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Abstract

This work addresses differences in predicted elastic fields created by dislocations
either by the Phase Field Crystal (PFC) model, or by static Field Dislocation
Mechanics (FDM). The PFC order parameter describes the topological content of
the lattice, but it fails to correctly capture the elastic distortion. In contrast, static
FDM correctly captures the latter but requires input about defect cores. The case
of a dislocation dipole in two dimensional, isotropic, elastic medium is studied,
and a weak coupling is introduced between the two models. The PFC model
produces compact and stable dislocation cores, free of any singularity, i.e., diffuse.
The PFC predicted dislocation density field (a measure of the topological defect
content) is used as the source (input) for the static FDM problem. This coupling
allows a critical analysis of the relative role played by configurational (from PFC)
and elastic (from static FDM) fields in the theory, and of the consequences of the
lack of elastic relaxation in the diffusive evolution of the PFC order parameter.
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1 Introduction

Research on the motion of individual or a small number of dislocations at the nanoscale
is motivated by ongoing advances in diagnostic techniques, for example, high energy
X-ray and Bragg coherent diffractive imaging, that have opened the door to detailed
nanoscale observation of crystalline defects such as dislocations (line-type defects) [1–
5] and of emergent, collective mesoscale phenomena [6–8]. Combining this information
with nanoscale theory and computation is key to understanding materials response,
performance, and evolution across different length scales.

Field dislocation mechanics (FDM) [9–17] and phase field crystal models (PFC)
[18–20] are two widely used approaches to study the nanoscale response of crystals con-
taining dislocations [21–23]. Since fast temporal scales associated with lattice vibration
are eliminated in both theories, their computational implementation can efficiently
access long time phenomena that are difficult to describe by other methods operating
at similar length scales such as molecular dynamics [24, 25].

FDM is a continuum theory [9–11, 13–15, 26–28] in which thermal lattice vibration
is not considered. Rather, the theory focuses on the longer time scale of dislocation
motion and chooses as a primary field the polar dislocation density tensor and its
associated conservation law of topological charge [14, 29–31]. The theory also includes
nonlinear, anisotropic elastic fields, and therefore it can account for topological defects
in atomic configurations of nonlinear elastic media. The fundamental equations of the
theory are directly derived from classical balances of mass and momentum, an elastic
incompatibility equation linking the finite elastic distortion to the dislocation density
tensor, and a conservation law for Burgers vector in the body. An energy dissipa-
tion inequality based on the Second Law leads to the equations for the various fields
[27, 28]. Recently, the theory was extended to account for the role of thermal strain
incompatibilities on the conservation of Burgers vector and temperature evolution due
to dislocation activity through the first law of thermodynamics [32, 33]. The FDM
theory requires some minimal, but essential constitutive input: The mobility law of
single defects, and its constitutive nonlinear (and non-monotone) elastic behavior (i.e.,
nonlinear elasticity and appropriate generalized stacking fault energies [34–36]). Never-
theless, the theory does not require slip systems to be known a priori in order to define
an energy density. Importantly, the dissipation inequality yields the proper nonlinear
generalization of the Peach-Koehler force field acting on a dislocation segment.

The PFC model introduces a phase field that describes the temporally coarse
grained atomic density of the crystal, and a phenomenologically specified free energy
functional determined by lattice symmetry. By construction, the minimizer of the free
energy is a spatially periodic phase field of the required symmetry [20]. Dissipative
evolution of the phase field is assumed as a gradient flow driven by the same free
energy functional. Prior research has considered both equilibrium properties, such as
elastic constants [37], as well as many features of inhomogeneous systems such as,
for example, dislocation motion [38–41] and grain boundary structure and motion
[37, 42, 43]. Since the configuration of the system is described by a single scalar field,
the simultaneous description of mass density and crystalline lattice with the same
order parameter constitutes an overspecified problem. This has been addressed by the
introduction of a dissipative current associated with an independent vacancy diffusion
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mode in [44] (see, also, [45] for further discussion). This separation, however, is not
sufficient to describe the motion of topological defects in which the difference between
mass and lattice velocities has topological content [29, 45, 46]. Such a separation has
been recently introduced in the PFC by assuming that the phase field order parameter
determines only the transverse/incompatible part of the elastic distortion tensor, with
the longitudinal/compatible part remaining free to capture compatible lattice distor-
tion, and satisfy elastic equilibrium [39, 40]. However, the evolution equation for the
phase field was modified in an ad hoc fashion to include an affine distortion derived
from the compatible distortion.

A theory that is free of the limitations described above, and that couples FDM and
the PFC, was proposed in [47]. The general approach is motivated by the great success
of the Peierls model in elucidating basic dislocation physics, while the theory adds a
consistent scheme for regularizing stress fields near dislocation cores. It borrows from
the PFC model its definition of the order parameter and the associated free energy
functional. This field naturally incorporates defect cores, which are kept localized and
compact by its free energy, and features dissipative motion while preserving topological
charge. All topological features of defects are maintained by the phase field evolution,
which are solely dictated by the symmetry of the lattice (without any consideration of
elastic interactions). The topological content of the PFC is then coupled to an elastic
material described within finite deformation FDM theory. Elasticity is coupled back
to the evolution of the phase field through consideration of a dissipation inequality for
the full model.

However, a computational implementation of the coupled PFC and FDM model is
lacking. As a first step, in this work, we propose an algorithm for a weakly coupled
version of this theory within a small deformation framework. The numerical imple-
mentation is used to determine the equilibrium configuration of a dislocation dipole
in two dimensions and in an elastically isotropic system. The aim of this study is to
determine to what extent the PFC and FDM predicted distortions and stresses agree
in equilibrium.

2 Coupled Phase Field Crystal and static Field
Dislocation Mechanics

We focus on an analysis of the equilibrium configuration of a dislocation dipole in a
two dimensional hexagonal lattice, in the small deformation approximation, starting
from a weakly coupled formulation of the theory proposed in [47].

2.1 Phase Field Crystal

The PFC model is described by a single scalar order parameter ψ(x, t), which is
a function of position x and time t. The governing phenomenological free energy
functional (in dimensionless form) is given by [48]

Fsh =

∫
S

f
(
ψ,∇2ψ

)
d2x =

∫
S

[
r

2
ψ2 +

1

4
ψ4 +

1

2

[
(1 +∇2)ψ

]2]
d2x (1)
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where r is a dimensionless parameter. For r > 0, the minimizer is ψ = 0. For r < 0
there is a continuum band of periodic solutions with either uniaxial or hexagonal
symmetry of characteristic wavenumber q ≈ 1. The amplitude of ψ is proportional to√
r for small r. The symmetry of the minimizer depends on the value of

ψ0 =
1

Ω

∫
Ω

ψ(x, t) d2x (2)

where Ω is the surface area of the system. We focus here on r < 0 and values of ψ0

that correspond to a stable hexagonal phase [48]. To lowest order in r (the “single
mode approximation”), the minimizer is approximately given by,

ψ(x) = ψ0 +A0

2N∑
n=1

eiq
n·x (3)

with N = 3, q1 = ê2, q
2 =

√
3ê1

2 − ê2

2 , q
3 = −

√
3ê1

2 − ê2

2 , q4 = −q1, q5 = −q2,
q6 = −q3 and [20]

A0 =
1

5

(
|ψ0|+

1

3

√
−15r − 36ψ2

0

)
. (4)

The vectors {êi} are the Cartesian unit vectors. This solution is approximate up
to O(r1/2), with the next order being O(r3/2). However, it is common practice in
numerical work involving the PFC model to consider values of r that are O(1). Higher
order terms in r missing in Eq. (3) don’t seem to appreciably modify long wavelength
modulation of ψ. Indeed, the numerical solution for ψ used below does contain the
entire sequence of perturbative terms, though the decomposition involving complex
amplitudes A in Eqs. (3) and (6) is only approximate. In the small deformation limit,
the energy of an elastic distortion of Eq. (1) is isotropic, with the Lamé coefficients
given by λ = µ = 3A2

0 [39].
The temporal evolution of ψ is defined as a (nonconserved) L2-gradient flow

∂tψ = −δF
δψ

= −rψ − ψ3 − (1 +∇2)2ψ. (5)

In order to maintain the value of ψ0 fixed during the evolution of ψ, we explicitly
impose Eq. (2) as a global constraint. This procedure differs from the more conven-
tional approach of rewriting Eq. (5) as a flow locally conserving ψ (“conserved order
parameter”). The variational analysis of [47] applies only to the nonconserved case,
Eq. (5). It would have to be generalized to the locally conserved case if a conserved
order parameter model were to be chosen. However, in that case the evolution equation
for the order parameter contains two additional orders in derivatives of ψ, and we see
no physical reason to justify the added complexity.

A key tenet of the theory in [47] is that the coupling between order parameter
configurational distortion and material elastic distortion takes place only over scales
that are large compared with the (microscopic) order parameter wavelength. There is
no reason to believe that elastic distortion and elastic energies could be meaningfully
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defined at the microscopic scale of the PFC model. As a first step a slowly varying
configurational distortion is introduced in a standard way thorough a multiple scale
expansion of the order parameter [49] as follows:

ψ(x, t) = ψ0 +

2N∑
n=1

An(x, t)eiq
n·x, (6)

where it is understood that the variation of A on its arguments is slow in a multiple
scale expansion sense. From a numerical perspective, the slowly varying amplitudes
will be computed below by a local demodulation of the phase field as

An(x, t) =
(
ψ(x, t)e−iq

n·x
)
∗ g (7)

obtained through the convolution with a two-dimensional Gaussian kernel g of width
on the order of the lattice parameter a0 of the phase field,

g(x) =
1

2πa20
e
− |x|2

2a2
0 . (8)

With this definition, the configurational distortion tensor of the phase field, Q, is
defined as [39]

Q(x) = − d

N

N∑
n=1

qn ⊗ Im

(
∇An

An

)
, (9)

where d = 2 is the dimension of the system, Im(z) is the imaginary part of the complex
number z, and N = 3 for a hexagonal lattice in two dimensions [41]. The tensor Q has
the same symmetry properties under rotation as the elastic distortion U (from FDM),
is a functional at each point of the phase field ψ, and is defined so as to capture the
slowly varying distortion of surfaces of constant ψ. Therefore this tensor describes a
local configurational distortion of the phase field, without endowing it with any elastic
properties.

In analogy with linear elasticity, a configurational stress tensor can be defined as

σQ = C : Q, (10)

where C plays the role of a stiffness tensor. In the isotropic elastic case it is given as
Cijkl = λδijδkl + µ (δikδjl + δilδjk).

It is also possible to define a configurational stress by directly computing the
variation of the phase field free energy to an affine distortion ∆Fsh = Fsh[ψ(x′)] −
Fsh[ψ(x)], with x′ = x+ η(x) as [39]

sψij =
δ∆Fsh
δ(∂jηi)

, sψ = ∇ψ ⊗∇
[(
1 +∇2

)
ψ
]
−
[(
1 +∇2

)
ψ
]
∇∇ψ + fI, (11)

where the free energy density f is defined in Eq. (1), and I is the rank two identity
tensor. A slowly varying configurational stress can be defined by demodulation as
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σψ = sψ ∗ g. While both σψ and σQ are linear in the distortion Q, the former is
a variation relative to a possibly distorted reference configuration whereas the latter
is a variation relative to the undistorted ground state. Therefore, they are expected
to coincide in weakly distorted regions such as far from dislocation cores, but are
expected to differ in the vicinity of defects.

The PFC order parameter supports not only smooth distortions but also iso-
lated, topologically stable, dislocations. They have been extensively studied for two
dimensional uniaxial and hexagonal patterns of fluid convection [49–52]. For defected
crystalline materials, they have been analyzed in [39] in two dimensions, and in [41] in
three dimensions. A dislocation in a configuration of ψ at x0 corresponds to a nonzero∮
dη = b around a contour containing only that dislocation. The corresponding dis-

tortion of the phase field leads to An(x) = |An|e−iqn·η+iϕ, with ϕ(x) non singular and∮
d(arg An) = −qn · b. Defining a topological charge as sn = 1

2πq
n · b,

∮
d(arg An) =

−2πsn, so that a dislocation at x0 corresponds to vortices in the complex amplitude
An, of winding number s = 0,±1. Note that

∑N
n=1 s

n = 1
2πbp ·

∑N
n=1 q

n = 0. There-
fore, in two dimensions, a phase field dislocation comprises vortices in two of the
complex amplitudes (sn = ±1), whereas the third is non singular (sn = 0).

This nonzero circulation can be transformed into an area integral, leading to the
definition of the phase field dislocation density tensor,

α = ∇×Q (12)

Although the tensor α can be explicitly written in terms of ψ [41], in our calculations
below we will first determine Q from the phase field amplitudes, Eq. (9), and then α
directly from Eq. (12).

2.2 Field Dislocation Mechanics

In the static setting within a small deformation framework, FDM takes as input a
polar dislocation density field α, and mechanical boundary conditions, and yields the
elastic distortion field U and the stress field σ. The latter is related to the former
through the Hooke’s law as

σ = C : U (13)

In a simply connected domain with no dislocations, the elastic distortion field U
is compatible, such that ∇× U = 0 (see Appendix A for notation). If a simply con-
nected two-dimensional domain has a distribution of ‘p’ point dislocations of Burgers
vectors bp, the elastic distortion is related to the Burgers vector as bp =

∮
U ·dx′ ̸= 0,

where the contour over which the integral is taken encloses only the pth dislocation.
The inequality holds only when the elastic distortion field U has an incompatible/-
transverse component i.e., a component with a non-zero curl. The static FDM model
starts from a Stokes-Helmholtz type decomposition of a tensor to uniquely express
the elastic distortion field U into compatible/longitudinal U∥ (curl free) and incom-
patible/transverse U⊥ (divergence free) components as U = U∥ + U⊥, such that
∇ × U∥ = 0 and ∇ · U⊥ = 0. In small deformation, the polar dislocation density
field α is defined as α := ∇ × U = ∇ × U⊥. Then, for a given α field, U⊥ can be
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obtained by solving the following Poisson-type equation

∇2U⊥ = −∇×α. (14)

The compatible part can be obtained by using the elastic constitutive relationship
(13), the Stokes-Helmholtz decomposition, U⊥ obtained from equation (14), and the
static equilibrium condition ∇ · σ = 0. One finds,

∇ ·
(
C : U∥

)
= −∇ ·

(
C : U⊥) . (15)

Following the computation of U⊥ and U∥, σ can be obtained by using Eq. (13).
An equivalent approach to obtain σ from the dislocation density tensor in an

isotropic medium is [53, 54]

σ′ = 2µ

[
∇2χ+

m

m− 1

(
∇∇−∇2I

)
tr(χ)

]
(16)

where m = 2(λ+µ)
λ and χ is a stress function that is related to α as

∇2∇2χ = sym (α×∇) (17)

where the operator “sym” extracts the symmetric part of a second order tensor.

2.3 Weak coupling

We want to examine the equilibrium configuration of a defected medium comprising
a stationary dislocation dipole under periodic boundary conditions. An initial con-
figuration comprising a dislocation dipole is considered in a climb configuration. For
values of r ≈ 1, the order parameter relaxes everywhere according to Eq. (5), but the
location of the dislocation cores remains constant for very long times due to Periels
barriers to motion [52]. Therefore, at long times, the field ψ is a constrained minimizer
of Fsh given the location and Burgers vectors of the two dislocations. The phase field is
used to compute α (Eq. (12)). Next we set α = α and solve the resulting static FDM
problem for an elastic medium under periodic boundary conditions. The restricted
assumption that the static FDM and the PFC only couple through the dislocation
density tensor implies that the incompatible part U⊥ is equal to the incompatible
part of Q. However, importantly, the compatible part of U i.e., U∥, is not equal to the
compatible part of Q. Determination of U∥ requires the resolution of equation (15).

3 Algorithm and numerical implementation

A uniform spatial grid is introduced in a rectangular domain with N1 points along x1
and N2 along x2. The grid spacing is ∆x1 = a0/7,∆x2 =

√
3a0/12, with a0 = 4π/

√
3

as dictated by the hexagonal ground state of the free energy in Eq. (1). The lateral
size of the domain along x1 and x2 is w = N1∆x1 and h = N2∆x2, respectively
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(Figure 1a) as we assume periodic boundary conditions along both directions. Given
these boundary conditions, Fourier transforms of the variables are introduced. Spatial
derivatives are computed by either their spectral representation or by central finite
differences, whereas time discretization is performed using a forward Euler scheme.

The initial condition for the order parameter ψ includes p = 2 dislocations at
(x1,p, x2,p),

ψt=0 = ψ0 +A0

2N∑
n=1

exp

[
i

(
qn · x+

∑
p

sn,p tan−1

(
x2 − x2,p
x1 − x1,p

))]
(18)

with A0 computed using Eq. (4). For the current time step t+∆t, with all the quantities
known at the previous time step t, the PFC problem is iterated first according to,

ψt+∆t = (1−∆t L)ψt −∆t(ψt)3 (19)

where L =
(
(r + 1) + 2∇2 +∇2∇2

)
is the linear operator of Eq. (5) acting on ψ, ∆t

is the time step, and quantities with superscript t refer to the previous time step. The
first term on the right hand side of Eq. (19), ψ′ = (1 −∆t L)ψt can be rewritten as

an approximation of F−1
(
e−∆tL̃ψ̃t

)
≈ F−1

[(
1−∆tL̃

)
ψ̃t
]
= (1 − ∆t L)ψt, where

L̃ =
(
(r + 1)− 2|k|2 + |k|4

)
, and k is the wavevector in Fourier space. The symbol F

stands for Fourier transform, and a tilde over a variable denotes its Fourier transform.
For better accuracy, the expression involving the exponential function in Fourier space
is used. Only wavenumbers |k| ≤ 2 are considered so that the first term in Eq. (19) is
computed as,

ψ′ = F−1
(
e−∆tL̃ψ̃tΛ̃

)
(20)

with

Λ̃ =


1 for |k| ≤ kl
kh−|k|
kh−kl for kl < |k| ≤ kh
0 for |k| > kh

(21)

where kl = 1.4 and kh = 2 are user-defined constants.
Finally, ψt+∆t is computed as

ψt+∆t = ψ′ −∆t(ψt)3 (22)

Once ψt+∆t has been obtained, it is used to find An,t+∆t using,

An,t+∆t = F−1
[
F
(
ψt+∆te−iq

n·x
)
g̃
]
, (23)

which in turn is used to compute Qt+∆t using the central difference approximation
to Eq. (9). Then, σQ,t+∆t is straightforwardly obtained using Eq. (10). The stress
σψ,t+∆t is obtained by first computing sψ,t+∆t and then computing

σψ,t+∆t = F−1
(
s̃ψ,t+∆tg̃

)
(24)

8



Next, αt+∆t is computed using Qt+∆t and Eq. (12). The result is assigned to αt+∆t,
and the elastic problem under periodic boundary conditions is solved as follows: We
obtain U⊥ from (14) using the Fourier transform as

U⊥ = F−1

({
i (α̃·X)·k

|k|2 for |k| ≠ 0

0 for |k| = 0

)
, (25)

where X is defined in Appendix A. Then

U∥ = F−1
[
G̃ : C : Ũ⊥

]
(26)

where G̃ is the fourth order modified Green’s tensor with components in Fourier space
given by

G̃ijkl =

{
−C−1

kmin for any component of k equal to 0

− [kmknCkmin]
−1
klkj otherwise

(27)

The stress σt+∆t is then straightforwardly obtained from (13) using U t+∆t =
U∥,t+∆t +U⊥,t+∆t.

Finally, σ′,t+∆t is computed from (16) using the Fourier transform,

σ′,t+∆t = F−1

[
2µ

(
−|k|2χ̃t+∆t +

m

m− 1
tr(χ̃t+∆t)

(
|k|2I− k ⊗ k

))]
(28)

with

χ̃t+∆t =

{
i
(X·α̃t+∆t+α̃T,t+∆t·X)·k

|k|4 for |k| ≠ 0

0 for |k| = 0
(29)

obtained from Eq. (17).
Note that the mean values of both σt+∆t and σ′,t+∆t are undefined. We set their

Fourier amplitudes at |k| = 0 to be zero as appropriate for a system with periodic
boundary conditions. In order to facilitate comparison with σQ,t+∆t and σψ,t+∆t, we
also set the mean values of the configurational stresses to be zero.

The step by step algorithm is summarized in Table 1, which has been implemented
in Fortran90. The FFTW 3 [55] C++ library is used to perform forward and inverse
Fourier transforms. In Fourier space, derivatives (in real space) are approximated using
the central difference approach [56, 57].

4 Results

We have used N1 = 602 points along x1 and N2 = 900 along x2, and the parameter
values r = −1.2, ψ0 = −0.5, well inside the hexagonal region of the phase diagram
of the phase field. As initial condition, two dislocations are introduced along the line
y = h/2 according to equation (18) with Burgers vectors b1 = a0(1, 0) at (x1,1, x2,1) =

9



Algorithm 1: PFC-FDM weak coupling

Data: x,xp, ψ0, r, s
n
p , q

n, dx, dy,Nx, Ny,∆t, T,C, kl, hh
Result: Q, U , σQ, σψ, σFDM, σKD

A0 ← equation (4) ;
t← 0 ;
ψt=0 ← R.H.S. of equation (18) ;
while t < T do

ψt+∆t ← R.H.S. of equation (22) ;

σψ,t+∆t ← R.H.S. of equation (24) ;

σψ,t+∆t ← σψ,t+∆t − ⟨σψ,t+∆t⟩ ;
An,t+∆t ← R.H.S. of equation (23) ;
Qt+∆t ← R.H.S. of equation (9) ;
σQ,t+∆t ← R.H.S. of equation (10) ;
σQ,t+∆t ← σQ,t+∆t − ⟨σQ,t+∆t⟩ ;
αt+∆t ← R.H.S. of equation (12) ;

αt+∆t ← αt+∆t ;

U⊥,t+∆t ← R.H.S. of equation (25) ;

U∥,t+∆t ← R.H.S. of equation (26) ;
σt+∆t ← R.H.S. of equation (13) ;
σ′, t+∆t ← R.H.S. of equation (28) ;
ψt ← ψt+∆t ;
t← t+∆t ;

end

(w/2, 3h/8) (top), and b2 = a0(−1, 0) at (x1,2, x2,2) = (w/2, 5h/8) (bottom), as shown in
Figure 1b.

With this initial configuration, the only non zero component of the polar dislocation
density is α13. The top and bottom dislocations should respectively exhibit α13 > 0
and α13 < 0. Figure 1 shows the temporal evolution of ψ and α13 as the system
relaxes from the initial condition. The order parameter ψ reaches a steady state around
t = 20000, therefore, only results up to this time are shown. However, and as expected
from the diffusive nature of the relaxation of the order parameter, α13 reaches a time
independent distribution much earlier (t ≈ 5 in the figure). As a consequence, the
contour lines of U do not change or move significantly from this time until the end of
the integration (Figure 2) despite the fact that Q continues to evolve. Indeed, after
relaxation, the top and bottom dislocations respectively exhibit α13 > 0 and α13 < 0.

Even though α13 becomes time independent as early as t = 5, there are clear
qualitative and quantitative differences between the spatial distributions of the corre-
sponding components of Q and U (Figure 2). These differences are most pronounced
in the case of U11 and Q11. The former shows fourfold symmetry, which is the expected
symmetry of this component of the elastic distortion for an edge dislocation with α13

as the only non zero component. Meanwhile, Q11 shows a twofold geometry, which does
not conform with the predictions of the elasto-static theory of dislocations i.e., static
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Fig. 1: Time evolution of the order parameter ψ and dislocation density component
α13. (a) Initial ψ field in the domain along with the basis and domain dimensions.
(b) Close up views (from the highlighted region in (a)) of ψ and α13 showing the
two dislocations in the domain at t = 0. The insets zoom into the dislocation core.
Snapshots of ψ and α13 (in the same zones as those shown in (b)) at (c) t = 5, (d)
t = 10000 and (e) t = 20000. All the ψ plots share the same scale. The dotted lines
in the α13 plots in (c), (d) and (e) are the lines along which the lineplots shown in
Figures 3 and 4 have been made.

FDM. The differences are less pronounced in the case of Q12 and U12, nevertheless,
they do exist, as evidenced in figure 2.

Next, a comparison is performed between the static FDM and PFC stress measures.
Note that following Algorithm 1, and in order to facilitate comparison between the
individual components of all the stress measures, their values have been normalized in
such a way that their average over the computational domain is equal to zero. In other
words, their zeroth wavenumber (k = 0) component in Fourier space have been set to
0. We show comparisons of elastic and configurational stresses along two orthogonal
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Fig. 2: Time evolution of Q11, U11, Q22 and U22. U11 and U22 have not been presented
at t = 0 due to the instability of dislocation cores in the initial state.
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lines in the system in Figs. 3 and 4. The various quantities plotted are along the
vertical and horizontal lines shown in Figure 1, passing through the two dislocations
and the top dislocation, respectively. Analogous plots comparing U and Q lead to the
same conclusions and are not been shown here.
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Fig. 3: Line plots of different stress components as a function of the shifted (with
respect to the center of the domain along x2) and normalized (with respect to the
Burgers vector magnitude b that is equal to lattice constant a0) distance along x2
passing through the two dislocations at times t = 50, t = 10000 and t = 20000. Stress
measures associated with KD correspond to σ′.

Both figures show that the stress fields σ and σ′ are identical to numerical accuracy,
as expected. This agreement serves as validation of the numerical algorithm and the
numerical scheme based on the dislocation density as a source (input) in static FDM.

Figure 3 shows all the components of all the stress measures along x2. Along this
line, the only non negligible components are the normal stress components; the shear
stress is very small, and we do not attach any significance to any discrepancies in
Figure 3. At early times (t = 5), σψ11 and σQ11 do not agree with σ11 anywhere along

the line. The components σQ22 and σψ22 show better agreement with σ22. Of course, the
components of σ do not change significantly after t = 5 (negligible changes occur due
to slight movement of the dislocation cores), while the configurational stresses continue
to relax. At long times (t = 20000 and beyond), the system has reached a steady state.
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Far field configurational and elastic stresses coincide, however, they do not coincide in
the region in between the dislocations. This near-field discrepancy is to be expected
for several reasons. First, the core size in dimensionless units is on the order of 7∆y
(Fig. 1) which is not much smaller than the distance between dislocations (144∆y).
Second, the phase field free energy is fully nonlinear, while the elastic stress has been
obtained under the assumption of linear elasticity. Regions of large distortion will
therefore have different stress distributions at equilibrium. Nevertheless, all stresses
coincide far from the defect core region, thus validating the use of the PFC method
to provide physically correct equilibrium values of elastic fields.
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Fig. 4: Line plots of different stress components as a function of the shifted (with
respect to the center of the domain along x1) and normalized (with respect to the
Burgers vector magnitude b that is equal to lattice constant a0) distance along x1
passing through the top dislocation at times t = 50, 10000 and 20000. Stress measures
associated with KD correspond to σ′.

Similar conclusions can be drawn from an analysis of the stresses σ, σQ and σψ

along x1 (shown in Fig. 4). The shear stress σ12 is not negligible along this direction,
with the figure showing good agreement between configurational and elastic stresses.
There is some disagreement at early times (see t = 5) because the elastic field is
in equilibrium after the dislocation core has stabilized, but the phase field requires
a much longer time to relax since it is doing so diffusively. At later times, however,
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the agreement between all the stresses is excellent. In addition to the origin of any
discrepancies indicated above, the results along this direction are further affected by
tensile strains at the edges of the domain; σQ11 and σQ22 deviate significantly from the
far field equilibrium solution σ11 at all times. This is a consequence of the choice of
periodic boundary conditions in a system with a small number of defects, and on
the initial condition for the order parameter chosen to include two dislocations. The
arctangent operator in equation (18) is clearly not compatible with periodic boundary
conditions. Both effects would not be so prominent in a more complex calculation
involving an ensemble of defects. In addition, since the values at k = 0 of the various
stress fields have been set to zero, their magnitudes in the core region affect the large
distance asymptotic values when enforcing this constraint. This problem manifests in
the results along x1 but it does not manifest in the results along x2 due to the different
symmetry of the stress field.

5 Discussion and conclusions

A (weakly) coupled model involving the PFC (Phase Field Crystal) and the static
FDM (Field Dislocation Mechanics) approaches has been introduced to obtain the
constrained equilibrium state of a prototypical configuration involving a dislocation
dipole. This configuration allows a critical analysis of the relative role played by con-
figurational (from PFC) and elastic (from static FDM) fields in the coupled theory,
the study of the consequences of introducing a consistent separation between diffusive
and elastic time scales, and consideration of singularity regularization at defect cores.

The ulterior goal of this study is to endow the PFC model with material elasticity in
a way that consistently respects the required independence between the order param-
eter and lattice distortion. We have adopted the view that the PFC order parameter
only describes the topological content of the lattice, and that therefore, in equilibrium,
it only determines the transverse/incompatible part of the distortion (as required by
lattice incompatibility in the elastic problem). This choice leverages the fact that the
PFC produces a compact and stable defect core, free of any singularity. We then use
the resulting (diffuse) dislocation density in the core region as the source for the elastic
problem.

Our results show that local relaxation of the order parameter at the defect core
is fast, and therefore elastic equilibrium should be established rather quickly over the
entire system, as shown by the resolution of the elastostatic problem. However, the
configurational stresses have not been equilibrated in the early stages of the numerical
calculation. It takes a long time for them to reach equilibrium because the phase field
order parameter relaxes diffusively everywhere. This diffusive relaxation is unphysical
for an elastic medium, and it has hindered the applicability of the PFC model to
realistic elastic materials.

At much later times, the configurational stresses converge to the elasto-static solu-
tion at far field, indicating attainment of equilibrium. Any discrepancies remaining are
due to the finite size of the computational domain and periodic boundary conditions.
Near dislocation cores, deviations are found between the elastic and configurational
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stresses, which are related to the fact that the PFC model is defined by a nonlinear
free energy, whereas linear elasticity has been assumed for the static FDM response.

In summary, the PFC provides a consistent method to introduce lattice incom-
patibility into a classical elasticity calculation in a defected medium. It remains to be
investigated whether the same coupled theory provides a proper and efficient descrip-
tion of plastic defect motion as described in [47]. The algorithm presented in this work
will provide the starting point in such an analysis. In addition to the proper separation
of order parmameter and elastic time scales, attention has to be paid to a proper sepa-
ration of dissipative contributions to dislocation motion of phase field and mechanical
origin.
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Appendix A Definitions and notation

Scalars are denoted with an italic font (e.g., r or θ). Vectors are denoted by a lowercase
bold and italic font (e.g., q). Unit vectors are identified by an additional overhead hat
symbol e.g., ê. Second-order tensors are denoted by an uppercase bold and italic font
or by bold and italic Greek letters (e.g., U or α). The second-order identity tensor is
written as I, whose components are δij (the Kronecker delta). The third-order Levi-
Civita permutation tensor is denoted by X, with components eijk (the permutation
symbol). Fourth-order tensors are denoted by double-stroke letters (e.g., C). The null
tensor is denoted 0 for any tensor order. Consider a scalar ψ, two vectors u and v,
two second-order tensors α and B, a fourth order tensor C and a fixed 2-dimensional
(2D) Cartesian reference frame with orthonormal basis {êi}, i = 1− d (d = 2) in the
x and y directions, respectively. Adopting Einstein notation, the following operations
are used in this work:

Tensor product: u⊗ v = uivj êi ⊗ êj

Inner product: u · v = uivi

α : B = αijBij

Cross product: u× v = eijkujvk êi

α× u = ejklαikul êi ⊗ êj
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Dot and double-dot product: α ·B = αijBjk êi ⊗ êk

α · u = αijuj êi

v ·B = viBij êj

X : α = eijkαjkêi

C : α = Cijklαkl êi ⊗ êj

Differential operators: ∇ψ = gradψ = ψi êi

∇u = gradu = ui,j êi ⊗ êj

∇α = gradα = αij,k êi ⊗ êj ⊗ êk

∇ · u = divu = ui,i

∇ ·α = divα = αij,j êi

∇× u = curlu = eijkuk,j êi

∇×α = curlα = ejklαil,k êi ⊗ êj

α×∇ = curlT α = eiklαlj,k êi ⊗ êj

∇2ψ = ∇ · ∇ψ = ψ,ii

∇2α = ∇ · ∇α = αij,kk êi ⊗ êj

∇∇ψ = ψ,ij êi ⊗ êj

where the comma indicates differentiation with respect to a given coordinate. Time
derivatives are indicated by a superposed dot.

Overhead tilde signifies a variable in Fourier space. F is the Fourier transform
operator, F−1 is the inverse Fourier transform operator and k is the angular wavevector
in the Fourier space.
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[45] Acharya, A., Angheluta, L. & Viñals, J. Elasticity versus phase field driven
motion in the phase field crystal model. Modelling Simul. Mater. Sci. Eng. 30,
064005 (2022).

20

https://www.sciencedirect.com/science/article/pii/S0022509620303835
https://www.sciencedirect.com/science/article/pii/S0022509620303835
https://www.sciencedirect.com/science/article/pii/S0045782524000197
https://www.sciencedirect.com/science/article/pii/S0045782524000197


[46] Mura, T. Continuous distribution of moving dislocations. Philosophical Magazine
8, 843–857 (1963).
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