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Figure S1: SEM and TEM images of primary submicronic particles of commercial LATP powder (a) ; results of ICP-OES chemical

analyses performed for this LATP powder and their comparison with the expected nominal composition (b)
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Figure S2: Rietveld refinements obtained for the pristine LATP powder and for the samples sintered by SPS at heating rates of



Table S1: Lattice parameters and cell volume determined by Rietveld refinement of XRD patterns

Sample a(A) c (A)
Pristine 8.505(2) 20.845(5)
LATP 50 °C/min 8.481(3) 20.884(9)
LATP 73 °C/min 8.4987(2) 20.8005(8)
LATP 100 °C/min 8.5028(3) 20.8048(7)
LATP 200 °C/min 8.4988(4) 20.794(1)
LATP 300 °C/min 8.4996(2) 20.7990(8)
(

LATP CS 800°C, 5h 8.5006(2) 20.8030(8)

V (A3
1305.8(6)
1300 (1)
1301.10(5)
1302.61(8)
1300.7(1)
1301.28(5)
1301.83(5)
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Figure S3: Evolution of the lattice parameters according to the heating rate applied during the SPS process (a) and lattice
parameters evolution as function of the aluminium content inside the NASICON LATP structure, adapted from the reference

1(b). The lines are given to guide the eyes.
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Figure S4 : Low temperature (30 K) X-band ESR powder spectra of sintered LATP (SPS 50°C/min) and simulated Ti** signals,

and calculated spectrum (sum of Ti**(A) and Ti**(B) signals).



Table S2: Chemical shifts (0), line widths (FWHM) and integrated intensities (I1) of the different ’Al MAS NMR signals observed

for the spectra collected for pristine LATP and samples sintered by SPS using heating rates of 50°C/min and 200°C/min.

AIOJ/AIO,
Composition AlOg (1) AlOg (2) AlO, (AIPO,) ratio
Sample 5 FWHM 11 [%] 5 FWHM Il [%] 5 FWHM 11 [%]
(ppm) (ppm) (ppm)

Pristne LATP ~ -1493 385 305  -175 1109 2442 3803 657 4508  0.82
SPS50°C/min  -14.85 368 5594 -17.73 864 2946 3848 515 146 047

SPS

oPS 1580 363 7395 -1824 743 1807 3802 563  7.98  0.08

200°C/min

The chemical formula proposed for LATP were determined as explained hereafter.

If we assumed that Al content is shared such as the material contains {y mol AIPO,4 for 1 mol Liy«xAlTi>.«(PO4)3},
the two Al-containing phases identified by XRD, and that we know in addition:

(i) From NMR, y/x
(ii) From ICP analyses that (x+y)/(2-x) = 0.3/1.7 or 2x + 1.7y = 0.6

It means that for:

- Pristine LATP: x = 0.18 and y = 0.14 and thus that the material is such as
{014 mol A|P04 for Li1_1sA|o,1gTi1,32(PO4)3}

- SPS50°C/min: x =0.26 and y = 0.04 and thus that the material is such as
{004 mol A|P04 for Li1‘26A|o,26Ti1_74(PO4)3}

- SPS200°C/min: x =0.281 and y = 0.022 and thus that the material is such as
{002 mol A|PO4 for Li1‘23A|o_28Ti1,72(PO4)3}
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Figure S5: Fit of 31P MIAS NMR spectrum collected for the sample sintered conventionally at 800°C during 5h. It is given as an
example to highlight the complexity of the fitting. The attribution of each contribution was done based on Arbi et al. work?.
The blue, green, purple and orange contributions are associated to P(OTi)s, P(OTi)s(OAl);, P(OTi);(OAl); and P(OTi);(OAl)3
environments respectively. The one corresponding to P(OAl), is obtained only for Li;.AlxTi»x(PO4)3 compositions richer in Al (x

>0.3).



Table S3: Chemical shifts (9), line widths (FWHM) and integrated intensities (11) of the different ’Li MAS NMR signals observed

for the spectra collected for pristine LATP, as well as samples sintered by SPS using heating rates of 50°C/min and 200°C/min.

Composition

Li1 LATP Li3 LATP
Sample 5 (ppm) FWHM 11 [%] 5 (ppm) FWHM 11 [%]
Pristine LATP -1.04 0.47 75.15 -0.62 2.16 24.85
SPS 50°C/min  -1.02 0.42 54.5 -0.94 2.54 455
SPS 200°C/min  -1.27 0.22 48.64 -1.18 0.25 51.36
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Figure S6 : Raman spectra of LATP pristine powder and samples sintered by SPS at heating rates of 50°C/min, 100°C/min and
200°C/min, obtained with a 532 nm laser in the range of 100 to 1200 cm™ with an acquisition time of 15 s and 160

accumulations. (b) and (c) are enlargements of the spectra given in (a), but set at the same background reference level.

This figure shows the comparison of the Raman spectra of the different samples studied:
pristine LATP, and samples sintered by SPS at heating rates between 50°C/min and
200°C/min. The Raman modes have for all the samples similar shapes and same positions
between 100 cm" and 1200 cm-'. However, compared to those collected for the pristine LATP
powder the Raman modes of the sintered samples are broader, suggesting an increasing
content of AI** inside the NASICON framework. Indeed, Cretin et al.” have shown that the
partial substitution of Al for Ti inside the NASICON structure involves a general enlargement
of the Raman spectra due to distortion of the octahedral ((Ti/Al)Os) and tetrahedral (PO.) sites.
The higher the heating rate during the sintering by SPS, the higher are the relative intensities
of the v1 bands at 969 and 992 cm™! versus that of the v3 band at 1010 cm™'. This evolution is
linked to the increase of Al content inside the structure, which induces local disordering around
the PO4* anions. The peaks at 438 and 450 cm-! can be ascribed to M-O symmetric bending

motions (v2), whereas bands below 400 cm arise from external modes'*.
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Figure S7: Impedance data collected at 25°C for LATP samples sintered by SPS at heating rate of 50°C/min before and after re-
oxidation heat treatment (a). The complex impedance data shown here have been normalized regarding the shape factor of

each sample for comparison purposes.
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