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Abstract: Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by
the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term
neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associ-
ated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis
is still missing effective biomarkers and early placento- as well as feto-protective and curative treat-
ments. This review summarizes recent advances in the understanding of the underlying mechanisms
of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond
gestation. This review also describes relevant and current animal models of chorioamnionitis used
to decipher associated mechanisms and develop much needed therapies. Improved knowledge of
the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a
mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory
interventions to improve both maternal and fetal outcomes.

Keywords: animal models; chorioamnionitis; preterm birth

1. Introduction

Chorioamnionitis (CA) has two definitions, namely acute (histological) and clinical
CA, depending on whether the diagnosis is based on histological versus clinical criteria [1].
Acute CA is defined by histopathological criteria including chorion and amnion infiltration
by neutrophilic polymorphonuclear leukocytes (PMNs) [2,3]. Clinical CA is a syndrome
featured by more or less specific patterns of symptoms including maternal fever, uterine
tenderness, malodorous leukorrhea, fetal tachycardia, maternal tachycardia, or maternal
leukocytosis [2,4]. The sensibility of any combination of these elements to identify pathogen-
induced intra-amniotic inflammation is limited to about 50% [5]. Mothers not fulfilling
any criteria of clinical CA may carry fetuses affected by asymptomatic acute CA, which is
diagnosed well after birth due to the delay inherent to placental delivery, handling, fixation
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and pathological exam. It has been proposed to replace the term “clinical CA” with a
more general term, “intrauterine inflammation or infection or both”, abbreviated as “triple
I” [6]. The term “suspected intrauterine infection” has also been suggested and defined
as maternal intrapartum fever with one or more of the following: maternal leukocytosis,
purulent cervical drainage, or fetal tachycardia [7]. Acute CA is more often due to bacterial
infection in preterm than term delivery [2,8,9]. Acute CA is frequently polymicrobial due
to a mix of aerobic and anaerobic bacteria originating mainly from the vaginal flora [10].
CA is associated with a sharp increase in the incidence of early neonatal bacterial infection
and is a major cause of prematurity [11,12]. Importantly, exposure to CA is an independent
risk factor for cerebral palsy (CP), and other non-CP neurobehavioral impairments [13].
Altogether, these observations indicate that CA is a threatening pregnancy pathology,
which remains difficult to investigate in humans due to the lack of reliable global as well
as causal prenatal diagnostic biomarkers. This is the reason why preclinical approaches
remain currently the most valuable means to uncover the pathophysiological mechanisms
of CA, early diagnostic markers, and to ultimately improve its treatment and outcome.

The choice of the relevant animal model to study CA and test potential therapies is
essential as not all animal models recapitulate all features of this condition. Hence, the
research question to be asked should be clearly targeted, while the animal model chosen
must be appropriate, to optimize the translation of the findings to the human condition. In
this line, the aim of this review is to compare the different existing animal models of CA
with the goal of categorizing their use depending on the type of CA studied.

2. Epidemiology of Chorioamnionitis

Preterm birth (PTB) is commonly defined by the World Health Organization as the
delivery of a viable fetus prior to 37 weeks of gestation. It affects 9.63% of live births [14].
Preterm birth is responsible for 70% of perinatal mortality and 50% of long-term neurobe-
havioral morbidities [11]. In women with premature labor, acute CA is found in 40% to
70% of cases based on ex vivo placental histology [15]. The prevalence of acute CA is
approximately 5% of all deliveries, but this number masks large disparities depending
on the gestational age. Indeed, the prevalence of acute CA is inversely proportional to
the gestational age of delivery. CA affects nearly 40% of preterm deliveries between 25
and 28 weeks, and 4% of term deliveries [2]. Clinical CA is detected in 15% of cases in
the antepartum and in 85% in the intrapartum period [16]. The presence of infectious
agents induces an inflammatory response also by amniotic cells leading to the release
of proinflammatory molecules such as prostaglandins into the amniotic fluid that could
cause preterm labor occurring in the majority of chorioamnionitis pregnancies [17,18].
Importantly, preterm delivery is further favored by the disruption of cell junctions of fetal
membranes making them prone to breakage [19].

The clinical situations that are associated with a high prevalence of acute CA are
clinical CA (61%), spontaneous labor with intact membranes at term (6.3–18.8%) or preterm
(8.7–34%), prelabor spontaneous rupture of membranes at term (34.3%) or preterm
(17–57.7%), and prelabor premature rupture of membranes (PROM) with labor (75%) [2].
Other risk factors associated with acute CA are prolonged labor [20], prolonged mem-
brane rupture [21], multiple vaginal exams [20], nulliparity [2,20], internal monitoring of
labor [21,22], colonization with group B streptococcus (GBS) [20], and meconium-stained
amniotic fluid [20,23]. Some other risk factors have been reported in smaller studies, such
as smoking, alcohol or drug abuse, immune-compromised states, African-American ethnic-
ity, epidural anesthesia, bacterial vaginosis, sexually transmissible genital infections, and
vaginal colonization with ureaplasma [24].

CA is associated with a 2 to 3.5-fold increased risk of neonatal adverse outcomes, <34
and ≥34 weeks, respectively [25]. Perinatal death, neonatal sepsis, pneumonia, menin-
gitis, cerebral hemorrhage, cerebral white matter damage, retinopathy of prematurity,
necrotizing enterocolitis (NEC), bronchopulmonary dysplasia, and long-term disability
including CP have been reported to be increased in the context of CA [26]. In premature
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infants, recent studies have demonstrated an association between exposure to CA and
neurodevelopmental impairments from 18 to 30 months of corrected age [27–29], decreased
cognitive performance at 5 years [30], autism spectrum disorder [31] and others. In the
mother, CA has been shown to be associated with an increased risk for cesarean section
deliveries, postpartum hemorrhage, endometritis, perineal infection, peritonitis, sepsis,
and death [25,32].

3. Physiopathology of Chorioamnionitis

In clinical CA at both term and preterm, bacteria were identified in amniotic fluid
in 61% [5] and 34% of women, respectively [5,33]. Preterm birth is associated with more
frequent placental detection of pathogens, than term birth, with often polypathogen in-
fections [34]. At term, the most frequent contaminating microorganisms are, in order of
frequency, Ureaplasma urealyticum, Gardnerella vaginalis, Mycoplasma hominis, GBS, Lactobacil-
lus species, and Bacteroides species. More than half of amniotic fluid cultures are positive for
two or more bacteria [5]. Less likely, Streptococcus anginosus, Escherichia coli, Candida species,
Klebsiella pneumoniae and Listeria monocytogenes have been detected [33]. In premature birth,
Ureaplasma species are the most frequent microorganisms infecting the placenta. While
these organisms are commonly part of the vaginal flora, aerobic vaginitis like GBS and
Escherichia coli (E. coli) may induce an important host response and have been associated
with ascending CA, PROM, and preterm birth [3]. The most frequent scenario of placental
infection is ascending microbial invasion from the lower genital tract (Figure 1).

Figure 1. Physiopathology of CA at the maternal and fetal sides. Maternal inflammatory response
is defined as stage 1 in case of acute subchorionitis or chorionitis, stage 2 in case of acute CA: poly-
morphonuclear leukocytes extend into fibrous chorion or, amnion and stage 3 in case of necrotizing
CA: karyorrhexis of polymorphonuclear leukocytes, amniocyte necrosis, and/or amnion basement
membrane hypereosinophilia. Fetal inflammatory response is defined as stage 1 in the case of chori-
onic vasculitis or umbilical phlebitis, stage 2 in case of involvement of the umbilical vein and one or
more umbilical arteries, and stage 3 in case of necrotizing funisitis [1]. (Created with BioRender.com
23 March 2022).

BioRender.com
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Other routes of contamination remain rare and include hematogenous, invasive pro-
cedures, or retrograde pathways via the fallopian tubes [11]. Vaginal organisms appear
to ascend, first, in the cervix. Then, the adherent and virulent organism probably benefit
from maternal immune tolerance during pregnancy to ascend to the lower pole of the
uterus between the membranes and the chorion. The microorganism provokes a maternal
inflammatory response at this level. The propagation continues through the placenta to the
umbilical cord and up to the growing fetus through the fetal membranes up to the amniotic
cavity. At this point, a fetal inflammatory response is initiated [2,35]. The Amsterdam
Placental Workshop Group Consensus Statement proposed a staging and grading of the
maternal and fetal inflammatory responses in ascending intrauterine infection, which is
described in Figure 1 [1].

The control of the mechanism of parturition is very complex and involves, among
others, the inflammatory system, namely inflammasome and/or toll-like receptors (TLR)
pathways. The priming of the inflammasome leads to the activation of caspase-1 that
triggers the final step of activation and release of interleukin (IL)-1β by the chorioamniotic
membranes [36]. Beyond its participation in the acute phase response, IL-6 can also control
inflammation by minimizing the impact of other inflammatory cytokines such as IL-1β
and TNF-α [37]. Clinical investigations studying such biomarkers are feasible options, but
provide only descriptive results with inherent limitations [38,39]. On the other hand, access
to the fetus is difficult during gestation due to invasiveness. Hence, new therapies will
emerge mostly from preclinical investigations.

4. Why Use Animal Models?

Numerous pathological processes that occur in pregnancy can be studied using freshly
isolated trophoblast cells, trophoblastic cell lines, or placental explants [40–42]. However,
such human material does not comprehensively reproduce the complex in vitro mecha-
nisms. CA involves both maternal and fetal responses and is controlled by sophisticated
cascades of immuno-inflammatory mechanisms. Such complex processes can be ideally
uncovered at the mechanistic level in integrated systems, such as an animal model of
CA. Also, the use of such preclinical models of CA allows for the testing of potentially
placento-protective drugs to be subsequently used in phase I and phase II clinical trials
in humans.

Most patients with clinical CA are diagnosed and treated with antibiotics well after
the beginning of the disease—at advanced stages of infection—due to its initial, and often
long lasting, subclinical phase [15]. This emphasizes the difficulty of addressing the study
of this pathology at the subclinical stages in humans.

Hence, the use of animal models is mandatory to study the early stages of the disease.
Animal models of CA have numerous advantages as they allow for: (1) identifying early
biomarkers of CA, (2) testing antibiotic and anti-inflammatory drugs to prevent the noxious
consequences of CA, such as preterm labor, (3) studying the pathogen-specific inflammatory
responses at the feto–maternal interface, (4) identifying specific sets of inflammatory and
microbiological markers at play for each pathogen, (5) determining fetal and neonatal short
and long-term effects of CA, and their underlying mechanisms specific to each pathogen,
and (6) testing novel therapeutic interventions to reduce inflammation and preterm birth,
and consequently preserve perinatal and long term outcomes.

5. Animal Models of Chorioamnionitis

To date, numerous animals models of CA have been described in different species
including rabbit [38,43–48], sheep [49–58], monkey [59–70], and guinea pig [71,72]. Nev-
ertheless, murine models are the most commonly used in first line, mainly for practical
and financial reasons. Hence, in this review, we have chosen to focus on the mouse and
rat models of CA and focus on ascending route, rather than on invasion of the placenta
by the hematogenous route, as seen in TORCH (Toxoplasmosis, Other Agents, Rubella,
Cytomegalovirus, and Herpes Simplex) and others.
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5.1. Differential Pregnancy Features in Actual Animal Models of Chorioamnionitis

It is well established that each species exhibits particularities regarding gestation.
Term parturition in women occurs some 280 days after the onset of their last menstrual
period. The mean time from ovulation to birth is 267 days (38 weeks, one day, standard
deviation (SD): 10 days) [73]. In lower mammalian species (mouse, rat, rabbit), gestation
is shorter—lasting between 20 and 22 days for rodents and 32 days for lagomorphs [74].
In sheep, the normal term is at approximately 150 days of gestation, 165 days for rhesus
macaque, and 115 days for pigs [74]. Rodents, lagomorphs, and pigs have large litters;
while humans, rhesus macaques and sheep often undergo singleton births [74].

In lower mammalian species and in sheep, term parturition occurs after involution
of the corpus luteum and a subsequent decrease in serum progesterone. A systemic
withdrawal of progesterone precedes labor in most species [35]. In contrast, a systemic
progesterone withdrawal does not seem to be necessary for parturition to occur in non-
human primates and in humans [35]. Similar to humans—rhesus macaques, rabbits, and
rodents have discoid and hemochorial placenta. In sheep, the placenta is cotyledonary
and epitheliochorial. In pigs, the placenta is diffuse and epitheliochorial [75]. Except for
the macaques, all large laboratory animals exhibit important pregnancy discrepancies as
compared to humans, including the type of the placenta. Rodents are less expensive than
bigger animals, and allow for the use of many animals. Rodents tolerate surgeries, can
be genetically modified and exhibit resistance to inflammatory stimuli, especially rats.
Rats do not present preterm labor under inflammatory stress, such as lipopolysaccharide
(LPS) from E. coli injection, the opposite to mice, which exhibit a high rate of preterm
birth under the same conditions. Non-human primates have the most similar reproductive
biology to humans and represent a near-ideal species in which to study CA and preterm
birth. However, their high cost limits the number of animals to be included in given
experiment [35]. Altogether, rodent models appear to be the optimal species to study CA,
despite different reproductive biology.

5.2. Different Routes of Administration to Design Animal Models of Chorioamnionitis

The most frequent route that causes CA development in humans is the ascending mi-
crobial invasion from the lower genital tract. Hence, some murine models were developed
through vaginal administration of bacteria (Tables A1 and A2 in Appendix A). In mice with
vaginal inoculation [76–78], the preterm birth rate varied from 27% to 54%. In a model
with intracervical inoculation with endoscopy, the rate was 92% to 100% [79]. The low rate
of preterm birth using vaginal inoculation can be explained by the superficial layers of
the murine vaginal epithelium that are highly keratinized, which prevents bacterial adher-
ence [78]. The two main studied routes for murine models are uterine horn injections upon
mini-laparotomy or intraperitoneal injections [80]. The PTB rates are high in mice as they
reach almost 100% for both routes. As for any administration, each route has its drawbacks.
Intrauterine injection upon mini-laparotomy is conducted under anesthesia via surgery
associated with significant maternal morbidity and mortality, and to intralitter heterogene-
ity in the level of exposure to pathogen components—or alive pathogens—and resulting
inflammation, as compared to intraperitoneal injection [35]. Other routes have only been
used punctually; these include ultrasound-guided intrauterine [81] or intra-amniotic [82,83]
injection, intravenous [84–87] and intra-amniotic injection by laparotomy [88]. Intraperi-
toneal injection seems to be the optimal route of administration, according to animal ethics
and consistency of the placental infection/inflammation.

5.3. Agents Used to Cause CA

CA can be induced by injecting different pathogen-associated molecular pattern
molecules (PAMPs), damage-associated molecular patterns (DAMPs), or live microor-
ganisms [89]. PAMPs are derived from microorganisms and thus drive inflammation
in response to infections. The most common PAMP used to trigger CA is LPS [90,91] a
component of the cell wall of Gram-negative like E. coli, Salmonella enterica, or Salmonella
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typhimurium. LPS does not appear to cross the healthy placental barrier [92] but this may
change in inflammatory conditions. LPS activates the innate immune response by binding
primarily Toll-like receptor 4 (TLR4) [93]. Others PAMPs used are those from killed and
live E. coli, group B Streptococcus (GBS)—inducing mostly TLR2- and inflammasome-driven
inflammation, and Porphyromonas gingivalis. Systemic exposure to LPS during the third
trimester of gestation induced severe CA in dams, rapidly complicated by a decreased
placental blood flow and placental infarcts showing that inflammation and thrombotic
vasculopathy are tightly linked [94]. Interestingly, the LPS-induced CA is easily and early
detected on in utero non-invasive magnetic resonance imaging, and significantly alleviated
in terms of placental inflammation and cell death by the use of IL-1 blockade such as IL-1
receptor antagonist (IL-1ra) [89]. GBS-induced CA was particularly studied in a Lewis
rat model using both inactivated GBS serotype Ia [95] or III [96] and live GBS serotype
Ia [96,97]. Inflammatory responses in the placenta and the brain tissue as well as neu-
rodevelopmental features of in utero-exposed progeny [95], sex-specific response [97], and
effect of ampicillin treatment [98] were assessed in this model. A TLR2 agonist mimicking
GBS infection was also used by other groups [91,99,100]. Inactivated versus alive GBS led
to close placental and neurodevelopmental outcomes in the offspring, showing that the
inflammatory response plays a key role in the physiopathological process leading to CA
and its consequences in the progeny. Polyriboinosinic–polyribocytidilic acid (poly(I:C)), a
viral double-stranded RNA mimetic, typically found in some viruses and activates Toll-like
receptor 3 (TLR3), was also used experimentally to model viral infections in vivo [101,102].
One study assessed the administration of two PAMPs simultaneously in the same model
(peptidoglycan (PGN) and poly(I:C) [103,104]. The effect of viral co-infection and bacterial
ascension have been evaluated. These include Ureaplasma urealyticum before E. coli [76],
human influenza virus [105], murid herpesvirus 4 (MHV-68) [106]. Studies used synthetic
lipopeptides (Toll-like receptor ligands) [107], or recombinant IL-1β [90,108] to further
confirm the key roles of these specific molecules in the placental inflammatory response
leading to CA.

In humans, more than half of specimen cultures collected from chorioamniotic tissues
are positive for two or more bacteria with a wide variety of infectious agents. However,
the organisms that are the most often isolated are not Gram-negative bacteria but ure-
aplasma and mycoplasm [80]. They are both wall-less bacteria known to activate the
innate immune response through TLR2, 6, and 9. Few preclinical studies have already
modelled ureaplasma-induced CA [83]. Animal models of CA, therefore, have limits since
the bacteria used to develop them are not those most often involved in human CA [35].
Surprisingly, most preterm birth pregnancies do not exhibit positive cultures, indicating
cryptic infection, sterile inflammation, or default of bacterial growth due to the prepartum
administration of antibiotics in most women starting preterm labor [109–111]. DAMPs are
endogenous intracellular molecules that are often released as a result of non-programmed
cell death to convey danger cues in the first few hours of an injury; they are also referred
to as alarmins [111]. DAMPs, such as uric acid, high mobility group box 1 (HMGB1),
cell-free fetal deoxyribonucleic acid (DNA) (cffDNA), S100 proteins, heat shock protein
70 (HSP70), and adenosine triphosphate (ATP) have been reported to have a direct impact
on the placenta in preclinical models and in humans [110]. Expression of these alarmins was
increased in maternal serum or gestational tissue of women at risk of preterm labor [111].
Few, but important, studies successfully developed CA models via the administration of
DAMPs such as uric acid crystals [112], cffDNA [113], alarmin S100A12 [114], or other
alarmins such as HMGB1 [82,115]. DAMPs are also at play in rat models of CA and fetal
inflammatory response syndrome induced by local hypoxia-ischemia, e.g., by transient
(60 min) uterine artery occlusion [88]. These CA models accurately recapitulate key patho-
physiological processes observed in extremely preterm infants, including placental, fetal,
and brain inflammation [88].
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5.4. Relevant Time Points of Infection to Develop Pertinent Rodent Models of Human CA

CA is a major cause of preterm birth in humans. In mice models of CA, the timing
of induction of the infectious/inflammatory stress during gestation varies between 9 and
18.5 days of gestation (G) to mimic preterm or term CA. The most frequent time point
used during gestation is G15 in mice, which corresponds to about 28 weeks of gestation
(WG) for humans. To mimic end-gestational CA, studies were mostly conducted in rats by
infectious/inflammatory stressors administered between G18 and 21 (normal rat gestation
varies between G22–23), which corresponds to a level of brain development (immature
myelination, cortical plate maturation and synaptogenesis) equivalent to 26–28 weeks of
gestation in humans [116–118]. In this model, infectious agents are often injected at G18–19
for two reasons: (1) to mimic preterm onset of human CA, and (2) to investigate adverse
effects of CA on neurodevelopmental processes pertinent for preterm human newborns. In
fact, at G18–22 critical steps of glial cell development occurs in the rat brain [119], especially
the final stages of oligodendrocyte differentiation, which are exquisitely vulnerable in the
immature brain of preterm human newborns. Some models proposed preterm and term
administration using inactivated GBS exposure repeated between G19 and G22 [97].

5.5. Differential Immune Responses in CA Animal Models

It is well established that the timing of the developmental process of the immune
system in rodents is distinct from that of humans. Both hematopoiesis and differentiation
of immune cells start in utero at 5 weeks of gestation in humans, in contrast to G8 in mice,
corresponding to 10 weeks of gestation in humans [89].

The placenta is an important source of inflammatory cytokines and chemokines that
are released from trophoblastic cells [120], infiltrating macrophages, and PMNs [121]. These
proteins participate in the fetal inflammatory response [121]. However, it is still unclear
whether the damaging fetal neuroinflammatory cascade originates from the fetal, placental,
maternal compartment, or a combination of these three sources [122].

In mice, infectious agent inoculation provokes preterm birth within 24 h of adminis-
tration. The steps of inflammatory responses are difficult to explore, given the speed in the
occurrence of labor. In rats, the absence of preterm birth allows to conduct cesarean section
at 24, 48, 72 h, and up to 5 days after administration. This possibility permits step-by-step
analyses of inflammatory responses.

5.6. Therapeutic Approaches in Animal Models of Chorioamnionitis

The first approach is to reduce bacterial vaginal invasion through the use of vaginal
hyaluronan [77] or poly(amidoamine) (PAMAM) dendrimers acting like [123] antibacterial
agents. The second approach is to modulate inflammatory responses using TLR4 antago-
nist [124], antibody (Ab)-based depletion with Anti–Gr-1, anti–Ly-6G, or the appropriate
IgG control Ab [125], IL-1β antagonist [90,94], regulatory T cells [126], recombinant IL-
10 [127] or IL-6 [77,107,128–130], N-acetylcysteine [131], and interferon γ [77]. This also
allows for the study of their impacts on placenta, fetal brain and neurodevelopment. A
novel candidate is an analog of the PreImplantation Factor (PIF). The PIF modulates im-
mune responses while reducing oxidative stress and protein misfolding [132]. The third
approach is to use antibiotics such as amoxicillin to directly act on bacteria. The fourth
approach is the use of treatments avoiding preterm birth, such as progesterone. Finally,
drugs such as magnesium sulfate are used for fetal and neonatal neuroprotection.

6. Translational Medicine Perspectives

Nowadays, clinicians are still facing diagnostic challenges when it comes to CA. The
diagnosis of CA implies that a pregnant woman has an inflammatory or an infectious
disorder of the chorion, amnion, or both [7]. To avoid this confusion, the latest recommen-
dations propose to abandon the use of the term CA in favor of, Intrauterine Inflammation
or Infection, or both, abbreviated as Triple I.
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The criteria entering the new definition are mainly clinical. Triple I is categorized
as suspected, without confirmation of infection or confirmed, often retrospectively, upon
laboratory analyses that demonstrate infection in the amniotic fluid, or upon histopatho-
logical analyses showing infection or inflammation in the placenta, fetal membranes, or in
the umbilical cord vessels (funisitis). Clinicians most often face three situations before the
diagnosis of the disease: (1) a patient presenting with labor and fulfilling all the criteria
of triple I. In this case, CA is declared, and the diagnosis does not pose any problem,
(2) patient presenting either with a PROM with an expectation of CA risk or preterm labor
or (3) patients with unrecognized subclinical CA.

Given the uncertainties about the early and accurate diagnosis of CA, there is a
critical need for the discovery, validation, and implementation of preclinical and clinical
studies. These would be beneficial to identify reliable biomarkers that could stratify
women regarding the risk and subtype of CA and subsequent specific fetal and neonatal
complications. These biomarkers would aid in the decision to transfer high-risk women to
maternity hospitals offering level and profiles of cares adapted to their gestational age. They
would also allow for optimal treatment with antibiotics or anti-inflammatory drugs such
as steroids, or other novel compounds, personalized for each woman depending on the
pathogen and/or sterile trigger(s). The diagnosis of CA implies the birth of the fetus to keep
it away from inflammation or infection, or both. Hence, reliable biomarkers would allow
for decision-making in response to the following questions: conservative management or
delivery, use of tocolytic treatment, conductance of cervical cerclage in the case of high
infectious risk for the fetus [6]. To date, markers associated with inflammation in the
maternal blood have been investigated but have failed to show clinical utility [133,134].
Researchers have analyzed the amniotic fluid in order to study the gestational sac and
not the maternal systemic [135]. The utility of this invasive procedure remains unsettled
but was proposed in cases of asymptomatic short cervix [6]. Preclinical models bring
hope to the use of non-invasive imaging (magnetic resonance) of the placenta for an early
diagnosis of CA [94]. Novel methods are being developed to aid detection of inflammation
like optoacoustic which is a technology for non-invasive visualization of laser-illuminated
tissue by the detection of acoustic signals [136]. Unfortunately, such an approach still needs
validation in human studies.

The standard treatment for clinical CA is the administration of antibiotics agents and
delivery. Concerning antibiotic use, current recommendations are based on one randomized
controlled trial comparing initiation of the treatment in the intrapartum period versus
immediately after delivery [137]. A survey on practice reports the use of over 25 different
primary antibiotic regimens in clinical practice [138]. Surprisingly, one preclinical study
used amoxicillin in a CA animal model and found an increase in placental inflammation.
The authors hypothesized a potential link between antibiotic-induced bacterial lysis and
related inflammatory surge. Subsequently, they proposed to explore the combined effects
of anti-inflammatory treatments and antibiotic therapy [98].

Among other reliable treatments that act on the fetal side are antenatal corticosteroids
and magnesium sulfate, known to ensure fetal neuroprotection in the case of preterm birth.
However, in clinical CA, recommendations are not unanimous worldwide regarding the
use of corticosteroids, given the associated immunosuppressive side effects. Immediate
delivery after the diagnosis of clinical CA does not definitely prevent adverse maternal and
neonatal outcomes or long-term neurodevelopmental outcomes, but delivery if labor is not
in course must be considered. The administration of at least one dose of corticosteroids
has a beneficial effect on the neonate without increasing the risk of sepsis or other adverse
neonatal outcomes [139]. The administration of antenatal magnesium sulfate is also benefi-
cial in clinical CA with preterm birth, as it reduces the prevalence of CP [6]. In regards to
placento- and neuro-protection, many studies using animal models of CA proposed to mod-
ulate the inflammatory cascade with the use of IL1 blockade [90,94,140,141]. This treatment
was successfully administered before or after injection of the infectious agent [109–111].
This brings us to the threshold of preclinical data required for proposing human phase II



Biomedicines 2022, 10, 811 9 of 21

randomized controlled trials using human recombinant IL-1Ra as a placento- and neuro-
protective drug. This would be a repurpose of this FDA-approved drug, already used
with excellent safety in chronic inflammatory diseases, including in pregnant women and
newborns. The study will aim to confirm preclinical data showing that IL-1 blockade ad-
ministered to the mother and/or newborn will alleviate the heavy burden of multisystemic
developmental disabilities arising from bronchopulmonary dysplasia, NEC, and perinatal
white matter injuries all caused by the IL-1-driven fetal inflammatory response arising from
CA [140,142]. Neonatal management also evolves with a reduction in antibiotic use [143]
and the exploration of new placento- and neuro-protective interventions.

7. Conclusions

Developing new biomarkers or therapies for CA ultimately requires additional preclin-
ical studies that are based on reliable animal models and/or RCT testing very promising
compounds such as IL-1 blockade. These models will allow for testing both the efficacy
and safety of therapeutic candidates. The choice of the most relevant animal model will
need to take into account the characteristics of pregnancy, particularly the animal species,
the route of agent administration, and the type of agent to induce inflammation. It is
important to frame the question to be asked and the model to be used, as this will influence
the inflammatory pathway, at the maternal, fetal and neonatal levels and will therefore
impact the translation and applicability of the findings to humans. Because CA involves
the mother and the growing fetus, with a validated impact on the development of its brain,
preclinical models that consider both the impact of the inflammation on the placental and
fetal development must be prioritized for future research on CA.
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Table A1. Summary of mice models of acute chorioamnionitis.

Route of
Administration First Report Model Agent Age of Gestation PTB Outcomes Therapeutic

Uterine horn injection by
mini laparotomy

Hirsch et al. 1995 [144]

Killed E. coli [124,144,145]
PNG + poly(I:C) [146]

LPS or PNG +
poly(I:C) [103,104]

LPS (Salmonella enterica,
L2262) [147]

G14.5 91% [144]
Model validation,
inflammatory response,
preterm delivery

Toll-like receptor
4 antagonist [124]

Elovitz et al. 2003 [148] LPS (E. coli L2280)
G15 [148]
G17 [149]

G18.5 [116,117]
100% [148]

Model validation,
inflammatory response
Fetal and neonatal brain
injury [116,150–152]
Sex-specific long-term
neurologic sequelae [149]

Progesterone [153,154]
Magnesium sulfate [155]

Prince et al. 2004 [156]

LPS (E. coli 055:B5)
100 pg/ fetus
>5 ng/fetus

<10 pg/fetus

G15
>95%
Death

No inflammation

Model validation,
inflammatory response Not applicable

Rinaldi et al. 2014 [125] LPS (E. coli 0111:B4) G17 Time to delivery
dose response Effect of neutrophil depletion

Ab-based depletion with
Anti–Gr-1, anti–Ly-6G, or

the appropriate IgG
control Ab G16

Migale et al. 2015 [157]
LPS serotypes (E. coli

O111:B4, O55:B5, O127:B8,
and O128:B12)

G16 100%

LPS serotype-
specific responses
Inflammatory response,
preterm delivery,
fetal viability

Not applicable

Nadeau-Valée et al. 2021 [90]
LPS (Salmonella
typhimurium) or

Recombinant IL1-β
G16 Unknow

Effects of antenatal exposure
to IL-1β on fetal
inflammatory response and
gestation outcome

IL-1 β receptor antagonists
G16 to G18

US-Guided
Intrauterine Injection Rinaldi et al. 2015 [81] LPS (E. coli 0111:B4) G17

US: 85.7%
I.U.: 100%

Vaginal: 0%
Model validation Not applicable
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Table A1. Cont.

Route of
Administration First Report Model Agent Age of Gestation PTB Outcomes Therapeutic

Vaginal inoculation

Reznikov et al. 1999 [79]

E. coli (104 CFU)
Or LPS

Intracervical inoculation
with endoscopy

G14 or 15
92%

100%
IL-1b−/− no difference

Model validation
Effect of IL-1beta deficiency
mice (IL-1b−/−)

Not applicable

Racicot et al. 2013 [76] E. coli (BL21) Unknow Not studied Effect of viral co-infection on
bacterial ascension

Ureaplasma urealyticum
before E. coli

Akgul et al.
2014 [77]

Live E. coli (107 CFU)
Live E. coli (105 CFU)

LPS (E. coli O:55)
G16

50%
27%
29%

Evaluated the role of
Hyaluronan in
infection-mediated PTB

Vaginal Hyaluronan

Randis et al. 2014 [78] GBS serotype V [78]
GBS serotype III [118]

G 13
G17 and 18 54% [78] Model validation,

inflammatory response Not applicable

Intraperitoneal

Kaga et al. 1996 [158] LPS (E. coli 055:B5) many
dose and repeat G15 100% if 50 µg/kg twice [154]

Model validation [158]
Inflammatory response in
brain tissue [126]

N-acetylcysteine [131],
Regulatory T cells

(Tregs) [126]

Robertson et al. 2006 [127] LPS (Salmonella typhimurium) G17

64% IL-10+/+

0% IL-10−/− [127]
55% IL-6+/+

10% IL-6−/− [128]

Effect of IL10 depletion
(IL-10−/−) [127]
Effect of IL6 depletion
(IL-6−/−) [128]

Recombinant IL-10
[127]

Recombinant IL6 [128]
Toll-like receptor
4 antagonist [124]

Shi et al. 2003 [105] Poly (I:C) 20, 10, 5, 2.5
mg/kg + influenza virus

G9.5 [105]
G9.5 virus and G12.5

poly(I:C)
[129]

Unknow

Effect of viral co-infection
human with influenza virus
Neonatal behavioral tests [79]
Inflammatory response in
brain [129]

Recombinant IL-6 [129]

Smith et al. 2007 [159] Poly (I:C)
20 mg/kg [159–162] G12.5 [159–162] Unknow

Inflammatory response in
brain tissue [161] and
inflammatory response in
brain tissue and neonatal
behavioral tests [159,160,162]

Recombinant IL-6 or
recombinant

mouse interferon γ [80]

Cardenas et al. 2010 [106]

Viral infection (MHV-68)
alone [106] and with LPS

(E. coli 0111:B4)
20 µg/Kg [163]

G8.5 MHV-68
G15.5 LPS

MHV-68 0% [106]
LPS: 29%

Both: 100% [163]

Effect of viral co-infection
on PTB
Inflammatory response [164]

Not applicable

Cappelletti et al.
2017 [130]
2018 [107]

LPS or poly (I:C)
Synthetic lipopeptides

(Toll-like receptor ligands)
G16

100% LPS and poly (I:C)
high [130]

100% Pam2Cys 200µg/mouse
0% Pam3Cys [107]

Inflammatory response,
preterm birth

Recombinant type I
interferons,

IL6 neutralizing antibody

Spinelli et al. 2020 [132] LPS (E. coli 0111:B4)
300 µg/kg G14

sPIF: 0%
LPS: 46.2

sPIF + LPS: 14.3%

Effect of maternal
sPIF pre-treatment

PreImplantation Factor
(sPIF) G0 to G14
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Table A1. Cont.

Route of
Administration First Report Model Agent Age of Gestation PTB Outcomes Therapeutic

Ultrasound-Guided
Intraamniotic Injection

Gomez-Lopez et al.
2018 [165]

LPS (E. coli O111:B4)
50 and 100 ng G16.5

I.P.: 100%
I.U. 100%

I.A. 100 ng: 80%

Model validation and
comparison with
other models

Not applicable

Intravenous Meyer et al. 2005 [84]
Poly (I:C)

2.5, 5.0, or 10.0 mg/kg [84]
5 mg/kg [166,167]

G9 [84,167]
G6, 9, 13 or 17 [166]

G9 or 17 [168]
Unknow

Model validation of
schizophrenia [84,166]
Neurodevelopment [84,166]
Inflammatory response
[84,168], neonatal
dopaminergic functional [167]

Not applicable

Mueller et al. 2018 [169]
Poly (I:C)
1 mg/kg
5 mg/kg

G9 100%
85%

Inflammatory response [85]
Neonatal behavioral
tests [169]

Not applicable

PTB: preterm birth, LPS: lipopolysaccharide, PNG: peptidoglycan, poly(I:C): polyriboinosinic–polyribocytidilic acid, GBS: Group B Streptococcus, I.P.: Intraperitoneal, I.A. intraamniotic,
I.U. intrauterine by mini-laparotomy, US: Ultrasound.
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Table A2. Summary of rat models of acute chorioamnionitis.

Route of
Administration First Report Model Agent Age of

Gestation Outcomes Therapeutic

Vaginal inoculation Bell et al. 2002 [170]

LPS (E. coli 0111:B4)
0.1 mg/kg, 0.2 mg/kg,

0.5 mg/kg, 1 mg/kg, or 3 mg/kg
intracervically injected

G15

Model validation, inflammatory
response in brain tissue [170]
Maternal and fetal cardiovascular
function and fetal and newborn
cerebral blood flow velocities with
Echocardiogram study [171]

Not applicable

Intraperitoneal

Sebire et al. 2005 [172]
LPS (E. coli, 0127:B8)

and/or Postnatal hypoxia after
ligation of the right carotid artery

LPS: G17
HI: Day 1

Model validation of Perinatally
Acquired Encephalopathy,
inflammatory response in brain tissue
(IL1β, TNFα and IL2), neonatal
behavioral tests

Not applicable

Sebire et al.
2010 [94] LPS (E. coli, 0127:B8) Every 12 h from G18 to G20

Inflammatory response in placenta
and brain tissue (role of IL-1) and the
developing brain (MRI analysis)
Effect of interleukin- 1 receptor
antagonist (IL1-Ra) [94]

Recombinant human IL1-Ra [94]

Sebire et al. 2013 [95,96] Inactivated Group B Streptococcus
(Serotype Ia et III [96])

Every 12 h
from G19 to G22

Model validation, Inflammatory
response in placenta and brain tissue,
neurodevelopment [95]

Not applicable

Sebire et al.
2017 [97]

Live Group B Streptococcus
(Serotype Ia)

Every 12 h
from G19 to G22

Model validation, Inflammatory
response in placenta and brain tissue,
neurodevelopment
Sex-specific response [97]

Ampicillin [98]

Intraamniotic Injection
by mini-laparotomy Maxwell et al. 2015 [88]

Uterine arteries occlusion for
60 min

LPS (E. coli 0111:B4) 4 µg in each
amniotic sac

G18 Model validation, Inflammatory
response in placenta and brain tissue Not applicable

Intravenous
Zuckerman et al. 2005 [86] Poly I:C (4.0 mg/kg) G15 Neonatal behavioral tests Not applicable

Bélanger et al. 2008 [87] Porphyromonas gingivalis G14 Model validation, Inflammatory
response in placenta Not applicable

LPS: lipopolysaccharide, PNG: peptidoglycan, poly(I:C): polyriboinosinic–polyribocytidilic acid, GBS: Group B Streptococcus, I.P.: Intraperitoneal, I.A. intraamniotic, I.U. intrauterine by
mini-laparotomy, US: Ultrasound, HI: Hypoxia/ischemia.
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