi-implicit

(α ∈ (0, 1)), and implicit (α = 1) discretizations of the

continuous-time differentiator X, respectively. These

discretizations can be obtained by using (10) on the

continuous-time differentiators introduced in Sec. 2.

There are three other explicit discrete-time differen-

tiators namely, homogeneous differentiator (HD) [28, 29],

homogeneous discrete-time differentiator (HDD) [23],

and generalized homogeneous discrete-time differentiator

(GHDD) [22] which can be obtained by special operations

on the AO-STD. The purpose of the HDD is to keep

the homogeneity of the AO-STD after discretization.

Moreover, GHDD is proposed to attenuate the chattering

by cancelling the discontinuous terms in the recursion.

It should also be noted that the explicit discretization

of the SHMD is ignored because of too much numerical

chattering [2]. Moreover, according to [32], for n = 1, the

implicit SHMD is named I-FDFF. For n > 1, this differ-

entiator is called I-AO-FDFF, with this difference that an

extra filtration is used instead of zi, i = 0, . . . , n as the

outputs [31]. The I-FDFF has four parameters ωs, ωf , ρ, γ

that need to be tuned. On the other hand, the parameters

of the I-AO-FDFF are ωs, ωf , ρ, F, ϵ, α1. The implicit dis-

cretizations of the SHMD, i.e., I-FDFF and I-AO-FDFF,

as well as their parameter-tuning procedures, are explained

in [1, 2].

In addition to the introduced methods, there are still

some other differentiators, e.g., Euler method, linear fil-

ters, and Kalman’s differentiator. To design Kalman’s dif-

7



ferentiator, the differentiation problem is formulated as

follows [21]: {
zk+1 = Azk

yk = fk − Czk,

(11a)

(11b)

where zk = [z0,k, z1,k, . . . , zn,k]
⊤ ∈ Rn+1 is the estimation

vector. The parameters for a second-order Kalman differ-

entiation are as follows (see [51] for the algorithm as well

as the preliminary equations of the Kalman filter).

A =


1 h h2

2

0 1 h

0 0 1

 , C =
[
1 0 0

]
. (12)

Remark that, unlike the standard Kalman filter, the

Kalman differentiator has one parameter, denoted by R,

which indicates the power of the input noise (see the

complete algorithm in [1]). The other parameter that

exists in the standard Kalman filter, i.e., the process

noise, does not exist in the Kalman differentiator since

the process is composed of a chain of integrators, where

the only source of perturbation in the process dynamics

is caused by the truncation error corresponding to the

Euler discretization. Hence, the process noise depends on

the sampling time rather than being a tunable parameter

[21, 1, 2].

In the simplest case, the LF is a low-pass filter com-

bined with the pure differentiator d/dt which can be im-

plemented using the following formula:

z1,k =
z1,k−1 + c(fk − fk−1)

1 + hc
, (13)

where the notation is as before, and c is a design parame-

ter. For c→ ∞, LF leads to the Euler differentiator:

z1,k =
fk − fk−1

h
. (14)

As it was mentioned, the prefixes E, I, and SI indi-

cate the explicit, implicit and semi-implicit discretizations.

However, these prefixes are ignored for some methods (Eu-

ler, LF, ALIEN, HD, VGED, and Kalman) since the im-

plicit or semi-implicit discretizations of these differentia-

tors have not been introduced yet in the literature. In

other words, the absence of a prefix indicates that the

method is implemented using the explicit discretization

scheme (α = 0 in (10)).

In order to provide a fair comparison among all the

mentioned differentiators, it is necessary to tune their pa-

rameters. While there is no standard or widely accepted

way to tune the differentiators’ parameters on laboratory

setups, the parameters have been tuned based on the ex-

periments made on the closed-loop system, for h = 15ms,

according to the following steps as suggested in [52]:

1. The differentiators have been implemented in the

closed-loop system on the laboratory setup under the

conditions explained in Sec. 4.3.

2. The waveforms of the system, e.g., the zero-order dif-

ferentiation (z0) (noise-free input signal) estimated

by the differentiator, and the signal to be differen-

tiated are recorded. Remark that some differentia-

tors are able to estimate the zero-order differenti-

ation by themselves. For the other differentiators,

we integrated the first-order differentiation to ob-

tain the zero-order differentiation. In addition, for

the cascade configuration, where two first-order dif-

ferentiation blocks are used, we calculated the dou-

ble integration of the second-order differentiation to

calculate the zero-order estimation used to tune the

second block.

3. The zero-order differentiation has been compared

with the input signal, and it is tried to tune the

parameters in an empirical way such that the

zero-order differentiation converges to the input

signal without chattering. For most of the dif-

ferentiators, increasing the gains, up to a limit,

improves the convergence. However, with oversized

gains, the zero-order differentiation usually shows

chattering caused by the numerical discretization

or input noise. Hence, several experiments have

been done with different empirically selected pa-

rameters to observe the best convergence of the
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zero-order differentiation to the input signal without

chattering. The waveforms corresponding to the

zero-order differentiation, and measured position for

all differentiators with the tuned parameters listed

in Table 3 are shown in Fig. 2.

According to Fig. 2, the convergence of all differentia-

tors, except ALIEN, E-STDAC, and Kalman are visible in

these figures. it is tried to change the parameters of these

differentiators such that the zero-order differentiation con-

verges to the input signal. However, it was not possible

because of the following reasons:

• ALIEN: In this method, the differentiation of the

input signal is calculated by a series of integrations

rather than direct differentiation. While this method

is known for its robustness to noise, it usually needs a

very great sampling frequency compared to the fre-

quency bandwidth of the input signal. Hence, for

such a large sampling time h = 15ms, the zero-order

differentiation does not converge to the input signal.

Moreover, since the first and second-order ALIEN

differentiators do not provide zero-order differenti-

ation, we used an integration block to recover the

zero-order differentiation. However, it seems that

an initial value should be considered for the inte-

gration (which is unknown) to see the convergence

since the zero-order differentiation follows the input

signal pattern with a bias. It should be mentioned

that the ALIEN differentiator is usually employed in

applications where the sampling period can be con-

sidered as a tuning parameter. In fact, the sampling

period should be large enough for the integrators to

be able to filter the noise and small enough for the

delay to be acceptable. Hence, the ALIEN differen-

tiator does not show its full potential abilities in the

considered scenario where the sampling time is not

a design parameter.

• Kalman: We tried to tune the parameter of this

differentiator for the convergence. However, perfect

convergence did not happen. By decreasing the tun-

ing parameter, it is possible to improve the conver-

gence, However, after a certain value, the closed-loop

system leads to instability.

• E-STDAC: This is an adaptive differentiator where

the gains are calculated adaptively which adds an

extra dynamic to the system. We did our best to

tune the parameters of this differentiator, however,

as can be seen in Fig. 2, sometimes there is a signif-

icant amount of difference between the input signal

and the zero-order differentiation, which is probably

caused by the adaptation mechanism that leading to

small gains for some specific times.

Remark 2. Parameter tuning is still an open problem
and there is not a widely accepted way to do that. As
it was mentioned, the parameters have been obtained in
this work using an empirical procedure explained above.
The parameters of the same differentiators have also
been tuned based on some optimization algorithms using
the numerical simulations in [53] and the corresponding
parameters are provided there (see Table 3 in [53]). While
the optimization algorithm used in [53] leads to different
parameters, the conclusions drawn from the comparative
analysis with the parameters in [53] are in agreement with
the ones obtained in this paper. we have no clear idea
about the reason why both sets of differentiators gains
obtained from two different tuning processes, yield similar
closed-loop results. It is therefore much too early to draw
any kind of general conclusions about such an a priori
surprising result. More analysis and more experiments
are needed in the future to bring some elements of answer.

Remark 3. As it was seen, parameter tuning is not
unique and may be done in several different manners.
However, all of them exhibit different kinds of drawbacks.
For instance, numerical simulations based on the closed-
loop model may be used to tune the parameters. However,
due to the stochastic noise behavior, such methods do not
usually lead to the optimal parameters for the real system.
Another approach could be measuring the position and
using it as a reference to tune the parameters offline.
However, this method also is not efficient since it is not
possible to distinguish between the real position and the
measurement noise.
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Figure 2: Waveforms corresponding to the zero-order differentiation (solid black), and measured position (solid blue) for all differentiators

with the tuned parameters listed in Table 3. Note that the red dashed line corresponds to the reference position. Moreover, the x and y axes

denote the time (s) and position (m), respectively.

4. The electropneumatic setup (EPS)

The EPS which is considered in this study is shown in

Fig. 3. The system is composed of two actuators, namely,

the main and disturbance actuators. These actuators are

coupled through a horizontal jack with the total mass M .

The aim of the main actuator is to provide the necessary

force to control the position of the jack, while the other

one is to emulate disturbances that appear during real op-

eration.

Figure 3: Electropneumatic setup.

The main actuator is double-acting, controlled by two

servo-distributors with two chambers named P and N as

indicated in Fig. 3. The block diagram corresponding to

the closed-loop system of the EPS is shown in Fig. 4. A

DS1104 board has been employed to implement the con-

troller and the differentiator where a 64-bit MPC8240 pro-

cessor working on 250 MHz and 32 MB RAM are available.

Figure 4: Closed-loop diagram of the EPS.

The corresponding force of the disturbance actuator is

controlled by a PID controller developed by the manufac-

turer, while the controller design for the main actuator will

be considered in this section.

4.1. Model of the electropneumatic setup

The following model is used for the EPS, as detailed in

[54, 55, 56]:

Ṗp =
Tkr

VP (y)
[ϕP + ψpup −

S

Tr
Ppv]

Ṗn =
Tkr

VN (y)
[ϕN + ψnun +

S

Tr
Pnv]

v̇ =
1

M
[S(Pp − Pn)− vbv − F ]

ẏ = v,

(15a)

(15b)

(15c)

(15d)

where Pp and Pn are the pressures in the P and N cham-

bers respectively, y and v denote the position and the ve-

locity of the jack. The force F is the disturbance that

takes into account both the external disturbance and the

friction, up and un are the control signals applied to the

servo distributor corresponding to the chambers P and N ,

10



respectively, and it will be assumed that u = up = −un.

Moreover, k = 1.2 is the polytropic constant, T = 293.15K

denotes the temperature, r = 287.0365J/kg/K is the ideal

gas constant, and bv = 50 N sec/m is the viscous friction

coefficient.

VP and VN are the volumes of the chambers P and N ,

respectively, which depend on the position of the jack y,

S = 0.0045m2 is the piston section, ϕx and ψx (x being

N or P ) are both fifth-order polynomials [57]. Eq. (15)

can be rewritten as ẋ = f(x) + g(x)u with the following

uncertain vectors:

f(x) =


Tkr
VP (y) [ϕP − S

TrPpv]

Tkr
VN (y) [ϕN + S

TrPnv]

S(Pp−Pn)−vbv−F
M

v

 , g(x) =


Tkr
VP (y)ψp

− Tkr
VN (y)ψn

0

0

 .
(16)

Because of the uncertainties, the vectors f(x) and g(x) are

divided into nominal and uncertain parts as follows:

ẋ = (f̄ + f̃)(x) + (ḡ + g̃)(x)u, (17)

where f̄ (resp. ḡ) and f̃ (resp. g̃) denote the nominal and

uncertain parts of the function f (resp. g).

4.2. Sliding-mode controller

As can be seen from (17), the EPS contains uncertain

terms f̃(·) and g̃(·). To handle these uncertainties and dis-

turbances, SMCs have been developed for the EPS [12, 13].

Following [12], since the control objective is the position

tracking, the following sliding variable is defined:

σ(t) = e2(t) + λ1e1(t) + λ0e0(t) (18)

where e0(t) ≜ y(t) − yr(t), and yr is the reference tra-

jectory, e2(t) = ë0(t), and e1(t) = ė0(t). The positive

parameters λ0 and λ1 are designed such that the polyno-

mial equation z2 + λ1z + λ0 = 0 is Hurwitz. This ensures

exponential convergence during the sliding phase.

A typical SMC operates in two phases, namely, the

reaching phase, and the sliding phase. During the reaching

phase, the control signal is designed such that σ(t) → 0.

At the end of the reaching phase, σ(t) = 0 holds, and

according to the stability of the sliding surface, e(t) →

0 is achieved asymptotically. To ensure the persistency

of the sliding phase in the presence of uncertainties and

disturbances, the control signal is designed such that σ̇ = 0

holds. Hence,

σ̇ = e(3) + λ1ë+ λ0ė =
1
M [S(Ṗp − Ṗn)− bv v̇ − Ḟ ])

−y(3)r (t+ λ1

M [S(Pp − Pn)− bvv − F ]− λ1ÿr(t)

+λ0(ẏ − ẏr(t)).

(19)

From (19), and using (16), one can obtain two functions

Ψ(t) and Φ(t) such that

σ̇ = Ψ(t) + Φ(t)u = Ψ̄(t) + Ψ̃(t) + (Φ̄(t) + Φ̃(t))u. (20)

The functions Ψ̄ and Φ̄ are not given here for the sake

of briefness. They can be found in [54]. Assuming that

Ψ̃ = Φ̃ = 0, the required control signal (ū), or so-called

equivalent control, for keeping the sliding phase (σ̇ = 0)

can be obtained as follows:

σ̇ = 0 → ū ∈ − Ψ̄

Φ̄
. (21)

To ensure the presence of the reaching and of the sliding

phases for the perturbed system, the following discontinu-

ous control signal is considered:

u(t) ∈ − 1

Φ̄(t)
[Ψ̄(t)−G sgn(σ(t))], (22)

where G is the gain of the control which is selected based

on the following inequality [12]:

G >
max

∣∣∣Ψ̃ + Ψ̄
Φ̃

Φ̄

∣∣∣+ η

min
(
1 +

Φ̃

Φ̄

) (23)

with η being a positive constant.

To implement the controller (22) on digital hardware, a

discretization method should be used. This topic has been

studied in [12, 15], and it is concluded that implicit dis-

cretization can provide several advantages compared to its
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explicit counterpart, including numerical chattering sup-

pression, and insensitivity to the gains. The explicit dis-

cretization of (22) is avoided in this study since it leads to

chattering even in the presence of an implicit differentiator

[12]. On the other hand, the implicit discretization of the

set-valued part of (22) gives:

uk ∈ − 1

Φ̄k
[Ψ̄k −G sgn(σk+1)] (24)

where uk is applied on [tk, tk+1]. Substituting (24) into

(20), and assuming that Φ̃ = Ψ̃ = 0 gives:

σk+1 ∈ −G sgn(σk+1) + σk. (25)

Eq. (25) can be rewritten as follows:

σk+1 − σk ∈ −G sgn(σk+1), (26)

The GE (26) can be solved based on the following condi-

tions:

• Case 1: σk > G

The solution of the GE (26) satisfies σk+1 > 0 which

leads to sgn(σk+1) = 1 → uk ∈ − 1

Φ̄k
[Ψ̄k − G].

Hence, from (26) one has σk+1 = σk −G.

• Case 2: G > σk > −G

The solution of the GE is σk+1 = 0. Therefore, (26)

gives

σk ∈ Gsgn(0) = G[−1, 1] ⇔

σk = Gξ for some ξ ∈ [−1, 1] ⇒

ξ =
σk
G

→ uk ∈ − 1

Φ̄k
[Ψ̄k − σk]

(27)

• Case 3: σk < −G

The solution of the GE (26) satisfies σk+1 < 0 which

leads to sgn(σk+1) = −1 → uk ∈ − 1

Φ̄k
[Ψ̄k + G].

Hence, from (26) one has σk+1 = σk +G.

The implicit discretization of the sliding-mode con-

troller is depicted in Fig. 5. As can be seen, the controller

needs the sliding variable σk = e2,k +λ1ek +λ0e0,k as well

as vectors Φ̄ and Ψ̄ at each time-step. To this end, it is nec-

essary to build x = [y, ẏ, ÿ]⊤. The EPS is equipped with

a position sensor. However, the velocity (ẏ) and the ac-

celeration (ÿ), are not available and need to be estimated.

The differentiators which are analyzed in [1, 2] are used to

estimate the first and second-order differentiations. The

differentiators are implemented on the EPS as follows:

• Some differentiators (Euler, LF, URED, STD,

VGED, QD, STDAC, FDFF) can only estimate

the first-order derivative. Cascade configurations of

these differentiators are used to estimate both the

velocity and the acceleration.

• Some differentiators have MOs (Kalman, AO-STD,

HGD, HDD, GHDD, AO-FDFF, HD), and can es-

timate any differentiations up to order n (0, . . . , n)

simultaneously, n being the order of the differentia-

tion.

• To implement the ALIEN differentiator, two ALIEN

blocks are used to calculate both the velocity (n = 1)

and the acceleration (n = 2) (see (9)) without using

the cascade configuration.

4.3. Conditions of the experiments

The conditions of the experiments are listed below:

• The first-order SMC is implemented implicitly ac-

cording to Fig. 5 with G = 105.

• The sampling rates correspond to all subsystems

(controller, differentiator, sensors, etc), and are

always the same.

• The pneumatic system has some initial conditions

(initial position of the horizontal jack, the initial

value of the disturbance, ...) that take different

values in each experiment. Hence, taking into ac-

count the transients will lead to unfair results since

each differentiator faces different initial conditions.
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σk = e2,k + λ1e1,k + λ0e0,k

σk > G

−G < σk < G

Case 1:

uk = − 1

Φ̄k
[Ψ̄k −G]

Case 2:

uk = − 1

Φ̄k
[Ψ̄k − σk]

Case 3:

uk = − 1

Φ̄k
[Ψ̄k +G]

e0,k, e1,k, e2,k

N

Y

Y

N

uk

Figure 5: Flowchart of the first-order implicit SMC.

To solve this problem, the waveforms are recorded

and the performances are calculated after a specific

amount of time, to ensure zero initial conditions for

all differentiators. Therefore, the reaching phase is

neglected in all experiments.

• The disturbance actuator generates 400N square

waveform force with 0.01Hz of frequency to emulate

the disturbance.

• The control objective is to track the reference tra-

jectory yr(t) = 40 sin(0.2πt) in millimeters.

• All higher-order differentiators are implemented in

second-order configuration (n = 2).

Unlike numerical simulations, it is not possible to mea-

sure the performances of the differentiators directly since

the exact values of the differentiations are not available

in practical closed-loop systems. To solve this drawback,

we have tried to evaluate the differentiators indirectly. To

this end, we have studied the effect of each differentiator on

the overall performances of the closed-loop control system

such as output tracking or the chattering on the control

input. More specifically, the following objective functions

have been defined.

• Average magnitude of the output error: This

cost function indicates the average energy of the out-

put error. A smaller value indicates better output

tracking. This cost function is defined as follows:

L̄2(ek) =
h
tf
||ek|| = h

tf

√
tf/h∑
k=0

e2k, (28)

where tf is the final time, ek = yk − yd,k denotes

the output error, yk, and yd,k are the output and its

corresponding reference, respectively, at time-step k

(see Fig. 1).

• L∞ norm of the differentiation error: This cost

function indicates the maximum deviation of the out-

put from its reference. Hence, it can be used to cal-

culate the overshoots and the accuracy of the control

system. This cost can be calculated as follows:

L∞(ek) = ||ek||∞ = max
k

|ek|, k = 0, . . . , tf/h.

(29)
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• Total variation of control signal: This criterion

can be used to measure the chattering effect on the

control signal. It is calculated as follows:

VAR(uk) =
tf/h∑
k=0

|uk − uk−1|. (30)

Smaller variation indicates less chattering.

4.4. Identifying the impracticable experiments

Before providing the experimental results, it is crucial

to identify the impracticable experiments. An impractica-

ble experiment refers to a condition where it is necessary

to stop the experiment to avoid any damage to the hard-

ware. For the pneumatic setup, the horizontal jack can

only move within y ∈ [−70,+70]mm. Beyond that, the

jack will hit the barriers, and the corresponding exper-

iment is called "impracticable" (note that the reference

trajectory is yr(t) = 40 sin(0.2πt)mm). Many factors, in-

cluding instability of the closed-loop control system and

overshoots, can potentially lead to an impracticable ex-

periment.

The impracticable experiments with the corresponding

conditions are listed in Table 4. The I-URED leads to

impracticability for small sampling times. Another obser-

vation is that the ALIEN leads to impracticability when

decreasing the sampling time. Note that the parameters

of the ALIEN (including the estimation window T̄ ) are de-

signed for h = 15ms. Hence, by decreasing the sampling

time, this differentiator led to impracticability which indi-

cates its sensitivity to the parameters. Note that by retun-

ing the ALIEN’s parameters for smaller sampling times,

it may lead to practicability and good performances for

smaller sampling times as well. However, such retuning

has been avoided to show the robustness of the differentia-

tors against their parameters. The performances for the

impracticable cases are not provided in the next sections.

Table 3: Parameters of the differentiators obtained from the tuning

procedure.

Method Parameters

Euler No parameter

LF c=(20, 20)

E-STD L=(0.5, 0.5)

I-STD L=(1, 1)

SI-STD L=(0.2, 0.2)

E-URED L=(0.3, 0.3), µ=(21, 21)

I-URED L=(1, 1), µ=(1000, 1000)

E-QD F=(1, 1), α= (2, 2)

I-QD F=(2, 2), α=(0.8, 0.8)

ALIEN T̄=(0.5, 0.9), κ=(4, 1),µ=(1, 1)

VGED µ=(2, 2), τ=(1.33, 1.33),

ωc=(2π, 2π), q=(1, 1)

SI-URED L=(100, 100), µ=(1000, 1000)

E-STDAC α=(0.5, 0.5), ϵ=(10−6, 10−6)

I-FDFF ωs=(10, 10), ωf=(100, 100),

ρ=(50, 50), γ=(2× 10−4, 2× 10−4)

I-AO-FDFF F=38, ϵ=19, ωs=3, ωf=63,

α1= 457, ρ=88

HD r=3

E-AO-STD L=3

I-AO-STD L=3

SI-AO-STD L=1

E-HDD L=3

E-GHDD L=8

I-HDD L=3

I-GHDD L=6

Kalman R = 1× 10−3

HGD L= 2.5

The first and the second parameters

inside each parenthesis correspond to

the parameters of the first and the second

blocks of cascade implementations.
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Table 4: Impracticable experiments.

Method Impracticability condition

I-URED h < 5ms

ALIEN h < 10ms

4.5. Experiments under different sampling times

The aim of this section is to study the behavior of the

differentiators under different sampling times h ∈ [1, 5, 10,

15, 20, 30, 40, 50]ms. The variation of the control signal

u(t) (see Figs. 3 and 5) under different sampling times

is presented in Fig. 6. Comparing the explicit and the

implicit methods in Fig. 6 (A) and (B), one can see that for

large sampling times h > 20ms, the implicit methods show

smaller variations, which indicate smaller chattering on

the control signal. For smaller sampling times (h < 20ms)

there is not a significant difference between the explicit

and the implicit methods. Hence, it can be concluded that

even if an implicit SMC is implemented, the use of explicit

differentiators may lead to chattering on the control signal

for large sampling times. In other words, to reduce the

numerical chattering, specifically for large sampling times,

it is necessary to implement both the controller and the

differentiator implicitly.

In Fig. 6 (D), ALIEN shows small variations (compa-

rable to the implicit methods) for large sampling times.

However, the values for small sampling times are not pro-

vided, since ALIEN is not practicable for h < 10ms. Con-

sidering the variations of the cascade configurations (STD,

STDAC, URED) in Fig. 6, one can see that the cascade

combinations of the explicit or semi-implicit differentiators

present more chattering than the implicit counterparts,

and should be avoided since each stage amplifies the chat-

tering of the previous one. As the result, for large enough

sampling times h > 10ms, E-STD and SI-STD show the

worst variations (Fig. 6 (A) and (D)).

For small sampling times, Euler is the worst differentia-

tor. Moreover, while one may expect good performances

from the VGED differentiator, because of its adaptation

mechanism, it does not show an appropriate response in

this specific application because of the cascade configura-

tion. Notice that a higher-order version of this differentia-

tor has been recently proposed in [58] that may improve its

performance for such applications. It is worth to consider

it in future comparisons. Another interesting observation

is that Kalman’s differentiator shows one of the best vari-

ations, comparable with the implicit methods.

The variations of the control signal corresponding to

some of the SMB differentiators for large sampling times

h = 50ms, h = 40ms, and h = 30ms are provided in

Fig. 7. Comparing the results, one can conclude that, in

general, the implicit methods show smaller variations than

those of their explicit counterparts. This result confirms

experimentally Feature 1 on the chosen setup and control

algorithm.

The L̄2 norms of the methods for different sampling

times are provided in Fig. 8. It can be seen that, for all

methods, increasing the sampling time highly affects the

L̄2 norm. Concerning Fig. 8, all methods show almost the

same evolution, except for the Euler method which shows

the worst L̄2 for h < 5ms. Moreover, the ALIEN shows

larger L̄2 for larger sampling times because its parameters

need to be tuned for larger sampling times as well. An-

other observation is that the performances of the LF are

comparable to the implicit SMB differentiators, in terms

of variation, L2 and L∞, as can be seen in Figs. 6, 8 and 9.

While there is not a noticeable difference between the

variation of the implicit differentiators and LF (compare

Fig. 6 (B), (C)), according to Fig. 8 (B), the implicit meth-

ods show smaller L̄2 which indicates better output track-

ing. Hence, it can be concluded that the implicit SMB

differentiators can behave better than the LF.

The L∞ norms are presented in Fig. 9. Apart from the

Euler algorithm, all differentiators almost show the same

behavior when increasing the sampling time.
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Figure 6: Variation of the control signal u(t) under different sampling times.

Figure 7: Comparison of the total variations for the implicit and explicit schemes.
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Figure 8: L̄2 for all methods.

Figure 9: L∞ for all methods.
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4.6. Gain sensitivity

Some of the SMB differentiators are studied under over-

sized gains and the results are provided in Table 5. It can

be seen that for L = 20 (compare with L in Table 3), all

SMB differentiators can be implemented. However, com-

paring the explicit and the implicit methods, it can be

seen that the variations related to the explicit methods

are much more affected than in the implicit counterparts.

For L = 103, all the selected differentiators are practi-

cable except for the E-AO-STD. Note that the implicit

counterpart of this differentiator, i.e., remains practicable

even for a larger gain L = 104. Comparing the explicit

and implicit counterparts, it can be seen that the implicit

ones show less variation and are less sensitive to oversized

gains as predicted by Feature 3. Note that the E-GHDD

shows almost an insensitive behavior to the oversized gains

since the chattering caused by the discontinuous terms is

avoided in its formula.

4.7. Solver’s effect

As it was previously explained in [3, 4], some implicit

differentiators I-AO-STD, I-HDD, and I-GHDD need an it-

erative solver to solve a polynomial equation at each time-

step. The required calculation resources should be small

enough to ensure the real-time operation of the system. A

set of experiments has been conducted to address this issue

and obtain the maximum tolerable iterations for real-time

implementation. According to the open-loop simulations

provided in [1, 2] (see also [3]), the required accuracy for

the solver without affecting the performances is 10−5 when

the input is sin(t). Hence, Newton’s solver with the same

accuracy is used, and the maximum number of iterations

for the real-time operation is obtained and given in Ta-

ble 6.

As can be seen from Table 6, for h < 1ms, it is not

possible to implement the solver-based implicit methods,

i.e., I-AO-STD, I-HDD, I-GHDD, and I-URED. Our in-

vestigation shows that for such small sampling time, even

non-solver-based methods, e.g., HD and ALIEN cannot be

implemented in real-time operation. According to Table 6,

for h > 1ms, all the implicit methods can be implemented

with the indicated number of iterations. It has been no-

ticed during these experiments that for a larger number of

iterations, the implicit methods cannot be implemented in

real-time.

It is reported before (see [1] Sec. 5.8) that Newton’s

solver can provide the accuracy 10−5 with the maximum

number of 7 iterations for a specific case. According to Ta-

ble 6, since the number of iterations for h > 1ms is always

higher than 7, one may conclude that the implicit meth-

ods can operate in real-time for h > 1ms. Normally, this

should not be an obstacle to the implementations, since

implicit SMC tolerates larger sampling periods without

significant deterioration of the performance [13, 12].

4.8. Results obtained for the EPS: conclusions

The following experimental conclusions have been

drawn based on the practical experiments on the EPS:

• In a real system, the chattering is caused by sev-

eral sources including the measurement noises, some

dynamics uncertainties, and the numerical chatter-

ing. To validate Feature 1, several experiments have

been made under different sampling times (as shown

in Figs. 6 and 7). We noticed that while there is no

significant difference between the explicit and im-

plicit methods under small sampling times, the im-

plicit methods show less chattering in large sampling

times, compared to the explicit ones. It indicates

that the implicit methods can reduce the numerical

chattering compared to their explicit counterparts,

because by increasing the sampling time, chattering

amplitude corresponding to the numerical chatter-

ing will be increased. In other words, by increasing

the sampling time, the dominant chattering source

would be numerical chattering. This validates Fea-
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ture 1 experimentally for the chosen setup and con-

troller.

• According to Sec. 4.7, the solver-based implicit

methods (I-AO-STD, I-HDD, I-GHDD, and I-

URED) can be implemented in real-time with the

desired solver’s accuracy on the EPS, which is in

accordance with Feature 2.

• Based on the discussion presented in Sec. 4.6, the im-

plicit methods show better insensitivity to the gains

compared to the explicit counterparts, which agrees

with Feature 3.

• According to the results provided in Figs. 6 and 7,

higher-order SMB differentiators, e.g., AO-STD

show better variation than that of the cascade

configurations of the first-order counterparts, e.g.,

STD.

5. General conclusions

A laboratory setup, i.e., an electro-pneumatic system

is used in this study to implement 25 known differentiators

in the closed-loop configuration. The general conclusions

are summarized as follows:

• Euler differentiator has the simplest structure with-

out any tunable parameter. This is basically a pure

differentiator that differentiates both the base sig-

nal as well as the measurement noise without any

filtration. Surprisingly, this differentiator is practi-

cable with comparable performances to other sophis-

ticated methods for almost all conditions. However,

this observation should not be misleading since, in

any laboratory setup like the ones used in this work,

there are some filtration stages implemented on the

hardware or the software by the manufacturer (espe-

cially on analog to digital conversion blocks) which

are not controlled by the user. Hence, the Euler dif-

ferentiator should always be implemented with spe-

cial attention.

• The LF shows one of the best results despite its

simple structure and easy parameter tuning. The

main difference between the LF and the sliding-

mode-based (SMB) differentiators is that while

the SMB differentiators can converge to the exact

differentiation in noise-free case (see [1, 2]), the LF

always shows a phase-lag for finite gains because of

its linear structure. However, in practice, converging

to the exact differentiation of the polluted signal

should be avoided to vanish the noise differentiation.

In such a condition, all methods including LF and

the SMB differentiators exhibit phase-lag.

• The implicit differentiators can supersede the ex-

plicit ones in terms of chattering. Comparing the

experimental results, it can be concluded that the

implicit methods always present smaller variations

for large sampling times, which imply a better im-

plementation in case of actuator degradation and ef-

ficiency. The explicit methods even may lead to im-

practicability mainly because of too much chatter-

ing. This validates Feature 1. It should be noted

that this conclusion has been drawn with the pa-

rameters listed in Table 3, which have been tuned

according to the method described in Sec. 4.3.

• The solver-based implicit differentiators (I-AO-STD,

I-HDD, I-GHDD, I-URED) could be implemented

on the selected laboratory setup in real-time. It in-

dicates that calculation resources in typical labora-

tory setups can be sufficient enough to implement

the solver-based methods. This validates Feature 2.

• The implicit methods present better gain insensi-

tivity, especially in low noise conditions. In other

words, one may select a larger sampling gain for
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Table 5: Results for h=20ms under oversized gain.

Method L 100 L̄2(e) 100 L∞ var

E-AO-STD 20 30.09 1.62 95.08

E-HDD 20 29.15 1.51 76.39

E-GHDD 20 30.03 1.49 38.97

I-AO-STD 20 30.02 1.57 53.07

I-HDD 20 30.12 1.52 40.34

I-GHDD 20 29.39 1.46 27.3884

E-AO-STD 103 impracticability

E-HDD 103 34.42 2.75 4.2636 ×103

E-GHDD 103 29.26 1.42 78.8276

I-AO-STD 103 29.46 1.46 53.52

I-HDD 103 28.57 1.58 327.54

I-GHDD 103 29.75 1.51 129.15

E-GHDD 104 30.54 2.69 315.21

I-AO-STD 104 29.73 1.44 52.32

I-HDD 104 impracticability

E-HDD 104 impracticability

I-GHDD 104 19.13 1.09 1.2438 ×103

h=20ms, with disturbance

Table 6: Maximum number of iterations for real-time operation.

Method h = 0.2ms h = 1ms h = 2ms h = 3ms h = 4ms h = 5ms

I-AO-STD 0 57 132 207 283 357

I-HDD 0 99 225 351 481 604

I-GHDD 0 57 132 207 283 357

I-URED* 0 28 65 101 138 175

Newton’s solver, accuracy=10−5, no extra noise

*Two blocks operating in cascade configuration
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the implicit differentiators compared to the explicit

counterparts. This follows Feature 3.

• Comparing the results, higher-order SMB differen-

tiators, e.g., AO-STD, I-HDD, and I-GHDD show

smaller variation than the cascade configurations of

the first-order counterparts, e.g., STD.

In this study, the parameters have been tuned in an

empirical way using practical experiments as explained in

detail in the paper. However, the design of a suitable op-

timization algorithm is thought to be a non-trivial work

that is left for the future. Moreover, the results in this

study are obtained for the electro-pneumatic system un-

der the selected parameter tuning, and may not be totally

valid on other systems. Hence, future investigations are

crucial to validate the results on other laboratory setups.

Note that the comparative analysis has also been made on

another laboratory setup, i.e., rotary inverted pendulum

system and the corresponding results are available in [53].
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