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Abstract

Making decisions in an uncertain environment is the daily routine of most decision makers (if not most human beings).
This process naturally defines the notion of risk, that comes from the occurrence of hazards. One key illustration is linked
to investments in large infrastructures in a climate change context, which alters the nature and properties of hazards.
Idealized settings help understanding the nature of decision risks, when the physical and statistical properties of hazards
change, e.g. due to climate change. This paper describes the mathematics of a game that illustrates the risks behind
decisions. We explain that, in some cases, optimal gain and the risk of ruin do not necessarily lead to the same choices,
especially when the hazard probabilities are uncertain. The goal of this paper is to explain to a general audience how
to use available information for proper decision making. Hence, this paper serves as an advanced guide to teachers or
climate researchers who are interested in outreach, and explaining the theory behind the game.

Key words: Climate Extremes, Decisions, Risk, Hazards

Introduction

Extreme climate events have huge impacts on society. Assessing

their probabilities has been deemed important for decision

makers. It has been a major endeavor of extreme event

attribution [EEA: National Academies of Sciences Engineering

and Medicine, 2016]. Major climate modeling efforts have been

undertaken to sample the probability distribution of climate

variability, in order to assess the probability of extremes

[Bevacqua et al., 2023]. Statistical theories (Extreme Value

Theory) have been adapted and applied to climate variables

to model the extremes and be able to simulate them [Coles,

2001]. The seminal work of Taleb on “black swan” events

suggests that such attempts might be vain [Taleb, 2010]. Many

decision makers have to balance decades in advance strategies

of adaptation to climate change (and its extremes) and the

general welfare of population. This balance requires some

anticipation of future extremes. In many cases, anticipation

of the future is based on past observations, which is the

main use of return levels and return periods [Coles, 2001]. As

there might be discrepancies between empirical probabilities

(obtained from observations) and ”real” probabilities (obtained

from the mathematical laws of physics), there is always a risk

of failure of any adaptation strategy. In such cases, the risk

can lead to a form of ruin, i.e. the loss of all assets [Embrechts

et al., 1997]. On the other hand, in a world with finite and

bounded income, paying for overprotection is often regarded as

poor planning and might lead to political backlash. There is no

obvious optimal solution to achieve this balance.

For decision makers, information on the probabilities of

climate hazards is a first step. The essence of decision is

to estimate the necessary and sufficient investments into

adaptation, with the risk of losing everything when the

investments are underestimated. Therefore, decision makers

have to consider two questions: what is the risk of ruin for

a given adaptation plan? and what is the optimal residual gain

(after the adaptation investment)? The answers to those two

simple questions might not lead to the same investment plan.

Climate sciences have made progresses to assess the

probabilities of extreme events, and the changes of probabilities

due to climate change [Seneviratne et al., 2021]. Those

probabilities are generally small numbers, with relatively large

uncertainties [National Academies of Sciences Engineering and

Medicine, 2016]. Therefore, knowing those probabilities (and

uncertainties) is in principle useful for decision making for

adaptation. Uncertainties in the changes of those probabilities

can lead to surprising effects, and also need to be anticipated.

Most long term investors (or decision makers) can have

sophisticated tools from economy or finance [Embrechts et al.,

1997] to estimate risks, but they rarely have reliable and

quantitative estimates of hazard probabilities, and have to rely

on qualitative descriptions [Ranasinghe et al., 2021, IPCC,

2021]. Therefore, the sophistication of such tools might be

rather vain, due the major uncertainty stemming from climate
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variability, as suggested by Taleb [2010]. Therefore, there is

a need to illustrate the risks linked to climate extremes on

adaptation decisions for the climate change to come.

This paper presents a game, adapted from a game developed

by the Red Cross’s Climate Center, to illustrate the dilemmas

of decision makers that face climate hazards that can be

devastating [de Suarez et al., 2012]. The game is played with

a set of dice and is an idealized version of the decisions made

by planners. We aim at exploring the mathematics behind the

game to identify optimal strategies. The players are certainly

not aware of such mathematics (and should not be, before

playing). Although this game was designed for decision makers,

its format has many educational issues for high school to

graduate level, in order to illustrate probabilities and risk.

In particular, it illustrates some of the dilemmas faced by

scientists when communicating to the public on extreme event

attribution.

Presentation of the game

Decisions for seasons is a competition game with several players,

which emphasizes the role of decision making for adaptation in

uncertain context. The general setting is that each player (or

group of players) is the (assumed elected) governor of a region

for 10 years (or rounds). There are three games of 10 rounds,

of increasing difficulty. A the beginning of each round, each

player receives an initial capital of 10 smileys, which can be

used to buy protections against extreme events. Each protection

costs 1 smiley. When an extreme event occurs and a player has

no protection against it, the players loses all smileys for the

game. If an extreme event occurs and the player has at least

one protection, this protection is ticked off, but the players

keeps the smileys. The simple goal is to end the game with

more smileys than the other players.

The players can invest between 0 and 10 smileys into

protections. The remaining smileys represent the ”gain” after

the set (which can be re-invested elsewhere and generate a

reward). Before the game starts, the players have to bet on

the minimum number of protections that ensure the maximum

reward in smileys. This can be conceived as a competitive game

with assigning the objective of keeping more smileys than the

other players.

The players have little time to decide on an adaptation

strategy. The game master can keep talking and making noise

during this reflection time, as it is often the case in real life.

First game: One type of hazard
During each round of the first game, an extreme precipitation

event can occur, and destroy everything, leading to the loss

of all smiley capital of the region. To prevent from such a

disastrous loss, the player can buy protections (e.g. dams),

which are destroyed during the extreme event, but save the

wealth of the region for one round.

The first game is run by rolling a 6-sided 10 times, and

noting the outcome at each round. The players need to have

written down on a sheet of paper the number of protections

and the remaining smileys. The game master explains briefly

the procedure of the game and gives, say, 60 seconds to the

players to write down their strategy. Then the game begins.

At the end of the game, there can be 0 smileys if not enough

protections were purchased (or a player used all smileys to by

protections), or the number of remaining smileys. The player(s)

with the most remaining smileys win the first game.

Second game: Two types of hazards
The second game emulates a form of climate change: deadly

droughts occur when the die shows a 1. The player start again

with a capital of K = 10 smileys. The remaining smileys of the

previous game were used for the welfare of the region. As in

game 1, the players can buy protections against major droughts,

i.e., buckets (or the controversial ”mega-bassines” in France)1.

Therefore when a 1 or a 6 appear: if a player has neither

protection against drought or precipitation, s.he cries ”Oh no!”,

loses all smileys, and goes bankrupt for game 2. If a player has

a corresponding protection, it is ticked off, but the player keeps

her.his smileys for the next round.

The game master rolls a 6-sided die 10 times and writes

down the outcome. The players must have written down the

number and type of protections, and remaining smileys. Again,

the game master explains briefly the game procedure, and the

players are allowed 60 seconds to write their strategy. The game

then starts. The player(s) with the most remaining smileys win

the second game.

As the initial capital is still 10 smileys, it is obvious that

the players will have to buy more protections than in Game 1

to avoid ruin.

Third game: The black swan
We emulate further the impact of climate change on extremes

by a subtle game changer. Droughts occur when a 1 appears.

But scientists claim that the probability of heavy precipitation

have changed by a factor between 1 and 3 [e.g. Luu et al., 2018].

They are not sure about this probability ratio. We emulate

such an uncertain change by using either a 6-sided die (as

before), an 8-sided, 10 sided, 12 sided, or 20-sided die. An

extreme precipitation occurs when the value is 6 or above. The

players do not know which die is used. The game master might

decide at random, or decide in advance which one (and make no

change). In this game, the probabilities of extreme precipitation

obviously increase, while the probability of droughts decrease.

The black swan is due to the absence of precise information

from the players on the probability of extreme precipitation.

The strategy they built for the two first games was based on

the information that the game master rolls a 6-sided die. As we

will see below, the optimal strategies are fairly easy to derive

for those two games. This is not the same for game 3, although

the rules are similar.

Again, the game master explains briefly the game procedure,

and the players are allowed 60 seconds to write down their

strategy. The game then starts. The game master can write

for her.himself the outcome of the die, but should not show it

to the players, for obvious reasons. The player(s) with the most

remaining smileys win the third game.

The sum of smileys of the three games is made. The player

with the largest sum wins.

Mechanisms of strategy
A first strategy consists of balancing the expected gain (original

capital minus protection investment) with the risk of losing

everything (not enough protection). If a player buys 10

protections, then she/he ends with zero smileys (and no gain).

If a player buys 0 protection, then she/he faces the risk of losing

1 The first author of this paper does not support the idea
of ”mega-bassines” by any means. This is just for illustration

purposes.
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everything (hence no gain either). Therefore, a trade-off has to

be found.

We will present some the mathematics behind the game,

which can help an objective evaluation of the odds. We will

then discuss how the competitive nature of the game and the

interpretation of the first rounds can increase the variance of

decisions. We emphasize that this game is to be played only

once, so that nothing prevents an optimal strategy on average

from failing on a particularly unlucky streak of events.

This game can be played with any kind of audience. It

is very unlikely (with all due respect) that players can make

the computations that are detailed below within the duration

of the game. Even if they could (because they have some

knowledge in probability theory), the game master would not

give them enough time to perform any computation. Therefore

most decisions taken by players are based on their intuition

(which could be right for wrong reasons). One of the authors

of this paper has played this game to various audiences, from

junior high school to graduate students, including secondary

school teachers. The players who obtained the largest number

of smileys were never those who had any reasonable background

in statistics or probabilities.

Probabilities and decision

In this section, we explain how strategies can be objectively be

designed. The mathematical formulas might look complex (for

nonspecialists or high school pupils), but they are anecdotal. It

is just important to know that things can actually be computed.

High school professors could replace those complex formulations

by programming exercises, with the same result.

Game 1
The probability of extreme precipitation is emulated with a

6-sided die. With 1–5, nothing happens and no protection is

required. A 6 gives an extreme precipitation. Therefore, during

each of the N = 10 rounds, the probability of an extreme is

p0 = 1/6. During a game of N = 10 rounds, the probability

that h extremes (the letter h is for ”hazard”) occur follows a

binomial distribution:

Pr(H = h) =
(N
h

)
p
h
0 (1 − p0)

N−h
, (1)

where
(N
h

)
= N!

h!(N−h)! . The expected number of extremes

among N rounds is E(H) = Np0, and the variance is σ2(H) =

Np0(1 − p0).

The probability that at most h extremes occur is:

Pr(H ≤ h) =
h∑

j=0

(N
j

)
p
j
0(1 − p0)

N−j
. (2)

Let K be the initial capital (e.g. K = 10 smileys), I be the

investment into protections (I ∈ {0, . . . , K}, H the (random)

number of extremes, and N is the number of rounds. For

convenience, we equate the number of hazards to their cost

in smileys, and K = N . In real life, there is a transfer function

from the extreme event occurrence to its cost. In the equations

given below, K is not necessarily equal to N . The game makes

this hypothesis for convenience so that fewer variables are

considered. G is the gain after the game of N rounds, with

an investment I, after H extreme events have occurred:

G =

K − I, if I ≥ H,

0, if I < H.
(3)

This means that the player’s gain is K−I smileys if less than I

extremes have occurred within the N rounds. The player loses

everything if more than I extremes have occurred: G = 0. In

this simple version of the game, one cannot lose more than the

initial capital K.

For a given investment I taken on the initial capital K,

we deduce from Eq. (2) that the probability π(K, I) of a gain

G = K − I is the probability that there are at most I extreme

events during the N rounds of the game:

π(K, I) ≡ Pr(G = K − I) =
I∑

j=0

(N
j

)
(1 − p0)

N−j
p
j
0. (4)

Note that this probability does not depend on K, but only on

the expected number of hazards (reflected by the number of

purchased protections).

For a given protection investment I, the expected value of

the gain G is:

E(G|I) = (K − I)π(K, I), (5)

because the player either gets K−I smileys, or loses everything.

The player is naturally interested in finding an investment I

that maximizes the gain G.

We can also be interested in the probability of ruin for a

given investment I:

π̄(K, I) ≡ Pr(G = 0|I) = 1 − π(K, I). (6)

This probability π̄(K, I) is naturally a decreasing function of I:

the higher the investment, the lower the odds of ruin (Figure

1a). A player wants to find an investment I for which the risk

of ruin is perceived as negligible (i.e. this probability is lower

to some threshold).

Figure 1b shows the average gain G for protection

investment I ∈ {0, . . . , 10}. The optimum protection

investment is I = 3. The average number of extreme

precipitation events is ≈ 1.67, with a standard deviation

of ≈ 1.18. Those two quantities can be intuited without

major computations. Without knowing the result of Figure

1b, a reasonable choice is to invest into 2 protections. A

safe choice would be to take 3 protections, due to variability.

Competitive players would opt for only 1 protection, although

the probability of losing everything is 0.5.

From Figure 1b, one sees that buying more than 4

protections is not really useful, as the probability of drawing

four sixes is very small.

In general, even without performing any of the computations

explained before, most players chose between 1 and 3

protections, and end up with a gain between 7 and 9 smileys.

Game 2
In this game, two types of hazards can occur (h1 for

precipitation and h2 for droughts), and hence two types of

protections can be purchased by the players. The probability

for both hazards is still ph1
= ph2

= p0 = 1/6.
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Fig. 1. Key quantities of game 1, as a function of investment into

protections against extreme precipitations. Panel (a): Ruin probability as

a function of protection investment. Panel (b): Expected value of gain

(red line) and maximum gain (black line) as a function of protection

investment.

During a game of N = 10 rounds, the probability P (h1, h2)

that h1 events and h2 events occur (i.e. h1 sixes and h2 ones)

is a variation over a binomial distribution:

P (h1, h2) ≡ Pr(H1 = h1 &H2 = h2)

=
(N
h1

)
p
h1

0 (1 − p0)
N−h1

(N − h1

h2

)
p
h2

0 (1 − p0)
N−h1−h2 .

(7)

This is the probability of having h1 extreme precipitations

among N draws, and having h2 droughts in the remaining

N−h1 draws. The constraint for a proper definition is obviously

that h1 + h2 ≤ N .

The probability that at most h1 precipitation events and h2

drought events occur is:

Pr(H1 ≤ h1 &H2 ≤ h2) =

h1∑
i=0

h2∑
j=0

P (i, j). (8)

For an investment I = I1 + I2 of protections against

precipitation events I1 and drought events I2, the probability

of a gain K − I is hence:

π(K, I1, I2) = Pr(H1 ≤ I1 &H2 ≤ I2). (9)

The expected gain after N rounds is:

E(G|I1&I2) = (K − I1 − I2)π(K, I1, I2). (10)

The probability of ruin during N rounds is:

π̄(K, I1, I2) = 1 − π(K, I1, I2) (11)

because one either gains K−I1−I2 smileys, or loses everything.

Displaying the expected gain G of the probability of

ruin π̄ requires 3-dimensional figures. One can simplify the

visualisation by noticing that the probabilities of the two

hazards are the same (p1 = p2 = 1/6), so that one is actually

interested in the case when I1 = I2. This is reflected in Figure

2.
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Fig. 2. Key quantities of game 2, as a function of equal investments into

protections against extreme precipitations and droughts. Panel (a): Ruin

probability as a function of protection investment. Panel (b): Expected

value of gain (red line) and maximum gain (black line) as a function of

protection investment.

From Figure 2a, the ruin probability becomes very small

π̄ ≈ 0.1 for protection investments I = I1+I2 ≥ 6. The optimal

gain is obtained with a protection investment of I = 4 (i.e., 2 of

each type), although the risk of ruin is close to π̂ = 0.4. Game 2

is an example where the policy to maximize the mean expected

gain also comes with a high probability of ruin. Players who

want to make a safe decision would consider 3 protections of

each type, hence a global investment of I = 6 smileys, and

an average expected gain of 4 smileys. Making a positive gain

difference with respect to this safe decision comes with a risk

that increases fast with respect to the maximum possible gain.

Game 3
The third game is a variation of Game 2, but the probabilities of

droughts and precipitations are not longer the same. Equation

(7) can be rewritten as:

P
′
(h1, h2) ≡ Pr(H1 = h1 &H2 = h2)

=
(N
h1

)
p
h1

0 (1 − p0)
N−h1

(N − h1

h2

)
p
h2

1 (1 − p1)
N−h1−h2 .

(12)

where p1 = (D − 6 + 1)/D is the probability of extreme

precipitation, and p2 = 1/D is the probability of drought, and

D is the number of sides of the playing die.
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The mathematical expressions for the mean expected gain

G and the probability of ruin are the same as in Eqs. (10) and

(11), except that the hazard probabilities are different.

The difficulty is that the players do not know the value of

D ≥ 6. What should be obvious is that p2 ≤ 1/6, and that

p1 ≥ 1/6. Therefore one should chose to buy more protections

against extreme precipitations than against droughts.
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Fig. 3. Key quantities of game 3, as functions of investments into

protections against extreme precipitations (I1) and droughts (I2). Panels

(a, c): Ruin probability as functions of I1 and I2. The upper panels are

for an 8-sided die. The lower panels are for a 10-sided die. Panels (b, d):

Expected value of gain as functions of protection investment I1 and I2.

Figure 3 reports the ruin probabilities and mean expected

gain for varying investments in precipitation (I1) and drought

(I2) protections, for an 8 sided die and a 10-sided die. As

expected, it seems unnecessary to buy more than 1 protection

against drought to avoid ruin, as the probability of drought

overall decreases from Game 2 to Game 3 (from 1/6 to 1/8 or

1/10). Between 5 and 6 protections against precipitation are

necessary to avoid ruin. The optimal expected gain (3 smileys

or 2.5 smileys) is obtained for lower protection investments.

This means that such expected gains are obtained with a fairly

high risk of ruin.

Running the game

The players are given no chance to perform any of the statistical

computations presented in this paper. Even if they knew in

advance the probability formulas, those are sufficiently tedious

to require the use of a computer to obtain the figures shown

above. In practise, nobody is able to assess precisely the value

of ruin probability nor mean expected gain (even in Game 1).

When the first author reaches game 3, he generally takes

an 8-sided die (and sticks to it), so that the odds do not

change drastically from game 2. Of course, the players do

not know this. If a particularly ”unlucky” streak of extreme

precipitations (or droughts) occurs within the first 5 rounds,

the game master asks the audience whether they think that the

probabilities have changed (due to climate change), and asks

to argue for or against a change of dice. It is interesting to

make a survey at this point of the game, as a drama factor. Of

course, the decisions which were taken before the game started

cannot be changed. This discussion illustrates the difficulty

of communicating to the public for climate scientists about

extreme event attribution.

The authors have played this gave with various types of

audiences. ”Higher level” audiences (e.g. high school professors

or undergraduate university students) do not perform more

efficiently than ”lower academic level” audiences (e.g. junior

high school students). From an admittedly non significant

statistical sample, it even appears that mathematics teachers

perform rather poorly in estimating ruin probabilities, as they

have seemed to take more risks than their colleagues.

Learning from one game to the next can be misleading,

because of the slight rule changes. The outcome of the die

roll for Games 1 and 2 can be written down on a blackboard.

As illustrated by Kahneman [2011], many players tend to use

this information to help their choices for Games 2 and 3. For

instance, if an unlikely streak of 1s (i.e. more than 3) or an

unlikely low number of 6s (i.e. one or less) occur in Game 1,

many players seem to use this information for their decision

in Game 2, although both games are independent. This means

that some players are prone to base their decisions on empirical

probabilities from a rather low number of samples, although

they are informed of the actual probabilities of extremes. When

the players go from Game 2 (where probabilities are known,

although not obvious) to Game 3 (where probabilities are

no longer known), then they are even more prone to using

empirical information from the previous games. Only a few

players realise that p1 > p2. Those players have a better chance

of avoiding ruin in Game 3.

This Game is a ”one shot” experience. Repeating it with

the same audience has a fairly low utility. It illustrates that

even though climate or meteorological prediction is based on

probabilities, the outcome (or observed climate) is unique, and

could even have a fairly low probability. A sophistication can

be added to the game by stating that a ruin can lead to a

negative capital (players ”owe” smileys), as is described by

the ”Lottery of Babylon” [Borges, 1941]. In such a case, the

equations for the expected gain can be rewritten easily, and

the optimal strategies give more weight to the probabilities of

ruin.

The competition against other players is an incentive to

think about risks: the ones with the lower gains after games

1 and 2 are prone to lower the investments to have a chance

to ”catch up”. The ones with the higher gains after games 1

and 2 might be tempted to ”play it safe”. . . or not. Proposing

a reward to the winners is also an incentive to take risks.

Conclusion

This very idealized game illustrates the process of decision

under random hazards, and uncertainty in the randomness

of hazards. Beyond the computations exposed in this paper,

storytelling is essential to make this game useful. The game

is more efficient when teams of 2-3 players are organized, so

that discussions are encouraged. This game is an idealized

version of ClimaRisq, which yields many types of hazards and

opportunities of adaptation.
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One potential story is that the teams compete for a local

election. The citizens might be happy when the gain G is

maximized at the end of the mandate, as it translates into

local welfare, but they are extremely unhappy when everything

is lost. Ending a 10 round game with too many protections

is rarely seen as good planning. Thus, each game empirically

tests policies that balance hazard protection versus welfare

gain, with the constraint that overall wealth is finite. This

is done only once, so that ”luck” becomes the essence in the

competition between policies.

Although very simplified, this game is analogous to ”real

life” decision making, which is often based on empirical

probabilities (of extreme events) computed from a fairly low

period of observations (a few decades), and which rarely

account for changes in probabilities (as in Game 3).

Game 3 illustrates the appearance of a ”black swan” [Taleb,

2010]: the 6-sided die paradigm has changed to something else,

and can no longer explain the outcome of the die rolls. Extreme

event attribution tries to assess how extreme event probabilities

change with climate change. The author has generally given a

lecture on EEA before proposing playing the game.

It is very important to spend some time for debriefing after

the game, in order to let the players analyze the processes

that lead to each decision [de Suarez et al., 2012]. Explaining

how probabilities can be computed is left for a more advanced

audience (e.g. mathematics professors in high school), who

could then promote the game to others. The game can easily

be emulated on a computer with no real loss of information, if

the notion of mathematical expectancy (or conditional means)

are above the level of the audience.

To conclude, knowing p1 and p2 is obviously important

to estimate the probability of ruin or the mean gain, for a

given protection investment. If one only has access to empirical

estimates of p1 and p2 from previous die rolls, then the

uncertainty of such empirical estimates might be misleading

for safe decisions, or just ”win the game”.
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