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A B S T R A C T

Large-scale wind power forecasting at intraday horizons of minutes-ahead up to hours-ahead is essential
to secure important operations in transmission systems. It is clear that recent information collected about
neighboring sites improve the predictive performance of autoregressive models. At the scale of a region or of a
country, regularization or feature selection are needed to mitigate the high dimensionality of the autoregressive
model. Unconditional approaches of regularization have shown limited added value compared to benchmark
models in the context of wind power forecasting. This work proposes an intraday wind power forecasting
method that predicts the production of any wind farm in the control area of a Transmission System Operator
(TSO), taking into account the information collected from other wind farms. The method combines feature
selection, regularization and local-learning via conditioning on recent production levels or on expected weather
conditions. Improvements in Root Mean Squared Error (RMSE) with respect to other models, evaluated on
a dataset with a large number of wind farms are comprised between 4% (10-min horizon) and 11% (3-h
horizon). Interpretability of the forecasting model is demonstrated via an analysis of the model coefficients
and a discussion of the performance in a challenging situation, namely a wind front.
Notation

Let  be a set, then the cardinality of this set is denoted by ||.
Superscript indices, e.g. .(𝑠) in 𝐲(𝑠), define that the production vector
is associated to the site of index 𝑠 in the set . Estimated regression
coefficients are denoted by �̂�.

Introduction

The increasing penetration of wind power in power systems and
electricity markets leads to the need of operational wind power fore-
casting at different temporal horizons and geographical scales. At the
level of a single wind farm, forecasting wind power is a mature disci-
pline on prediction horizons ranging from the next minutes to the next
days [1]. Many power system applications such as the management
of local grid constraints or the dispatch of flexibility in a renewable
virtual power plant require simultaneous predictions of multiple wind
farms at large scale, e.g. an entire region or country. A first simple
approach consists in applying meteorological models which convert
Numerical Weather Prediction (NWP) models into power predictions
thanks to calibrated power curves of wind turbines. However, statistical
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augustin.touron@rte-france.com (A. Touron), laurent.dubus@rte-france.com (L. Dubus).

forecasting models are known to outperform meteorological models
in the context of intraday wind power forecasting [2]. A surge in
Machine Learning based approaches has been observed in recent years
for the next-minute to next-hour prediction of wind power [3]. At
large scale, both statistical and Machine Learning models face the
curse of dimensionality as the number of explanatory variables grows
linearly with the number of explanatory sites or the number of variables
considered per site.

In terms of remote information, an essential input for short-term
wind power forecasting models at multiple sites is recent measurements
collected from neighboring wind farms, that act as ’virtual power
sensors’ and have proved to improve forecasting performance up to a
few hours ahead [2]. A state-of-the art approach further developed in
this work is an Auto-Regressive Spatio-Temporal (ARST) model where
recent measurements of the wind farms neighboring the target site
are used as explanatory variables following [4]. The feature matrix
𝐗(𝑠)
𝑘 collects in (1) the 𝑁 power measurements data points of the

target production site 𝑠 and its neighbors resulting in a set of sites
 indexed by {(1),… , (𝑠),… , (||)}. A set of time lags  indexed by
{1,… , 𝑙,… , ||} is applied to the most recent available measurements
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Nomenclature

Abbreviations

AR,ARST,VAR Auto-Regressive, id. Spatio-Temporal, Vec-
tor Auto-Regressive

ccf Cross-correlation function
NWP Numerical Weather Predictions
TSO Transmission System Operator

Parameters

𝜎 Conditional bandwidth
𝜃 Regularization parameter of the 𝓁1-norm of

regression coefficients
𝑝 Number of explanatory variables without

regularization
𝑝𝜃 Number of explanatory variables with reg-

ularization
c Number of conditioning variables
M Number of kernel centers

Sets

 Set of prediction horizons
 Set of temporal lags
 Set of wind power sites in the portfolio
 Set of explanatory wind power sites in the

forecasting model

Variables

𝛽 Regression coefficients
𝐖 Matrix of conditioning weights
𝐗 Matrix of explanatory variables
𝐲 Vector of normalized power production of

a Wind farm
𝐳 Vector of conditioning variables
𝜌𝜖(.) Correlation in errors of auto-regressive

models
𝜌𝑦(.) Correlation in production of different wind

farms

of each site considering the forecasting lead-time 𝑘. This leads to a
number of 𝑝 distinct explanatory variables 𝑝 = 1 + |||| comprising
he addition of a constant intercept.

(𝑠)
𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝐲(1)1 ⋯ 𝐲(𝑠)1 ⋯ 𝐲(|𝑆|)
⋮ ⋮ ⋮ ⋮
1 𝐲(1)𝑡 ⋯ 𝐲(𝑠)𝑡 ⋯ 𝐲(|𝑆|)𝑡
⋮ ⋮ ⋮ ⋮
1 𝐲(1)𝑁 ⋯ 𝐲(𝑠)𝑁 ⋯ 𝐲(|𝑆|)𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑁x𝑝 (1)

here 𝐲(𝑠)𝑡 =
[

𝑦(𝑠)𝑡−𝑘 ⋯ 𝑦(𝑠)𝑡−𝑘−𝑙 ⋯ 𝑦(𝑠)𝑡−𝑘−||

]

∈ R||,∀𝑡 ∈ [1,… , 𝑁]
Least-square minimization leads to the well-known analytical solu-

ion of regression parameters 𝛽(𝑠)𝑘 =
(

𝐗(𝑠)𝑇
𝑘 𝐗(𝑠)

𝑘

)−1 (
𝐗(𝑠)𝑇
𝑘 𝐲(𝑠)𝑘

)

. When ||
s large (order of hundreds of sites), the computation and inversion of
he matrix 𝐗(𝑠)𝑇

𝑘 𝐗(𝑠)
𝑘 ∈ R𝑝x𝑝 become quickly intractable with standard

atrix multiplication and inversion techniques.
An appealing multivariate approach for wind power spatio-temporal

orecasting is Vector Auto-Regression (VAR). Sparsity is a desired prop-
rty of the VAR model in order to ensure tractability, as the number
f parameters increases with the square of the number of explanatory
ind farms. In [5], a sparse model is achieved by conditional selection
2

f coefficient pairs according to a statistical test on the significance of
patio-temporal correlations. A more direct approach to obtain sparsity
onsists in applying Lasso to a VAR model [6], solved by coordinated
yclic gradient descent. Adding correlation constraints to the optimiza-
ion problem formed by a sparsity-controlled approach [7] is found
o increase performance on spatio-temporal wind power forecasting
ompared to a sparsity-control approach.

Formulating the autoregressive model as a local regression permits
o take into account the non-linear effects of uncertainties in explana-
ory variables and wind power production, as done in [8] for a single

ind farm. Further, variability in wind speed and consequently in wind
ower production over temporal scales (from sub-hourly to annual)
hould be addressed by the prediction model. At sub-hourly scales,
ind speed variability due mostly to boundary layer turbulence can
e modeled by downscaling NWP using Model Output Statistics [9],
hich increases predictions of accuracy of wind speed and wind power
roduction at a single site. A second option consists in an online
ormulation of the autoregressive model to handle the non-stationarity
f the wind production process [10]. Similarly, the spatio-temporal
odel of [6] combines Lasso regularization with an online formulation
hich updates iteratively an exponential weight on recent measure-
ents. Wind power forecasts at such sub-hourly resolution facilitate the

cheduling of balancing reserve [11] or flexibility levers for local grid
onstraints [12]. Multi-resolution methods have been proposed [13,14]
o ensure consistency between forecasts at low and high resolution
e.g. the hourly mean of minute-resolution forecast equals the hourly-
esolution forecast). This avoids discrepancies in sequential decisions
n the operation of power systems such as a hours-ahead economic
ispatch and a minutes-ahead balancing decision [14]. Variations of
ind over longer periods e.g. months, seasons or years may force power

ystem operators to modify their unit commitment or economic dis-
atch decisions, and should therefore also be predicted. A simple way
o capture these slow variations in wind speed and wind direction is to
rain the regression model over a sliding window [15]. An alternative
s to derive a seasonal autoregressive model, cf. [16] in the context of
ffshore wind speed predictions.

Machine Learning (ML) models can also tackle the problem at hand,
tarting by Random Forest (RF) trained on selected features from the
ifferent neighboring farms and integrated in an ensemble forecasting
pproach [17]. Spatio-temporal ML wind forecasting methods have also
een proposed, especially based on graphs as in [18] or in [19] for min-
tes to hours-ahead wind speed forecasting at multiple offshore sites.
n the latter, a two-stage approach models first spatial dependencies
y a Graph Neural Network (GNN), then a Fast-Fourier Transformer
reates predictors of temporal variability at the site level that are
sed to update the GNN nodes. Interestingly, a two-stage method is
lso employed in the probabilistic spatio-temporal approach proposed
y [20], but here ML is used to predict temporal variability at the
arm level and a flexible copula (DVINE) captures asymmetrical spatial
ependencies in the residuals of the temporal models.

The main purpose of this work is to propose a conditional ARST
orecasting approach of wind power production at the scale of a large
egion or country and intraday horizons. VAR approaches are appealing
or the problem at hand but are not investigated here because we argue
hat the proposed ARST model compares favorably to a VAR model in
erms of simplicity of the approach compared to the potentially lower
orecasting performance. The original contributions of this paper are
he following:

1. A scalable intraday ARST Wind power forecasting model thanks
to the selection of explanatory sites and an efficient computation
of the design matrix. Existing spatio-temporal wind power fore-
casting methods focus mostly on next-minutes ahead exploiting
past power measurements [6,7], but are not easily extendable
to hours-ahead forecasting where predicted weather conditions

should be considered.
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2. A local learning approach is proposed to condition the forecasting
model on intraday features such as predicted weather conditions. The
local learning approach on predicted wind conditions reduces
forecasting error compared to benchmarks. Using wind direction
to define a priori sparse hierarchical structures in the covariance
of wind power production at multiple sites [21] is difficult when
there is significant uncertainty about wind direction.

3. Results are evaluated on two real-world case studies encompassing
wind farms across an entire country (France and Australia). The
improved performance is therefore representative of the hetero-
geneity in spatio-temporal situations encountered at the level
of a region or a country, in terms of weather conditions and
geographical distribution of Wind farms. This contrasts with pre-
vious case studies focusing on simulated wind profiles [20,21],
small regions [21] or countries [6].

ethodology

The methodology of this work is articulated in three steps:

1. Pre-processing time series and computing the design matrix. Periods
with missing values, abnormal values or detected power cur-
tailment are discarded from every production time series. The
pre-processed series are used to efficiently construct the design
matrix (cf. Section ‘‘Efficient computation of the design matrix’’).

2. Selection of explanatory variables. is performed in Section ‘‘Se-
lection of explanatory sites’’ in order to focus learning on rele-
vant sites and temporal lags, before formulating the regularized
regression model, conditioned by recent production levels or
weather forecasts.

3. Analysis of results on two real-world datasets

n what follows, in order to reduce notational clutter, superscripts
ttached to the target site .(𝑠) are omitted wherever possible.

reprocessing large-scale wind power data

A filtering method is employed on wind power time series to (1)
reat periods where the available power capacity is inferior to the
nstalled capacity and (2) detect long periods with zero production that
annot be associated to lack of wind. Details on the method, based on
he detection of boxes in the production signal of a wind farm, can be
ound in Appendix A.

fficient computation of the design matrix

The large design matrix (𝐗𝑇𝐗) is computed by iterating over the
ow and column indices of 𝐗 associated with the production of all sites
t different temporal lags, see formulation in Appendix A.

haracterizing the spatio-temporal propagation of forecasting error

In this work it is assumed that the forecasting model does not
ispose of the location of the individual farms, but of the follow-
ng information to characterize neighboring sites and the weather
ondition:

• the indices of the  ⧵ 𝑠 nearest geographical neighbors of a target
site 𝑠, where  ⊂  , with  the set of sites in the entire portfolio
in the TSO area.

• the most recent NWP available and downscaled at the level of
each farm
3

The assumption that the forecasting model has no access to farm
ocations can be justified by data privacy constraints or cybersecurity
rotocols, e.g. in the case where the forecasting model is operated by
third party and communicated to the TSO. Without access to farm

ocations, spatial dependencies cannot be modeled explicitly from geo-
hysical information. However, this paper considers an autoregressive
ethod with explanatory variables. With such a method, information

n physical locations, topology or orography can only be used to select
andidate informative sites.

This paper proposes mitigations to capture the spatial dependencies
hat are implicitly present in the available data without access to the
hysical location of the farms. First, the model is built based on the
nformation collected from geographically neighboring sites. Among all
eighbors, some sites are likely to have low correlation with the target
ite, because e.g. away from prevailing wind directions experienced
y the target site. This is why a second alternative mitigation collects
nformation from sites that are the closest in terms of a distance proxy
proxy, which corresponds to the inverse of the linear correlation be-
ween the production at target site 𝑠 and other sites 𝑗 ∈ 𝑃 , 𝑑proxy(𝑗, 𝑠) =
1∕𝜌𝑦(𝐲(𝑗), 𝐲(𝑠)) ∀𝑗, 𝑠 ∈  . These sites do not necessarily coincide with
geographical neighbors.

The two site selection methods presented above are not directly
linked to the performance of statistical learning. Consequently, we
test an alternative site selection of subset sites based on the analysis
of the correlation between the training errors 𝜖𝐴𝑅 of an AR model
applied to the target site and potential explanatory sites. Following
Girard and Allard [2], the maximum correlation between these errors
characterizes the spatio-temporal dependencies in forecasting error
for a given horizon difference 𝑘, for any pair of sites 𝑗, 𝑠 ∈  :
⌈𝜌𝜖𝑗,𝑠⌉(𝑘) = max

|𝑘2−𝑘1|=𝑘 𝜌
𝜖
((

𝜖𝐴𝑅,(𝑗)𝑡+𝑘1

)

𝑡∈𝑁
,
(

𝜖𝐴𝑅,(𝑠)𝑡+𝑘2

)

𝑡∈𝑁

)

. Sites that have
low correlation of AR errors with the target site at the requested
horizon are likely to experience distinct conditions from the target site
and therefore convey limited information. The maximum correlation
of errors between wind farms of the pool ⌈𝜌𝜖⌉(𝑘) for two target sites is
illustrated in the Supplementary Material.

Selection of explanatory sites

Once pre-processed, the dataset is reduced for each target site 𝑠 in
order to obtain a tractable subset where past production from the target
site is complemented by a past production from selected explanatory
sites, resulting in a subset of sites  ⊂  . The implemented selection
methods are listed below.

The explanatory sites consist of the set of sites  ⧵ 𝑠 selected
according to the following methods:

• Geographical neighbors. Set formed by the geographical neigh-
bors of the target site.

• Proxy of distance by correlation in production. Set of sites that
have the smallest proxy of the distance to the target site.

• Maximum correlation of AR forecasting error. Set of sites that
show the smallest distance in terms of correlation in the error
of the AR forecasting model with the target site. The distance
𝑑AR-errors is the inverse of the maximum correlation of AR errors
between the target site 𝑠 and another site 𝑗. Note that this distance
depends of the prediction horizon.

• Average cross-correlation with lagged productions at distant
sites The explanatory sites consist of the set of sites ⧵𝑠 that show
the smallest distance in terms of the cross-correlation function
(ccf) of their lagged production level with the production of
target sites, as expressed in (2). More specifically, the distance
is the inverse of the average ccf for lags greater or equal to the
prediction horizon.

ccf𝑗,𝑠(𝑘,𝓁) = 𝜌((𝑦(𝑗)𝑡−𝓁)𝑡∈{1,…,𝑁}, (𝑦(𝑠))𝑡∈{1,…,𝑁}), 𝓁 ≥ 𝑘,∀𝑘 ∈  (2)

𝑑ccf
𝑗,𝑠 (𝑘) =

1
1 ∑

, ∀𝑘 ∈  (3)

||−𝑘 𝓁∈,𝓁≥𝑘 ccf𝑗,𝑠(𝑘,𝓁)
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Conditioning the ARST model by intraday features

The ARST model is now conditioned by intraday features. Condi-
tioning is implemented by adding local weights to the linear regression
model [22]. The following feature variables have been considered as
potential conditioning variables at intraday horizons:

• most recent power measurement at runtime and target site
• wind speed forecast at runtime and target site
• wind direction forecast at runtime and target site

The conditioning is applied to one or to a combination of the
ariables listed above, resulting in a conditioning vector 𝐳 ∈ R𝑐 where
is the number of conditioning variables. Conditioning weights are

erived in (4) from Gaussian kernels of width 𝜎 and centered on a series
f conditioning points 𝐳𝑖, 𝑖 ∈ [1,… ,𝑀], forming a set of 𝑀 kernels.

𝑤(𝐳𝑖, 𝐳𝑡) = exp(−(𝐳𝑡 − 𝐳𝑖)2∕(2𝜎2)), 𝑖 ∈ [1,… ,𝑀] (4)

In what follows, indices associated to the target site 𝑠 are dropped
o avoid notational clutter. Local regression coefficients �̂�𝑘,𝑖 are de-
ived by weighted least-square minimization for each lead-time 𝑘
nd conditioning index 𝑖 over training points 𝑡 ∈ [1,… , 𝑁]: �̂�𝑘,𝑖 =
rgmin𝛽

∑

𝑡∈[1,𝑁] 𝑤(𝐳𝑖, 𝐳𝑡)(𝑦𝑡+𝑘 − 𝐗𝑇
𝑘,𝑡𝜷)

2.
The analytic solution �̂�𝑘,𝑖 = (𝐗𝑇

𝑘𝐖𝑖𝐗𝑘)−1𝐗𝑇
𝑘𝐖𝑖𝐲 involves a weighted

esign matrix for each conditioning index 𝐖𝑖(𝐳) as follows:

𝑖(𝐳) =
⎛

⎜

⎜

⎝

𝑤(𝐳𝑖, 𝐳1) … 0
⋮ 𝑤(𝐳𝑖, 𝐳𝑡) ⋮
0 … 𝑤(𝐳𝑖, 𝐳𝑁 )

⎞

⎟

⎟

⎠

, ∀𝑖 ∈ [1,… ,𝑀]

Finally production forecasts of the target site consist in the inter-
olation of local predictions associated to the different kernels as a
unction of their conditional weights at runtime 𝑤(𝐳𝑖, 𝐳𝑡), 𝑖 = [1,… ,𝑀]:
̂𝑠𝑡+𝑘|𝑡(𝐳𝑡) = 1∕

∑𝑀
𝑖=1 𝑤(𝐳𝑖, 𝐳𝑡).

∑𝑀
𝑖=1 𝑤(𝐳𝑖, 𝐳𝑡)�̂�𝑘,𝑖𝐗𝑘,𝑡.

Efficient regularization for large-scale wind power forecasting

The second methodological contribution of this work consists in the
evaluation of the added value of sparse models obtained by the addition
of a regularization penalty to promote sparsity in the learning pattern of
the ARST model. The first penalty employed is the well-known Lasso
penalty that penalizes in (5) the 𝓁-1 norm of regression coefficients
‖𝛽‖1 =

∑𝐷
𝑑=1 |𝛽𝑑 |. A constraint ensures that the penalty is lower or

equal to a threshold 𝜃, tuned by cross-validation as further discussed in
the Case Study, cf. Section ‘‘Model configuration’’. The aim is to assess
empirically the merits of the Lasso regularization when applied to a
high-dimensional and conditioned problem, specifically:

• Is the ARST problem considering all potential explanatory sites
performing better with regularization?

• When regularization is applied to methods implementing a site
selection or conditioning, is it beneficial to the forecasting per-
formance and to the interpretation of the model?

• What is the sensitivity of forecasting performance to the band-
width of conditioning kernels?

�̂�𝑘,𝑖 = argmin
𝛽

∑

𝑡∈{1,…,𝑁}
𝑤𝑖(𝑦𝑡+𝑘 − 𝐗𝑇

𝑘,𝑡𝜷)
2 (5)

𝑠.𝑡.
𝑝
∑

𝑑=1
|𝛽𝑑 | ≤ 𝜃

Case study

Dataset description

The method is evaluated on two wind power datasets covering large
4

geographical scales:
1. Dataset 1: A large-scale dataset is composed of a subset  = 747
sites of the entire pool of wind power sites in France. This subset
corresponds to an ensemble of sites for which the preprocessed
time series do not exhibit large periods of zero production or
reduced available capacities. The forecasting model disposes
of the historical time series, installed capacity and NWP wind
forecasts from ARPEGE-MeteoFrance downscaled to each site.

2. Dataset 2: Open dataset with ten wind farms covering different
regions in Australia, namely the dataset associated to the Gefcom
2014 Wind Track [23], where wind power time series and NWP
downscaled to each site are available. We adopt here the same
forecasting configuration than in [24] in order to compare with
the results obtained by their Lasso-VAR model on this dataset.

Model configuration

The forecasting model is applied to derive forecast for all sites in the
portfolio of  sites is selected. The proposed ARST model is compared
with the following benchmarks:

• AR model, unconditioned and conditioned to the most recent
power measurement at target site

• unconditioned Random Forest (RF) model, implemented with the
R library ranger, chosen for its robustness and known level-field
performance in hours-ahead wind power forecasting [3].

• For Dataset 1, operational multivariate wind power forecasting
model implemented at RTE. This benchmark model is the first
step of the wind power forecasting method Préole developed by
RTE. It consists of an initial estimate of the production of each
wind farm based on calibrated wind turbine power curves and
NWP from ARPEGE-MeteoFrance. The second step of Préole, not
tested here, corrects the initial estimation as a function of re-
cent power observations and of the autocorrelation in forecasting
errors.

• For Dataset 2, the Lasso-VAR developed and evaluated on this
dataset by [24]

The configuration parameters of the forecasting model for the
present case study are listed in the upper section of Table 1. Three
conditioning approaches are tested: conditioning on last power mea-
surements for the AR, conditioning on wind directions and on wind
speeds for the ARST model. Conditioning parameters (kernel centers
𝐳𝑖 and bandwidth 𝜎), identical for both datasets, are presented in
the lower section of Table 1. Positions of the conditioning points
correspond to 𝑀 = 10 points uniformly placed along the interval of
possible values.

Finally, regularization is applied to the ARST model, in its uncon-
ditioned and conditioned variants. The threshold value 𝜃 is tuned by
cross-validation on the following set of thresholds, applying a progres-
sively higher constraint on the 𝓁1-norm of the unconditioned model:
𝜃 ∈ {

∑𝑝𝜃
𝑑=1 |𝛽𝑑 |, 𝑝𝜃 = (𝑝∕10, 𝑝∕50, 𝑝∕100)}

Evaluation and analysis of model behavior

The forecasting performance is evaluated in terms of bias, nor-
malized MAE and RMSE over the range of prediction horizons. The
normalization is done by diving the score by the installed capacity
of each site [25]. In order to assess the results over the entire pool,
we present the average RMSE of the pool but also the distribution of
score over the sites, approximated by its median and quartiles. The
added value of the ARST model is quantified by deriving the RMSE
improvement compared to an unconditional AR model, using the same

lags of recent production at the target site.



Sustainable Energy Technologies and Assessments 65 (2024) 103743S. Camal et al.
Table 1
Forecasting parameters.

Config. parameter Dataset 1 (France) Dataset 2 (Australia)

Training window Fixed Sliding, 1 month increment
Training start/end 2018-01/2018-12 2012-01/2012-12

→ 2012-11/2013-10
Testing 2019-01/2019-12 2013-01 → 2013-11
Horizons 10 min to 3 h 1 h to 6 h
Temporal resolution 10 min 1 h
Temporal lags (10, 20, 30 min, 1 h, 2 h, 4 h) (1 h to 6 h)
Number of evaluated sites 492 10

Condit. Parameters Centers (𝐳) Bandwidth (𝜎)

Last power [Capacity factor] {0.1, 0.2, . . . , 0.9 } {0.02,0.03,. . . ,0.08}
Wind direction [◦ ] {15◦,53◦,91◦, . . . ,360◦ } {15◦,45◦,90◦,360◦ }
Wind speed [m/s] {0,3.33,6.66, . . . ,30 } {1,2,3,4}
Fig. 1. Regression coefficients of the ARST model variants at 1h horizon for target site ‘1000’, as a function of the lag added to the last available measurement. The color
scale indicates the level of linear correlation between the target site and the explanatory site. 𝑋 ∈ |𝑙1 (resp. 𝑋 ∈ ): ARST with all sites in portfolio  with (resp. without) 𝑙1
regularization; 𝑋 ∈ proxy

|𝑙1 (resp. 𝑋 ∈ proxy): ARST with sites selected by distance proxy with (resp. without) 𝑙1 regularization; 𝑐𝑊𝐷 245◦ (resp 91◦) indicates conditioning by
wind direction centered on position 245◦ (resp 91◦).
Results

Effect of conditioning and regularization on the regression model

The evaluation starts by an interpretation of regression coefficients.
Fig. 1 shows the regression coefficients derived for a 1-h horizon at a
specific target site in Dataset 1 (results are similar for other target sites).
The ARST models without site selection (top-left and top-center) spread
coefficients across all available sites in  . Non-zero coefficients are
mostly associated to recent lags below 1h as expected. The application
of 𝓁1-regularization reduces homogeneously low coefficients towards
zero, which corresponds to a known behavior of the lasso [22]. The in-
efficiency of the ARST models without feature selection is demonstrated
by the fact that sites with the highest absolute value of coefficients are
not the closest in terms of proxy distance to the target site (distance
proxy values of 0.4–0.6). In other words, the ARST models without
feature selection exhibit a significant bias due to their inability to treat
the high level of collinearity in the feature space. In contrast, the ARST
models implementing feature selection by retaining the closest sites in
terms of distance proxy (𝑋 ∈ proxy) show high absolute values of
coefficients at close sites. The model without conditioning and lasso
derives high coefficients to the most recent lagged production (≤ 1h)
of sites close to the target site. Adding conditioning and Lasso to this
model brings a twofold modification of regression coefficients: (1) the
5

weight given to lagged production of the target site (right side of x-
axis) varies as a function of the wind direction, with a maximum value
for the wind direction conditioning point of 15◦; (2) absolute values of
coefficients are reduced and negative coefficients are close to zero in
contrast with the non-regularized model.

Mean absolute values of coefficients obtained for the different con-
ditioning centers (wind directions) for two conditional ARST methods,
selecting explanatory sites from the geographical neighbors or accord-
ing to the distance proxy are shown in Fig. 2. Regression coefficients
associated to sites that are geographical neighbors are similar in both
methods. For explanatory sites that are not neighbors, the method
selecting sites according to the distance proxy obtains higher weights in
westerly directions, which is one of the main prevailing wind direction
for onshore farms in France (Atlantic ocean). Coefficients obtained by
this method combine a relatively direction-independent information
from geographical neighbors with direction-specific information from
sites outside the neighborhood.

Finally, the conditioning bandwidth influences the selection of most
explicative sites as shown in Fig. 3. The number of unique explanatory
sites associated to significant regression coefficients decreases with
increasing values of conditional bandwidth (wind direction), which in-
dicates higher selectivity. We note that selectivity is more pronounced
on non-neighboring sites for the method with sites selected according
to the distance proxy.
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Fig. 2. Mean absolute coefficients of conditioned and regularized method for the
different conditioning wind direction centers, for two different site selection methods.
Horizon = 3h (30 randomly selected target sites). Coefficients of explanatory sites that
are (resp. are not) geographical neighbors are represented by solid (resp. dashed) lines.

Forecasting performance

Analysis of forecasts during a wind front
A relevant question for spatio-temporal forecasting is to know

whether the proposed model helps predict production during a wind
front where forecasting errors are high due to phasing errors (e.g. delay
between the observed production increase and the prediction) and
amplitude errors (e.g. error in wind speed magnitude during a plateau
of high wind speed near the rated wind speed of a turbine). The predic-
tion obtained by the proposed model during such a wind front with a
forecasting horizon of 1h is illustrated in green in Fig. 4, for a particular
target site. The model exploits local information such as the lagged
observed production of the explanatory site which has the highest
regression coefficient (in gray in the Figure), whereas the benchmark
AR model ignoring this type of information predicts with a phase error
during the period of increasing production and amplitude errors during
the plateau of maximum production. If the geographical position of
the different sites is available, this analysis can be generalized beyond
this specific situation to estimate the spatio-temporal propagation of
prediction errors following the method proposed in [2].
6

Performance of combined Lasso and site selection
The proposed ARST model is now evaluated on the two datasets,

for every site in each portfolio. The mean RMSE obtained for Dataset
1 across sites for the different methods is shown in Table 2. The
proposed ARST model with selection of sites by distance proxy, con-
ditioned by wind direction and regularized by lasso shows the best
performance across all models and all horizons. The conditioned AR
model on last production level brings very close result to the uncon-
ditional AR. The site selection by distance proxy (linear correlations
in production) achieves lower mean RMSE than the other site selection
methods, namely based on AR errors, geographical neighbors and cross-
correlation functions for all horizons. At the short horizon of 𝑘 =
10 min, conditioning seems to have little added value as the most recent
observation of the target site is the most useful feature. Conditioning on
wind direction appears to be more effective than conditioning on wind
speed. This may reflect the fact that collecting information from sites
upstream or experiencing similar wind directions is more informative
than knowing expected wind magnitude at neighboring sites, which is
indirectly reflected in the neighbors’ recent production measurements.

Improvement vs the AR model is observed for bandwidth values of
𝜎 ≥ 45◦, whereas conditioning with a bandwidth of 15◦ overfits and
consequently has degraded performance, even below the unconditional
AR reference. Conversely, it is observed that conditioning with a band-
width of 360◦ has similar performance than the unconditional ARST,
which is expected because having a bandwidth equal to the entire
range of possible values for the conditioning variables leads to zero
conditioning. Interestingly, conditioning seems to improve performance
only when associated with Lasso regularization and with a bandwidth
of 90◦. The choice of a relatively sparse model (𝑝𝜃 = 𝑝∕10) leads to
the best median improvement up to 11% at 3h horizon. For further
horizons starting from 5–6 h (not shown here), the benchmark model
Préole presents better performance than the present model because the
NWP information becomes dominant over recent production lags and
therefore the spatio-temporal approach has less interest.

In Dataset 2, only a reduced set of wind farms are monitored in
the Australian territory. In this context, no site selection is performed,
i.e. all sites are considered as explanatory. Detailed results are reported
in Appendix B and in the Supplementary Material. Interestingly here,
conditioning on predicted wind speed leads to better results in terms
of bias, RMSE and MAE than conditioning on predicted wind direction.
With a reduced number of neighboring farms as ’virtual sensors’, con-
ditioning on wind speed compensates the limited information on power
regimes at the vicinity of the target site by a non-linear proxy between
wind speed and expected production. This contribution becomes sec-
ondary in Dataset 1, where the identification of significantly explicative
sites is assisted by conditioning on expected wind direction.

Conclusions

This paper presented an auto-regressive spatio-temporal method for
the prediction of Wind power production at a regional or national scale
and for horizons of minutes to hours ahead.

The site selection approach of retaining the sites with the highest
linear correlation in production improves the RMSE up to 5% compared
to a case where the model considers the 50 nearest geographical
neighbors (Dataset 1). Conditioning increases forecasting performance
in different spatio-temporal contexts. In Dataset 1 with a dense network
of wind farms (50 neighbors for each target site), conditioning by pre-
dicted wind direction decreases RMSE if the conditioning bandwidth is
large enough (90◦) in order to reach a balance between site selectivity
and diversity of weather conditions. In Dataset 2 with a low density
of neighboring farms, conditioning by expected wind speed brings the
highest improvement, as it helps capture better the varying effect of
wind on power at the target site and at the small number of potentially
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Fig. 3. Mean number of unique explanatory sites for which the absolute regression coefficient is significantly positive (larger than median values of non-zero coefficients), as a
function of the conditioning bandwidth on wind direction. Top: explanatory sites selected based on distance proxy, Bottom: explanatory sites as geographical neighbors.
Fig. 4. Prediction (1h forecasting horizon) during a wind front with the proposed conditional regularized ARST model in green, compared with an AR model in blue, and observed
roduction in black. The bottom figure shows the predicted wind direction at the target site.
nformative neighboring sites. The regularization by LASSO enables to
mprove the RMSE of the ARST model by 10% at 2-h horizon compared
o an unconditional AR model ignoring off-site information.

This work opens several perspectives for large-scale intraday wind
ower forecasting. A first improvement would consist in deriving seam-
ess predictions from a single model over multiple horizons as done
or PV by [26]. A second perspective consists in reformulating the
7

conditional model in an online learning setting in order to improve scal-
ability and adaptability to weather cycles or composition of the wind
farm portfolio. Finally, a third perspective consists in building upon the
resilient forecasting model proposed by [27], where lasso regression
is reformulated as a robust regression where the missingness variables
at test time is modeled by sets of binary variables [28]. The decision
rules corresponding to missing data could be adapted to account for
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Table 2
RMSE of the different methods, mean across target sites, as a function of lead-times. Best
performance per horizon is indicated in bold.

Method, Conditioning
Forecasting horizon k= 0.17h k= 0.5h k= 1h k= 3h

AR, production 𝜎 = 0.02 𝟒.𝟗𝟖 8.27 10.50 15.13
AR, production 𝜎 = 0.03 5.21 8.81 11.25 16.15
AR, production 𝜎 = 0.04 5.21 8.80 11.24 16.14
AR, production 𝜎 = 0.07 5.20 8.80 11.23 16.13
AR, production 𝜎 = 0.08 5.20 8.80 11.23 16.13
ARST-AR errors, unconditional 5.18 8.61 10.95 15.28
ARST-proxy, WD 𝜎 = 15◦ 5.39 9.11 11.58 16.56
ARST-proxy, WD 𝜎 = 360◦ 5.01 8.22 10.31 14.75
ARST-proxy, WD 𝜎 = 45◦ 5.07 8.39 10.57 15.23
ARST-proxy, WD 𝜎 = 90◦ 5.02 8.26 10.37 14.88
ARST-proxy-𝓁1, WD 𝜎 = 90◦ 𝟒.𝟗𝟖 𝟕.𝟑𝟒 𝟗.𝟏𝟕 𝟏𝟑.𝟐𝟐
ARST-ccf-𝓁1, WD 𝜎 = 90◦ 5.07 8.30 10.59 15.24
ARST-proxy, WS 𝜎 = 2 m/s 5.16 8.36 10.40 14.93
ARST-proxy, WS 𝜎 = 3 m/s 5.11 8.27 10.28 14.62
ARST-proxy, WS 𝜎 = 4 m/s 5.10 8.24 10.24 14.52
ARST-proxy, unconditional 5.18 8.39 10.47 14.89
ARST-proxy-𝓁1, unconditional 4.99 8.19 10.27 14.70
ARST-neighbors, unconditional 5.00 8.29 10.56 15.40
Benchmark,unconditional 5.50 9.09 12.50 16.18
Persistence,unconditional 5.31 9.09 11.70 17.19
RF,unconditional 5.30 8.88 11.34 16.31
d
𝑦
m
d
a
w

curtailment situations observed at target site and neighboring sites,
e.g. by sets of curtailment levels (from 0% to 100%).
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ppendix A

This appendix presents details on filtering time series and computa-
ion of the design matrix of the spatio-temporal regression method.
8

Algorithm 1 Iterative computation of the design matrix
𝑖 ← 0
for 𝑠 ∈  do

for 𝑘 ∈ {1,… ,} do
𝑗 ← 0
for 𝑠′ ∈  do

for 𝑘′ ∈ {1,… ,} do
(𝐗𝑇𝐗)𝑖𝑗 =

∑

𝑡∈{1,…,𝑁} 𝑦
(𝑠)
𝑡−𝑘.𝑦

(𝑠′)
𝑡−𝑘′

𝑗 ← 𝑗 + 1
end for

end for
end for

end for

Filtering wind power time series

At each timestep 𝑡, the algorithm computes the rectangular box 𝑏𝑡,
efined in (A.1) as the area above the observed normalized production
𝑡 up to the theoretical maximum (here 1), for the past period until the
ost recent timestep 𝑡′ with production higher than the observed pro-
uction 𝑦𝑡. This filtering approach is computationally fast and versatile
s it detects both potential partial curtailments and long idle periods
ithout production.

𝑏𝑡 = 1{𝑦𝑡−1≤𝑦𝑡}.(1 − 𝑦𝑡).(𝑡 − 𝑡′), ∀𝑡 ∈ {1,… , 𝑁}

with 𝑡′ = max
1≤𝑖<𝑡

{𝑖, 𝑦𝑖 ≥ 𝑦𝑡} (A.1)

Computation of the design matrix

The design matrix is computed in Algorithm 1 by iterating through
indices of its rows and columns, denominated hereafter 𝑖 and 𝑗 respec-
tively.

Appendix B

This Appendix collects results obtained on Dataset 2 (Gefcom 2014,
Australia). Table B.1 shows the average RMSE across sites of the

regularized ARST model conditioned on either predicted wind direction
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Table B.1
Mean RMSE of spatio-temporal forecasting models, across sites of Dataset 2 as a function of the horizon. Best model in green and second best
in orange.
Method 𝑘 = 1ℎ 𝑘 = 2ℎ 𝑘 = 3ℎ 𝑘 = 4ℎ 𝑘 = 5ℎ 𝑘 = 6ℎ

ARST-𝓁1, WD 𝜎 = 15◦ 10.06 14.98 18.04 20.29 22.05 22.79
ARST-𝓁1, WD 𝜎 = 30◦ 9.98 14.87 17.94 20.22 22.01 23.47
ARST-𝓁1, WD 𝜎 = 45◦ 9.98 14.89 17.98 20.31 22.15 23.64
ARST-𝓁1, WD 𝜎 = 90◦ 9.93 14.89 18.07 20.46 22.37 23.95
ARST-𝓁1, WS 𝜎 = 1 m/s 9.63 13.49 15.33 16.35 16.94 17.32
ARST-𝓁1, WS 𝜎 = 2 m/s 9.63 13.82 16.02 17.36 18.21 18.79
ARST-𝓁1, WS 𝜎 = 3 m/s 9.73 14.22 16.77 18.47 19.66 20.53
ARST-𝓁1, WS 𝜎 = 4 m/s 9.80 14.49 17.28 19.22 20.66 21.77
ARST-𝓁1, WS/WD 𝜎 = {2 m/s, 30◦ } 9.89 14.53 17.29 19.26 20.68 21.80
ARST-𝓁1, WS/WD 𝜎 = {3 m/s, 15◦ } 9.95 14.61 17.39 19.36 20.79 21.90
ARST-𝓁1, WS/WD 𝜎 = {3 m/s, 30◦ } 9.84 14.50 17.28 19.25 20.69 21.80
ARST-𝓁1, WS/WD 𝜎 = {3 m/s, 45◦ } 9.86 14.54 17.38 19.41 20.94 22.16
ARST-𝓁1, WS/WD 𝜎 = {3 m/s, 90◦ } 9.90 14.71 17.69 19.87 21.56 22.92
ARST-𝓁1, WS/WD 𝜎 = {4 m/s, 30◦ } 9.86 14.52 17.33 19.35 20.86 22.06
PP-Lasso-VAR [24] 9.85 14.46 17.29 19.38 21.04 22.39
Analogs [24] 10.48 15.52 18.89 21.45 23.46 25.15
or wind speed. Additional information is reported in the Supplementary
Material as follows:

1. a figure showing average biases and MAE across sites of the
regularized and conditioned model on wind speed, depending
on horizon and conditional bandwidth

2. a figure showing the evolution of regression coefficients as a
function of training sliding windows.

Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.seta.2024.103743.
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