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Abstract
Context and objectives: Although urbanization is a major driver of biodiversity erosion, it does notaffect all species equally. The neutral genetic structure of populations in a given species is affectedby both genetic drift and gene flow processes. In cities, the size of animal populations determinesdrift and can depend on multiple processes, whereas gene flow essentially depends on the abilityof species to disperse across urban areas. Considering this, we tested whether variations in disper-sal constraints alone could explain the variability of neutral genetic patterns commonly observed inurban areas. Besides, we assessed how the spatial distribution of urban green spaces (UGS) and peri-urban forests acts on these patterns.Methods:We simulated multi-generational genetic processesin virtual populations of animal species occupying either UGS or forest areas (both considered asa virtual species habitat) within and around 325 European cities. We used three dispersal cost sce-narios determining the ability of species to cross the least favorable land cover types, while main-taining population sizes constant among scenarios. We then assessed genetic diversity and geneticdifferentiation patterns for each city and each habitat types across the three cost scenarios. Results:Overall, as dispersal across the least favorable land cover types was more constrained, genetic diver-sity decreased and genetic differentiation increased. Across scenarios, the scale and strength of therelationship between genetic differentiation and dispersal cost-distances varied substantially, alikepreviously observed empirical genetic patterns. Forest areas contributed more to habitat connectiv-ity thanUGS, due to their larger area andmostly peri-urban location. Hence, population-level geneticdiversity was higher in forests than in UGS and genetic differentiation was higher between UGS pop-ulations than between forest populations. However, interface habitat patches allowing individualsto move between different habitat types seemed to locally buffer these contrasts by promoting geneflow. Discussion and conclusion: Our results showed that variations in spatial patterns of dispersal,and thus gene flow, could explain the variability of empirically observed genetic patterns in urbancontexts. Besides, the largest habitat areas and biodiversity sources are likely to be found in areassurrounding city centers. This should encourage urban planners to pay attention to the areas promot-ing dispersal movements between urban habitats (e.g., UGS) and peri-urban habitats (e.g., forests),rather than among urban habitats, when managing urban biodiversity.
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Introduction
Most of humankind currently lives in cities and urban areas are predicted to cover three times

the area they covered in 2000 by 2030 (Seto et al., 2012), and four times by 2050 (Angel et al.,
2011). Urbanization is an important component of the anthropogenic pressures triggering the
erosion and spatial redistribution of biodiversity (Diaz et al., 2019). Indeed, it favors the spread
of invasive species, concentrates pollution, and urban lifestyles are important drivers of natural
resource over-exploitation and greenhouse gas emissions (McDonald et al., 2020). Last but not
least, it is a direct cause of habitat destruction and fragmentation (Beninde et al., 2015). As a
result, many empirical studies have evidenced negative effects of urbanization on biodiversity
(Aronson et al., 2014; Piano et al., 2020). However, this relationship is complex and variable
across taxa, biological organization levels (ecosystems, species, genes), and across cities (Fidino
et al., 2020). Urban ecology research is therefore needed and particularly crucial if humanity
is willing to limit its impact on biodiversity and to maintain the ecosystem services it provides
(Verrelli et al., 2022).

Urban ecology studies have shown that species are not all affected in the same way by ur-
banization (Aronson et al., 2014; Blair, 1996; Fanelli et al., 2022; Fidino et al., 2020). While some
species are mostly, if not only, present in cities because they are specialist of anthropized en-
vironments (urban adapters), others cannot survive in these areas (urban avoiders). Some more
ubiquitous species are present in both urban and non-urban areas. These urban tolerant species
are reliable indicators of urban influences on population dynamics along rural-to-urban gradi-
ents. They may also be the most affected by the impact of urban planning on environmental
conditions across such gradients.

Species-specific responses to urbanization not only affect species diversity patterns, but also
explain the variability of genetic patterns observed at the intra-specific level along rural-to-urban
gradients. Although rapid genetic adaptations to urbanization have been observed in several
species (Santangelo et al., 2022), urbanization also shapes neutral genetic patterns in a signifi-
cant manner (Fusco et al., 2021; Miles et al., 2019). For instance, urban populations of human
pests can exhibit higher levels of genetic diversity than non-urban ones (Miles et al., 2018). In
contrast, Khimoun et al. (2020) and Schoville et al. (2013) did not detect any significant differ-
ence in genetic diversity nor any patterns of isolation by distance pattern when studying ant and
butterfly populations, respectively, in urban and non-urban settings. Similarly, the relationship
between amphibian genetic diversity or differentiation and the degree of urbanization of sev-
eral North American cities was not significant in the study by Schmidt and Garroway (2021). On
the contrary, Delaney et al. (2010) showed that urbanization decreased genetic diversity and in-
creased genetic differentiation in three lizard species and one bird species, mainly due to higher
road density in urban areas. Likewise, Stillfried et al. (2017) showed that urban populations of
wild boars exhibited lower genetic diversity levels than suburban ones in Berlin.

The variability of the neutral genetic patterns observed in urban settings stems from the de-
mographic dynamics determining the intensity of both genetic drift and gene flow (Frankham
et al., 2004; Miles et al., 2019; Munshi-South and Richardson, 2020). On the one hand, genetic
drift can lead to allele loss, especially in small-sized populations. On the other hand, gene flow
following successful dispersal events between populations leads to genetic exchanges. This can
compensate for the diversity loss due to drift and decrease the resulting genetic differentiation
between populations. Consequently, both the size of urban populations and the permeability
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of urban environments to individual dispersal drive genetic diversity and genetic differentiation,
because they determine genetic drift and gene flow. As such, the genetic patterns described
above span the whole range of patterns that are theoretically expected from variations in the
respective intensity of drift and gene flow across urban and non-urban areas (Frankham et al.,
2004; Hutchison and Templeton, 1999). Under strong genetic drift and low gene flow, a low
genetic diversity is expected. Besides, isolation by distance patterns should not be significant,
due to the prevailing role of local stochasticity on pairwise genetic differentiation irrespective of
pairwise distances among populations. On the contrary, under moderate genetic drift and gene
flow, a significant isolation by distance pattern and a higher genetic diversity level are expected.
Finally, at intermediate levels, isolation by distance patterns are expected, at least temporarily,
until a pairwise distance threshold beyond which drift becomes the prevailing stochastic driver
of genetic differentiation. However, because these predicted genetic patterns depend on the
respective intensities of both drift and gene flow, disentangling the influence of these two pro-
cesses is a complex task.

In urban tolerant species, genetic drift could explain most of the variability observed in ge-
netic patterns given that some of these species only form small populations in urban areas (e.g.,
Lourenco et al. (2017)), thereby exacerbating drift effects, whereas others can maintain large
populations (e.g., Miles et al. (2018)). Yet, gene flow, which is mainly driven by the ability of ur-
ban tolerant species to disperse across urban fabric, could also be the prevailing driver of genetic
responses to urbanization. Accordingly, assessing how dispersal limitations and resulting gene
flow reductions shape genetic patterns is crucial for several reasons. First, many biodiversity
conservation programs rely on habitat connectivity conservation and restoration for maintain-
ing genetic diversity in urban areas. They assume that dispersal limitation is the main cause of
biodiversity loss. Besides, they often focus on Urban Green Spaces (thereafter referred to as
UGS) as biodiversity sources, although their spatial location within cities could convert them
into sink patches (Lepczyk et al., 2017; Pulliam, 1988; Verrelli et al., 2022), thus compromising
the efficiency of habitat and ecological corridor restoration in urban cores. Determining to which
point species movements in these areas are sufficient for preventing diversity loss is therefore
needed for estimating the potential benefit of suchmeasures. For that purpose, simulations have
been commonly recommended in landscape genetics (Balkenhol et al., 2016; Munshi-South and
Richardson, 2020), particularly for studying how neutral genetic patterns emerge from the inter-
play of drift and gene flow processes, independently of adaptive processes. They also proved to
be efficient for reproducing empirically observed genetic patterns in urban areas (Rochat et al.,
2017).

Considering this, our research objective in this study was to answer the following question:
how does dispersal limitation explain the variability of genetic patterns in urban tolerant species?
To this end, we simulated neutral genetic patterns resulting from multi-generational gene flow
between populations of urban tolerant species located in both UGS and forest areas within and
around 325 European cities. Using scenarios introducing variations in the ability of three vir-
tual animal species to disperse across urban fabric, we assessed how this ability affects genetic
patterns, independently from any other process. Across scenarios, genetic drift intensity was
constant for a given set of populations. The simulated variations in dispersal, for each city, could
thus affect genetic patterns by modifying the respective intensities of drift and gene flow. We
also compared the connectivity of UGS and forest areas, and contrasted the genetic diversity
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and differentiation levels observed in these habitats to shed light on how the connectivity and
spatial configuration of habitats drive genetic responses to dispersal scenarios in cities.

Material and methods
To answer our research questions, we needed to assess the genetic responses to urbanization

of urban tolerant species having different abilities to cross artificial areas, while being equivalent
in terms of population density and dispersal abilities to cross favorable areas. We also needed to
assess these responses at the level of entire urban areas and to replicate the analyses to ensure
that our results were not merely due to the specificity of a single study area. To meet these
conditions, we implemented a simulation approach and applied it to 325 European urban areas,
hereafter referred to as cities.

For each city, we first modeled the connectivity of habitat patch networks for forest-dwelling
species occupying both UGS and forest patches according to three dispersal scenarios, using
a graph-based approach. Then, we simulated drift and gene flow processes in populations oc-
cupying both types of habitats, and analyzed the resulting genetic pattern at both the within-
population (genetic diversity) and between-population (genetic differentiation) levels. We pro-
vide details in the following sub-sections.
Habitat connectivity analyses
Land cover data. We used urban land cover data from the Urban Atlas 2018 database of the
Copernicus European agency. These land cover data are available for 788 functional urban ar-
eas, sensu Organisation for Economic Co-operation and Development (OECD, Moreno-Monroy
et al. (2021)), counting at least 50,000 inhabitants in 38 member or partner states of the Euro-
pean Union. These vector land cover data include 27 land cover types at a relatively fine spatial
resolution (MinimumMapping Unit: 0.25 ha inside urban core areas, and 1 ha in surrounding ru-
ral areas). They were reclassified into 10 land cover types (Supporting information 1 - Table S1)
and rasterized at a spatial resolution of 5 m. The two "Forests" and "UGS" land cover types were
considered for delineating habitat patches in the analyzes. "Forests" tended to be peripheral (i.e.,
peri-urban) whereas "UGS" were mostly located within city cores, although in each city, some
patches did not conform to this pattern. UGS included public green areas predominantly dedi-
cated to recreational use (e.g., gardens, parks), as well as suburban natural areas that are used and
managed as urban parks. We obtained the spatial coordinates of the center of every city from
the Open Street Map database using Nominatim and the jsonlite R package (Ooms, 2014). In
most cases, it coincided with the city hall, which is commonly used as the center of cities (Lemoy
and Caruso, 2020)(Figure 1).

We delineated the cities under study by standardizing their proportion of artificial areas in
order to assess the influence of dispersal on genetic patterns in areas having the same degree
of urbanization, although differing in the configuration of their urban fabric and natural areas.
Delineating study areas of the same spatial extent would have led the differences among cities
to mainly reflect the effect of varying densities of artificial areas (i.e., proportion of sealed area in
the study area). In contrast, we here assessed species genetic responses in areas which differ in
the location and shape of their urban fabric. To that end, we calculated the proportion of artificial
areas in disks of increasing radius centered on the city center. These radius ranged from 5 km
to 40 km, with steps of 500 m. The target proportion of artificial areas was fixed at 20% ± 1%
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after preliminary analyses. This threshold allowed us to maximize the number of cities for which
a radius encompassing a fixed proportion of artificial areas could be found between 5 and 40 km
and to minimize the variance of this radius. Cities were included in our sample when at least
95 % of the delineated disk was covered by the Urban Atlas land cover data (Figures 1A and 1B).
When required, we completed the remaining peripheral sectors with Corine Land Cover data,
matching their typology with our land cover classification, as indicated in Table S2 (Supporting
information 1). Our method selected 325 cities and mainly excluded coastal cities and very small
or very large cities for which the proportion of artificial areas was never below or above 20 %,
respectively, within the range of considered radii.
Dispersal cost scenarios. We wanted to assess whether genetic responses were affected by the
capacity of species to cross the least favorable areas when dispersing from one habitat patch to
another. We therefore made three dispersal cost scenarios, consisting of cost values associated
with land cover types and representing the cost of species movements across pixels of each
land cover type (Table 1). These costs were similar to the costs used by Sahraoui et al. (2017)
and Tannier et al. (2016) for modeling habitat connectivity in urban areas for forest species such
as rodents (e.g., Mustela putorius) or birds (e.g., Picus canus). They were minimal (1) in habitat
areas and higher in land cover types supposed to highly affect forest species movements, such
as grasslands (10), agricultural areas (50) or wetlands (100). These costs were constant across
scenarios. In contrast, the costs associated with water, roads and artificial land cover types in-
creased from scenario 1 to 3. They were equal to 90, 900 and 9,000 for water and roads, and to
100, 1,000 and 10,000 for artificial areas in scenarios 1, 2 and 3, respectively. This reflects the
fact that built-up areas are more difficult to cross than unfavorable yet open areas such as roads
or water bodies. A cost scenario based on similar assumptions has been empirically validated
by Balbi et al. (2019) in an urban context. The cost variations in the least favorable land cover
types for a forest species allowed us to distinguish three virtual species with different dispersal
behaviors in urban areas. Nonetheless, the total cost they could endure during dispersal was
kept equal for the three virtual species. This means that they had similar absolute capacities to
disperse whatever the cost scenario. Yet, the spatial paths they followed when dispersing could
vary substantially from one scenario to another depending on the configuration of land cover
types. Using these cost scenarios, we thus aimed to isolate the effect of variations in spatial
patterns of dispersal on genetic patterns across rural-to-urban gradients.
Landscape graphs. We modeled habitat connectivity with landscape graphs using the Graphab
2.8 software program (Foltete et al., 2021). Landscape graphs represent habitat patch networks
as sets of habitat patches (nodes) connected by potential dispersal paths (links)(Urban and Keitt,
2001).We built themusing theUrbanAtlas land cover data and the three dispersal cost scenarios
(one graph per scenario). Each forest or UGS habitat patch above 0.25 ha was a node of the
graphs. Although a single type of habitat patch (node) is most often considered in graph-based
connectivity analyzes, the special feature of our analyzes was the distinction between forests
and UGS, considered as two distinct types of nodes in subsequent analyzes (Savary et al., 2024a).

We computed least-cost paths between every pair of habitat patches. This simple method
estimates dispersal paths by finding the ones connecting patches while minimizing the total cost
accumulated when crossing pixels with specified cost values. Despite the known limitations of
this method (Zeller et al., 2012), it has proved to be relevant in empirical studies measuring
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Figure 1 – (A) Land cover map of a city under consideration (city of Besançon, East ofFrance), represented by a disc including 20% artificial areas. (B) The 325 European citiesconsidered in our analyzes. (C) Example of least-cost paths (brown lines) connecting for-est patches (dark green) and UGS patches (light green). (D) Example of genetic simulationoutput. The purple and orange dot sizes represent the simulated allelic richness in forestand UGS populations, respectively, according to the cost scenario 2.
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Table 1 – Dispersal cost values associated with each land cover type according to thescenarios considered. Scenarios 1 to 3 represent an increasing aversion of forest speciesfor dispersal movements across water, roads, and artificial areas.
Land cover types Scenario 1 Scenario 2 Scenario 3Forests 1 1 1Urban Green Spaces 1 1 1Grasslands 10 10 10Semi-natural areas 10 10 10Agricultural areas 50 50 50Other open areas 50 50 50Wetlands 100 100 100Water 90 900 9000Roads 90 900 9000Artificial areas 100 1000 10000

species movements in urban areas (e.g., Balbi et al. (2019)). For each scenario, we obtained a
set of potential dispersal paths and the accumulated cost along them, i.e., the cost-distance
(Figure 1C). We then created three minimum planar graphs, sensu Fall et al. (2007), in every
urban area. In these graphs, links correspond to least-cost paths, connect neighbor patches, and
are weighted by the corresponding cost-distances.

We used these graphs to assess the contribution of each habitat patch to the connectivity
of the habitat network and identify whether the distribution of forest and UGS patches could
drive potential source-sink dynamics. To that purpose, we computed the ’Flux’ (F ) connectivity
metric for each patch to estimate the amount of habitat that is reachable from the focal patch.
It considers the area of the other patches and the cost-distances associated with the shortest
path to these other patches on the graph, as follows:

Fi =
n∑

j=1;j ̸=i

aje
−α×dij

with i the focal patch index, j the index of every other patch among the n habitat patches, dijthe cost-distance between patches i and j , and aj the area of each patch j .
α was set such that the probability of covering a cost-distance equivalent to an average path

of 5 km (d5km) is equal to 0.05, i.e., p(d5km) = e−αd5km = 0.05. This distance can be considered
as the maximum dispersal distance of forest species with medium dispersal capacities (Sahraoui
et al., 2017). To obtain d5km, we assessed the relationship between (1) the length in metric units
of the least-cost paths not crossing the least favorable areas and (2) the corresponding cost-
distances, using log-log linear regressions (Tournant et al., 2013). For that purpose, we only con-
sidered the set of paths (spatial trajectories and associated cost-distances) that never crossed
any pixel of artificial area, road or water, as they are supposed to be representative of the most
common species movements. We then used the estimated relationship between the length of
these paths and their cost-distances to convert 5 km into cost units and computed the aver-
age converted value for each urban area and each scenario. d5km averaged 20,000 cost-distance
units. By using the same d5km and α values for all three dispersal scenarios in this analysis and
for parameterizing the genetic simulations (see below), we ensured that the virtual species we
considered had similar absolute capacities to disperse whatever the cost scenario.
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When computing the F metric, we distinguished cases where patches i and j were respec-
tively either (i) both forest patches (FForest↔Forest ), (ii) forest and UGS patches (FForest↔UGS ), (iii)UGS and forest patches (FUGS↔Forest ) or (iv) both UGS patches (FUGS↔UGS ). For each urban area
and scenario, forest patches associated with FForest↔UGS values in the upper quartile of the dis-
tribution were considered as "Forest Interface" patches. Similarly, UGS patches associated with
FUGS↔Forest values in the upper quartile of the distribution were considered as "UGS Interface"
patches. Indeed, these habitat patches are the most important ones for the connectivity be-
tween several types of habitats. We expect them to be mostly, though not strictly, located at
the periphery of city centers. They could therefore play a significant role in potential source-
sink dynamics. Their connectivity could also drive genetic diversity transfers from less to more
anthropized habitat areas, and conversely, e.g., when UGS Interface patches are connected to
other UGS located closer to the city center.

Finally, we computed the Equivalent Connectivity (EC ) metric for estimating the connectivity
of the whole habitat patch network. This metric represents the area of the unique patch that
would provide species with the same amount of reachable habitat as the whole habitat patch
network, given its degree of subdivision and the resistance of the matrix (Saura et al., 2011). We
used the following formula (see also Supporting information 2 - Figure S1):

EC =

√√√√
n∑

i=1

n∑

j=1

aiaje−α×dij

Given that we distinguished two types of habitat patches, we could estimate the contribution
to EC of (i) the forest patches and the connections between them (ECForest.Forest , both i and j are
forest patches), (ii) the UGS patches and the connections between them (ECUGS .UGS , both i and
j are UGS patches) and (iii) the connections between forest and UGS patches, weighted by their
respective areas (ECForest.UGS , i is a forest patch and j a UGS patch, or conversely). To make these
values comparable among cities, we standardized them by the total area of each city. We also
assessed the relative value of the three EC components here considered, standardizing each of
them by their sum.
Genetic simulations
Population size and location. The large number of patches in each city prevented us from simu-
lating a population in all habitat patches, due to limitations in computational capacities. Further-
more, we can reasonably assume that habitat patches are not all occupied in actual metapopula-
tions. Nevertheless, we wanted the number of populations to reflect the subdivision of habitat
areas. Therefore, for each type of habitat h, the number of populations Npoph,c in city c ranged
from 10 to 400 and was proportional to the logarithm of the number of patches of that type in
the city c (ph,c ), such that:

Npoph,c = 10 + (400 − 10)
log ph,c − log(min∀i ph,i )

log(max∀i ph,i ) − log(min∀i ph,i )with min∀i ph,i and max∀i ph,i the minimum and maximum number of patches of type h across all
cities.

Then, for each city and habitat type, we randomly sampled a number of patches equal to
Npoph,c among the habitat patches of type h in the city c , before populating them with individ-
uals. As we wanted the total population in a given city to reflect the total amount of habitat of

8 Paul Savary et al.

Peer Community Journal, Vol. 4 (2024), article e40 https://doi.org/10.24072/pcjournal.407

https://zenodo.org/doi/10.5281/zenodo.10789194
https://doi.org/10.24072/pcjournal.407


that city, the total number of individuals Nindc in each city ranged from 500 to 10,000 and was
proportional to the logarithm of the total habitat area in each city (using the same formula as
above). Log-transformations normalized the distributions of population and individual numbers.

Each population (i.e., sampled habitat patch) was then populated with at least 10 individ-
uals, in a way that reflected the area of its patch. We wanted to assign larger populations to
large habitat patches while ensuring that the total number of individuals across populations was
equal to Nindc . Thus, the numbers of individuals in each population were randomly drawn fol-
lowing a multinomial distribution. Each sampled patch was associated with a probability of being
assigned supplementary individuals (beyond the minimum effective of 10 individuals) that was
proportional to its area (see Supporting information - Figure S2 for an histogram of patch areas).
For each city, these probabilities summed to 1. Therefore, cities with many habitat patches had
many populations, cities with large habitat areas had many individuals overall, and large habi-
tat patches on average contained many individuals. On average, there were 23 individuals per
population (median: 19), and the largest population included 229 individuals in a 1000 ha patch.
Consequently, population sizes varied among patches and among cities, thereby affecting drift
intensities. Yet, drift intensity was constant across dispersal scenarios in every patch, making it
possible to directly attribute genetic response variations across scenarios to variations in disper-
sal patterns.
Dispersal and reproduction parameters. Dispersal between populations depended on cost-distances
computed for the three cost scenarios. 10 % of the individuals of each population could disperse
from their origin population to another at each generation, over a total of 250 generations. The
dispersal probability from population i to population j decreased with cost-distance, such that:
pdij = e−αdij . We used the same α value as specified in the previous section.

The population size was constant over time and the sex-ratio initially equal to 1. After birth,
individuals potentially dispersed (see above) and could then only mate and reproduce with indi-
viduals from the same population. Each female had 3 offspring, with a sex-ratio averaging 1, and
supernumerary individuals, either juveniles or adults, died to keep the local population constant.
Initial genotypes were randomly generated by drawing 1 in 20 alleles, twice for each of the 20
simulated loci and for every individual. Mutations could happen at a 0.0005 rate. We carried out
the simulations using PopGenReport R package (Adamack and Gruber, 2014).
Genetic data analyses

We wanted to assess the influence of the dispersal scenarios on the genetic responses sim-
ulated in each type of habitat. Thus, at the end of the simulations, we assessed both (i) intra-
population genetic diversity (local) and (ii) inter-population genetic differentiation (pairwise), and
their variations according to the scenarios and types of habitat (i.e., Forest, UGS, and their re-
spective "interface" patches). Besides, to gain insights into gene flow influence on spatial genetic
patterns in cities, we assessed the scaling properties of isolation by landscape resistance patterns,
and whether populations formed genetic clusters coinciding with the spatial structure of habitat
patches. Genetic analyses were performed using the graph4lg package (Savary et al., 2021b) in
R (R Core Team, 2022).
Genetic diversity and differentiation. We estimated genetic diversity within each population as
the mean number of alleles per locus when considering all individuals, i.e., allelic richness. We
then averaged allelic richness for each habitat type ("Forest", "Forest Interface", "UGS", "UGS
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Interface"), each scenario and each city (n = 4 × 3 × 325). In parallel, we assessed pairwise
genetic differentiation using the DPS index (Bowcock et al., 1994), i.e., 1− proportion of shared
alleles. We distinguished three types of population pairs, i.e., "Forest-Forest", "Forest.UGS" and
"UGS.UGS", and averaged values for each scenario and city (n = 3 × 3 × 325).

Isolation by Landscape Resistance (IBLR). Isolation by distance (IBD) patterns have been known
for a long time for providing insights into the relative influence of drift and gene flow on genetic
differentiation (Hutchison and Templeton, 1999; Slatkin, 1993). We wanted to assess to which
degree differences in spatial patterns of dispersal due to cost scenarios could affect the spa-
tial genetic structure. We therefore analyzed isolation by landscape resistance patterns (IBLR)
and their scaling properties. For that purpose, we iteratively computed Mantel correlation coef-
ficients between DPS and cost-distances, while filtering population pairs according to increasing
cost-distance thresholds until all population pairs became included. We identified the threshold
at which this coefficient was maximal and called it Distance of Maximum Correlation (DMC),
following Van Strien et al. (2015). To obtain comparable values across cities, we standardized
the range of the DMC between 0 and 1 by dividing it by the maximum cost-distance between
population pairs. A value of 1 is supposed to indicate cases where IBLR leads to a continuous
and linear relationship between DPS and cost-distances at the scale of the whole study area (i.e.,the equivalent of the case I IBD pattern sensu Hutchison and Templeton (1999), although we
did not use the exact same framework as for classical Isolation By Distance analyses (Rousset,
1997)). On the contrary, values between 0 and 1 could indicate the presence of a plateau in the
relationship (case IV IBD pattern sensuHutchison and Templeton (1999))(Van Strien et al., 2015).
Besides, the correlation coefficient value between DPS and cost-distances at the DMC showed
us to what extent genetic differentiation increased due to increases in cost-distance.

Module partitions. In each city and for each scenario (n = 325 × 3), we modeled population ge-
netic structure using a genetic graph. Each node represented a population, and the links were
weighted by DPS values. To identify genetic clustering patterns potentially emerging from disper-
sal limitations between sets of habitat patches, we identified modules in these graphs using the
fast greedy modularity algorithm by Clauset et al. (2004). This algorithm identifies the partition
of populations into modules maximizing a modularity index. This index takes genetic differenti-
ation values into account and takes large values when populations from the same module are
also genetically similar.

We wanted to determine (i) whether the spatial distribution of genetic modules reflected
the dispersal constraints imposed by the different cost scenarios, and (ii) whether populations
from different types of habitat tended to be assigned to different genetic clusters as well. We
therefore compared the genetic modules with (i) modules computed in similar population graphs
with links weighted by cost-distance values instead of DPS values, and (ii) the classification of
habitat patches into forests or UGS. In the former case, we set the number of modules in each
spatial cost-distance graph to be equal to the optimal number of modules identified in each
corresponding genetic graph. Then, we compared these partitions using the Adjusted Rand Index
(ARI, Hubert and Arabie (1985)), following the method described by Savary et al. (2022). This
index takes itsmaximal value (1) when two nodes from the samemodule in one graph also belong
to the same module in the other graph. It is equal to 0 when two partitions are comparable to
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random partitions. It takes its minimal value (-1) when partitions are totally distinct, i.e., when
two nodes from the same module are in different modules in the other graph.
Genetic response modeling

We modeled the different genetic responses as a function of the dispersal cost scenarios
(and habitat type or type of population pairs for the allelic richness and genetic differentiation,
respectively) using mixed-effects models with random intercepts at the city level. This allowed
us to take into account the lack of statistical independence between simulations made for three
cost scenarios in the same city. In that way, we also accounted for the fact that all cities do
not have the same habitat area, number of populations and individuals, which created overall
differences in genetic structure, irrespective of cost scenarios.

Because all our genetic responses did not have the same range of values and distributions,
we used mixed-effects models assuming various distributions and link functions (when gener-
alized), as explained in the Results section and Supporting information 3. Models were fitted
with a Restricted Maximum Likelihood approach using the lme4 (v1.1-30)(Bates et al., 2015)
and glmmTMB (Brooks et al., 2017) R packages. The adequation between the distribution of the
residuals and the models’ assumptions were checked using a simulation-based approach imple-
mented in the DHARMa R package (Hartig, 2022).We only interpreted themodels whose residuals
matched these assumptions. Because we modeled simulated values for which we controlled the
number of replicates, we did not interpret the p-values (which took the lowest value reported
by the R software program in most cases)(White et al., 2014). Mean values per fixed effect level
and their confidence intervals (95 %) were obtained using emmeans (Russel, V. L., 2022).

When both the cost scenarios and the habitat type (4 levels: Forest, Forest Interface, UGS,
UGS Interface) or type of pairs (3 levels: Forest-Forest, Forest-UGS, UGS-UGS) were considered
as fixed effects, we included an interaction between these two variables in the models. Indeed,
variations in dispersal were not supposed to affect the genetic responses similarly according to
the type of habitat considered.
Assessing results’ sensitivity to city size and habitat amount variations among cities

We wanted to check whether the results were consistent across cities regardless of promi-
nent differences in terms of city size and habitat cover. To this end, we analyzed the results by
considering separate groups of cities, created from the quartiles of the city sizes (study area
radii) and of the total amount of habitat (UGS and forest total area). Additionally, we assessed
whether allelic richness contrasts between habitat types were similar when the connectivity of
UGS (ECUGS .UGS ) was larger than that of forests (ECForest.Forest ).

Results
Habitat connectivity

The 325 cities delineated in this studywere covered at 20%± 1%by artificial areas and had a
radius ranging from 5 to 40 km, with a mean of 10.8 km and amedian of 8.5 km. Their population
averaged 300,000 inhabitants in 2018 (median: 140,000, maximum: 6,000,000). In these areas,
the overall amount of reachable habitat (EC ) was mainly due to forest patches and much less to
UGS, with ECForest.Forest largely higher than ECUGS .UGS , and than ECForest.UGS , although to a lesserextent (Figure 2A). This contrast was strongerwhenmodeling connectivity according to dispersal
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Figure 2 – Absolute and relative values of the different EC components computed in the325 cities according to cost scenario 1. (A) ECForest.Forest (green), ECForet.UGS (purple) and
ECUGS .UGS (orange) divided by the total study area, for each city. (B) Respective contribu-tions of ECForest.Forest (green), ECForest.UGS (purple) and ECUGS .UGS (orange) to the connec-tivity of the habitat network. The total connectivity value of the network is the sum ofthe three EC components, which is slightly different from the global EC value becauseof square root properties.

cost scenarios 2 and 3 (Supporting information 2 - Figures S3 and S4). However, in some urban
areas where forest areas are very limited, the contribution of UGS to the amount of reachable
habitat was the highest, as reflected by the proportional share of ECUGS .UGS (Figure 2B).

12 Paul Savary et al.

Peer Community Journal, Vol. 4 (2024), article e40 https://doi.org/10.24072/pcjournal.407

https://zenodo.org/doi/10.5281/zenodo.10789194
https://doi.org/10.24072/pcjournal.407


Genetic diversity
The simulated genetic diversity varied substantially both among cities and among cost sce-

narios and habitat types (Figure 3). We modeled the mean allelic richness across populations for
each city and type of habitat occupied by the populations (Forest, UGS, Forest Interface, UGS
Interface), as a function of habitat type and cost scenario using a linear mixed-effects model
(LMM) with random intercept at the city level. The random effects explained 78 % of the overall
variance (ICC: 0.783) due to large differences among cities. The residual distribution was satis-
factory, as well as the model fit (conditional R2 = 0.91, marginal R2 = 0.56). Although population
sizes, drift intensity, dispersal rates and dispersal distanceswere constant in a given city fromone
scenario to another, the overall allelic richness decreased substantially from scenario 1 to 3 in all
types of populations when taking among-cities differences into account (Table 2), as expected
from Figure 3. This resulted from stronger constraints on gene flow exerted by artificial areas,
roads, and water bodies, which modified the respective intensities of drift and gene flow. The
effect of the interaction between cost scenarios and habitat types was much lower than their
main effects (χ2 values fromWald test: main effect of cost scenario: χ2=16037.6, main effect of
habitat type: χ2=5960.9, interaction: χ2=890.1). In the cost scenario 1, allelic richness was in all
habitats relatively higher than in other scenarios, although it took slightly lower values in UGS
(Table 2). For a given type of habitat (Forest, UGS), the highest allelic richness was observed in
Interface habitats. It strongly decreased from scenario 1 to 3 but the decrease depended on the
type of patches in which the populations were located. In Forest and Forest Interface patches,
allelic richness was halved from scenario 1 to 3 (Forest: 10.68 to 5.93, Forest Interface: 11.68
to 6.60). It was almost divided by three in UGS Interface (10.95 to 4.19), and almost by four in
UGS (9.37 to 2.39) (see CI in Table 2).

Table 2 – Results of themixed-effects model of the simulated genetic diversity. Predictedvalues and confidence intervals of the mean allelic richness across populations at the citylevel as a function of dispersal cost scenario, habitat type and their interaction. "ForestInterface" patches correspond to the forest patchesmost connected to UGS according tothe FForest↔UGS metric, whereas "UGS Interface" patches correspond to the UGS patchesmost connected to forests according to the FUGS↔Forest metric.
Scenario Habitat type Estimate Lower.CI Upper.CISc. 1 Forest 10.68 10.41 10.96Sc. 2 Forest 9.18 8.90 9.46Sc. 3 Forest 5.93 5.65 6.21Sc. 1 UGS 9.37 9.09 9.65Sc. 2 UGS 4.73 4.45 5.01Sc. 3 UGS 2.39 2.12 2.67Sc. 1 Forest Interface 11.68 11.40 11.95Sc. 2 Forest Interface 10.05 9.77 10.33Sc. 3 Forest Interface 6.60 6.32 6.87Sc. 1 UGS Interface 10.95 10.67 11.23Sc. 2 UGS Interface 8.13 7.85 8.41Sc. 3 UGS Interface 4.19 3.91 4.47
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Figure 3 – Distribution of the mean allelic richness of populations located in "Forest","Forest Interface", "UGS" and "UGS Interface" patches in the 325 cities for the three dis-persal cost scenarios. "Forest Interface" patches correspond to the forest patches mostconnected to UGS according to the FForest→UGS metric, whereas "UGS Interface" patchescorrespond to the UGS patches most connected to forests according to the FUGS→Forestmetric. n = 325 values per box

Genetic differentiation
The mean genetic differentiation (DPS) between populations was high overall (> 0.6) and in-

creased from 0.62 to 0.72 and 0.85 in scenarios 1, 2 and 3, respectively (Figure 4). Genetic differ-
entiation was lower between forest populations than between UGS populations and took inter-
mediate values between forest and UGS populations. We first used a generalized linear mixed
model (GLMM) assuming a beta distribution and using a logit link function to model the DPSvalues as a function of the cost scenario and type of population pair (i.e., Forest-Forest, Forest-
UGS, UGS-UGS). We also used a LMM assuming a normal distribution. The GLMM provided a
slightly better fit than the LMM. However, its residuals were slightly over-dispersed, whereas
the LMM residuals had a satisfactory distribution. Both models provided similar results and we
here present the LMM results. The random effects (city-level random intercepts) explained 76
% of the overall variance (ICC: 0.759) due to large differences among cities. The model fit was
good (conditional R2 = 0.90, marginal R2 = 0.58). There were large differences among both cost
scenarios and types of population pairs, after accounting for among-cities differences (Table 3).
In that case also, the effect of the interaction between cost scenarios and types of population
pairs was much lower than their main effects (main effect of cost scenario: χ2 =11824.2, main
effect of population pairs type: χ2 =3714.1, interaction: χ2 =850.0). Overall, the genetic differ-
entiation among populations was lower in scenario 1 than in scenario 2, and the latter lower
than in scenario 3, in accordance with Figure 4 (Table 3). The genetic differentiation among For-
est populations was overall lower than between Forest and UGS populations, itself lower than
among UGS populations. The increase in genetic differentiation from scenarios 1 to 2 and 3 was
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Figure 4 – Distribution of the mean genetic differentiation (DPS ) computed betweenforest patches (Forest.Forest), forest and UGS patches (Forest.UGS) and UGS patches(UGS.UGS) in the 325 cities for the three dispersal cost scenarios. n = 325 values perbox
slightly lower for pairs of populations located in forests (see mean values and their CI in Table
3).

Table 3 – Results of the mixed-effects model of the simulated genetic differentiation.Predicted values and confidence intervals of the DPS among populations at the city levelas a function of dispersal cost scenario, type of population pairs, and their interaction.
Scenario Population pair Estimate Lower.CI Upper.CISc. 1 Forest-Forest 0.599 0.589 0.609Sc. 2 Forest-Forest 0.620 0.610 0.630Sc. 3 Forest-Forest 0.764 0.754 0.774Sc. 1 Forest-UGS 0.628 0.618 0.638Sc. 2 Forest-UGS 0.752 0.742 0.762Sc. 3 Forest-UGS 0.881 0.871 0.891Sc. 1 UGS-UGS 0.644 0.634 0.654Sc. 2 UGS-UGS 0.801 0.790 0.811Sc. 3 UGS-UGS 0.902 0.892 0.912

Distance of Maximum Correlation (DMC). IBLR relationships were very different from one disper-
sal cost scenario to another. In scenario 1, the DMC was overall equal to the maximum cost-
distance between populations (Figure 5A), suggesting that gene flow and drift jointly influenced
genetic differentiation at the scale of the whole study area. The slope of the IBLR relationship,

Paul Savary et al. 15

Peer Community Journal, Vol. 4 (2024), article e40 https://doi.org/10.24072/pcjournal.407

https://doi.org/10.24072/pcjournal.407


0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

A B

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

DMC

Co
rre

lat
io

n 
co

effi
cie

nt
 a

t t
he

 D
M

C

DM
C

Correlation coefficient at the DMC

Figure 5 – (A) Distance of Maximum Correlation (DMC), computed as the threshold dis-tance used for selecting the subset of population pairs giving the maximum Mantel cor-relation coefficient between genetic distances (DPS ) and cost-distances, in the 325 citiesand for the three dispersal cost scenarios. The DMC is divided by the maximum cost-distances between populations in the corresponding city and cost scenario and thereforeranges from 0 to 1. (B) Mantel correlation coefficients measured at the DMC. n = 325values per box

reflected by the Mantel correlation coefficient at the DMC (Figure 5B), was less steep in this
scenario, indicating that the increase of genetic differentiation was somehow limited when cost-
distances increased. In contrast, in scenario 2, the mean DMC was equal to 0.47 and the cor-
responding correlation coefficients were high. This implies that for a subset of populations sep-
arated by cost-distances lower than a given threshold, there was a strong linear relationship
between genetic distances and cost-distances reflecting significant gene flow between neigh-
bor populations. Finally, in scenario 3, the low DMC values (Figure 5A) suggest that the IBLR
relationships were weak and that genetic drift had a much stronger influence than gene flow
on genetic differentiation. The mixed-effects models did not have a satisfactory fit for the DMC.
In contrast, they confirmed that the differences in the correlation coefficients measured at the
DMC across cost scenarios, visible in Figure 5B, were substantial even when taking among-cities
differences into account. The values predicted by the LMM were equal to 0.55 (95% CI [0.54,
0.56]) in the scenario 1, 0.81 (95% CI [0.80, 0.83]) in the scenario 2, and 0.78 (95% CI [0.76,
0.79]) in the scenario 3 (see Supporting information 3). However, given that the distribution of
the DMC values in the latter scenario reflects an absence of IBLR relationship, the corresponding
correlation coefficients should not be interpreted for the scenario 3.

Population graph modularity. The modules identified in genetic graphs best coincided with the
modules from similar graphs with links weighted by cost-distances in scenario 2 (Figure 6A). In-
deed, mean ARI values were equal to 0.12, 0.27 and 0.00 in scenarios 1, 2 and 3, respectively
(corresponding median values: 0.02, 0.25, 0.00). Similarly, in scenario 2, genetic modules best
reflected the distinction between forest and UGS patches (Figure 6B). This means that, in this
scenario, it was more likely for two populations belonging to the same genetic cluster to be
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close when considering cost-distances, and to be located in the same habitat type. Thus, the ge-
netic structure of populations and either their spatial structure when taking dispersal constraints
into account, or their habitat type classification (UGS vs forests) matched in a stronger way in
this intermediate cost scenario. This was not the case when gene flow was less constrained by
unfavorable areas (i.e., scenario 1) or, on the contrary, highly constrained by these areas (i.e., sce-
nario 3). We did not interpret the results of the mixed-effects models of ARI values, because the
strong heteroscedasticity and atypical distribution of their values prevented us from obtaining
satisfactory models.

Consistency of analysis results among cities having different sizes and habitat amount
The heterogeneity of city sizes, due to the varying radius of the disks containing 20 % of

artificial areas, had negligible effects on the results. In the supplementary materials, we provide
the same figures as included in this section plotted separately after splitting the urban areas
in 4 quartiles based on their total area (Supporting information 2 - Figures S5, S6, S7, S8, S9,
and S10). Similarly, the results were highly consistent when considering cities including varying
total habitat areas (Supporting information 2 - Figures S11, S12, S13, and S14). Finally, in the
few cities where the connectivity of UGS was higher than that of forests due to small forest
areas, allelic richness contrasts were consistent with the ones observed for the whole set of
cities in scenarios 2 and 3 (Supporting information 1 - Table S3). However, in these cities, under
the scenario 1, UGS and UGS interface patches tended to maintain higher diversity levels than
forest patches.
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Discussion
We simulated the genetic structure of urban tolerant forest species occupying forests and

urban green spaces in 325 European cities, while varying species abilities to cross the least favor-
able areas.We thereby found that in urban contexts, variations in dispersal movement behaviors
alone can shape highly variable genetic diversity contrasts between habitat types and isolation
by landscape resistance patterns. The substantial variations in simulated genetic responses be-
tween forests and urban green spaces could be due to their connectivity differences, reflecting
their respective extent, spatial configuration and location within the urban matrix. These results
were obtained without making any assumption regarding the respective quality of these habitats
in our simulations. Urban ecologists should thus bear in mind the strong influence that dispersal
between urban habitats exhibiting different spatial distributions can have on genetic patterns
when assessing the relative influence of dispersal, adaptation, resource availability or biotic in-
teractions on species responses to urban environments. Our results also provide insights into
connectivity modeling and biodiversity conservation in these contexts.
Variations in dispersal constraints can shape highly contrasted genetic patterns

In our simulations, as dispersal across the least favorable land cover types became more
costly, genetic diversity tended to decrease in both forest and UGS, and genetic differentiation
tended to increase between populations. Although overall genetic responses, such as the mean
allelic richness, differed among cities, variations among cost scenarios for a given city were rel-
atively consistent. Contrasts were mainly due to differences of total habitat areas and number
of patches, which determined the number of populations and individuals, and consequently the
intensity of drift in each city. In urban contexts, differences in effective population sizes among
species are known for being an important driver of the variability of their genetic responses
(Schmidt et al., 2020), and are frequently invoked as the main driver of genetic diversity (Miles
et al., 2019). However, these population size differences do not explain the strongly contrasted
genetic responses among cost scenarios we obtained for a given city because the number of
individuals in each population stayed constant whatever the scenario. Thus, only gene flow vari-
ations can explain these contrasts.

The resistance of artificial areas, roads and water bodies to species dispersal varied accord-
ing to the cost scenario, but the total cost-distance that a fixed proportion of individuals could
cover at each generation did not vary. In other words, the scenarios essentially modified the
spatial pattern of dispersal movements, but not the effective distance they could cover. Conse-
quently, for a given number of dispersing individuals, dispersal paths crossing unfavorable land
cover types became less likely to be followed from scenario 1 to 3 because the cost of paths
crossing other land cover types (e.g., grasslands, agricultural areas) remained the same whatever
the scenario. Our results thus reflect the potential genetic responses of several species having
the same individual density within patches, the same absolute dispersal abilities, and dispersal
rates, but different dispersal behaviors in urban environments. It is noteworthy that simulated
variations in the spatial pattern of dispersal can reproduce the inter-specific variability of pat-
terns of genetic diversity and differentiation commonly observed in empirical landscape genetic
studies (as reviewed by Fusco et al. (2021) and Miles et al. (2019)). For instance, the very subtle
differences in genetic diversity simulated under the scenario 1 recall the empirical results of Khi-
moun et al. (2020). In contrast, the sharper differences simulated under the scenario 3 are akin
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to the significant genetic contrasts between urban and non-urban settings observed by Delaney
et al. (2010) in several species. Although our results do not provide an explanation for these
specific empirical findings, they show that differences in dispersal patterns could be sufficient to
generate similar genetic patterns.

When drift intensity is constant but the spatial pattern of gene flow changes, the relative
influence of drift and gene flow on genetic differentiation is logically modified in a different way
according to the respective location of populations. Variations in the spatial range at which the
relationship between genetic differentiation and cost-distances was the strongest revealed how
contrasted genetic differentiation patterns were across scenarios. Indeed, when gene flow was
not strongly restricted across artificial areas, roads and water bodies, genetic differentiation only
increased progressively as cost-distance increased, producing a continuous pattern of genetic
variations at the scale of the entire urban areas. This pattern is similar to the case I IBD pattern,
according to the typology by Hutchison and Templeton (1999), and suggests that stepping-stone
dispersal movements can prevent strong genetic differentiation in species with good abilities to
disperse within cities. On the contrary, this pattern was only apparent between subsets of pop-
ulations in scenario 2, and genetic differentiation increased more strongly with cost-distances.
This corresponds to the case IV IBD pattern, according to Hutchison and Templeton (1999), and
indicates that considering species having intermediate abilities to move across cities, the con-
tinuous and progressive increase of genetic differentiation resulting from dispersal limitation
is only observed at small scales, within well connected subsets of populations. Finally, when
dispersal movements in unfavorable areas were highly constrained, the relationship between ge-
netic differentiation and cost-distances flattened out because drift became the main driver of
the genetic response, and not gene flow anymore, which somehow recalls the case III IBD pat-
tern described by Hutchison and Templeton (1999). In sum, changes in dispersal cost scenarios
led to contrasted genetic differentiation patterns because they modified the relative frequency
of dispersal events over each path connecting two populations. In other words, they rewired
dispersal networks. The consequences of these changes in dispersal spatial patterns reinforce
previous calls for a better consideration of population network topology in landscape genetics
(Savary et al., 2021a; Van Strien, 2017).

In landscape genetics, unbridgeable barriers to dispersal are commonly inferred by identifying
landscape features separating spatially structured genetic clusters of populations (Manel et al.,
2007; Safner et al., 2011). Interestingly, our results show that genetic modules best reflected
the spatial structure of genetic differentiation patterns in the second cost scenario, and not in
the third one, which exerted the strongest constraints on dispersal movements. We could have
expected the opposite and this suggests that there is an analytical limit in our ability to detect
barriers to dispersal when gene flow is so constrained that drift is the main driver of genetic
differentiation.

Several studies have evidenced that other processes than gene flow drive different popula-
tion dynamics and individual fitness in urban populations as compared with non-urban ones. For
example, urban bird populations can feed onmore diverse food items, sometimes at the expense
of their quality (Sinkovics et al., 2021), and can exhibit shifted and/or more variable phenotypes
(Thompson et al., 2021), due to plasticity or genetic adaptations. If our results do not deny the
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existence of these well-known processes, they nonetheless call for a better consideration of dis-
persal spatial patterns when inferring the respective influence of different drivers of population
genetic structure in urban areas.
Influence of the spatial distribution of multiple urban habitat types

Forest populations tended to maintain a higher genetic diversity than UGS populations and
to be less differentiated than pairs of UGS populations. Besides, genetic differentiation levels
measured between these two types of habitats were intermediate, as compared with the high
and low levels measured within UGS and forest patches, respectively. Similar genetic responses
to urbanization have already been empirically observed in several species, from birds and reptiles
(Delaney et al., 2010), to rodents (DeMarco et al., 2021; Gortat et al., 2015) and larger mammals
(Stillfried et al., 2017; Wandeler et al., 2003). In our simulations, they mainly stem from the fact
that the contribution of forest areas to the overall amount of reachable habitat was much larger
than that of UGS inmost cities. Besides, UGS patches are usually smaller and also harder to reach
due to their locationwithin the urban fabric. This explainswhy, except in scenario 1, even in cities
where UGS contributed more to the amount of reachable habitat than forests, similar genetic
contrasts were observed. These differences in terms of area and connectivity between UGS and
surrounding natural areas provide a likely explanation to previous empirical observations in urban
landscape genetics, as habitat amount and connectivity are often mentioned as key drivers of
urban biodiversity (Beninde et al., 2015).

The stronger relative isolation of UGS was also apparent in the genetic clustering pattern. In
the second cost scenario, we observed that forest and UGS populations tended to form separate
genetic clusters. This sub-structuration of genetic differentiation patterns within the urban core
areas had also been empirically evidenced in striped field mouse populations in Warsaw (Gortat
et al., 2015) or in wild boar populations in Berlin (Stillfried et al., 2017).

However, we also observed that the presence of habitat patches well connected to patches
of another habitat type seemed to locally buffer these differences among habitat types by pro-
moting gene flow at the interface between forest and UGS. Therefore, the connectivity analyzes
and genetic simulations together suggest that peri-urban and less anthropized areas can be im-
portant sources of biodiversity in cities when they are connected to intra-urban habitat patches,
in accordance with previous simulations (Snep et al., 2006) and empirical observations (Stillfried
et al., 2017). The corollary of this is the potential sink role of UGS, as previously raised by Lepczyk
et al. (2017) and Verrelli et al. (2022). This could have a negative influence on the long-term per-
sistence and genetic adaptation of wild populations both within and outside cities, and remains
to be investigated.
Implications for biodiversity management in urban areas

Making urban planning policies compatible with the conservation of biodiversity is crucial.
These policies are commonly based on biodiversity surveys and on the conservation of so-called
"green infrastructures", including several types of natural areas, UGS and the corridors connect-
ing them. Our results stress several points that should deserve more attention in that context.
First, genetic diversity and connectivity differences between forest and UGS were substantial
regardless of the spatial extent of the city under consideration. In most cases, the largest habitat
areas and biodiversity levels are to be found in natural areas surrounding city centers and not in
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UGS. This should encourage planners to consider large areas including the most biodiverse and
favorable places to wildlife, often located at the periphery of cities.

Our connectivity analyzes and genetic simulations in 325 European cities also suggest that
urban planners should identify habitat interface areas and consider them as "gateways" through
which species can move from less to more anthropized habitats, as suggested by Gortat et al.
(2017). We could also expect these areas to play a crucial role for maintaining species diversity
within cities as long as gene flow and drift effects affect single species genetic structure in a
comparable way as colonization and extinction processes affect species diversity (Vellend and
Geber, 2005).

Finally, our results confirm that species which can hardly move across artificial areas and
roads will not maintain high levels of genetic diversity within cities. This can explain why some
species are very rarely observed in urban areas, but this could also mean that urban populations
of some species are already engaged in a local extinction vortex. As such, considering the long-
term effect of urbanization on genetic structure and its potential consequences for population
persistence is key for biodiversity management (Sarrazin and Lecomte, 2016), and particularly in
urban areas where these processes can be fast (Szulkin et al., 2020).
Limitations and perspectives

Our analyzes focused only on urban tolerant forest species occupying forest and UGS. These
species only represent a small proportion of urban biodiversity. Reproducing these analyses by
considering either specialist species using another type of habitat or more generalist species
could help obtain a broader picture of biodiversity dynamics in urban settings. Besides, most
forest patches were located at the periphery of cities, whereas UGS were more central, and this
peculiar spatial distribution largely affected our results. Assessing how the spatial distribution of
other types of urban and/or peri-urban habitats affects genetic patterns would also be needed.

For comparison purposes, we here assumed that UGS mapped by the Urban Atlas database
were suitable for urban tolerant forest species. However, habitat patches may not all be suitable
for these species and many other patches could fit their needs within cities (e.g., private wooded
backyards in residential areas). This limitation should encourage the use of fine-grained remote
sensing data to map urban habitats with more accuracy. Yet, acquiring such maps for a number
of cities providing sufficient statistical power in a standardized way remains a challenge.

Although the genetic simulations we carried out can help prioritize habitat patches in urban
planning context, they only reflect the potential genetic responses of a single species. These
simulations could be advantageously completed by empirical surveys for assessing whether they
closely reflect actual ecological processes. Our simulation framework could also be implemented
in areas where genetic data are already available for testing whether dispersal limitations can
explain the empirically observed genetic structure. Besides, adding to the simulation local habitat
features, and how they locally influence several species based on their niche optimum, breadth,
and competitive interactions (alike in the meta-community simulation framework of Thompson
et al. (2020)) could provide insights into species diversity patterns in urban areas. This could
help determine whether connectivity restoration measures are always positive for biodiversity
conservation in urban areas; which may not always be guaranteed when invasive species also
benefit from them.

Finally, although substantial differences among urban areas in terms of reachable amounts
of habitat (i.e., connectivity) probably explain most of the variability in genetic responses across

Paul Savary et al. 21

Peer Community Journal, Vol. 4 (2024), article e40 https://doi.org/10.24072/pcjournal.407

https://doi.org/10.24072/pcjournal.407


cities, we did not investigate the structural causes of these differences. Indeed, the interplay
of urban form with the spatial configuration of forest and UGS likely determines habitat con-
nectivity patterns and species genetic structure. Further research is needed for understanding
these relationships and providing broad guidance on urban planning at a time when increased
urbanization and biodiversity conservation too often seem incompatible.
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