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(Dated: October 29, 2021)

It is well known that the fluid-particle acceleration is intimately related to the dissipation rate
of turbulence, in line with the Kolmogorov assumptions. On the other hand, various experimental
and numerical works have reported as well its dependence on the kinetic energy. In this paper,
I present the statistics of the fluid-particle acceleration conditioned on both the local dissipation
rate and the kinetic energy. It is shown that this quantity presents an exponential dependence
on the kinetic energy, in addition to the expected power law behavior with the dissipation rate.
The exponential growth, which clearly departs from the previous propositions, reflects the additive
nature of the kinetic energy, and gives the possibility to see the acceleration as a multiplicative
cascade process integrating the effects of sweeps by the flow structures along the fluid-particle
trajectory. I then propose scaling laws for the Reynolds number dependence of the conditional and
unconditional acceleration variance using the Barenblatt’s incomplete similarity framework. On the
basis of these observations, we introduce a vectorial stochastic model for the dynamics of a tracer in
turbulent flows. This model incorporates the non-Markovian log-normal model for the dissipation
rate recently proposed by Chevillard, as well as an additional hypothesis regarding non-diagonal
terms in the diffusion tensor. I will show that this model is in good agreement with direct numerical
simulations and presents the essential characteristics of the "Lagrangian turbulence" highlighted in
recent years, namely (i) non-Gaussian PDF of acceleration, (ii) scale separation between the norm of
the acceleration and its components, (iii) anomalous scaling law for the Lagrangian velocity spectra,
and (iv) negative skewness of the power increments, reflecting the temporal irreversibility.

I. INTRODUCTION

With the advances of experimental techniques and the increase in computing power of the last decades, remark-
able features of the dynamics of fluid particles in turbulent flows have been discovered. Among other things, the
measurement of the probability distribution of the acceleration of these tracers has been shown to be very clearly
non-Gaussian with a high frequency of observing very intense events [48, 60, 61, 89]. For moderate Reynolds num-
bers, it is relatively common to observe accelerations more than 100 times greater than its standard deviation. In
addition, the components of acceleration and its norm present very different correlation times, the ratio of these
characteristic times increasing with the Reynolds number [62, 63, 68] showing that the dynamics of the tracers is
influenced by the full spectrum of turbulence scales. On one hand, the acceleration has been shown to be directly
correlated with the local dissipation rate of turbulence [12, 36, 75, 94], in accordance with Kolmogorov’s hypotheses.
On the other hand, various experimental and numerical works have also reported its dependence on local kinetic
energy [1, 11, 14, 24, 60, 75, 84], attributed somehow to the sweeping of small scales by large-scale flow [19, 86, 93].
The absence of proper scale separation explains that the Lagrangian correlation functions present power laws with
anomalous exponents and which can be described by the multifractal formalism [2, 10, 21, 51, 82] as the signature
of intermittency and persistence of viscous effects. To end this list, we mention the asymmetry of the fluctuations of
the mechanical power received or given up by a fluid particle reflecting the temporal irreversibility of its dynamics
[26–28, 72, 91].

Such complex phenomenology must be attributed to the collective and dissipative effects. Indeed according to the
Navier-Stokes equation, the acceleration of a fluid particle is essentially given by the pressure field which is determined
by all the other particles [25]. Moreover, although the Laplacian term in the Navier-Stokes equation is of order Re−1

smaller than the pressure gradient term, the viscosity cannot be neglected. Indeed, as a small force integrated over
a long period could be significant, the viscosity insidiously affects the fluid tracer velocity. Which in turn influences
the particle acceleration through modification of the pressure gradient. This is manifested by the persistence of the
Reynolds number effect on the acceleration statistics, even for very large Reynolds. Such a scenario is supported by
[22, 23, 66] who showed that adding noise to an inviscid Lagrangian flow leads to irreversibility of the dynamics.

Following the Kolmogorov first hypothesis [44, 46] stating that locally homogenous turbulent flows are universal, it
should be possible, in principle, to propose a stochastic model that reproduces the dynamics of a single fluid particle
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by effectively accounting for the interactions with all the other fluid particles. Let us note that the Kolmogorov first
hypothesis received some support from recent studies [15, 52, 85]. In order to propose such a stochastic model, our main
assumption in this paper is to write the increments of the acceleration vector of a fluid particle as dai = Midt+DijdWj .
Both M and D depend on the particle acceleration a and velocity u, which is simply given by the kinematic relation
of a fluid particle ui =

∫
aidt. It is indeed a necessary condition that a depends on u to limit the diffusion in velocity

space and have statistically stationary dynamics of the fluid particle. We will propose closed expressions for M and
D from basic consideration using as a starting point the acceleration statistics conditioned on both the local value of
the dissipation rate and the kinetic energy observed from direct numerical simulations (DNS) and presented as well in
this paper. It will be shown that introducing a "maximal winding hypothesis" associated to a non-diagonal diffusion
tensor, this simple stochastic model reproduces all the statistical feature of the Lagrangian dynamics presented above
without any adjustable parameter.

Let us first review some previous work on the stochastic modeling for the Lagrangian dynamics (see also [1]). Among
the pioneering works, Sawford [80] proposed a scalar Gaussian model for the acceleration presenting a feedback term
proportional to the velocity. Pope and Chen [71] devised a Langevin like equation for the velocity coupled with a
log-normal model for the dissipation through the introduction of conditional statistics. Similarly [9, 73, 74] proposed
an extension of the Sawford model leading to a non-Gaussian scalar model for the acceleration. This work was further
refined by [49] who also advanced a non-Gaussian scalar model for the dynamics prescribing ad hoc shape of the
conditional acceleration statistics with the dissipation along with a linear dependence on the velocity. The model
introduced in [76] describes increments of the derivative of acceleration in a so-called third-order model to better
account for the Reynolds number dependence on the acceleration statistics. Recently [88] proposed generalization
to an infinite number of layers leading to smooth 1D trajectory along with a multifractal correction to account for
intermittency, as introduced in [3, 43, 56]. An acceleration vector model has been proposed in [77] by imposing
empirical correlation between velocity and acceleration, with additive noise leading to Gaussian statistics for the
acceleration. Likewise, [70] presented a 3D Gaussian model, with linear dependence on the velocity as well as an
extension to non-homogenous flows. In order to account for intermittency effect, in [33, 78, 97] the 3D acceleration
vector is given by the product of two independent stochastic processes, one for the acceleration norm the other
for its orientation, In this model the velocity feedback on the dynamics was realized by a coupling with large eddy
simulation framework. To summarize, to our knowledge, a vectorial model for the tracer dynamics that is autonomous
and reproducing the essential features of Lagrangian turbulence (irreversibility, non-Gausianty, multifractality) has
not yet been proposed.

The essential building block of previously cited models is the conditional acceleration statistics. Previous studies
have focused on conditional statistics with either the velocity or the dissipation rate separately. From the extensive
analysis of [94], one can conclude that the acceleration variance conditioned on the dissipation rate ε present power
law behavior for large values of ε with a Reynolds number dependent exponent.

Regarding the links between the fluid particle acceleration and their velocity, Biferale et al. [11] argue that according
to the Heisenberg – Yaglom scaling for the acceleration 〈a2〉 ∼ a2

η = 〈ε〉3/2ν−1/2 = 〈K〉9/4L−3/2ν−1/2, with ν the
kinematic viscosity, K = 1/2uiui the kinetic energy and L the characteristic size of large structures, one should
expect that the variance of the velocity-conditioned acceleration behaves like: 〈a2

n|K〉 ∝ K9/4. Then on the basis
of the multfractal formalism, they proposed a very close scaling law, 〈a2||u|〉 ∼ |u|4.6. The proposed relation was
observed to be in agreement with DNS for large velocity, typically |u| > 3σu with σu =

√
2/3〈K〉. These events

remain very rare since the PDF of the fluid velocity is Gaussian so the range of validity of the power law is, at best,
very limited. On the other hand, Sawford et al. [84] propose that 〈a2

x|ux〉 ∼ u6
x based on a mechanism involving

vorticity tubes. This scaling law which seems compatible with the first measurements of the acceleration conditioned
on velocity in [60], is confirmed neither by the DNS of [11] nor in a second experimental paper by Crawford et al. [24]
which gave more credit to the K9/4 law.

In this paper we study the acceleration statistics conditional on both the kinetic energy and the dissipation rate.
To our knowledge such doubly conditional statistic of the acceleration have never been presented. It will be shown
that the variance can be expressed as 〈a2|ε,K〉 ∼ exp(αK/〈K〉+ γ ln ε/〈ε〉). This result, which is clearly in contrast
with the previously proposed power law dependence on velocity, can be interpreted to propose scaling symmetry for
the fluid-particle acceleration incorporating effects of sweeps. We also propose to apply the incomplete similarity
framework introduced by Barenblatt to account for Reynolds number dependence and intermittency correction. That
enables to provide as well new scaling relations for the unconditional variance in good agreement with the DNS.
Eventually the doubly conditional statistic of the acceleration which gives a relation between the force, the energy
and the power will serve as corner stone to build the stochastic model for the dynamics of a fluid particle mentioned
above.

In section II we present the statistic of the acceleration conditioned on the local value of the dissipation rate
and kinetic energy obtained from DNS. Then we show that the Reynolds number dependence on the acceleration
conditioned on the dissipation rate can be described using the Barenblatt incomplete similarity. We deduce a new
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relation for the unconditional acceleration variances. To end this section, we show that these new results can be
interpreted as a multiplicative cascade for the acceleration with scale dependent sweeping effect. Then in section III
we give the derivation of the stochastic model for the single fluid particle dynamics taking as an initial step the doubly
conditional acceleration variance, and present the outcome of the model for the Reynolds number up to Reλ = 9000
along with comparison with DNS results when available.

II. SCALING LAWS OF THE ACCELERATION

A. Methodology

We present in this section results concerning the statistics of the acceleration of a fluid particle. These results have
been obtained from direct numerical simulations (DNS) of isotropic turbulence in a periodic box at a Taylor-scale
Reynolds number of Reλ = 250. We used pseudo-spectral code as detailed in [53, 95, 97]. The DNS was carried out
at a resolution of 10243, with the large scale forcing proposed by [47]. The statistics are computed from 40 3D-fields
sampled at roughly each eddy-turnover time.

We will show statistics of the acceleration conditioned by the dissipation rate and the kinetic energy. Note that
in this paper we consider the pseudo-dissipation ε̃ = ν(∂jui)

2, which is the second invariant of the velocity gradient

tensor multiply by the viscosity rather than the dissipation ε =
1

2
ν(∂jui+∂iuj)

2. We prefer to show here the statistics
of the pseudo-dissipation to be consistent with the next section of the paper, in which we will use the log-normal
distribution hypothesis for the dissipation. Indeed, this property is very well verified for the pseudo-dissipation whereas
it is only approximate for the dissipation [94]. Nevertheless, the statistics presented below have also been computed
considering the dissipation, ε, and no significant differences were observed. To lighten the paper, in the sequel, we
will drop the tilde in the notation of the pseudo-dissipation, as well, in the text, we will write dissipation instead of
pseudo-dissipation.

B. Conditional statistics given the dissipation and the kinetic energy

In order to illustrate the relationships between acceleration, energy dissipation and kinetic energy, we show in Fig. 1
visualizations of these quantities at the same instant obtained from our DNS. We notice that log a2/〈a2〉 and log ε/〈ε〉
show a fairly marked correlation. In addition, it seems that some areas of the flow where the kinetic energy is high
also correspond to regions of high acceleration magnitude.
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FIG. 1. Visualization of the instantaneous fields of the square of the acceleration, of the dissipation and of the kinetic energy
in a cut y − z of the flow by DNS at Reλ = 250. (a): ln(a2/ < a2 >); (b): ln(ε/ < ε >) and (c): K/ < K >.

Figure 2 presents the variance of the acceleration of a fluid particle conditioned to the local value of the kinetic
energy and the dissipation rate: 〈a2|ε,K〉. In Fig. 2 (a), the levels of the logarithm of the conditional variance are
shown as a function of K and of ε. We see that the conditional variance of the acceleration depends on these two
quantities and that the dependence on K seems somewhat similar to that of ln ε. In a more quantitative way, we show
in Fig. 2 (b) the variance of the acceleration as a function of ε for different values of K. We can see that the shape of
the curves remains globally unchanged when K varies and also presents the same shape as the variance conditioned
by ε only as also presented in this figure. Essentially, it is observed that the conditional variance presents power law
behavior for ε� 〈ε〉 with an exponent close to 3/2. As discussed in more details below, we observe a slight deviation
of the scaling law compared to the acceleration conditioned only by the dissipation.
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FIG. 2. Variance of acceleration conditioned on the local dissipation rate and kinetic energy obtained from DNS at Reλ = 250.
(a) Map of log〈a2|ε,K〉/〈a2〉 versus log ε/〈ε〉 and K/〈K〉. (b) Plot, in logarithmic scales, of 〈a2|ε,K〉/a2η against ε/〈ε〉 for
K/〈K〉 = 0.025, 0.1, 0.5, 1, 2, 3, 5, 6.5 ± 30% from black to orange. Comparison with 〈a2|ε〉/a2η in gray dashed line and with
the power law (ε/〈ε〉)3/2 in gray dotted line. (c) Plot, in semi-logarithmic scales, of 〈a2|ε,K〉/a2η against K/〈K〉 for ε/〈ε〉 =
0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ± 30% from black to orange. Comparison with 〈a2|K〉/a2η in gray dashed line and with
exp(αK/〈K〉) with α = 1/3 in gray dotted line.

Figure 2 (c) shows the variance of the acceleration as a function of K for different values of ε. As expected, we find
that the variance of the acceleration increases with K. We clearly notice an exponential growth of the variance over
the whole range of K with a growth rate α which appears independent of ε:

〈a2|ε,K〉 = cεa
2
η exp(αK/〈K〉) (1)

with a2
η = 〈ε〉3/2ν−1/2 = 〈ε〉/τη the so-called Kolmogorov acceleration and the prefactor cε depending on ε. From

our DNS it appears that α ≈ 1/3. Note that we find the same value of α from the database of [8, 50] obtained for
Reλ = 400 suggesting that the value of α is independent of the Reynolds number. We do not show these results,
because the statistical convergence is not ideal.

This exponential behavior contrasts with the references mentioned in the introduction in which power laws behavior
for the variance conditioned on K solely had been proposed. Nevertheless, we can notice that exponential growth
does not seem to disagree with the data presented in these references. Interestingly, this relationship only depends on
a characteristic velocity, not time or length scale separately. The absence of characteristic time is attributed to the
scale separation between large structures and small ones, such that the large structures of the flows appear as quasi
stationary and infinite to the smallest one and only their velocity matters.



5

10-3 10-2 10-1 100 101 102

ε/
〈
ε
〉

100

101

102

103

〈 a2 |ε
,K
〉 /a2 η

A
ex

p
(α
K
/〈 K〉

)

0 2 4 6 8 10

K/
〈
K
〉

100

101

102

〈 a2 |ε
,K
〉 /〈 a

2
|ε
,0
〉

FIG. 3. Normalized Variance of acceleration conditioned on the local dissipation rate and kinetic energy obtained from DNS
at Reλ = 250. (a) Plot of 〈a2|ε,K〉/Aa2η exp(αK/〈K〉) against ε/〈ε〉 for various values of K. Comparison with 〈a2|ε〉/a2η in
gray dashed line and with the power law (ε/〈ε〉)3/2 in gray dotted line. (b) Plot of 〈a2|ε,K〉/〈a2|ε,K = 0〉 against K/〈K〉 for
various values of ε/〈ε〉. Comparison with 〈a2|K〉/a2η in gray dashed line and with exp(αK/〈K〉) with α = 1/3 in gray dotted
line The ranges for the fixed values of K and ε for both plots are the same as in Fig. 2.

In appendix A we show that assuming that the fluctuations of the kinetic energy are independent of the fluctuations
of the dissipation rate and that the velocity components of a fluid particle are Gaussian and independent, one can
estimate the factor cε as :

cε ≈ A 〈a2|ε〉/a2
η (2)

where A =

(
1− 2

3
α

)3/2

, which is equal to A = 7
√

7/27 ≈ 0.686, for α = 1/3, neglecting the small logarithmic

dependence on ε/〈ε〉.
Consequently, for large Reynolds numbers, the doubly conditioned variance of the fluid-particle acceleration is

expressed as

〈a2|ε,K〉 = A 〈a2|ε〉 exp(αK/〈K〉) (3)

This relation is confirmed in Fig. 3 which presents the conditional variance of the acceleration normalized by
Aa2

η exp(αK/〈K〉) as a function of ε for different values of K as well as normalized by A〈a2|ε〉 = 〈a2|ε,K = 0〉
as a function of K for different values of ε. It can be seen that a fairly good overlap of the various curves is obtained,
confirming the self-preserving character of the acceleration conditioned on both the kinetic energy and the dissipation
rate.

C. Similarity of the conditional statistics given the dissipation

We propose now to focus with more details on the scaling law of the acceleration variance conditioned on the
dissipation rate only 〈a2|ε〉. For that we consider the DNS data from Yeung et al. [94], along with our DNS data.
Figure 4(a) presents the conditional acceleration variance for Reynolds numbers in the range Reλ = 40 to 680. We first
notice that for weak values of the dissipation rate (ε � 〈ε〉) the value of the conditional acceleration variance tends
towards an asymptotic value, which depends on the Reynolds number. The saturation of the conditional acceleration
can be attributed to the effect of the sweeping by the large structures of the flow which dominates in low dissipative
regions. We denote by a2

0 the asymptotic value of the conditional variance:

a2
0 = lim

ε→0
〈a2|ε〉 (4)

Assuming that the acceleration of fluid particles in low dissipative regions is mainly influenced by large scales, we can
estimate a2

0 as a2
0 ∼ 〈K〉/τ2

L with τL the integral time scale of the flow. This leads to the following estimate:

a2
0/a

2
η ∼ τη/τL ∼ Re−1

λ (5)
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We test this scaling law for a0 in Fig. 4(b) by presenting a2
η/a

2
0 as a function of Reλ from the different DNS

datasets. We observe a linear growth rate of a2
0/a

2
η with 1/Reλ. More specifically, from the DNS we estimate

a2
0/a

2
η ≈ (0.005Reλ + 1.5)−1.

For large values of ε, we notice in Fig. 4(a), as already reported in [94], that the conditional variance presents a
power law behavior with ε. However, the exponent of this scaling law is seen to evolve continuously with the Reynolds
number, and seems to tend asymptotically towards ε3/2. By dimensional analysis we can define f as:

〈a2|ε〉
ε3/2ν−1/2

= f(ε/〈ε〉, Reλ) (6)

In the inset of Fig. 4(a), it is seen that f seems to admit an asymptotic constant value for ε� 〈ε〉 only in the limit
of very large Reynolds number. This is reminiscent of the incomplete similarity framework proposed by Barenblatt
[4–6]. Following Barenblatt, we assume that f presents an incomplete similarity in ε/〈ε〉 and absence of similarity in
Reλ. Accordingly we write

f(ε/〈ε〉, Reλ) = B (ε/〈ε〉)β (7)

where the anomalous exponent β, and the prefactor B are both functions of Reλ. Arguing for a vanishing viscosity
principle, Barenblatt further proposed that the critical exponent presents inverse logarithmic dependence on Reλ,
which is also in agreement with the log-similarity proposed by [18, 29]. Expending β and B in power of 1/ ln(Reλ)
yields, keeping only the leading-order term in Reλ:

β = β0 + β1/ lnReλ (8)
B = B0 +B1/ lnReλ (9)

To have a finite limit, consistently with the vanishing viscosity principle we have β0 = 0. The remaining con-
stants B0, B1 and β1 are then determined by comparison with the DNS data. From the inset of Fig. 4(a) we
see that both β and B are increasing function of Reλ. In Fig. 5(a) we assess the relation (7)-(9) by plotting

χ =
1

3/2 + β
ln(1/B 〈a2|ε〉/a2

η) against ln(ε/〈ε〉) for various Reynolds numbers. It is observed that with B0 = 5.8,

B1 = −20 and β1 = −4/3, all the DNS data collapse on the line χ = ln(ε/〈ε〉) (the bisectrix of the graph) for ε� 〈ε〉,
validating the scaling relation.

We can go a step further by introducing χ0 as χ0 = limε→0 χ =
1

3/2 + β
ln(1/B a2

0/a
2
η). Then, evidently χ− χ0 =

ln
(
〈a2|ε〉/a2

0

)1/(3/2+β) would give 1 in the low dissipative regions (ε� 〈ε〉 ) and for ε� 〈ε〉, χ−χ0 should collapse on
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139, 238, 385, 680, and green continuous line for our DNS at Reλ = 250. Comparison with the line χ = ln ε/〈ε〉 in gray dashed
line. (Right) Evolution of

(
〈a2|ε〉/a20

)1/(3/2+β) against ε/〈ε〉 (Ba2η/a20)1/(3/2+β) for the various Reynolds number. Inset: plot of(
〈a2|ε〉/a20

)1/(3/2+β) − 1 against ε/〈ε〉
(
Ba2η/a

2
0

)1/(3/2+β).
in the line ln(ε/〈ε〉)− χ0 = ln

[
ε/〈ε〉

(
Ba2

η/a
2
0

)1/(3/2+β)
]

= ln ζ. This is seen in Fig. 5(b) that presents the evolution

of
(
〈a2|ε〉/a2

0

)1/(3/2+β) against ζ for the various Reynolds numbers considered here.
Moreover it is interesting to note that the curves are all overlapping even for intermediate values of ε, suggesting

that the conditional acceleration variance can be cast in a self-similar form:

〈a2|ε〉 = a2
0 (φ(ζ))

3/2+β (10)

with φ a universal function of only one argument φ = φ(ζ) with the asymptotics φ(ζ) = 1 for ζ � 1 and φ(ζ) = ζ for
ζ � 1. Making a Taylor expansion of φ around ζ = 0 and using a matching asymptotic argument, simply yields to
φ(ζ) = 1 + ζ. It is seen in the inset of the Fig. 5(b) that the proposed expression for φ gives a good approximation of
the data over the whole range of ε. We can indeed observe more than 5 decades of quasi-linear growth of χ− χ0 − 1
with ζ.

The non-dimensional function f introduced in (6) can, in consequence, be express as:

f(ε/〈ε〉, Reλ) = B (ε/〈ε〉)β
(

1 +
1

ζ

)3/2+β

(11)

where the term within the brackets is interpreted as a correction factor for small dissipative regions. Accordingly, we
obtain the following expression for the conditional acceleration variance:

〈a2|ε〉 = Ba2
η

((
1

B

a2
0

a2
η

)1/(3/2+β)

+
ε

〈ε〉

)3/2+β

(12)

As the parameters β and B are slowly evolving functions of Reλ, the expressions for β and B remain speculative since
their proper validation would require a much larger range of Reynolds numbers.

D. Reynolds number dependence of the unconditional acceleration variance

Assuming the distribution of dissipation, we can integrate relation (12) to obtain the unconditional variance 〈a2〉 =∫
〈a2|ε〉P (ε)dε and thus propose an alternative formula to the empirical relation proposed in [35, 84, 94]. We consider

that ε/〈ε〉 presents a log-normal distribution with parameter σ2 ≈ 3/8 lnReλ/Rc with Rc = 10 as shown by [94] from
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DNS data, consistently with the proposition of Kolmogorov and Oboukhov [46, 64]. Notice nevertheless that other
expressions for σ2 have been proposed in the literature reflecting the vanishing viscosity limits [5, 17]. Taking for
〈a2|ε〉 the expression (12) we perform the integration numerically with the expression (8) and (9) for β and B with
the values of B0, B1 and β1 and the expression of a2

0/a
2
η proposed above. The resulting evolution of the acceleration

variance with the Reynolds number is presented in Fig. 9. It is seen that the predicted acceleration variance is in
very good agreement with the DNS of [94] and is also very close to the relation proposed by [84]. The first term in
brackets in (12) is the footprint of the large-scale structures whose effects is vanishing as soon as the local dissipation
rate is larger than ε/〈ε〉 > (B a2

η/a
2
0)−1/(3/2+β) and therefore can be neglected when the Reynolds number is large

since a2
0/a

2
η ∼ 1/Reλ. In consequence for large Reynolds numbers, equation (12) reduces to:

〈a2|ε〉/a2
η = B

(
ε

〈ε〉

)3/2+β

(13)

With this expression the acceleration variance is simply estimated from the moments of the log-normal distribution
as:

〈a2〉
a2
η

= B (Reλ/Rc)
9/64+3β/8(1+β/2) (14)

This expression is also presented in Fig. 9 and is shown to converge to the previous estimate as the Reynolds number
increases. At Reλ ≈ 100 the two estimates for the variance differ by about 40% while there is about 15% of difference
at Reλ ≈ 500. Confirming that the a2

0 term is indeed vanishing at large Reynolds numbers. Both expression tends
asymptotically to the power law:

〈a2〉/a2
η = 2.54B0Re

9/64
λ (15)

where we have used (8) to write R−9/64
c B0 exp(3β1/8) ≈ 2.54 This expression is presented as well in Fig. 9, confirming

that the convergence to the power law is very slow.

E. Multiplicative cascade for the acceleration

Substituting (13) into (3), we can eventually estimate the doubly conditional acceleration variance for large Reynolds
numbers as:

〈a2|ε,K〉/a2
η = C exp(αK/〈K〉)

(
ε

〈ε〉

)γ
(16)

where C = AB with parameters A and B have been determined above and γ = 3/2 + β.
We complete the statistical description of the conditional acceleration by showing in Fig. 6, its probability density

function (PDF). In this figure we compare the PDF of the acceleration conditional on the dissipation and the kinetic
energy, with the PDF conditioned only by the dissipation and with the unconditional PDF obtained from our DNS at
Reλ = 250. All the PDFs are normalized by their respective standard deviation. It is observed that the conditional
PDFs present much less developed tails than the unconditional PDF. Moreover the doubly conditional PDFs overlap
with the simply conditional PDF, showing that conditioning by the velocity does not alter the shape of the PDF. As
well the shape is observed to be invariant for all values of ε, supporting the idea of a canonical distribution presented
in [16].

We end this section by discussing a multiplicative cascade model for the acceleration incorporating sweeping effects.
Fluctuations of the locally-space-averaged dissipation rate can be modeled by multiplicative cascades [45, 59, 92].
Such model proposes to express the local dissipation over a volume of size ` = LλN , with λ < 1 and L being the large
scale of the flow, as the product of N random numbers:

ε` = 〈ε〉
N∏
i=1

ξi (17)

For N large, this yields log-normal distribution of ε` assuming the ξi are independent and identically distributed (and
have as well finite variance). We propose likewise to write the squared acceleration, coarse-grained at scale `, as :

a2
` = a2

0

N∏
i=1

θi (18)



9

15 10 5 0 5 10 15

ax/ax′

10-7

10-5

10-3

10-1

101

103

p
d
f(
a
x
/a

x
′|ε
,K

)

FIG. 6. PDF of the acceleration conditional on the dissipation and the kinetic energy P (ai|ε,K) for various values of ε and K:
K/〈K〉 = 0.1, 1, 2.5 and 5± 30 from black to orange respectively and ε/〈ε〉 = 0.05, 0.3, 1, 5 and 10± 30% shifted respectively
by one decade upward. Comparison with the acceleration PDF conditioned only by the dissipation in gray dashed line, and
with the unconditional PDF in dotted gray line. Each PDF is normalized by its standard deviation. Data from our DNS at
Reλ = 250.

The scale-to-scale transformation factor θi is given by:

θi = k exp

(
α

〈K〉
1

2
u2
i

)
(ξi)

γ = k exp

(
α

〈K〉
1

2
u2
i + γ ln ξi

)
(19)

where ui is the velocity of eddies of size Lλi, which is also a fluctuating quantity. The exponential modulation is then
interpreted as the sweeping effect due to these structures.

With this expression we obtain for a2
` :

a2
` = a2

0k
N exp

(
α

〈K〉

N∑
i=1

1

2
u2
i + γ

N∑
i=1

ln ξi

)
(20)

Setting N = ln(η/L)/ ln(λ) ∼ lnReλ, η being the Kolmogorov length scales we have K =
∑N
i=1

1

2
u2
i due to the

additive nature of the kinetic energy. Thereby with k = (C a2
η/a

2
0)1/N and using (17), we obtain back (16) by taking

the conditional average of (20). The order of magnitude of the eddy velocities can be estimated from the Kolmogorov
relation (ε``)

1/3 showing that a priori the sum is dominated by the large scales but, on the other hand, because of the
intermittent behavior of ε` it may well happen that sweeping by small-scale structures can be dynamically important
as discussed in [19].

The dissipation presents large fluctuations leading to very important accelerations and therefore to a local increase
of the velocity. When the kinetic energy becomes significantly larger than on average, then the modulation of the
acceleration by the exponential term becomes preponderant, thus offering a feedback mechanism allowing obtaining
normal fluctuations of the velocity. This dynamic scenario involving a "self induce sweeping" which is only presented
qualitatively here, is developed in the next section. Note nevertheless that it appears consistent with the recent DNS
analysis of [67] showing that the particles undergo energy gains in intense dissipative regions.

III. STOCHASTIC MODELING OF THE FLUID-TRACER DYNAMICS

A. Model formulation

The foregoing multiplicative model suggests that the acceleration norm can be determined from the local kinetic
energy and dissipation rate:

a2 = f(K, ε) = a2
ηC

(
ε

〈ε〉

)γ
exp

(
α
K

〈K〉

)
(21)
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Both K and ε are considered as stochastic variables reflecting the very large number of degrees of freedom that control
them.

Considering that the increments of ε are independent of those of K, owing to the scale separation assumption in
large Reynolds number flows, we express the increments of a2 with a second order Taylor expansion in dK and dε as:

da2 = a2

(
α
dK

〈K〉
+ γ

dε

ε
+
α2

2

dK2

〈K〉2
+
γ(γ − 1)

2

dε2

ε2
+ γα

dK

〈K〉
dε

ε

)
(22)

We consider in a fairly general way that the dissipation ε follows a multiplicative stochastic process:

dε = εΠdt+ εΣdW (23)

where dW are the increments of the Wiener process (〈dW 〉 = 0 ; 〈dW 2〉 = dt). We specify the terms Π and Σ below.
Substituting (23) into (22) one obtains, at first order in dt following the Ito calculus:

da2 = a2

[
α

〈K〉
P + γΠ +

γ(γ − 1)

2
Σ2

]
dt+ γa2ΣdW (24)

We used the identity dK = uidui = uiaidt = Pdt where P is the mechanical power per unit of mass exchanged by
the fluid particle. Clearly even when Π and Σ are known (24) is not closed, as it remains to estimate P = aiui which
requires knowing ai and ui.

We introduce a vectorial stochastic model for the dynamics of a fluid particle. We are looking for a stochastic
process of the form:

dui = aidt (25)
dai = Midt+DijdWj (26)

with dWj the increments of the jth component of a tridimensional Wiener process (〈dWj〉 = 0 ; 〈dWidWj〉 = dtδij).
A priori the vector M and the tensor D depend on the vectors a and u =

∫
adt. Indeed, M must depend on u to

allow the particle velocity to reach a statistically steady state.
We will now propose expressions for Mi and Dij . For this, we want to impose, on the one hand, that the model

is isotropic (〈aiaj〉 = 0 for i 6= j) and that its norm a2 = aiai is compatible with the expression (24). We therefore
write the stochastic equation for a2

ij = aiaj deriving from (26), thanks to the Ito formula:

da2
ij = ajdai + aidaj + daidaj

= (Miaj +Mjai +DikDjk) dt+ (ajDik + aiDjk) dWk (27)

For the square of the norm a2 = aiai, we have:

da2 = (2aiMi +DijDij) dt+ 2aiDijdWj (28)

We will then proceed by identification between (28) and (24). We proceed in a similar way as [31] and [65] by
identifying first the square of the diffusion term and then the drift term.

1. Identification of the diffusion term and maximum winding hypothesis

Quite generally, we can decompose the diffusion tensor into:

Dij = c1δij + Sij + Ωij (29)

where Sij is a zero-trace symmetric tensor and Ωij is an antisymmetric tensor. The latter can be written as Ωij =
εijkωk with εijk the Levi-Civita permutation symbol and ωk a pseudo-vector. Sij must be zero in order to guarantee
the statistical isotropy of the acceleration. However, Ωij can be different from 0. Indeed, the experimental results of
[61] and numerical results of [68] have shown that the acceleration presents scale separation between the evolution
of the components and its norm, and that this separation can be introduced in modeling the evolution of the norm
and orientation vector [33, 79, 96]. Stochastic model for orientation can be formulated as diffusion process with a
rotational part in the diffusion tensor [33, 90]. The model for the dynamics (25) - (26) involving only two vectors a and
u we propose to form the pseudo-vector ω from these two vectors in order to keep a closed model: ωk = c2εklmalum.
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The model remains statistically isotropic and the chirality of the flow is not broken neither since the odd moments of
dWj are zero (Gaussian with zero mean). In other words the sign of c2 has no importance. We then have:

Dij = c1δij + c2(aiuj − ajui) (30)

It is to note that c1 and c2 are not constant, as we will see shortly.
By identifying the square of the diffusion term in (24) and (28) we find:

γ2(a2)2Σ2 = 4aiajDikDjk (31)

Expanding with the proposed expression (30) we find:

γ2(a2)2Σ2 = 4a2(c21 + c22(2a2K − P 2)) (32)

Which gives for c1:

c21 =
γ2

4
a2Σ2 − c22(2a2K − P 2) = a2

(
γ2

4
Σ2 − 2c22K

(
1− a2

T

a2

))
(33)

where we have introduced the tangential acceleration aT , as the projection of the acceleration vector in the direction
of the velocity vector: aT = aiui/

√
u2 = P/

√
2K. The equation (33) imposes a constraint on c2 in order to guarantee

the positivity of c21:

c222K <
γ2

4
Σ2 (34)

since 0 ≥ 1 − a2
T

a2
≥ 1. So in order to guarantee the positivity of c21 whatever K we conclude that c22 must be

proportional to 1/K. We then introduce the parameter cR as c22 =
γ2

4
Σ2 c

2
R

2K
with the constraint c2R ≤ 1. This gives

for c1:

c21 =
γ2

4
Σ2
(
a2(1− c2R) + c2Ra

2
T

)
(35)

Subsequently, we will only consider the limit cR = 1 corresponding to the maximum rotational part of the diffusion
tensor. We will discuss this choice in more detail below in section III C, when presenting the results.

Finally, from (30), and the expressions of c1 and c2, we write the components of the diffusion tensor as

Dij =

√
γ2

4
Σ2

[√
a2
T δij +

√
a2
N εijkbk

]
(36)

where we introduced aN the normal component of the acceleration: a2
N = a2 − a2

T and bk the bi-normal unit vector1:
bk = εklmulam/|εhijuiaj |.

Note that bk, aT and aN are not well defined when K = 0. However, when K = 0 we must have c2 = 0 and we will
therefore consider cR = 0.

2. Determination of the drift term

Identifying the drift term between (28) and (24) we get:

2aiMi +DijDij = a2

(
α

〈K〉
P + γΠ +

γ(γ − 1)

2
Σ2

)
(37)

1 To obtain this relation we notice that aiuj − ajui = εijkεklmalum and that the vector bk is the unit vector collinear to εklmalum: bk =

εklmalum/|εhijaiuj |, by expanding the norm we have: (εhijaiuj)
2 = 2a2K − P 2. We therefore write: εklmalum = bk

√
2a2K − P 2 =

bk
√
2K

√
a2 − a2T = bk

√
2K

√
a2N .
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From (36) the term DijDij is computed as 2

DijDij =
γ2

4
Σ2
(
2a2 + a2

T

)
(38)

We then have

aiMi = a2

(
α

2〈K〉
P +

γ

2
Π− γ

4
Σ2

)
− a2

T

γ2

8
Σ2 (39)

To go further we must now specify the terms Π and Σ used for the stochastic process for ε. Various models for
the dissipation have been proposed. Pope and Chen [71] proposed a simple model based on the exponential of an
Orstein-Uhlenbeck process (see appendix B 2). We rely here on the model proposed by Chevillard [20, 65]. This
non-Markovian log-normal model presents a logarithmic decrease in the correlation of ε consistent with the idea of a
turbulent cascade and a multiplicative process (see appendix B 1), unlike the Pope model which gives an exponential
decrease. As presented in appendix B 2 the drift and diffusion terms are written respectively as:

Π =
1

τε

(
− ln

ε

〈ε〉
+

σ2

2Λ2

(τε
τc
− Λ2

)
+
σ

Λ
Γ̂τε

)
(40)

and

Σ =

√
σ2

Λ2τc
(41)

with σ2 the diffusion coefficient, τε the correlation time of ε, τc the regularization time scale of the process, taken equal
to the Kolmogorov dissipative time τη, and Γ̂ represents the convolution of the Wiener increments with a temporal
kernel and Λ2 is a normalization factor. The expression for Γ proposed by [20, 65], and recalled in the appendix B 2,
applies to a scalar noise as seen in (23) whereas the acceleration model is based on a vectorial noise. We therefore
introduced Γ̂ that applied to the vectorial Wiener increments. For that we modify the definition of Γ by projecting
dW before convolving it:

Γ̂ = −1

2

∫ t

−∞

1

(t− s+ τc)3/2
PjdWj(s) (42)

By proceeding in a similar way to the technic proposed by [65], the projection operator is obtained by identification
between the diffusion terms of (24) and (28):

Pj =
2aiDij

γa2Σ
=

√
a2
T − aT
a2

aj + ej (43)

where we have used the relation recall in footnote 1 and ej is the unit vector tangent to the trajectory ei = ui/
√

2K.
It is interesting to remark that the rotational part of the diffusion tensor induces an asymmetry of the projector
between positive and negative power exchange since P =

√
2KaT .

Substituting Π and Σ in (39) by (40) and (41) we have

aiMi = a2

(
α

2〈K〉
P − γ

2τε

(
ln

ε

〈ε〉
+

1

2
σ2 − σ

Λ
Γ̂τε
))
− a2

T

γ2

8

σ2

Λ2τc
(44)

According to (21) we can write:

ln

(
ε

〈ε〉

)
=

1

γ

(
ln
a2

a2
η

− lnC − α K

〈K〉

)
(45)

2 DijDij =
γ2

4

a2T δijδij︸ ︷︷ ︸
3

+a2N εijkbkεijlbl︸ ︷︷ ︸
2δklbkbl

, and δklbkbl = 1 since b is a unit vector and with a2 = a2T + a2N we obtain the results.
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giving, once substituted into (44):

aiMi = a2

 α

2〈K〉

(
P +

K

τε

)
− 1

2τε

ln
(a2

a2
η

)
− lnC +

γ

2
σ2 − γ σ

Λ
Γ̂τε︸ ︷︷ ︸

−Γ̂∗


− a2

T

τc

γ2

8

σ2

Λ2︸ ︷︷ ︸
σ2
∗

(46)

In order to simplify the notations, we have introduced Γ̂∗ = γ
σ

Λ
Γ̂τε + lnC − γ

2
σ2 and σ2

∗ =
γ2

8

σ2

Λ2
in (46)

We can notice that the term P +
K

τε
=
dK

dt
+
K

τε
acts as a penalty term leading the correlation of the kinetic energy

to decay exponentially.
We then propose for Mi an expression compatible with (46). Proceeding by identification, we have the following

relation:

Mi =
α

2〈K〉

(
λaiP + (1− λ)a2ui + ai

K

τε

)
−ai

(
ln
(a2

a2
η

)
− Γ̂∗

)
1

2τε

−σ
2
∗
τc

a2
T

a2
ai +Bi (47)

Where we have introduced the vector Bi, such that Biai = 0, and the factor λ accounting for the indeterminacy
inherent in the "inverse projection". By assuming again that there are only two vectors at our disposal, we can take
Bi =

α

2〈K〉
λ′
(
Pai − a2ui

)
by introducing the factor λ′. Note that from the point of view of the projection, the factors

λ and λ′ are arbitrary in the sense that the scalar product of ai and (47) gives (46) whatever their value. We can
nevertheless notice that the terms involving λ and λ′ can be combined. This shows that the arbitrary choice in the
inverse projection or the addition of an orthogonal vector are equivalent, and we get by noting cu = λ+ λ′:

Mi =
α

2〈K〉

(
ai
(
cuP +

K

τε

)
− (cu − 1)a2ui

)
−ai

(
ln
(a2

a2
η

)
− Γ̂∗

)
1

2τε

−σ
2
∗
τc

a2
T

a2
ai (48)

We can notice that the terms of the first line correspond to the coupling with the velocity, those of the second take
account of the log-normal character of the dissipation and the last term is due to the rotational part of the diffusion
tensor. The diffusion term (36) becomes, with the expression (41):

Dij =

√
2σ2
∗

τc

[√
a2
T δij +

√
a2
N εijkbk

]
(49)

We have thus specified our stochastic model for the dynamics of a fluid particle. It is given by (25), (26), (48) and
(49).

B. Parameters and numerical approach

From a dimensional point of view, to determine the physical parameters of the stochastic model, one must specify
time and velocity scales as well as a Reynolds number. This amounts for example to imposing the average kinetic
energy 〈K〉, the average dissipation rate 〈ε〉 and the viscosity ν. Thus, from these physical parameters, we calculate
a2
η = 〈ε〉3/2ν−1/2, τη = 〈ε〉−1/2ν1/2. We can also get the Reynolds number based on the Taylor scale Reλ = u′λ/ν =

2
√

15/3 〈K〉/
√
〈ε〉ν with u′ =

√
2〈K〉/3 and λ2 = 15νu′2/〈ε〉. We then deduce the Lagrangian integral timescale τL

as τL = 0.08Reλτη from the DNS results reported by [34, 81].
The parameter σ2 is estimated using the relation given by [94]: σ2 ≈ 3/8 lnReλ/Rc with Rc ≈ 10 compatible with

the prediction of Kolmogorov and Obhoukov [46, 64]. We set as well α = 1/3 and γ = 3/2+β with β = −1.33/ lnReλ
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in accordance with the results of the DNS presented above. The prefactor C is computed as C = AB where

A =

(
1− 2

3
α

)3/2

≈ 0.686, B = 5.8− 20/ lnReλ as determined by DNS.

For simplicity we have used τc = τη and τε = τL. From τε and τη we calculate the value of Λ as explained in B 2.
Finally, for the parameter cu, which is the only free parameter of the model, we have determined numerically that
with cu = 5.22 the ratio K/〈K〉 is 1 on average for all values of the Reynolds number.

The sample paths of this model were obtained by numerical integration of the stochastic differential equation.
Numerical integration is made with an explicit Euler scheme by taking a time-step dt = τη,min/100 with τη,min =√
ν/εmax an estimation of the minimum dissipative time scale likely to happen during the simulation. This is

estimated from the log-normal distribution of the dissipation: τη,min = τη exp(−5.8σ/2 + σ2/4) by considering that
the probability that a random number following the normal distribution reaches a value of 5.8 standard deviation is
sufficiently low (see (B11)).

For the calculation of the convolution term Γ̂ appearing in (48) we propose in appendix B 3 an efficient algorithm.

C. Results

We show in Fig. 7 a realization of this process for Reλ = 1100. We see the temporal evolution of the components
of acceleration and velocity. There is a very intermittent acceleration with an alternation of periods in which the
acceleration of the fluid particle is almost zero with areas of very high activity. This results for the fluid-particle
trajectories, obtained by integration of the velocity xi =

∫
ui(t)dt, in long quasi-ballistic periods with typical length

of the order of the integral scale (L ≈ 〈K〉3/2/〈ε〉) and short term disruptions during which the trajectory rolls up on
itself.
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FIG. 7. One realization of the stochastic process for Reλ = 1100. Top left: evolution of the acceleration with time, ax: red,
ay: green, az: blue, |a|: black. Bottom left: evolution of the velocity with time, ux: red, uy: green, uz: blue, |u|: black. Right:
3D trajectory of a fluid particle obtained by time integration of the velocity.

We have simulated the stochastic model for 15 Reynolds numbers between Reλ = 70 and 9000. For each case we
have computed 26,000 realizations. The simulations are carried out over a period of 120τL, over which we exclude
a transitional regime of 20τL for the calculation of the statistics. In all cases, the initial value of the components
of acceleration and velocity are sampled from the normal distribution having a standard deviation of 10−9aη for the
acceleration and 10−9

√
2〈K〉/3 for the velocity. We can indeed notice from (48) and (49) that if the acceleration is

exactly zero, then the stochastic model predicts that the acceleration would remain so. However, it should be noted
that this event has a zero probability, and that for arbitrarily small, but non-zero, accelerations, the model presents
evolution towards a non-trivial stationary state. This is illustrated in Fig. 8 which presents the temporal evolution
of the variance of the velocity and of the acceleration for Reλ = 1100 calculated from all the realizations.
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FIG. 8. Evolution of the acceleration and velocity variance with time for Reλ = 1100 starting from an initial condition for the
acceleration and velocity with very small magnitude. Comparison in dashed gray line with the expected values: (14) for the
acceleration and the prescribe value of u′ =

√
2〈K〉/3 for the velocity.

Figure 9 shows the evolution with the Reynolds number of the variance of the acceleration and of the mean kinetic
energy in the stationary state. We see in this figure that the average kinetic energy is effectively equal, within the
statistical convergence, to the value prescribed to the model. Regarding the variance of the acceleration, we expect,
by construction of the stochastic model, that the predicted value follows the log-normal relation (14). We observe in
Fig. 9, that it is indeed the case, with only very slight deviation for the largest Reynolds numbers which we attributed
to numerical errors.
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FIG. 9. Evolution with the Reynolds number, in the stationary regime, of the kinetic energy normalized by the prescribed kinetic
energy K (left) and of the acceleration variance normalized by the Kolmogorov acceleration (right). Data from the Stochastic
model (black line with crosses) and comparison with the DNS data from [94] (gray dots), with the relation 1.9Re0.135λ (1 +
85Re−1.35

λ ) from [84] (gray dash dot line), with the numerical integration of 〈a2〉 =
∫
〈a2|ε〉P (ε)dε with 〈a2|ε〉 given by (12) and

P (ε) log-normal (continuous red line), with the relation (14) (red dashed line) and with the asymptotic power law (15) (gray
dotted line).

Figure 10 compares the autocorrelation for the components of the acceleration and for its norm calculated from
the stochastic model for Reλ = 400 with the calculations from the DNS of Toschi [8, 50]. It can be seen that the
characteristic times of these two quantities are very different and that it is in good agreement with the DNS. It should
be mentioned that the scale separation between the components and the norm results from the rotational part of the
diffusion tensor. It can indeed be tested that by choosing cR = 0 in equation (35) (corresponding then to a diagonal
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diffusion tensor) we do not find this scales separation.
Figure 10 also presents the evolution of the autocorrelation coefficient of the velocity components and the power.

It can also be seen here also that the agreement with the DNS is good. In Fig. 10, we also show the evolution of the
correlation lengths for these four quantities with the Reynolds number on the range Reλ = 70 − 9000 as predicted
by the stochastic model. It is seen that when the time shift is normalized by the Kolmogorov time the correlation
coefficient of the power and of the acceleration remains nearly unchanged, while the characteristic time scale of
the velocity is as expected τL. This confirms that the characteristic correlation times for velocity and acceleration
components are decoupled. We point out that this decoupling seems directly related to the use of the non-Markovian
model for the dissipation used in the derivation of the stochastic model. Indeed by using instead the model proposed
by [71] such a decoupling is not observed (but this is not shown to avoid lengthening this document). It should
also be noted that the non-Markovian model of [20] proposes a logarithmic evolution of the autocorrelation of the
dissipation in agreement with the underlying model of the turbulent energy cascade as discussed in appendix B. This
logarithmic evolution is also found for the correlation of the acceleration norm which exhibits a lower slope as the
Reynolds number increases, reflecting the absence of characteristic time for its evolution.

The characteristic correlation time for the velocity, the acceleration norm, the components of acceleration and the
power are τu =

∫
ρui(τ)dτ , τ|a| =

∫
ρ|a|(τ)dτ , ρai =

∫
|ρai |(τ)dτ and ρai =

∫
|ρP |(τ)dτ . It can be seen that the scale

for the norm of the acceleration and for the velocity normalized by the integral scale τL remain quasi-constant with
the Reynolds number and that the ratio between the correlation scale for the velocity and τL is of order 1, while the
correlation scales for a component of acceleration and for the power normalized by τL vary as 1/Reλ as expected.

We show in Fig. 11 the velocity spectrum for Reynolds numbers between Reλ = 400 and 9000, which we compare
with the DNS of [8] for Reλ = 400. We see a very good agreement between the DNS and the stochastic model. For
higher Reynolds numbers, we clearly see that a power law behavior develops at intermediate scales. We see that
the slope of the power law deviates from the Hinze spectra [87] predicted by dimensional arguments similar to those
presented by Kolmogorov, with spectra less stiff than ω−2. This shows that the proposed stochastic model leads to an
anomalous scaling reflecting the persistent influence of the Reynolds number on the inertial scales. We further notice
that the slope which develops at the intermediate scales are close to −2 + 0.14, where 0.14 is the exponent of the
asymptotic power law of the acceleration variance with the Reynolds number as determined in (15) (see also Fig. 9).
We see here a confirmation of the relation between the acceleration scaling and the anomalous scaling of the velocity
spectra proposed by [28].

We present in Fig. 12 the PDF of the velocity, and of the acceleration for Reλ = 400 ∼ 9000 as well as the
comparison with the DNS of [8]. First, we find that the velocity distribution is very close to the Gaussian distribution
for all Reynolds numbers, while the acceleration presents a much more stretched distribution. For Reλ = 400 the
acceleration PDF is in very good agreement with the DNS and for increasing the Reynolds number, the model predicts
an increase of the stretching of the tails. We also show in this figure the PDF of the velocity increments for different
time shifts δτui = ui(t+τ)−ui(t). We observe that the distribution gradually returns to the Gaussian distribution as
the time shift increases. This is confirmed by the presentation of the flatness of the velocity increments which reflects
the strongly non-Gaussian behavior on small scales and gradually decreases to 3 for the larger scales. We also show in
the inset a quasi-linear increase of the flatness of the acceleration with the Reynolds number. This relaxation towards
the Gaussian is controlled by the term P +K/τε = dK/dt+K/τε appearing in the drift term of the stochastic model
(47).

Finally, in Fig. 13 we show the second and third moments of the power P = aiui. It is observed that the increases
of both moments with the Reynolds number are in close agreement with the power law supported by the DNS results
of [91]. Clearly, the third order moment is negative, meaning that the time irreversibility of the dynamics of a fluid
particle in a turbulent flow is correctly reproduced by the proposed stochastic model. The skewness of the power,
S = 〈P 3〉/〈P 2〉3/2, seems to converge to -0.5 as the Reynolds number increases as reported in [91].

IV. DISCUSSION AND FINAL REMARKS

In this paper, we have analyzed the behavior of the acceleration statistics conditioned on both local dissipation
rate and local kinetic energy, which to our knowledge have not been considered before. We have reported that the
doubly conditional variance is proportional to the acceleration variance conditional on the dissipation rate solely, with
the proportional factor depending exponentially on the kinetic energy: 〈a2|ε,K〉 = A exp(αK/〈K〉) 〈a2|ε〉. For large
enough Reynolds number we show that A = (1− 2α/3)

3/2 and we proposed that the α coefficient is independent of the
Reynolds number and its value α = 1/3 was obtained from the DNS. Such an assumption would require further DNS
studies to be validated. As well, it would be interesting to assess the behavior of the doubly conditional acceleration
variance for 2D turbulence or in 3D turbulence subjected to mean shears or rotation.

Subsequently, we have proposed to account for the Reynolds number dependence on the acceleration variance
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FIG. 10. (a) Evolution of the autocorrelation of ai (black), (a2)1/2 (red), ui (blue) and P = aiui (green) from the stochastic
model for Reλ = 400 and comparison with the DNS data from [8] in dashed line. (b) Evolution of the integral time scale
of ai (black), (a2)1/2 (red), ui (blue) and P = aiui normalized by τL with the Reynolds number. (c,d,e,f) Evolution of the
autocorrelation of ai, (a2)1/2, P = aiui and ui respectively, for Reλ = 400, 567, 800, 1130, 1600, 2263, 3200, 4526, 6400 and
9051 from orange to black and comparison with the DNS data from [8] in dashed line.
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FIG. 11. Velocity spectra from the stochastic model for Reλ = 400 to Reλ = 9000 from orange to black and comparison with
the DNS data from [8] at Reλ = 400.

conditional on the dissipation rate within Barenblatt’s incomplete similarity framework [6] leading to: 〈a2|ε〉 =
a2
ηB(ε/〈ε〉)3/2+β for ε � 〈ε〉 with B and β depending logarithmically on the Reynolds number as the signature

of the intermittency and the persistence of viscous effects. As they are slowly evolving function of the Reynolds
number, it would require studies over a large range of Reynolds numbers to confirm this proposition and evaluate
more precisely the coefficients entering the definition of B and β. On the other hand, as discussed by Barenblatt
[6, 32] these coefficients might be determined theoretically from a renormalization group approach. Further, we
advance an expression for the conditional acceleration variance valid for the whole range of fluctuations of ε by
accounting for the dominance of the large scale sweeping effects in low dissipative regions (see equation (12)). From
this finding we determine the evolution of the unconditional acceleration variance with the Reynolds number and
show that it is in good agreement with DNS, which gives another empirical validation of the incomplete similarities
assumption used to obtain these results.

Finally, for large Reynolds numbers, we propose to express the doubly conditional variance as 〈a2|ε,K〉 =
C exp(αK/〈K〉 + γ ln ε〈ε〉), γ = 3/2 + β, which is interpreted as a multiplicative cascade for the acceleration
that includes the effect of sweeping by all eddies of the turbulence spectrum.

Based on these results we propose a 3D stochastic model for the dynamics of a fluid particle that reproduce the
essential features of the Lagrangian dynamics observed from DNS and experiments. To obtain such model, (i) we have
assumed, inline with the Kolmogorov universality hypothesis, that the dynamics can be described as a set of stochastic
differential equation dai = Midt + DijdWj ; dui = aidt, with Mi and ai depending on the velocity and acceleration
along with Reynolds number dependent parameters. (ii) We used the doubly conditional acceleration variance obtained
in this paper, to model the instantaneous dynamic relation between acceleration (or force), kinematic energy, and
energy dissipation. This amounts to consider that the remains degree of freedom can be discarded in procedure similar
to an adiabatic elimination [30] as discussed by [17]. (iii) We introduce a non-diagonal diffusion tensor as well as the
maximum winding hypothesis to ensure its physical realizability. (iv) We consider that the dissipation rate along the
trajectory is given by the non-Markovian log-normal process proposed recently by [20], giving logarithmic correlation
consistently with turbulent cascade picture. With this 4 hypothesis, we obtain the model given by equations (25),
(26), (48) and (49) which reads:

dai =

[
α

2〈K〉

(
ai
(
cuP +

K

τε

)
− (cu − 1)a2ui

)
− ai

(
ln
(a2

a2
η

)
+ Γ̂∗

)
1

2τε
− σ2

∗
τc

a2
T

a2
ai

]
dt

+

√
σ2
∗
τc

[√
a2
T δij +

√
a2
N εijkbk

]
dWj (50)

We show that the proposed model predicts Lagrangian dynamics presenting non-gausssianity, long-range correla-
tions, anomalous scaling and time irreversibility. Moreover statistics obtained from the stochastic model are in good
agreement with the DNS.

In (50) the term proportional to α involves the coupling between velocity and acceleration and allows obtaining a
statistically stationary dynamics with one-time Gaussian distribution for the velocity. Introducing a rotational part in
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FIG. 12. PDF of ai(top left) and comparison with the DNS data from [8], and PDF of ui (top right) and comparison with the
normal distribution, for Reλ = 400 to 9000 from orange to black. (Bottom left) PDF of the velocity increments for various times
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right) Evolution of the Flatness of the velocity increments versus the time shift for Reλ = 70 to 9000 from orange to black and
evolution of the flatness of the acceleration with the Reynolds number and comparison with the linear law in the inset.

the diffusion tensor naturally leads to decomposition of the acceleration vector into its tangential part and its normal
components. Since the normal part is associated with the curvature of the trajectory, the rotational part of the
diffusion leads to the emergence of a time-scale separation between the correlation of the norm and the components
of the acceleration. The term associated with the non-Markovianity of the dissipation along with the rotational part
produce an irreversible dynamics, and seen by the skewness of the exchanged power and ensures a scale separation
between velocity and acceleration. These three points can be easily checked, by taking α = 0 or cR = 0 in (35) or by
using for Π the Markovian log-normal dissipation model proposed by [71] rather than the non-Markovian one of of
[20].

It is worth noting that from the conditional acceleration statistics obtained from DNS of the Navier-Stokes equation,
it is possible to establish, in a fairly natural way, that is to say without using any other hypothesis than the cascade
picture, a link between the refined Kolmogorov assumption and the dynamics of fluid particles. It would be interesting
to analyze further the stochastic equation to demonstrate the irreversibility of the dynamics, the emergence of anoma-
lous scaling or to study the geometry of the particle trajectory e.g. its curvature and torsion, as well as to further
test the conditional statistics between the acceleration and the velocity. We can also mention possible evaluation of
the dynamics using the power law model for σ2 proposed by [17] which can be seen to be close to the logarithmic
evolution proposed by [46, 64] on the limited range of Reynolds numbers available to the DNS [94]. Also interesting
could be the improvement of the modeling of the high frequency part of the spectrum. Indeed the dissipative part



20

102 103 104

Reλ

102

103

104

105

106

<
−
P
m
>
/
<
ε
>

m

FIG. 13. Evolution of 〈P 2〉/〈ε〉2 and −〈P 3〉/〈ε〉3 of the power with the Reynolds number, and comparison with the power laws
Re

4/3
λ and Re2λ.

of the spectrum is not perfectly reproduced by the model of [20] which intends to model the dissipation rate in the
inertial range.

In order to simplify the construction of the model, we have not taken into account the effects of sweeps by the
largest structures of the flow, arguing that their effect vanish as the Reynolds number increases (term with a2

0 in eq.
(12)). Based on the relation (12) it is possible to account for the large scale in the stochastic modeling. However,
since this term is dependent on the Reynolds number, it is likely that it also depends of the flow configuration.
In [33] we have shown how to couple a stochastic model for the particle dynamics with the large eddy simulation
(LES) approach predicting the non-universal large-scale behaviors and in [97] we showed that such coupling enables
to obtain the saturation of the conditional acceleration in weakly dissipative regions. The propose stochastic model
could be further generalized to address shear flows [7] and improve Reynolds-averaged simulations [38, 69]. Finally,
let us mention that an interesting extension could be the coupling of the proposed model with stochastic model for
the evolution of the velocity gradients as proposed in [31, 39–42, 57, 65], which could be used among other things to
improve the calculation of the dynamics of a dispersed phase.
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Appendix A: Determination of cε

To evaluate the cε factor appearing in (1), we use the following relation between the conditional averages 3:

〈a2|ε〉 =

∫
dK〈a2|ε,K〉P (K|ε) (A1)

Substituting relation (1) in (A1), we find, assuming that cε is independent of K

〈a2|ε〉/a2
η = cε

∫
dK exp(αK/〈K〉)P (K|ε) (A2)

3 This relation is simply obtained from the relation between the joint PDF and the conditional PDF: P (a2, ε,K) = P (a2|ε,K)P (ε,K) =
P (a2|ε,K)P (K|ε)P (ε) and the relation between the joint probability density of a2, ε,K and a2, ε: P (a2, ε) =

∫
dKP (a2, ε,K).
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This clearly demonstrate that if the kinetic energy is statistically independent of the dissipation rate (i.e. P (K|ε) =
P (K)) the integral in the previous relation takes a constant value and cε is proportional to 〈a2|ε〉. However such
an assumption is only approximate at moderate Reynolds numbers as shown from our DNS. Indeed, it is seen in
Fig. 14(a), that the average of K conditioned on ε has a weak logarithmic dependence on ε. We also present in Fig.
14(b) the probability density of the kinetic energy conditioned on the dissipation rate. In this figure, the PDF is
normalized by its mean value 〈K|ε〉. It is to note that for large values of the dissipation rate, the conditional PDF
takes a self-similar form:

P (K/〈K|ε〉|ε) = PG(K/〈K|ε〉) (A3)
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FIG. 14. (a) Average of the kinetic energy conditioned on the local dissipation rate from our DNS in continuous line and from
DNS database of [8, 50] in dashed line and comparison with the relation 〈K|ε〉/〈K〉 ≈ 1 + c1 log

(
c−1
2 ε/〈ε〉+ 1

)
with c1 = 2/5

and c2 = 22 in dotted line. Insert : evolution of 〈K|ε〉 − (1 − c1 log c2) as a function of ε/〈ε〉 + c2, and comparison with
〈K|ε〉/〈K〉 − (1 − c1 log c2) = c1 log(ε/〈ε〉 + c2). (b) Probability density function of the Kinetic energy conditioned on the
dissipation rate, normalized by its average 〈K|ε〉. Comparison with the marginal PDF of the kinetic energy in dashed line and
with the PDF (A5) in dotted line.

Thus by combining the previous relations, one can write:

〈a2|ε〉/a2
η = cε

∫
dK∗ exp(α∗K∗)PG(K∗) (A4)

where we have introduced K∗ = K/〈K|ε〉 and α∗(ε) = α 〈K|ε〉/〈K〉. In addition, we see in Fig. 14(b) that the
self-similar form of the distribution of K∗ knowing ε is well approximated by the following distribution obtained from
the Maxwell distribution (i.e. assuming that the three components of the velocity are Gaussian and independent):

PG(x) =
3√
π

√
3

2
x exp

(
−3

2
x

)
(A5)

Note that the average of this distribution is indeed unity:
∫
xPG(x)dx = 1. With this expression for PG the integral

of equation (A4) can be compute as:
∫
dK∗ exp(α∗K∗)PG(K∗) =

(
1− 2

3
α∗
)−3/2

= A−1
ε . Thus, according to (A2),

we have for cε:

cε = Aε 〈a2|ε〉/a2
η (A6)

The dependence of Aε with ε explains the deviation of the power law behavior between 〈a2|ε,K〉 and 〈a2|ε〉 observed
in Fig. 2b for ε� 〈ε〉.

It is to note that the integral Aε converges only if α∗ < 3/2. This observation implies that the dependence of
〈K|ε〉/〈K〉 on ε should decrease as the Reynolds number increases to allow α∗ to remains lower than 3/2 even for
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the most intense fluctuations of ε/〈ε〉, and thus ensuring the convergence of the integral. Therefore, the larger the
Reynolds number, the weaker the dependence of 〈K|ε〉/〈K〉 on ε, confirming that within the limit of large Reynolds
numbers the local values of the kinetic energy and of the dissipation become statistically independent in line with
scale separation of the turbulent cascade. Accordingly, we simply propose to write:

cε ≈ A 〈a2|ε〉/a2
η (A7)

where A =

(
1− 2

3
α

)3/2

, which is equal to A = 7
√

7/27 ≈ 0.686, for α = 1/3, neglecting the small logarithmic

dependence in ε/〈ε〉.

Appendix B: Modeling of the dissipation rate

1. Dissipation as multiplicative cascade process

The image of the energy cascade is naturally associated with multiplicative processes [45, 59, 92]. Such model
proposes to express the locally space-averaged dissipation over a volume of size ` = Lλn, with L the large scale of the
flow and λ < 1, as:

εn = ε0
ε1

ε0
. . .

εn
εn−1

= ε0

n∏
i=1

ξi (B1)

Assuming that ξi = εi/εi−1 are independent randoms numbers with identical distribution across scales we write:

log
εn
ε0

=

n∑
i=1

log ξi (B2)

Therefore according to the central limit theorem the term on the right must present a normal distribution with
parameters µ = nµξ and σ2 = nσ2

ξ . The parameters µξ et σ2
ξ appear as fundamental unknowns, but can nevertheless

be related by the relation µξ = −σ2
ξ/2 obtained from the moments of a log-normal variable in order to guarantee that

the average energy flux is conserved throughout the cascade. Setting ` = η (i.e. n = ln(η/L)/ lnλ ∼ lnReλ) we obtain
a model for the local dissipation rate. The log-normal distribution for ε has been confirmed for example by DNS of
[94]. Moreover for the variance of logarithm of the local dissipation rate is then σ2 =

σξ
lnλ

ln η/L = A + B lnReλ as

predicted by Kolmogorov and Oboukhov [46, 64]. Such evolution for σ2 has been also confirmed from the DNS of [94]
showing that σ2 ≈ 3/8 lnReλ/10.

Such multiplicative process also imply a logarithmic evolution of the spatial correlation of the dissipation rate as
explained by Mandelbrot [55]. We consider the dissipation rate at two points A and B, εAn and εBn , both defined
at the same scale n. The points A and B are separated by a distance L > r > η from each other and we note
k = ln(r/L)/ lnλ, then 0 < k < n. Clearly, the greater the distance between the two points, the larger the scale of
their common root in the cascade:

εAn = εAB0

εAB1

εAB0

. . .
εABk
εABk−1

εAk+1

εAk
. . .

εAn
εAn−1

(B3)

εBn = εAB0

εAB1

εAB0

. . .
εABk
εABk−1

εBk+1

εBk
. . .

εBn
εBn−1

(B4)

In the two previous equations we have distinguished by the exponents A and B the variables which are specific to
points A and B and by AB those which are common. This can be expressed as:

ln
εAn
ε0

=

k∑
i=1

ln ξABi +

n∑
i=k+1

ln ξAi (B5)

ln
εBn
ε0

=

k∑
i=1

ln ξABi +

n∑
i=k+1

ln ξBi (B6)
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The correlation between ln εAn and ln εBn is defined as

Rln ε(r) = 〈(ln ε
A
n

ε0
− µ)(ln

εBn
ε0
− µ)〉 = 〈ln ε

A
n

ε∗
ln
εBn
ε∗
〉 (B7)

where we noted ε∗ = ε0e
µ. Introducing similarly ξ∗ = eµχ and ξ′ = ξ/ξ∗ we express the correlation as:

Rln ε = 〈
n∑
i=1

(ln ξAi − µξ)
n∑
j=1

(ln ξBi − µξ)〉 = 〈
n∑
i=1

ln ξ′Ai

n∑
j=1

ln ξ′Bj 〉

= 〈

(
k∑
i=1

ln ξ′ABi +

n∑
i=k+1

ln ξ′Ai

) k∑
j=1

ln ξ′ABj +

n∑
j=k+1

ln ξ′Bj

〉
=

k∑
i=1

k∑
j=1

〈ln ξ′ABi ln ξ′ABj 〉+

k∑
i=1

n∑
j=k+1

〈ln ξ′ABi ln ξ′ABj 〉

+

n∑
i=k+1

k∑
j=1

〈ln ξ′Ai ln ξ′ABj 〉+

n∑
i=k+1

n∑
j=k+1

〈ln ξ′ABi ln ξ′Bj 〉

=
k∑
i=1

k∑
j=1

δijσ
2
ξ = kσ2

ξ (B8)

To obtained this results we used the hypothesis that within the same branch, the events at a given scale are independent
of those at another scale, 〈ln ξ′ABi ln ξ′ABj 〉 = δijσ

2
ξ , as well as vanishing correlation between branches A and B:

〈ln ξ′Ai ln ξ′Bj 〉 = 0. This gives a logarithmic evolution of the correlation coefficient ρln ε = Rln ε/σ
2, in the range

η < r < L:

ρln ε =
〈ln ε

A
n

ε∗
ln
εBn
ε∗
〉

〈ln2 εn
ε∗
〉

=
k

n
=

lnL/r

lnL/η
= 1− ln r/η

lnL/η
(B9)

Although not trivial, this result can be transpose for the temporal correlation along particle path [13, 37, 58, 83].
The logarithmic behavior of the correlation is confirmed by DNS, as it can be seen in [54] where the evolution of the
Lagrangian correlation of the logarithm of the dissipation is presented.

2. Stochastic Modeling of the dissipation

It has been proposed to model the dissipation rate as stochastic multiplicative process. Such process can be
generically expressed as :

dε = εΠdt+ εΣdW (B10)

with dW the increment of the Wiener process (〈dW = 0 and 〈dW 2〉 = dt) and where Π and Σ are to be determined.
Considering that ε follows a log-normal distribution with parameter σ2 and µ = −σ2/2, we define the standard

normal variable χ (Gaussian random variable with zero mean and unit variance) as:

ε

〈ε〉
= exp

(
σχ− σ2/2

)
(B11)

A stochastic process for χ has to be given in order to obtain the stochastic process for ε, via the Ito transformation.
Pope and Chen [71] proposed to obtain χ from an Orstein-Uhnlebbeck process with a characteristic time τε:

dχ = − χ
τε
dt+

√
2

τε
dW (B12)

According to the Ito formula this gives for Π and Σ :

Π = −
(
ln ε/〈ε〉 − σ2/2

)
/τε (B13)
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Σ =
√

2σ2/τε (B14)

This process gives as expected log-normal distribution for ε (normal distribution for χ) as well as an exponential
decrease of the correlation of ln ε with a characteristic time τε. This exponential behavior is not consistent with the
multiplicative cascade model as discuss above. It rather correspond to a direct energy transfer from large to small
scales.

To ensure a logarithmic decorrelation of the dissipation, Chevillard [20] proposed to adapt the Gaussian multiplica-
tive chaos introduced by Mandelbrot [55]. This leads to a multifractal model in which the Wiener process in (B12) is
replace by a fractional Gaussian noise:

dχ = − χ
τε
dt+

1

Λ
dW 0

τc (B15)

here, dW 0
τc is formally a fractional Gaussian noise with a 0 Hurst exponant, regularized at a time scale τc, and Λ is a

normalization factor ensuring unit variance for χ. The value of Λ is dependent on the specific regularization of dW 0
τc .

As explained in [20] this process can be reexpressed as

dχ(t) =

(
− χ
τε

+
Γ

Λ

)
dt+

1√
Λ2τc

dW (B16)

with dW the increments of a standard Wiener process and Γ corresponds to a convolution of the Wiener increments:

Γ = −1

2

∫ t

−∞
(t− s+ τc)

−3/2dW (s) (B17)

where dW (s) is the increments of the same realization of the wiener process as in (B16). In (B17), the regularization
time τc prevent the divergence of the kernel when s→ t. The normalization factor Λ is estimated as Λ = 〈X2〉 where
X obey the stochastic equation (B16) in which Λ has been set to 1.

The stochastic process (B16) give a logarithmic correlation for χ: 〈χ(t)χ(t − s)〉 ∼ ln
τε
s

for τc � s � τε, as
illustrated in the Fig. 15.
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FIG. 15. Correlation de χ for various value of τε/τc.

With the Ito transformation, we obtain the process for ε from (B16). this gives for Π and Σ :

Π =

(
− ln

ε

〈ε〉
+

σ2

2Λ2

(
τε
τc
− Λ2

)
+
σ

Λ
Γτε

)
/τε (B18)

Σ =

√
σ2

Λ2τc
(B19)
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3. Efficient calculation of the stochastic convolution Γ

In order to obtain a stationary process the lower bound of the integration is set to −∞. For the numerical
computation of this integral, the lower limit have to be truncated. We present in figure 16 one realization of the

evolution of the integral Γ(t, τ) = −1

2

∫ t
t−τ (t− s+ τc)

−3/2dW (s) when the lower bound varies. We see that for values
larger than τε the integral converges to a value (which remains random). In addition, the convergence threshold does
not seem to depend on the time step used. So in practice Γ will be calculated with a lower bound set to t− τε.

10-2 100

τ/τL

20

0

20

40
Γ
(τ

)
=

∫ t t
−
τg

(t
−
s)
d
W

(s
)

FIG. 16. One realization of the integral (B17) as a function of the lower bound of the integral for dt = τc/100. Comparison
between the direct calculation of the history integral (B17) (black line) and the optimized calculation with Ns = 12 (red
crosses).

To obtain these calculations, the integral (B17) giving the value of Γ at time tn = ndt has been discretized as
proposed by [20]

Γn = −1

2

Nhist∑
m=0

(sm + τc)
−3/2 dWn−m (B20)

with sm = tn − tn−m = mdt, Nhist = τε/dt and dWn−m the increment of the Wiener process at time (n−m)dt.
This direct calculation requires a lot of memory in order to keep the last Nhist instants and requires a very large

number of operations, of the order of Nt × Nhist where Nt is the number of time step of the simulation. Thus this
direct method is difficult to use in practice when τε/τη ∼ Reλ becomes large.

For this reason [20] proposed to speed up significantly the calculation using the fast Fourier transforms (FFT).
The integral at time ndt is then computed as Γn = −1/2zn where zn = FFT−1(Zk) is given by the inverse Fourrier
transform of Zk. Zk = Xk YK is the convolution in spectral space between xn and yn (Xk = FFT (xn) and Yk =
FFT (yn)) where xn et yn are the sequences dWn and (sn + τx)−3/2 padded with zeros such that they have N >
Nhist + Nt points. This algorithm is indeed much faster. Nevertheless, the memory occupation becomes more
important since all the values of the sequence dWn must be known simultaneously in order to calculate the Fourier
transform, which limits the possibility of using this algorithm for large Reynolds numbers.

Such limitation can be overcome by using the approach proposed in [54] based on the inverse Laplace transform of
the convolution Kernel. In this approach Γ is estimated as a weighted sum of correlated Orstein-Uhlenbeck processes
with characteristic time ranging from τc to τε.

Despite its efficiency, this technic, nor the one based on FFT, cannot be used to determine the Γ̂ that appears in
the vectorial stochastic model for the acceleration, or as noted by [65] for velocity gradients. Indeed in such cases it is
not the increments of the components of the Wiener process which are convoluted, but a projection of them as shown
in (42). The issue is that the projection cannot by computed a priori, because it requires knowing ai and ui, as seen
in (43).

For this raisons we propose a new algorithm which is fast, using a limited amount of memory and which only
requires knowing the dWn sequentially. This algorithm is derived from the one introduced for non-stochastic integrals
in [53]. As we go back in the past, we can afford to remember with less precision the noise entering this integral,
since the kernel decreases with the lag. We will thus proceed by progressive "coarse graining" and group together
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the oldest dWn, by introducing an increasingly extended local average. We then decompose the sum of (B20) into
sub-sums comprising an increasing number of terms:

−2Γn =

Nhist∑
m=0

(sm + τc)
−3/2 dWn−m

=

me1∑
m=ms1

(sm + τc)
−3/2 dWn−m + . . .+

meN∑
m=msN

(sm + τc)
−3/2 dWn−m

=

N∑
j=1

mej∑
m=msj

(sm + τc)
−3/2 dWn−m

≈
N∑
j=1

(sj + τc)
−3/2 dW j (B21)

Where we introduced sj = (mej+msj)dt/2 and dW j =
∑mej
m=msj

dWn−m such that (sj+τc)
−3/2 dW j ≈

∑mej
m=msj

(sm+

τc)
−3/2 dWn−m. The bounds mej and msj are progressively spaced as j increases leading to an increasingly coarse

splitting of the integral. This approximation of the integral can be carried out very efficiently by using a non-
homogeneous list updating for dW . The first elements of the list are updated every time step and the older ones
less and less regularly, as described in the diagram of Fig. 17). In detail, we update the first Ns elements of the
list at each time step, the following Ns every two time steps, and the elements between iNs and (i + 1)Ns are
only updated every 2i iterations. Thus, with n × Ns elements in the list we can estimate the integral going up to∑n
i=0Ns 2idt = 2Ns(2

n − 1)dt in the past. This gives a considerable saving in computation time and memory with a
good accuracy as it is illustrated in Fig. 16. For all the calculation presented in this paper we have used Ns = 12.
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FIG. 17. Diagram illustrating the coarse-graining of the integral (B17) and the non-uniform update of the list.

[1] A. K. Aringazin and M. I. Mazhitov. stochastic models of Lagrangian acceleration of fluid particle in developed turbulence.
International Journal of Modern Physics B, 18:3095–3168, 2004.

[2] A. Arneodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M. Cencini, L. Chevillard,
R. T. Fisher, R. Grauer, H. Homann, D. Lamb, A. S. Lanotte, E. Lévêque, B. Luthi, J. Mann, N. Mordant, W.-C. Muller,
S. Ott, N. T. Ouellette, J.-F. Pinton, S. B. Pope, S. G. Roux, F. Toschi, H. Xu, and P. K. Yeung. Universal Intermittent
Properties of Particle Trajectories in Highly Turbulent Flows. Physical Review Letter, 100:250504, 2008.

[3] E. Bacry, J. Delour, and J. F. Muzy. Multifractal random walk. Physical Review E, 64(2):026103, 2001.
[4] G. I. Barenblatt. Scaling. Cambridge University Press, Cambridge, U.K., 2002.
[5] G. I. Barenblatt and A. J. Chorin. New perspectives in turbulence: scaling laws, asymptotics, and intermittency. SIAM

Rev., 40(2):265–291, 1998.
[6] G.I. Barenblatt and A.J. Chorin. A mathematical model for the scaling of turbulence. Proc. Nat. Acad. Sc. USA,

101:15023–15026, 2004.
[7] A. Barge and M. A. Gorokhovski. Acceleration of small heavy particles in homogeneous shear flow: direct numerical

simulation and stochastic modelling of under-resolved intermittent turbulence. Journal of Fluid Mechanics, 892:A28, 2020.
[8] J. Bec, L. Biferale, M. Cencini, A. Lanotte, and F. Toschi. Intermittency in the velocity distribution of heavy particles in

turbulence. Journal of Fluid Mechanics, 646:527–536, 2010.



27

[9] C. Beck. Lagrangian acceleration statistics in turbulent flows. EPL (Europhysics Letters), 64(2):151, 2003.
[10] L. Biferale, E. Bodenschatz, M. Cencini, A. S. Lanotte, N. T. Ouellette, F. Toschi, and H. Xu. Lagrangian structure

functions in turbulence: A quantitative comparison between experiment and direct numerical simulation. Physics of
Fluids, 20(6):065103, 2008.

[11] L. Biferale, G. Boffetta, A. Celani, B.J. Devenish, A. Lanotte, and F. Toschi. Multifractal Statistics of Lagrangian Velocity
and Acceleration in Turbulence. Physical Review Letter, 93:064502, 2004.

[12] L. Biferale and F. Toschi. Joint statistics of acceleration and vorticity in fully developed turbulence. Journal of Turbulence,
6(40), 2006.

[13] M. S. Borgas. The Multifractal Lagrangian Nature of Turbulence. Philosophical Transactions: Physical Sciences and
Engineering, 342(1665):379–411, 1993.

[14] M. S. Borgas and P. K. Yeung. Conditional fluid-particle accelerations in turbulence. Theoretical and computational fluid
dynamics, 11(2):69–93, 1998.

[15] W. J. T. Bos and R. Zamansky. Power fluctuations in turbulence. Physical Review Letters, 122(12):124504, Mar 2019.
[16] B. Castaing. The temperature of turbulent flows. Journal de Physique II, 6:105–114, 1996.
[17] B. Castaing, Y. Gagne, and E.J. Hopfinger. Velocity probability density functions of high Reynolds number turbulence.

Physica D: Nonlinear Phenomena, 46(2):177–200, 1990.
[18] B. Castaing, Y. Gagne, and M. Marchand. Log-similarity for turbulent flows? Physica D: Nonlinear Phenomena, 68(3-

4):387–400, 1993.
[19] S. Chen and R. H. Kraichnan. Sweeping decorrelation in isotropic turbulence. Physics of Fluids A: Fluid Dynamics

(1989-1993), 1(12):2019–2024, 1989.
[20] L. Chevillard. Regularized fractional Ornstein-Uhlenbeck processes and their relevanceto the modeling of fluid turbulence.

Physical Review E, 96:033111, 2017.
[21] L. Chevillard, S. G. Roux, E. Levêque, N. Mordant, J.-F. Pinton, and A. Arneodo. Lagrangian velocity statistics in

turbulent flows: Effects of dissipation. Physical Review Letters, 91(21), Nov 2003.
[22] A. Chorin. Vorticity and Turbulence. Springer, Berlin, 1994.
[23] P. Constantin and G. Iyer. A stochastic lagrangian representation of the three- dimensional incompressible navier–stokes

equations. Comm. Pure Appl. Math, LXI:0330–0345, 2008.
[24] A. M. Crawford, N. Mordant, and E. Bodenschatz. Joint statistics of the lagrangian acceleration and velocity in fully

developed turbulence. Physical Review Letter, 94(2):024501, 2005.
[25] S. Douady, Y. Couder, and M. E. Brachet. Direct observation of the intermittency of intense vorticity filaments in

turbulence. Phys. Rev. Lett., 67:983–986, Aug 1991.
[26] T. D. Drivas. Turbulent cascade direction and lagrangian time-asymmetry. Journal of Nonlinear Science, 29(1):65–88,

2019.
[27] B. Dubrulle. Beyond kolmogorov cascades. Journal of Fluid Mechanics, 867, mar 2019.
[28] G. Falkovich, H. Xu, A. Pumir, E. Bodenschatz, L. Biferale, G. Boffetta, A. S. Lanotte, and F. Toschi. On lagrangian

single-particle statistics. Physics of Fluids, 24(5):055102, 2012.
[29] Y. Gagne and B. Castaing. Une representation universelle sans invariance globale d’échelle des spectres d’énergie en

turbulence développée. CR. Acad. Sci., 312(serie 2):441–445, 1991.
[30] C. W Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, 1985.
[31] S. S. Girimaji and S. B. Pope. A diffusion model for velocity gradients in turbulence. Physics of Fluids A: Fluid Dynamics,

2(2):242–256, 1990.
[32] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. Westview press, 1992.
[33] M. Gorokhovski and R. Zamansky. Modeling the effects of small turbulent scales on the drag force for particles below and

above the kolmogorov scale. Physical Review Fluids, 3(3):1–23, March 2018.
[34] J. F. Hackl, P. K. Yeung, and B. L. Sawford. Multi-particle and tetrad statistics in numerical simulations of turbulent

relative dispersion. Physics of Fluids, 23(6):065103, Jun 2011.
[35] R. J. Hill. Scaling of acceleration in locally isotropic turbulence. Journal of Fluid Mechanics, 452:361–370, 2002.
[36] H. Homann, D. Schulz, and R. Grauer. Conditional Eulerian and Lagrangian velocity increment statistics of fully developed

turbulent flow. Physics of Fluids, 23(5):055102, May 2011.
[37] Y. Huang and F. G. Schmitt. Lagrangian cascade in three-dimensional homogeneous and isotropic turbulence. Journal of

Fluid Mechanics, 741, Feb 2014.
[38] A. Innocenti, N. Mordant, N. Stelzenmuller, and S. Chibbaro. Lagrangian stochastic modelling of acceleration in turbulent

wall-bounded flows. Journal of Fluid Mechanics, 892:A38, 2020.
[39] P. L. Johnson and C. Meneveau. A closure for lagrangian velocity gradient evolution in turbulence using recent-deformation

mapping of initially gaussian fields. Journal of Fluid Mechanics, 804:387–419, 2016.
[40] P. L. Johnson and C. Meneveau. Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbu-

lence. Journal of Fluid Mechanics, 837:80–114, Dec 2017.
[41] P. L. Johnson and C. Meneveau. Restricted Euler dynamics along trajectories of small inertial particles in turbulence.

Journal of Fluid Mechanics, 816, 2017.
[42] P. L. Johnson and C. Meneveau. Turbulence intermittency in a multiple-time-scale Navier-Stokes-based reduced model.

Physical Review Fluids, 2(7), Jul 2017.
[43] J.-P Kahane and J Peyrière. Sur certaines martingales de Benoit Mandelbrot. Advances in Mathematics, 22(2):131–145,

1976.
[44] A. N. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers.



28

Dokl. Akad. Nauk SSSR, 434:9–13, 1941. Translation by V. Levin in Philosophical Transactions of The Royal Society A
1991 vol. 434 p. 9-13.

[45] A. N. Kolmogorov. On the log-normal distribution of particles sizes during break-up process. Dokl. Akad. Nauk SSSR,
31(99), 1941.

[46] A. N. Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incom-
pressible fluid at high Reynolds number. Journal of Fluid Mechanics, 13:82–85, 1962.

[47] B. Kumar, J. Schumacher, and R. A. Shaw. Lagrangian mixing dynamics at the cloudy–clear air interface. Journal of the
Atmospheric Sciences, 71(7):2564 – 2580, 2014.

[48] A. La Porta, G. A. Voth, A. M. Crawford, J. Alexander, and E. Bodenschatz. Fluid particle accelerations in fully developed
turbulence. Nature, 409:1017–1019, 2001.

[49] A. G. Lamorgese, S. B. Pope, P. K. Yeung, and B. L. Sawford. A conditionally cubic-Gaussian stochastic Lagrangian
model for acceleration in isotropic turbulence. Journal of Fluid Mechanics, 582:243–448, 2007.

[50] A. Lanotte, E. Calzavarini, T. Federico, B. Jeremie, B. Luca, and C. Massimo. Heavy particles in turbulent flows.
International CFD Database, 2011.

[51] A.S. Lanotte, L. Biferale, G. Boffetta, and F. Toschi. A new assessment of the second-order moment of lagrangian velocity
increments in turbulence. Journal of Turbulence, 14(7):34–48, 2013.

[52] J. M. Lawson, E. Bodenschatz, A. N. Knutsen, J. R. Dawson, and N. A. Worth. Direct assessment of Kolmogorov’s first
refined similarity hypothesis. Physical Review Fluids, 4(2), Feb 2019.

[53] F. Le Roy De Bonneville, R. Zamansky, F. Risso, A. Boulin, and J.-F. Haquet. Numerical simulations of the agitation
generated by coarse-grained bubbles moving at large reynolds number. Journal of Fluid Mechanics, 926:A20, 2021.

[54] R. Letournel, L. Goudenège, R. Zamansky, A. Vié, and M. Massot. Reexamining the framework for intermittency in
Lagrangian stochastic models for turbulent flows: A way to an original and versatile numerical approach. Phys. Rev. E,
104:015104, Jul 2021.

[55] B. B. Mandelbrot. Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in
intermittent turbulence. In M. Rosenblatt and C. Van Atta, editors, Statistical Models and Turbulence, pages 333–351,
Berlin, Heidelberg, 1972. Springer Berlin Heidelberg.

[56] B. B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the
carrier. Journal of Fluid Mechanics, 62(2):331–358, 1974.

[57] C. Meneveau. Lagrangian Dynamics and Models of the Velocity Gradient Tensor in Turbulent Flows. Annual Review of
Fluid Mechanics, 43:219–245, 2011.

[58] C. Meneveau and T. S. Lund. On the lagrangian nature of the turbulence energy cascade. Physics of Fluids, 6(8):2820–2825,
1994.

[59] A. S. Monin and A. M. Yaglom. Statistical Fluid Mechanics: Mechanics of Turbulence, volume 2. MIT Press, Cambridge,
MA, 1981.

[60] N. Mordant, A. M. Crawford, and E. Bodenschatz. Experimental lagrangian acceleration probability density function
measurement. Physica D: Nonlinear Phenomena, 193(1-4):245–251, 2004.

[61] N. Mordant, A. M. Crawford, and E. Bodenschatz. Three-dimensional structure of the lagrangian acceleration in turbulent
flows. Physical Review Letter, 93(21):214501, 2004.

[62] N. Mordant, J. Delour, E. Lévêque, A. Arnéodo, and J.-F. Pinton. Long time correlations in lagrangian dynamics: a key
to intermittency in turbulence. Physical Review Letter, 89(25):254502, 2002.

[63] N. Mordant, E. Lévêque, and J.-F. Pinton. Experimental and numerical study of the Lagrangian dynamics of high reynolds
turbulence. New Journal of Physics, 6:116–116, sep 2004.

[64] A. M. Oboukhov. Some specific features of atmospheric tubulence. Journal of Fluid Mechanics, 13(01):77–81, 1962.
[65] R. M. Pereira, L. Moriconi, and L. Chevillard. A multifractal model for the velocity gradient dynamics in turbulent flows.

Journal of Fluid Mechanics, 839:430–467, 2018.
[66] C. S. Peskin. A random-walk interpretation of the incompressible Navier-Stokes equations. Communications on Pure and

Applied Mathematics, 38(6):845–852, 1985.
[67] J. R. Picardo, A. Bhatnagar, and Samriddhi S. Ray. Lagrangian irreversibility and Eulerian dissipation in fully developed

turbulence. Phys. Rev. Fluids, 5:042601, Apr 2020.
[68] S. B. Pope. Lagrangian Microscales in Turbulence. Philosophical Transactions of the Royal Society of London,

333(1631):309–319, 1990.
[69] S. B. Pope. On the relationship between stochastic lagrangian models of turbulence and second-moment closures. Physics

of Fluids, 6(2):973–985, 1994.
[70] S. B. Pope. A stochastic Lagrangian model for acceleration in turbulent flows. Physics of Fluids, 14(7):2360, 2002.
[71] S. B. Pope and Y. L. Chen. The velocity-dissipation probability density function model for turbulent flows. Physics of

Fluids, 2(8):1437–1449, 1990.
[72] A. Pumir, H. Xu, G. Boffetta, G. Falkovich, and E. Bodenschatz. Redistribution of kinetic energy in turbulent flows. Phys.

Rev. X, 4:041006, Oct 2014.
[73] A. M. Reynolds. On the application of nonextensive statistics to lagrangian turbulence. Physics of Fluids, 15(1):L1–L4,

Jan 2003.
[74] A. M. Reynolds. Superstatistical mechanics of tracer-particle motions in turbulence. Physical Review Letter, 91:084503,

Augparticles, turbulence 2003.
[75] A. M. Reynolds, N. Mordant, A. M. Crawford, and E. Bodenschatz. On the distribution of lagrangian accelerations in

turbulent flows. New Journal of Physics, 7(1):58, 2005.



29

[76] A. M. Reynolds, K. Yeo, and C. Lee. Anisotropy of acceleration in turbulent flows. 70(1), 2004.
[77] A.M Reynolds. Superstatistical lagrangian stochastic modeling. Physica A: Statistical Mechanics and its Applications,

340(1):298 – 308, 2004. News and Expectations in Thermostatistics.
[78] V. Sabel’nikov, A. Chtab-Desportes, and M. Gorokhovski. New sub-grid stochastic acceleration model in LES of high-

Reynolds-number flows. European Physical Journal B, 80(2):177–187, 2011.
[79] Vladimir Sabelnikov, Alexis Barge, and Mikhael Gorokhovski. Stochastic modeling of fluid acceleration on residual scales

and dynamics of suspended inertial particles in turbulence. Phys. Rev. Fluids, 4(4):044301, 2019.
[80] B. L. Sawford. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Physics of Fluids A:

Fluid Dynamics, 3:1577, 1991.
[81] B. L. Sawford and P. K. Yeung. Kolmogorov similarity scaling for one-particle Lagrangian statistics. Physics of Fluids,

23(9):091704, 2011.
[82] B. L. Sawford and P. K. Yeung. Turbulent lagrangian velocity statistics conditioned on extreme values of dissipation.

Procedia IUTAM, 9:129–137, 2013. IUTAM Symposium on Understanding Common Aspects of Extreme Events in Fluids.
[83] B. L. Sawford and P. K. Yeung. Direct numerical simulation studies of Lagrangian intermittency in turbulence. Phys.

Fluids, 27:065109, 2015.
[84] B. L. Sawford, P. K. Yeung, M. S. Borgas, P. Vedula, A. La Porta, A. M. Crawford, and E. Bodenschatz. Conditional and

unconditional acceleration statistics in turbulence. Physics of Fluids, 15(11):3478–3489, 2003.
[85] S. Tang, R. Antonia, L. Djenidi, and Y. Zhou. Scaling of the turbulent energy dissipation correlation function. Journal of

Fluid Mechanics, 891:A26, 2020.
[86] H. Tennekes. Eulerian and lagrangian time microscales in isotropic turbulence. Journal of Fluid Mechanics, 67(3):561–567,

1975.
[87] H. Tennekes and J. L. Lumley. A First Course in Turbulence. MIT Press, 1972.
[88] B. Viggiano, J. Friedrich, R. Volk, M. Bourgoin, R. B. Cal, and L. Chevillard. Modelling Lagrangian velocity and

acceleration in turbulent flows as infinitely differentiable stochastic processes. Journal of Fluid Mechanics, 900:A27, 2020.
[89] G.A. Voth, A. La Porta, A.M. Grawford, J. Alexander, and E. Bodenschatz. Measurements of particle accelerations in

fully developed turbulence. Journal of Fluid Mechanics, 469:121, 2002.
[90] Michael Wilkinson and Alain Pumir. Spherical ornstein-uhlenbeck processes. J Stat Phys, 145:113–142, 2011.
[91] H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats, H. Xia, N. Francois, and G. Boffetta. Flight–crash events in

turbulence. Proceedings of the National Academy of Sciences, 111(21):7558–7563, 2014.
[92] A. M. Yaglom. The Influence of Fluctuations in Energy Dissipation on the Shape of Turbulence Characteristics in the

Inertial Interval. Soviet Physics Doklady, 11:26, July 1966.
[93] A. Yakhot, S. A. Orszag, V. Yakhot, and M. Israeli. Renormalization Group Formulation of Large-Eddy Simulations.

Journal of Scientific Computing, 4(2):139–158, 1989.
[94] P. K. Yeung, S. B. Pope, A. G. Lamorgese, and D. A. Donzis. Acceleration and dissipation statistics of numerically

simulated isotropic turbulence. Physics of Fluids, 18:065103, 2006.
[95] R. Zamansky, F. Coletti, M. Massot, and A. Mani. Turbulent thermal convection driven by heated inertial particles.

Journal of Fluid Mechanics, 809:390–437, 2016.
[96] R. Zamansky, I. Vinkovic, and M. Gorokhovski. Acceleration in turbulent channel flow: universalities in statistics, subgrid

stochastic models and an application. Journal of Fluid Mechanics, 721:627–668, 2013.
[97] Z. Zhang, D. Legendre, and R. Zamansky. Model for the dynamics of micro-bubbles in high reynolds number flows. Journal

of Fluid Mechanics, 879:554–578, 2019.


	Acceleration scaling and stochastic dynamics of a fluid particle in turbulence
	Abstract
	Introduction
	Scaling laws of the acceleration 
	Methodology
	Conditional statistics given the dissipation and the kinetic energy 
	Similarity of the conditional statistics given the dissipation 
	Reynolds number dependence of the unconditional acceleration variance
	Multiplicative cascade for the acceleration

	Stochastic modeling of the fluid-tracer dynamics 
	Model formulation
	Identification of the diffusion term and maximum winding hypothesis
	Determination of the drift term

	Parameters and numerical approach
	Results

	Discussion and final remarks
	Acknowledgments
	Determination of  c
	Modeling of the dissipation rate
	Dissipation as multiplicative cascade process
	Stochastic Modeling of the dissipation
	Efficient calculation of the stochastic convolution 

	References


