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Abstract
Genomic	structural	variants	(SVs)	are	now	recognized	as	an	integral	component	of	
intraspecific polymorphism and are known to contribute to evolutionary processes 
in	various	organisms.	However,	they	are	inherently	difficult	to	detect	and	genotype	
from readily available short- read sequencing data, and therefore remain poorly 
documented	 in	wild	populations.	Salmonid	species	displaying	strong	 interpopula-
tion variability in both life history traits and habitat characteristics, such as Atlantic 
salmon	(Salmo salar),	offer	a	prime	context	for	studying	adaptive	polymorphism,	but	
the	contribution	of	SVs	to	fine-	scale	local	adaptation	has	yet	to	be	explored.	Here,	
we	 performed	 a	 comparative	 analysis	 of	 SVs,	 single	 nucleotide	 polymorphisms	
(SNPs)	and	small	indels	(<50 bp)	segregating	in	the	Romaine	and	Puyjalon	salmon,	
two	putatively	locally	adapted	populations	inhabiting	neighboring	rivers	(Québec,	
Canada)	and	showing	pronounced	variation	in	life	history	traits,	namely	growth,	fe-
cundity,	and	age	at	maturity	and	smoltification.	We	first	catalogued	polymorphism	
using	a	hybrid	SV	characterization	approach	pairing	both	short-		(16X)	and	long-	read	
sequencing	(20X)	for	variant	discovery	with	graph-	based	genotyping	of	SVs	across	
60	 salmon	 genomes,	 along	with	 characterization	 of	 SNPs	 and	 small	 indels	 from	
short	reads.	We	thus	identified	115,907	SVs,	8,777,832	SNPs	and	1,089,321	short	
indels,	with	SVs	covering	4.8	 times	more	base	pairs	 than	SNPs.	All	 three	variant	
types revealed a highly congruent population structure and similar patterns of FST 
and	density	variation	along	 the	genome.	Finally,	we	performed	outlier	detection	
and	redundancy	analysis	(RDA)	to	identify	variants	of	interest	in	the	putative	local	
adaptation	 of	 Romaine	 and	 Puyjalon	 salmon.	 Genes	 located	 near	 these	 variants	
were enriched for biological processes related to nervous system function, sug-
gesting that observed variation in traits such as age at smoltification could arise 
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1  |  INTRODUC TION

Differences	 in	 DNA	 sequence	 and	 structure	 among	 individuals	
within species, referred to as genetic variation, serve as the basis 
for key evolutionary mechanisms such as speciation and local adap-
tation	(Barrett	&	Schluter,	2008).	Genetic	variation	can	be	described	
as a wide spectrum of variants of various sizes, ranging from single 
nucleotide	polymorphisms	(SNPs)	to	larger	structural	variants	(SVs),	
which	may	 span	megabase-	long	 stretches	 of	 DNA	 or	 even	whole	
chromosomes	 (Feuk,	Carson,	&	Scherer,	2006; Mérot et al., 2020; 
Wellenreuther	 &	 Bernatchez,	 2018).	 SVs	 such	 as	 insertions,	 dele-
tions, duplications and inversions are now recognized as the main 
component of genetic variation, as they affect at least two to eight 
times	 more	 bases	 in	 genomes	 than	 SNPs	 (Catanach	 et	 al.,	 2019; 
Hämälä	et	al.,	2021; Mérot et al., 2020).	This	estimate	tends	to	in-
crease	as	our	ability	to	detect	SVs	from	high-	throughput	sequencing	
data	is	constantly	improving	(Ho	et	al.,	2020; Mérot et al., 2020).

SVs	are	also	known	to	have	a	broad	range	of	consequences	at	
various biological levels. At the molecular scale, they may influence 
gene	dosage,	gene	expression,	DNA	interactions	and	tridimensional	
structure	by	altering	genetic	elements'	proximity	and	copy	number	
(Feuk,	Marshall,	et	al.,	2006;	Gamazon	&	Stranger,	2015;	Spielmann	
et al., 2018).	SVs	that	disrupt	collinearity	between	homologous	chro-
mosomes, especially large inversions, are also likely to restrict or 
suppress	recombination	(Crown	et	al.,	2018; Rowan et al., 2019).	This	
may	result	in	an	apparent	reduced	gene	flow	around	SVs,	which	may	
link co- adapted alleles, thus promoting the formation of supergenes 
that	may	underlie	complex	and	adaptive	phenotypes	(Kirkpatrick	&	
Barton, 2006; Rieseberg, 2001;	Thompson	&	Jiggins,	2014).

A	growing	body	of	evidence	also	suggests	that	SVs	can	be	in-
volved	 in	 evolutionary	 mechanisms	 in	 various	 species	 (reviewed	
in	Wellenreuther	 &	 Bernatchez,	 2018).	 For	 instance,	 supergenes	
arising from large inversions have been linked to adaptive variation 
in wing color patterns in Heliconius	 butterfly	 (Joron	et	 al.,	2011),	
to	 migratory	 behavior	 in	 rainbow	 trout	 (Oncorhynchus mykiss; 
Pearse	 et	 al.,	2014;	 Pearse	 et	 al.,	 2019)	 and	 Atlantic	 cod	 (Gadus 
morhua;	Kirubakaran	et	al.,	2016; Berg et al., 2017),	as	well	as	 to	
reproductive	 strategies	 in	 the	 ruff	 (Philomachus pugnax;	 Küpper	
et al., 2016)	 and	 the	white-	throated	 sparrow	 (Zonotrichia albicol-
lis; Tuttle, 2003).	Other	key	examples	of	 inversion	polymorphism	
involved in ecotype divergence and local adaptation have been 
documented	in	the	seaweed	fly	(Coelopa frigida; Mérot et al., 2018)	
and	 in	 three-	spined	 stickleback	 (Gasterosteus aculeatus;	 Jones	

et al., 2012).	Besides	large	inversions,	copy	number	variants	(CNVs)	
have also been linked to adaptation to local temperature regimes 
in	American	lobster	(Homarus americanus;	Dorant	et	al.,	2020)	and	
to	glacial	 lineage	divergence	 in	 capelin	 (Mallotus villosus; Cayuela 
et al., 2021).	 Industrial	 melanism	 in	 peppered	moths	 (Biston bet-
ularia),	 a	 textbook	 example	of	 rapid	 adaptation	 to	 environmental	
change, has been associated with an intronic insertion in the cor-
tex	gene	(Van't	Hof	et	al.,	2016).	Similarly,	a	2.25-	kb	intronic	inser-
tion	would	explain	color	pattern	divergence	among	lineages	in	the	
Corvus genus, promoting reproductive isolation and thus leading to 
speciation	(Weissensteiner	et	al.,	2020).

Despite	such	well-	documented	cases	of	adaptive	genomic	rear-
rangements,	most	SVs	other	than	large	inversions	remain	understud-
ied	 in	a	population	genomics	context.	Relative	 to	SNPs,	very	 little	
is known about how such a large component of genetic variation 
is	 distributed	within	 and	 between	wild	 populations.	 Indeed,	while	
standard procedures and pipelines are available for population- 
scale	SNP	calling,	SV	detection	and	genotyping,	on	the	other	hand,	
involve	 significant	 challenges	 for	 large,	 multisample	 datasets	 (Ho	
et al., 2020; Mahmoud et al., 2019).

Calling	SVs	requires	specialized	software	due	to	their	complex-
ity	and	diversity	 in	type	and	 length.	SV	callers	rely	on	various	sig-
nals of discordance in read mapping relative to a reference genome 
in	order	to	 infer	SVs	 in	a	given	sample	 (Lin	et	al.,	2015; Mahmoud 
et al., 2019).	Because	short-	read	sequencing	is	widely	available	and	
affordable, it is an appropriate technology for population- scale 
study	 of	 genetic	 variation.	 However,	 the	 performance	 of	 short-	
read-	based	SV	callers	is	highly	variable	(Cameron	et	al.,	2019).	They	
are known to lack sensitivity, as true positive detection rates can 
be	as	low	as	10%	(Huddleston	et	al.,	2017;	Sedlazeck,	Rescheneder,	
et al., 2018).	They	also	show	low	precision,	with	high	false	discov-
ery	rates	reaching	89%	for	some	datasets	(Mills	et	al.,	2011),	espe-
cially	for	calls	near	SNPs,	indels,	low-	complexity	regions	and	repeats	
(Cameron	et	al.,	2019).	 In	 fact,	short	 reads	are	hard	to	map	to	the	
reference genome owing to their small length, especially when 
they	include	numerous	sequencing	errors,	repeats	(Sedlazeck,	Lee,	
et al., 2018)	or	sequences	differing	considerably	from	the	reference,	
such	as	SVs.	Spurious	mapping	may	result	in	underreporting	of	vari-
ation,	an	 issue	known	as	 reference	allele	bias	 (Brandt	et	al.,	2015; 
Nielsen	et	 al.,	2011).	Calling	 SVs	 in	 a	 given	dataset	 using	multiple	
callers	 (ensemble	calling),	may	 increase	 the	range	of	SV	types	and	
sizes detected or reduce false discovery rate compared to single- tool 
SV	calling.	For	 instance,	SV	callsets	may	be	merged	across	callers,	

from differences in neural development. This study therefore demonstrates the 
feasibility	of	large-	scale	SV	characterization	and	highlights	its	relevance	for	salmo-
nid population genomics.

K E Y W O R D S
local adaptation, long- read sequencing, pangenome, short- read sequencing, structural 
variation

 17524571, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13653 by C

ochrane France, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3 of 22LECOMTE et al.

then filtered for calls supported by a given minimum number of tools 
(Auton	et	al.,	2015).	However,	the	improvement	in	sensitivity	and/
or precision strongly depends on the callers used in combination 
(Kosugi	et	al.,	2019; Mahmoud et al., 2019).

By contrast, recent advances in third generation sequencing 
platforms	(Oxford	Nanopore	and	Pacific	Biosciences'	technologies)	
have	 brought	 significant	 improvements	 regarding	 SV	 calling.	 Long	
reads	span	kilobase-	long	segments	of	DNA,	 thus	 fully	overlapping	
SVs	and	their	breakpoints,	which	considerably	facilitates	read	map-
ping	(Sedlazeck,	Lee,	et	al.,	2018)	and	improves	sensitivity	of	SV	de-
tection	 (Mahmoud	et	al.,	2019),	especially	 for	novel	 insertions	 (Ho	
et al., 2020).	Specialized	algorithms	and	pipelines	have	been	devel-
oped to process long reads and account for their length and higher 
sequencing	error	rate	(Delahaye	&	Nicolas,	2021; Rang et al., 2018).	
However,	high	costs	prevent	 long-	read	sequencing	from	becoming	
a	routine	tool	for	population-	scale	SV	studies	for	species	with	large	
genomes	such	as	 salmonid	 fishes	 (usually	around	3	Gb),	which	 re-
quires the sequencing of many genomes, namely, for accurate esti-
mates of allele frequency.

To	provide	an	adequate	balance	between	accurate	SV	charac-
terization and genotyping in large datasets, emerging hybrid ap-
proaches can be considered, such as pairing affordable short- read 
sequencing for all samples with high performance third generation 
sequencing	 for	 a	 small	 subset	 of	 genomes	 only.	 Candidate	 SVs	
called from long reads can then be genotyped in all samples from 
short- read data using pangenome graphs, which offer considerable 
advantages over conventional, linear reference- based methods. 
Indeed,	in	a	reference	pangenome,	the	reference	genome	is	repre-
sented as a base graph structure where known variants and alter-
nate alleles are encoded as alternate paths, i.e., series of nodes and 
links	(Paten	et	al.,	2017).	The	integration	of	known	genetic	variation	
within the reference greatly facilitates mapping of reads that over-
lap	such	variants,	thus	improving	both	SV	detection	and	genotyp-
ing,	and	reducing	reference	allele	bias	(Ameur,	2019).	This	approach	
has shown promising results for genome- wide population- scale 
SV	detection	 in	 human	 (Homo sapiens; Yan et al., 2021),	 soybean	
(Glycine max; Lemay et al., 2022),	lake	whitefish	(Coregonus clupea-
formis; Mérot et al., 2023)	and	in	kākāpō	parrots	(Strigops habropti-
lus;	Wold	et	al.,	2023).

Knowledge	 pertaining	 to	 SVs	 remains	 minimal	 in	 salmonid	
fishes,	despite	their	genomes	being	extensively	studied	for	aqua-
culture applications. The first comprehensive catalog of genome- 
wide	 SVs	 for	 Atlantic	 salmon	 (Salmo salar)	 was	 produced	 by	
Bertolotti	 et	 al.	 (2020)	 by	 calling	 putative	 SVs	 using	 short-	read-	
based	caller	LUMPY	(Layer	et	al.,	2014)	in	492	wild	and	domestic	
salmon	 from	 various	 populations	 in	 Europe	 and	 North	 America.	
SV	 calls	 were	 then	 manually	 curated	 with	 SV-	plaudit	 (Belyeu	
et al., 2018)	 in	order	 to	eliminate	 false	positives,	yielding	15,483	
high	confidence	SVs	matching	the	expected	population	structure.	
This	study	also	revealed	a	subset	of	outlier	SVs	overlapping	genes	
enriched	for	brain	expression,	suggesting	an	implication	in	salmon	
domestication.	 Other	 population-	scale	 SV	 catalogs	 were	 pub-
lished	for	the	rainbow	trout	(Oncorhynchus mykiss; Liu et al., 2021),	

and	two	sympatric	sister	species	of	lake	whitefish	(Coregonus sp.; 
Mérot et al., 2023).

Further	work	 is	 required	 in	order	 to	 fully	appreciate	SVs'	 rele-
vance in the genomics and biology of Atlantic salmon, which could 
serve	as	an	 ideal	 candidate	 species	 for	 studying	adaptive	SVs	and	
developing	an	efficient	population-	scale	SV	discovery	pipeline.	SVs	
and larger chromosomal rearrangements are likely a key feature of 
salmonid genomes, as they are critical to the reploidization process 
following the salmonid- specific fourth vertebrate whole- genome du-
plication	that	occurred	at	least	60	million	years	ago	(Ss4R)	(Allendorf	
&	Thorgaard,	1984;	Crête-	Lafrenière	et	al.,	2012; Lien et al., 2016).	
Sequence	 repeats,	 which	 account	 for	 50	 to	 60%	 of	 the	 Atlantic	
salmon	genome	(de	Boer	et	al.,	2007),	are	also	known	to	promote	SV	
formation	(Levy-	Sakin	et	al.,	2019).	Moreover,	Atlantic	salmon	display	
considerable life history trait variation both within and between wild 
populations	(Klemetsen	et	al.,	2003).	Consequently,	there	is	consid-
erable interest in understanding the genetic architecture of traits 
such	as	growth	rate	and	disease	resistance	for	aquaculture	(Gjedrem	
&	Rye,	2018),	but	also	in	the	context	of	local	adaptation,	which	usually	
involves	such	life	history	trait	variation	(Fraser	&	Bernatchez,	2005; 
Lu	&	Bernatchez,	1999; Taylor, 1991).	Local	adaptation	is	expected	
to be a major driver of population structure in Atlantic salmon, given 
its	homing	behavior	(Allendorf	&	Waples,	1996)	and	the	variability	in	
habitat	conditions	(Kawecki	&	Ebert,	2004; Taylor, 1991).	Indeed,	the	
association between the genetic structure of seven groups of local 
salmon	populations	in	Eastern	Canada	and	regional	rivers'	environ-
mental	parameters	suggests	adaptive	SNP	divergence	among	these	
groups	(Bourret	et	al.,	2013;	Dionne	et	al.,	2008).	Previous	studies	
have also highlighted a few adaptive large chromosomal rearrange-
ments	 in	 wild	 Atlantic	 salmon	 populations	 (Watson	 et	 al.,	 2022; 
Wellband	et	al.,	2019),	as	well	as	divergent	SVs	between	domestic	
and	 wild	 populations	 (see	 Bertolotti	 et	 al.,	 2020).	 However,	 SVs'	
contribution to local adaptation remains poorly documented among 
North	American	populations,	especially	at	a	finer	geographic	scale	
(e.g.,	within	neighboring	rivers).

Two parapatric Atlantic salmon populations from the Romaine 
and	 Puyjalon	 rivers	 (Québec,	 Canada;	 50.306337,	 −63.795602;	
Figure 1b)	 represent	 a	 prime	 case	 of	 putative	 fine-	scale	 local	 ad-
aptation.	 Indeed,	admixture	analysis	and	 fixation	 index	calculation	
(FST = 0.036)	based	on	microsatellite	markers	showed	moderate	dif-
ferentiation	between	Romaine	 (RO)	and	Puyjalon	 (PU)	salmon,	de-
spite	their	geographical	proximity	and	habitat	connectivity	 (Albert	
&	Bernatchez,	2006).	Furthermore,	they	exhibit	different	trade-	offs	
in	major	 life	 history	 traits:	 earlier	 age	 at	 smoltification	 and	 sexual	
maturity	have	been	reported	among	wild	Romaine	salmon	 (Belles-	
Isles	et	al.,	2004;	Fontaine	et	al.,	2000;	WSP	Global,	2019),	as	well	
as in wild- born Romaine salmon reared in a hatchery environment 
at	 the	 LARSA	 (Laboratoire	 de	Recherche	 en	 Sciences	Aquatiques;	
Université	Laval,	Québec),	whereas	wild-	born	Puyjalon	salmon	have	
shown higher growth rates over several cohorts in the same hatch-
ery	conditions	(T.	Dion,	Chayer,	et	al.,	2020;	T.	Dion,	Langlois-	Parisé,	
&	Proulx,	2020;	Langlois-	Parisé	et	al.,	2018; Therrien et al., 2017).	
The persistence of such life history trait variation among cohorts in 
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4 of 22  |     LECOMTE et al.

both wild and controlled environments strongly suggests heritable 
genetic variation likely linked to local adaptation, as the Romaine 
and	 Puyjalon	 rivers	 differ	 in	 spawning	 habitat	 quality,	 substrate	
and	 hydrological	 parameters	 (Belles-	Isles	 et	 al.,	 2004;	 Fontaine	
et al., 2000;	GENIVAR,	2002;	Schieffer,	1975;	WSP	Global,	2019).	
However,	the	genetic	basis	of	this	putative	local	adaptation	has	yet	
to be investigated.

Here,	we	address	this	lack	of	knowledge	by	proposing	a	multiplat-
form,	graph-	based	SV	discovery	pipeline	across	numerous	genomes	
(Figure 1a)	in	order	to	catalog	genetic	polymorphism	in	Romaine	and	
Puyjalon	salmon,	allowing	us	to	investigate	candidate	adaptive	vari-
ation	within	these	populations.	With	this	approach,	we	primarily	tar-
geted	small	(50–1000 bp)	to	intermediate-	sized	SVs	(<5 kb),	as	direct	
SV	calling	based	on	short	reads	and	long	reads	is	more	accurate	and	
powerful	in	this	range	of	length	(Mahmoud	et	al.,	2019).	This	study	
thus	served	as	an	unprecedented	opportunity	to	characterize	SVs,	
SNPs	and	small	indels	in	North	American	Atlantic	salmon,	as	well	as	
to	explore	the	relative	contribution	of	various	forms	of	genetic	vari-
ation to fine- scale adaptation and population differentiation.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling, DNA extraction and sequencing

2.1.1  |  Short	reads

Manipulations involving fish were authorized by the Comité de pro-
tection	 des	 animaux	 de	 l'Université	 Laval	 (permit	 number:	 2021–
783).	Adipose	fin	clips	were	sampled	from	60	wild-	born	adult	salmon	
raised	as	broodstock	at	Université	Laval's	Laboratoire	de	Recherche	
en	Sciences	Aquatiques	(LARSA)	and	stored	in	ethanol	until	use.	The	
samples	comprised	31	Puyjalon	 (16	males	and	15	 females)	and	29	
Romaine	(14	males	and	15	females)	individuals.

Spin	column	DNA	extractions	were	performed	using	Qiagen's	
DNeasy	 blood	 and	 tissue	 kit	 according	 to	 the	 manufacturer's	
protocol,	with	the	exception	of	the	elution	step,	which	was	done	
twice	per	sample	with	50 μL	of	water.	DNA	quality	was	assessed	
by concentration measurement and migration on 1% agarose gel. 
DNA	samples	were	then	diluted	to	10 ng/μl	and	sent	to	Génome	

F I G U R E  1 Overview	of	(a)	
polymorphism detection pipelines used 
for population- scale characterization of 
structural	variants	(SVs),	single	nucleotide	
polymorphisms	(SNPs)	and	small	indels	
within	the	genomes	of	Romaine	(RO)	and	
Puyjalon	(PU)	salmon	(SR:	short	reads;	LR:	
long	reads),	(b)	location	of	the	Romaine	
and	Puyjalon	rivers	(red	dot)	in	Québec,	
Canada,	and	(c)	comparative	genomics	
analyses performed on catalogued 
variants	(FST,	fixation	index;	GO,	Gene	
Ontology;	PCA,	principal	component	
analysis;	RDA,	redundancy	analysis).
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Québec's	Centre	d'expertise	et	de	services	(Montréal,	Canada)	for	
library	preparation	and	whole	genome	sequencing	on	an	Illumina	
NovaSeq6000,	using	four	S4	PE150	lanes	for	an	anticipated	depth	
of	16X	per	sample.

2.1.2  |  Long	reads

Among the 60 fish sampled for whole genome short- read sequenc-
ing,	four	(one	male	and	one	female	for	each	population)	were	used	
for	Nanopore	long-	read	sequencing.	In	order	to	provide	intact	high	
molecular	weight	DNA,	whole	 blood	was	 extracted	 from	 live	 fish	
using	 EDTA-	prefilled	 syringes,	 followed	 by	 humane	 euthanasia	 by	
decapitation. Blood samples were flash- frozen in liquid nitrogen, 
transferred	to	storage	tubes	and	stored	at	−80°C	until	use.

High	 molecular	 weight	 DNA	 extraction	 was	 performed	 twice	
for each fish using Circulomics' CBB protocol for nucleated blood 
(EXT-	NBH-	001;	Circulomics,	2021),	 from	6 μL	of	blood	mixed	with	
194 μL	 of	 ice-	cold	 PBS.	 DNA	 quality	 was	 assessed	 by	 measuring	
concentration	with	Qubit	and	migrating	DNA	on	a	0.5%	agarose	gel.	
DNA	samples	were	then	sent	to	the	Centre	for	Integrative	Genomics	
(CIGENE)	at	 the	Norwegian	University	of	Life	Science	 (NMBU)	for	
sequencing.	DNA	 fragments	 shorter	 than	 25 kb	were	 removed	 by	
size	selection	with	Circulomics'	Short	Read	Eliminator	kit,	and	seven	
libraries	were	prepared	for	each	sample	using	the	SQK-	LSK110	kit	
(Oxford	Nanopore	Technologies).

Sequencing	was	performed	on	a	PromethION24	in	short	se-
rial	runs	following	protocol	NFL_9076_v109_revA.	Each	sequenc-
ing run was terminated after a few hours, when the number of 
active pores dropped to below 10%, in order to recover pores 
by nuclease- flushing flow cells, which were then refilled with 
the	same	DNA	preparation	for	a	next	short	sequencing	run.	Two	
FLO-	PRO002	flow	cells	were	used	for	each	sample,	which	were	
each	filled	with	six	and	five	loadings,	respectively,	in	order	to	ob-
tain	an	approximate	coverage	of	20X.	Basecalling	was	done	with	
Guppy	version	5.0.13	(high-	accuracy	basecalling	model)	and	raw	
reads were filtered for a minimum qscore of nine. The average 
yield	for	the	four	samples	was	47.1	Gb	of	DNA,	while	the	mean	
N50	was	39.5 kb.

2.2  |  Characterization of genetic variation

2.2.1  |  Raw	sequencing	data	preprocessing

Short reads
The	 Ssal_Brian_v1.0	 assembly,	 derived	 from	 a	 North	 American	
wild	 salmon	 from	 Newfoundland	 (Norwegian	 University	 of	 Life	
Sciences,	2022;	GenBank	assembly	accession:	GCA_923944775.1;	
project	 accession:	 CAKLZZ000000000.1),	 was	 used	 as	 the	 refer-
ence	genome	for	all	downstream	analyses.	This	genome	features	28	
chromosomes with two known polymorphic rearrangements, i.e., 
the	 translocation	of	 chromosome	 ssa01's	 p	 arm	 (ssa01p)	 to	 ssa23	

(ssa01-	23)	 (Lehnert	 et	 al.,	 2019),	 and	 the	 fusion	 of	 chromosomes	
ssa26	and	ssa28	(Brenna-	Hansen	et	al.,	2012).

Raw	Illumina	data	was	processed	using	the	wgs_sample_prepa-
ration	 pipeline	 (https://	github.	com/	enorm	andeau/	wgs_	sample_	
prepa ration).	Adapters	and	 low-	quality	ends	were	first	 trimmed	
from	raw	reads	by	running	fastp	0.20.0	(Chen	et	al.,	2018)	with	
default parameters. Trimmed reads were then mapped to the 
indexed	 reference	 genome	 (samtools	 faidx command, version 
1.8;	Danecek	et	 al.,	2021)	 using	BWA	MEM	 (Li,	2013),	 allowing	
a	minimum	mapping	quality	of	10	(−q	10).	Duplicate	reads	were	
filtered out of the alignment with MarkDuplicates	 (Picard	1.119;	
Broad	Institute,	2019).	After	indexing	the	resulting	bam	files	with	
Picard	BuildBamIndex, mapping was refined around candidate in-
dels	using	GATK	3.6–0	RealignerTargetCreator and IndelRealigner 
(McKenna	et	al.,	2010)	and	overlapping	read	pairs	were	clipped	
to preserve read regions with the highest average quality using 
bamUtil	 1.0.14	 clip overlap	 (Jun	 et	 al.,	 2015).	 Finally,	 we	 used	
samtools addreplacerg to add unique read group names for each 
sample's bam file, which is a requirement for some variant calling 
tools we used.

Long reads
Since	each	sequencing	run	produced	multiple	raw	read	files,	all	fastq	
files obtained for a given sample were first concatenated to yield a 
single fastq file per sample. Raw reads were filtered for an average 
minimum	quality	of	10	and	a	minimum	read	length	of	1000 bp	using	
NanoFilt	2.0.8	(De	Coster	et	al.,	2018).	We	mapped	filtered	reads	to	
the	Ssal_Brian_v1.0	assembly	with	Winnowmap	version	2.03	 (Jain	
et al., 2020, 2022)	using	default	parameters	and	a	k- mer size of 15 
(−k	15).	The	complete	preprocessing	pipeline	(ONT_data_processing	
v1.0.0)	 can	 be	 found	 at	 https://	github.	com/	Lauri	eLeco	mte/	ONT_	
data_	proce	ssing	.

2.2.2  |  SNP	and	short	indel	(1–50 bp)	calling

SNPs	and	small	indels	were	called	exclusively	from	short-	read	data,	
as higher basecalling error rates in long- read data are likely to in-
terfere	with	SNP	detection	 (Ahsan	et	al.,	2021; Rang et al., 2018).	
Variant	calling	was	performed	in	all	60	samples	at	once	and	for	each	
chromosome separately, using bcftools mpileup and call	 (version	
1.16)	and	requiring	a	minimum	mapping	quality	of	five	at	a	given	site	
(−q	5).	The	28	single	chromosome	VCF	files	were	then	concatenated	
with bcftools concat.

In	 order	 to	 apply	 the	 same	 filtering	 criteria	 as	 SVs	 (described	
below),	samples	without	at	 least	 four	supporting	 reads	and	a	min-
imum genotype quality of five for a given variant, or that had more 
than five times the anticipated whole genome short- read sequencing 
coverage	 (80)	or	an	exceedingly	high	genotype	quality	 (GQ = 127),	
were	assigned	the	genotype	“missing”	 (“./.”)	using	bcftools	+set- GT 
(version	 1.15).	 Finally,	 we	 kept	 SNPs	 and	 small	 indels	 that	 had	 a	
minor	allele	frequency	between	0.05	and	0.95	and	that	were	geno-
typed	in	at	least	50%	of	samples	(i.e.,	population-	scale	filters),	using	
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bcftools filter	 (version	1.13).	The	full	SNP	and	indel	calling	pipeline	
is available at https://	github.	com/	Lauri	eLeco	mte/	SNPs_	indels_	SR 
(version	v1.0.0).

2.2.3  |  Structural	variant	calling

Short reads
In	order	 to	alleviate	 some	of	 the	challenges	 inherent	 to	SV	detec-
tion	(e.g.,	low	precision),	we	proposed	an	ensemble	approach	where	
SVs	were	first	called	independently	with	three	separate	tools,	then	
merged across tools in order to obtain a union callset, which we fil-
tered	for	calls	supported	by	at	 least	two	callers.	We	assumed	that	
SVs	confidently	called	by	multiple	 tools	are	more	 likely	 to	be	 true	
positives	than	SVs	called	by	a	single	tool.

The three callers used in combination were chosen based 
on reported performance in previous studies and benchmarks 
(Cameron	 et	 al.,	 2019;	 Kosugi	 et	 al.,	 2019; Mérot et al., 2023; 
Stenløkk,	2023).	Each	caller	was	provided	with	the	same	60	bam	
files,	as	well	as	the	reference	genome	used	for	mapping	reads.	We	
first	ran	DELLY	(version	1.1.6;	Rausch	et	al.,	2012)	following	guide-
lines	for	germline	calling	in	high	coverage	genomes	(https:// github.
com/dellytools/delly#germline-	sv-	calling).	Putative	SVs	were	first	
called	 separately	 in	 all	 samples	 and	 in	 each	 of	 the	 28	 chromo-
somes, then merged together in order to obtain a list of known 
SV	 sites	 to	 be	 genotyped	 by	DELLY	 in	 each	 sample.	Genotyped	
SVs	were	 then	merged	 across	 all	 samples	 into	 a	 unified,	multis-
ample	VCF.	We	filtered	for	deletions	(DEL),	insertions	(INS),	dupli-
cations	(DUP)	and	inversions	(INV)	labelled	as	PASS	and	PRECISE	
using bcftools 1.13 filter.	Next,	we	used	Manta	version	1.6.0	(Chen	
et al., 2016)	 according	 to	 instructions	 for	germline	 joint	 samples	
analysis	 (https://	github.	com/	Illum	ina/	manta/		blob/	master/	docs/	
userG	uide/	README.	md#	germl	ine-		confi	gurat	ion-		examples).	 We	
parallelized	 SV	 calling	 across	 the	 28	 chromosomes	 instead	 of	
across samples, since Manta has no built- in procedure for merging 
calls	 across	 samples.	 SVs	 tagged	 as	 BND	 (breakends)	were	 con-
verted	into	explicit	inversions	using	the	script	convertInversion.py	
provided	 in	Manta's	 installation	 directory.	 The	 28	 chromosome-	
specific	VCFs	were	 then	 concatenated	 into	 a	 single	multisample	
file,	which	was	filtered	for	PASS	and	PRECISE	calls	as	well.	The	last	
short-	read-	based	caller	included	in	the	pipeline	was	LUMPY	(Layer	
et al., 2014),	through	smoove	(version	0.2.7;	Pedersen	et	al.,	2020).	
Following	 recommendations	 for	population-	level	 calling	 (https:// 
github. com/ brentp/ smoove# popul ation -  calling),	we	called	SVs	 in	
the	same	manner	as	with	DELLY.	Only	DEL,	DUP,	INV	calls	labelled	
as	PRECISE	were	retained.

The	three	SV	sets	were	then	merged	together	using	Jasmine	ver-
sion	1.1.5	(Kirsche	et	al.,	2023),	which	integrates	various	information	
including chromosome, position, end, size and type to determine 
whether	SV	calls	 from	different	files	or	samples	refer	to	the	same	
SV	or	 not.	We	 ran	 Jasmine	with	 parameters	 “-	-	mutual_distance	 -	-	
max_dist_linear = 0.25”,	 so	 that	 the	maximum	allowed	distance	 re-
quired	between	two	SVs	for	them	to	be	merged	is	correlated	with	

their	size.	The	merged	VCF	was	then	edited	with	a	custom	R	script	
(R	version	4.1.2;	R	Core	Team,	2021)	 in	order	 to	convert	symbolic	
alternate	alleles	to	explicit	sequences	and	to	standardize	VCF	fields.	
The	formatted	merged	VCF	was	finally	filtered	for	calls	supported	by	
at least two callers, with bcftools filter. Moreover, in accordance with 
the	most	prevalent	definition	of	SVs	(Feuk,	Carson,	&	Scherer,	2006),	
variants	smaller	than	50 bp	were	considered	as	small	indels	instead	
of	SVs	and	were	therefore	filtered	out.	This	first	set	of	merged	SVs	
will	be	 referred	 to	as	 the	short-	read	SV	set	 (SR	SVs).	The	detailed	
short-	read	SV	calling	pipeline	can	be	 found	at	https:// github. com/ 
Lauri	eLeco	mte/	SVs_	short_	reads		(version	v1.0.0).

Long reads
The	SV	calling	procedure	for	Oxford	Nanopore	data	is	equivalent	to	
the	pipeline	described	above	for	SV	detection	from	short	reads,	i.e.,	
independent	SV	detection	with	three	different	tools,	merging	of	SV	
calls across callers, and filtering for calls supported by at least two 
tools.	However,	since	most	long-	read-	based	SV	callers	do	not	sup-
port	multisample	 calling,	 SVs	were	 first	 called	 separately	 for	 each	
sample using all three chosen tools, then merged across samples 
(across-	sample	merge)	 to	obtain	a	single	VCF	per	caller.	The	three	
multisample	VCFs	were	then	merged	together	(across-	caller	merge)	
to	obtain	the	long-	read	SV	set	(LR	SVs).	The	pipeline	is	available	at	
https://	github.	com/	Lauri	eLeco	mte/	SVs_	long_	reads		(version	v1.0.0).

We	 ran	 Sniffles	 2.0.7	 (Sedlazeck,	 Rescheneder,	 et	 al.,	 2018; 
Smolka	 et	 al.,	 2022)	 (default	 settings	 and	 “-	-	output-	rnames	
-	-	combine-	consensus”	 options)	 on	 each	 sample	 and	 filtered	 for	
PASS	and	PRECISE	calls.	We	then	refined	alternate	allele	sequences	
and breakpoints for insertions, deletions and some duplications by 
running	Iris	(Kirsche	et	al.,	2023):	we	first	preprocessed	each	sam-
ple's	VCF	with	Jasmine	 (“-	-	dup_to_ins	 -	-	preprocess_only”),	and	ran	
Iris	 with	 parameters	 “-	-	keep_long_variants	 -	-	also_deletions”.	 The	
four	 samples'	 refined	 VCFs	 were	 merged	 together	 using	 Jasmine	
-	-	ignore_strand	 -	-	mutual_distance	 -	-	allow_intrasample	 -	-	output_
genotypes,	 and	 refined	 SVs	 were	 then	 converted	 back	 to	 their	
original	 type	 with	 Jasmine	 -	-	dup_to_ins	 -	-	postprocess_only.	 The	
multisample	 Sniffles	 VCF	 was	 finally	 filtered	 again	 for	 PASS	 and	
PRECISE	 insertions,	 deletions,	 duplications	 and	 inversions.	 SVs	
were	 also	 called	 with	 SVIM	 2.0.0	 (Heller	 &	 Vingron,	 2019)	 using	
parameters	 “-	-	insertion_sequences	 -	-	read_names	 -	-	max_consen-
sus_length=50000	 -	-	interspersed_duplications_as_insertions”,	
following	the	same	procedure	as	Sniffles	to	produce	a	multisample	
VCF	with	PASS	calls.	Last,	we	used	NanoVar	1.4.1	(Tham	et	al.,	2020)	
with	default	settings.	Supporting	reads'	names	were	added	manually	
using	a	custom	R	script	 in	order	to	allow	for	the	refinement	of	SV	
breakpoints	by	Iris.	The	three	multisample	VCFs	were	finally	merged	
together	with	Jasmine,	formatted	with	custom	R	scripts	and	filtered,	
as	described	for	the	SR	SV	set.

Combination of SV datasets
A final merging step was performed for combining the short- read and 
long-	read	SV	 sets	using	 Jasmine	with	parameters	 “-	-	ignore_strand	
-	-	ignore_merged_inputs	 -	-	normalize_type	 -	-	output_genotypes”,	
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resulting	in	a	large	union	set	of	candidate	SVs	to	be	genotyped	in	the	
60	 Atlantic	 salmon	 genomes	 (https:// github. com/ Lauri eLeco mte/ 
merge_	SVs_	SRLR;	version	v1.0.0).

2.2.4  |  SV	genotyping

We	implemented	a	graph-	based	genotyping	pipeline	(https:// github. 
com/	Lauri	eLeco	mte/	genot	ype_	SVs_	SRLR,	version	v1.0.0)	using	the	
vg	toolkit	version	1.46.0	(Hickey	et	al.,	2020),	following	recommen-
dations from https://	github.	com/	vgteam/	vg/	wiki/	SV-		genot	yping	
-  with-  vg# sv-  genot yping -  with-  vg-  call.	We	first	built	an	indexed	ref-
erence	graph	structure	from	the	reference	genome	fasta	and	the	SV	
VCF	file	using	vg autoindex, then computed snarls, i.e., sites of known 
variation in the genome graph, with the vg snarls	command.	We	then	
remapped short reads to the variant- aware reference graph for all 
samples separately using vg giraffe	 (Sirén	 et	 al.,	 2021),	 computed	
read	support	for	variation	sites	(vg pack),	then	genotyped	these	sites	
(vg call).	We	used	bcftools	+set- GT	on	each	sample's	VCF	to	set	the	
genotype	as	missing	(“./.”)	for	calls	that	were	not	supported	by	at	least	
four reads and that had a quality score lower than five, or that had 
an	extreme	quality	score	(GQ = 256)	or	an	extreme	depth	(DP = 80),	
as	 such	 calls	 tend	 to	 be	 false	 positives	 (Cameron	 et	 al.,	 2019).	All	
60	 sample	 VCFs	 were	merged	 together	 with	 bcftools	merge. The 
genotyped	SV	set	was	finally	filtered	for	variants	with	a	minor	allele	
frequency	between	0.05	and	0.95,	and	less	than	50%	missing	data.	
The 50% missingness threshold was arbitrary and based on Mérot 
et	al.	(2023).	Comparison	with	both	less	and	more	stringent	missing	
data proportion thresholds showed that the choice of threshold did 
not	 impact	the	post-	filtering	variant	count	differently	for	SVs	than	
for	SNPs	or	indels	(Table S1).

In	an	effort	to	better	link	the	genomic	context	and	the	confi-
dence	 in	SV	calling,	we	compared	the	frequency	distributions	of	
both	high-	quality	SVs	that	passed	all	filtering	steps	and	low-	quality,	
filtered	out	SVs	in	two	genomic	features	known	to	interfere	with	
SV	 calling:	 highly	 similar	 regions	 resulting	 from	 whole-	genome	
duplication	 events	 (e.g.,	 syntenic	 regions)	 and	 repeated	 content	
(repeats	 and	 transposable	 elements).	 To	 identify	 syntenic	 re-
gions,	we	 followed	 the	 steps	described	by	Dallaire	 et	 al.	 (2023):	
in	summary,	we	aligned	the	genome	to	itself	with	nucmer	(built-	in	
mapper	in	MUMmer	version	4.0.0;	Marçais	et	al.,	2018),	then	per-
formed	synteny	analysis	with	SyMAP	(Soderlund	et	al.,	2011),	and	
re-	mapped	 syntenic	 blocks	 to	 the	 genome	with	 LASTZ	 (version	
1.04.15;	Harris,	2007)	to	get	the	homology	percentage.	We	iden-
tified repeats and transposable elements using RepeatMasker 
(version	4.0.8;	Smit	et	al.,	2013).	To	distinguish	between	probable	
false	positive	SVs	and	probable	true	positive	SVs,	we	relied	on	the	
filtering	 criteria	we	applied	on	 the	 sample	 level	 (read	depth	 and	
genotype	quality)	and	on	the	population	level	(on	minor	allele	fre-
quency	and	missing	data	proportion)	during	the	genotyping	pro-
cedure.	Using	bedtools	window,	we	then	extracted	excluded	and	
filtered	SVs	overlapping	with	either	a	syntenic	region	or	a	repeat	
region	(within	a	100-	bp	window),	or	both.

In	 addition,	because	 information	on	putative	SVs	 is	 lost	 at	 the	
genotyping step, we applied the procedure described in Methods 
S1	to	match	genotyped	SVs	with	a	known	putative	SV	based	on	the	
correspondence of position and allele length, in order to retrieve 
information	 on	 variant	 type,	 length	 and	 platform	 support	 (e.g.,	
short-		and/or	long-	read).	This	information	allowed	us	to	perform	ad-
ditional	analyses	on	the	set	of	genotyped	and	matched	SVs.	Indeed,	
in	order	 to	 see	 if	 long-	read	SVs	 could	be	 reliably	 genotyped	 from	
short-	read	data	 and	 a	 pangenome,	we	 examined	 the	 concordance	
between	the	genotypes	called	by	vg	for	long-	read	SVs	and	the	geno-
types	called	by	long-	read-	based	SV	callers	prior	to	merging	datasets	
across	platforms.	First,	 for	 the	 four	 samples	 sequenced	with	both	
short-		and	 long-	read	platforms,	we	extracted	the	three	genotypes	
(from	Sniffles,	SVIM	and	NanoVar)	for	each	long-	read	SV.	We	then	
determined the consensus genotype when possible, e.g., if at least 
two	callers	called	the	same	genotype	in	a	given	sample.	Each	SV	was	
labelled as concordant when its consensus genotype matched the 
corresponding genotype outputted by vg, or as non- concordant if 
its consensus genotype differed from the vg genotype. Alternatively, 
when	all	three	callers	outputted	different	genotypes	for	a	given	SV	
in a given sample, no consensus genotype could be inferred, and 
therefore the concordance between callers and vg could not be de-
termined.	We	also	performed	this	procedure	for	short-	read	SVs	for	
comparison purposes. This concordance analysis is detailed in the 
scripts	 compare_GTs_LR_vs_vg.sh	 and	 compare_GTs_LR_vs_vg.R	
from	the	genotype_SVs_SRLR	pipeline.

2.3  |  Population genomics analyses

2.3.1  |  Differentiation	between	the	Romaine	and	
Puyjalon	populations

We	used	ANGSD	version	0.937	(Korneliussen	et	al.,	2014)	for	per-
forming various population and comparative genomics analyses on 
SVs,	SNPs	and	small	indels	separately	by	adapting	a	previous	pipe-
line	 designed	 for	 SNPs	 (https://	github.	com/	clair	emerot/	angsd_	
pipeline).	 To	 investigate	 population	 structure,	 we	 first	 performed	
principal	component	analysis	(PCA)	on	a	normalized	covariance	ma-
trix	produced	from	 input	VCF	files	using	VCFtools	 (version	0.1.16;	
Danecek	et	al.,	2011),	pcangsd	(Meisner	&	Albrechtsen,	2018)	and	
custom	R	scripts.	From	input	VCF	files,	we	then	estimated	average	
genome-	wide	 fixation	 index	 (FST;	Weir	 &	 Cockerham,	 1984)	 from	
each	population's	allele	frequency	spectrum	using	ANGSD's	-	doSaf	
and	realSFS	functions	(version	0.937).	We	also	computed	FST along 
the	genome	by	sliding	windows	of	100 kb	(per-	window	FST),	as	well	
as	for	each	variant	(per-	variant	FST).

We	 employed	 two	 complementary	 approaches	 for	 identifying	
candidate	variants	likely	involved	in	local	adaptation	(Figure 1c).	We	
first	extracted	the	most	highly	differentiated	variants	falling	within	
the	upper	97%	per-	variant	FST	quantile	 (FST	outliers).	We	also	per-
formed	Fisher's	exact	tests	on	per-	population	allelic	counts	at	each	
site and identified outliers with a corrected p-	value	(q-	value)	lower	
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than	0.01	 (Benjamini	&	Hochberg,	1995).	We	then	extracted	com-
mon outliers between FST	 and	 Fisher	 exact	 tests	 to	 yield	 a	 set	 of	
strongly differentiated variants used for further analysis.

Second,	 we	 ran	 a	 redundancy	 analysis	 (RDA)	 on	 the	 imputed	
genotype	matrix,	with	the	population	as	the	only	explanatory	vari-
able	using	the	R	package	vegan	(Oksanen	et	al.,	2022).	While	FST and 
Fisher's	exact	test	are	more	likely	to	detect	outlier	loci	of	large	effect,	
RDA	allows	identifying	covarying	markers	with	individually	weak	ef-
fect	that	may	be	involved	in	polygenic	control	of	phenotypic	expres-
sion	(Forester,	Lasky,	et	al.,	2018; Rellstab et al., 2015),	as	previously	
documented	for	life	history	traits	such	as	age	at	sexual	maturity	or	
growth	rate	(Debes	et	al.,	2021;	Sinclair-	Waters	et	al.,	2020).	We	de-
fined	RDA	candidates	as	variants	with	loadings	falling	over	the	three	
standard	 deviations	 threshold	 (Forester,	 Laporte	 &	Manel,	 2018).	
We	 thus	 obtained	 a	 set	 of	 outlier	 variants	 and	 a	 set	 of	 candidate	
variants for each of the three variant types studied.

2.3.2  |  Functional	analysis	of	candidate	
genomic variation

In	order	to	assess	the	potential	functional	impact	of	candidate	vari-
ants on life- history trait variation observed in Romaine salmon, we 
investigated the overlap between variants of interest and known 
genes.	We	 first	 annotated	 the	Ssal_Brian_v1.0	assembly	using	 the	
pipeline	 GAWN	 v0.3.5	 (https:// github. com/ enorm andeau/ gawn)	
based	on	the	transcriptome	of	the	Ssal_v3.1	assembly	(GenBank	as-
sembly	accession:	GCF_905237065.1)	and	filtered	out	possible	du-
plicate	annotations,	which	produced	a	list	of	36,697	known	genes.

For	 each	 set	 of	 variants	 of	 interest,	we	 ran	 bcftools	window 
(version	2.30.0;	Quinlan	&	Hall,	2010)	to	identify	a	set	of	overlap-
ping	genes	 located	within	10 kb	of	at	 least	one	variant.	We	then	
performed	Gene	Ontology	(GO)	enrichment	analysis	on	each	gene	
set	with	 goatools	 1.2.3	 (Klopfenstein	 et	 al.,	 2018),	 using	 the	 list	
of	 36,697	of	 genes	 from	GAWN	as	 the	background	 (population)	
set	 and	 the	 go-	basic	 database	 version	 1.2	 (2022-	07-	01;	 http:// 
relea se. geneo ntolo gy. org/ 2022-  07-  01/ ontol ogy/ go-  basic. obo).	
Only	enriched	terms	that	referred	to	a	biological	process	(BP)	and	
with a corrected p-	value	(Benjamini	&	Hochberg,	1995)	under	0.1	
were	considered	significant	and	preserved.	We	then	used	REVIGO	
(Supek	 et	 al.,	2011)	 to	 cluster	 significant	GO	 terms	 by	 semantic	
similarity	with	a	cutoff	value	of	0.5	 (“small	 list”),	 for	easier	 inter-
pretation. All scripts used for population genomics analyses can 

be found at https://	github.	com/	Lauri	eLeco	mte/	SVs_	SNPs_	indels_	
compgen	(version	v1.0.0).

3  |  RESULTS

3.1  |  Long reads revealed more variants while short 
reads allowed population- scale SV genotyping

SVs	 were	 identified	 through	 our	 multistep	 calling	 procedure	 in-
volving both short-  and long- read data, where different callers and 
datasets showed high variability in the number, types and sizes 
of	 SVs	 detected.	 Indeed,	 short	 reads	 revealed	 mostly	 deletions,	
whereas	 long	reads	allowed	the	detection	of	many	more	SVs,	es-
pecially deletions, insertions and duplications. Among short- read- 
based	callers,	Manta	reported	the	most	SVs	of	various	types	and	
sizes	(151,103),	while	smoove	called	the	least	(28,164),	almost	ex-
clusively	deletions	 (Table 1; Figure S1).	 In	 total,	238,492	SV	calls	
were	merged	across	the	three	callers,	of	which	only	15.5%	(37,041)	
were	shared	by	at	least	two	tools	and	were	longer	than	50 bp:	this	
short-	read	SV	set	primarily	consisted	of	deletions	(34,761)	smaller	
than	100 bp,	and	very	few	duplications	 (318)	and	 insertions	 (849)	
(Table 2; Figure S2).

For	 the	 long-	read	 pipeline,	 SVIM	 called	 over	 3.5	 million	 SVs,	
mostly insertions and deletions, more than the two other callers 
combined	(Table 3; Figure S3).	The	NanoVar	callset	was	the	smallest	
(454,697	 SVs)	 but	 featured	 the	 largest	 proportions	 of	 duplications	
(31.8%)	and	inversions	(16.4%)	(Table 3).	The	proportion	of	all	merged	
long-	read	SV	calls	(3,832,032)	supported	by	multiple	tools	was	12.5%,	
smaller	than	for	the	merged	short-	read	SV	set.	The	345,695	long-	read	
SVs	supported	by	at	least	two	tools	and	longer	than	50 bp	retained	
for	 subsequent	 steps	were	mostly	 deletions	 (57.7%)	 and	 insertions	
(40.0%)	and	included	only	208	inversions	(Table 4; Figure S4).

Merging	both	short-		and	long-	read	SVs	yielded	a	set	of	361,107	
putative	 SVs,	 mainly	 deletions	 (59.1%)	 and	 insertions	 (38.3%)	
(Table 5	&	Figure 2).	The	vast	majority	of	 these	merged	SVs,	 i.e.,	
89.7%,	were	 exclusively	 called	 from	 long	 reads,	 including	 almost	
all	(99.4%)	of	the	138,404	insertions	identified	(Table S2).	Similarly,	
96.0%	of	 duplications	 and	83.7%	of	 deletions	were	 uniquely	 de-
tected	from	long	reads.	By	contrast,	only	15,412	SVs,	or	4.3%	of	the	
merged	SV	set	(Table 5),	were	unique	to	the	short-	read	SV	callset,	
including	nonetheless	83.3%	of	all	inversions	identified	(Table S2).	
Moreover,	 the	21,629	SVs	called	 from	both	short	and	 long	 reads	

TA B L E  1 Number	of	SVs	reported	by	each	short-	read-	based	caller,	and	number	of	SV	calls	merged	across	these	callers.

Short- read caller

SV type

Per- caller total Merged across callersDELs DUPs INSs INVs

DELLY 104,738 650 15,086 1390 121,864 238,492

Manta 114,857 3879 28,546 3821 151,103

smoove 27,627 292 0 245 28,164

Abbreviations:	DELs,	deletions;	DUPs,	duplications;	INSs,	insertions;	INVs,	inversions.
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accounted	for	5.9%	of	all	merged	SVs	(Table 5),	meaning	that	58%	
of	all	short-	read	SVs	were	also	supported	by	long-	read	data.

The	 merged	 SVs	 were	 represented	 in	 a	 variant-	aware	 genome	
graph	on	which	we	mapped	short-	read	data	to	genotype	SVs	in	all	60	
individuals.	On	average,	333,031	SVs	were	genotyped	in	each	sample	
using	the	graph-	based	pipeline,	for	a	total	of	344,468	distinct	SVs.	As	
expected	owing	to	the	complex	nature	of	SVs,	the	average	proportion	
of	missing	data	per	site	was	over	four	times	larger	than	for	raw	SNPs	
(Table S3).	40.8%	of	raw	genotyped	SVs	did	not	meet	the	minimum	cov-
erage required in at least half of samples, while two thirds had a minor 
allele	frequency	under	5%	(Table S4).	Consequently,	filtering	on	both	
proportion of missing data and minor allele frequency considerably 

reduced	the	SV	set	to	115,907	high-	confidence	variants	 (Table 6),	or	
about	33.6%	of	the	344,468	raw	genotyped	SVs.	These	115,907	SVs	
were used for subsequent population genomics analyses.

3.2  |  SVs encompassed a more extensive 
fraction of the genome than SNPs and small indels

While	 SNPs	 were	 the	 most	 frequent	 type	 of	 variants,	 SVs	 im-
pacted a much higher proportion of genome base pairs, with 
large	heterogeneity	along	the	genome.	Indeed,	in	addition	to	the	
final	115,907	SVs,	we	 identified	8,777,832	SNPs	and	1,089,321	

Short- read caller pair

SV type

Per- pair totalDELs DUPs INSs INVs

DELLY + Manta 7807 108 849 894 9658

DELLY + smoove 2216 122 0 21 2359

Manta + smoove 1434 26 0 69 1529

DELLY + Manta + smoove 23,304 62 0 129 23,495

Per-	type	total 34,761 318 849 1113 37,041

Abbreviations:	DELs,	deletions;	DUPs,	duplications;	INSs,	insertions;	INVs,	inversions.

TA B L E  2 Number	of	SVs	in	the	filtered	
short-	read	SV	set	(SR	SVs),	obtained	by	
merging calls across the three short- reads- 
based callers, then filtering for a minimum 
of two supporting tools and a minimum 
length	of	50 bp.

TA B L E  3 Number	of	SVs	reported	by	each	long-	read-	based	caller,	and	number	of	SV	calls	merged	across	these	callers.

Long- read caller

SV type

Per- caller total Merged across callersDELs DUPs INSs INVs

Sniffles 260,921 635 211,588 1233 474,377 3,832,032

SVIM 1,738,486 41,164 1,754,905 4914 3,539,469

NanoVar 178,957 144,922 123,349 7469 454,697

Abbreviations:	DELs,	deletions;	DUPs,	duplications;	INSs,	insertions;	INVs,	inversions.

Long- read caller pair

SV type

Per- pair totalDELs DUPs INSs INVs

Sniffles + NanoVar 1831 47 2628 208 4714

Sniffles + SVIM 107,490 38 83,797 0 191,325

SVIM + NanoVar 17,287 7169 13,550 0 38,006

Sniffles + SVIM + NanoVar 72,871 451 38,328 0 111,650

Per-	type	total 199,479 7705 138,303 208 345,695

Abbreviations:	DELs,	deletions;	DUPs,	duplications;	INSs,	insertions;	INVs,	inversions.

TA B L E  4 Number	of	SVs	in	the	filtered	
long-	read	SV	set	(LR	SVs),	obtained	by	
merging calls across the three long- read- 
based callers, then filtering for a minimum 
of two supporting tools and a minimum 
length	of	50 bp.

Platform

SV type

Per- platform totalDELs DUPs INSs INVs

SR 13,972 305 101 1034 15,412

LR 178,690 7692 137,555 129 324,066

SR + LR 20,789 13 748 79 21,629

Per-	type	total 213,451 8010 138,404 1242 361,107

Abbreviations:	DELs,	deletions;	DUPs,	duplications;	INSs,	insertions;	INVs,	inversions.

TA B L E  5 Merged	SV	count	by	type	
and	sequencing	platform	(SR:	short-	read;	
LR:	long-	read;	SR + LR:	short-		and	long-	
read).	These	represent	putative	SVs	in	
the	genomes	of	Romaine	and	Puyjalon	
salmon, prior to genotyping and filtering.
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short	 indels	 (Table 6)	 that	met	 the	 same	 filters	 on	minor	 allele	
frequency	and	proportion	of	missing	data.	SVs	added	up	to	over	
41.8 Mb	 (including	 insertions),	 or	 about	 1.68%	of	 total	 genome	
length,	which	was	approximately	4.8	times	more	than	SNPs	(total	
length:	 8.7 Mb;	Table 6)	 and	 four	 times	more	 than	 small	 indels	
(total	length:	10.3 Mb;	Table 6).	Similarly,	the	proportion	of	base	
pairs covered by a given variant type per 100- kb window was 
much	more	variable	for	SVs,	reaching	as	much	as	94.0%	for	some	
regions	 (e.g.,	around	a	94.1-	kb	deletion	on	chromosome	ssa09),	
whereas	the	maximum	observed	proportion	of	base	pairs	covered	
by	SNPs	was	only	2.9%	and	10.2%	for	indels	(Table 6	&	Figure 3).

If	we	consider	the	occurrence	of	variants	instead	of	the	num-
ber of variable bases, there was no considerable difference in 
variant	density	along	the	genome,	as	SVs,	SNPs	and	small	 indels	
all	 tended	to	be	more	frequent	towards	the	extremities	of	chro-
mosomes	(Figure S5).	The	gap	observed	in	the	number	of	SVs	by	
100-	kb	window	 (SV	density)	on	chromosome	ssa10	could	be	at-
tributable to a large 2.5- Mb deletion called from short reads, but 
not	 successfully	 genotyped	 by	 graphs	 (Figure S5);	 this	 gap	was	
likely	not	as	obvious	with	SNPs	and	indels,	since	numerous	mark-
ers	(over	61,000	SNPs	and	8000	indels)	could	still	be	genotyped	
in samples that did not have this putative deletion.

F I G U R E  2 Merged	SV	count	by	SV	
type, length and sequencing platform 
(SR:	short-	read;	LR:	long-	read;	SR + LR:	
short-		and	long-	read).	These	represent	
putative	SVs	in	the	genomes	of	Romaine	
and	Puyjalon	salmon,	prior	to	genotyping	
(DELs,	deletions;	DUPs,	duplications;	
INSs,	insertions;	INVs,	inversions).

TA B L E  6 Number	of	filtered	SVs,	SNPs	and	small	indels	used	for	population	genomics	analyses	along	with	summary	statistics	for	each	
variant set.

Variant type
Number of 
variants

Genome base pairs covered FST

Number Proportion
Maximum per- window 
proportion

Genome- wide 
weighted average

Per- variant 
maximum

SVs 115,907 41,858,002 0.0168 0.941 0.044 0.702

SNPs 8,777,832 8,777,832 0.0035 0.029 0.065 0.981

Indels 1,089,321 10,316,768 0.0041 0.102 0.079 0.949

Note:	These	variants	met	the	population-	level	filters,	i.e.,	had	a	minor	allele	frequency	between	0.05	and	0.95	and	were	genotyped	in	at	least	50%	of	
the 60 samples. The proportion of base pairs covered by variants of a given type was estimated for the whole genome and by 100- kb windows.
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    |  11 of 22LECOMTE et al.

3.3  |  All genetic variants underlay a congruent 
population structure

Despite	differences	in	amount	and	proportion	of	genome	base	pairs	
covered,	SVs,	SNPs	and	small	indels	displayed	a	consistent	popula-
tion structure and genetic differentiation between the Romaine 

and	 Puyjalon	 populations.	 Principal	 component	 analysis	 revealed	
an important differentiation between the two populations, with 
individual	 salmon	 clustering	 by	 river	 along	 PC1	 while	 PC2	 ex-
plained	variation	within	Puyjalon	samples	 (Figure 4).	This	pattern	
was strongly conserved across all variant types and confirmed 
anticipated	 population	 structure	 from	 a	 previous	 study	 (Albert	

F I G U R E  3 Proportion	of	base	pairs	covered	by	filtered	SVs	(top),	SNPs	(middle)	and	short	indels	(bottom)	per	100-	kb	windows	along	the	
genome.	Each	vertical	panel	represents	one	chromosome.
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&	Bernatchez,	2006).	 Average	 genome-	wide	weighted	FST values 
ranged	from	0.044	for	SVs	to	0.065	for	SNPs	and	0.079	for	small	
indels	 (Table 6).	 This	 observation,	 along	with	 the	 strong	 cluster-
ing of samples in principal component analysis, indicates moderate 
levels	of	differentiation	between	Romaine	and	Puyjalon	samples.

Differentiation	along	the	genome	was	also	highly	variable,	as	re-
gions of strong per- window FST	(>0.2)	were	numerous	and	dispersed	
on	all	chromosomes	(Figure 5).	These	high	FST peaks were overall con-
sistent	across	SVs,	SNPs	and	short	indels.	However,	the	correlation	
was	 the	 greatest	 between	SNPs	 and	 indels	 (R2 = 0.930,	p < 0.001),	
which shared multiple peaks and tended to have higher FST	than	SVs.	
SVs	displayed	a	weaker	correlation	with	SNPs	(R2 = 0.612,	p < 0.001)	
and	indels	(R2 = 0.595,	p < 0.001).	Only	a	few	per-	window	FST peaks 
were	unique	to	SVs	(e.g.,	on	chromosomes	ssa01q,	10,	29;	Figure 5).	
Per-	variant	FST distribution also differed between variant types: val-
ues	 ranged	 from	0	 to	0.981	 for	SNPs,	whereas	 the	maximum	per-	
variant FST	observed	for	SVs	was	0.702	(Table 6).

3.4  |  Candidate variants for local adaptation 
overlapped genes involved in putatively important 
biological functions

Among all filtered variants of each type, we identified those that 
showed a possible relevance in the putative local adaptation of 
Romaine	and	Puyjalon	salmon.	For	each	variant	type,	we	reported	the	
most strongly differentiated variants between both populations, as 
these	could	include	major-	effect	variants,	as	well	as	RDA	candidates,	
which	might	 instead	 reveal	multiple,	 small-	effect	 loci.	We	 identified	
1.62	times	more	outliers	of	differentiation	than	RDA	candidates	for	
SVs,	whereas	SNPs	and	small	indels	showed	the	opposite	trend,	with	
1.59	and	2.23	times	more	RDA	candidates	than	outliers	for	SNPs	and	

indels,	respectively	(Table 7).	These	outlier	and	RDA	candidate	vari-
ants did not have more missing data than the others, non- outlier and 
non-	candidate	variants	(Figure S6),	meaning	that	the	apparent	differ-
entiation and multilocus signals were not artificially driven by miss-
ing	genotypes.	For	each	of	these	six	sets	of	variants	of	 interest,	we	
reported	a	set	of	overlapping	genes	within	10 kb,	 ranging	from	only	
940	genes	for	RDA	candidate	SVs	to	15,711	genes	for	RDA	candidate	
SNPs	(Table 8).	GO	enrichment	analysis	performed	on	each	of	these	
six	gene	sets	revealed	various	biological	processes,	with	a	redundancy	
of terms associated with cellular structure and nervous system func-
tion.	The	1407	genes	located	near	SV	outliers	were	enriched	for	108	
terms mostly related to cellular adhesion and junction, as well as to 
synapse	 organization	 (Table S5),	 whereas	 RDA	 candidate	 SV	 genes	
were	enriched	for	only	27	GO	terms	clustered	under	“chemical	synap-
tic	transmission”	(Table S6).	Many	of	the	GO	terms	that	were	enriched	
for	outlier	SV	genes,	such	as	cell	adhesion	and	junction,	synapse	or-
ganization or developmental processes, were also among the 223 en-
riched	terms	for	outlier	SNP	genes	(Table S7).	A	much	wider	range	of	
biological	functions	were	overrepresented	in	the	528	GO	terms	asso-
ciated	with	RDA	candidate	SNP	genes,	including	growth	and	nervous	
system	development	 (Table S8).	Finally,	 genes	 that	overlapped	with	
outlier	and	RDA	candidate	indels	were	enriched	for	fewer	GO	terms	
(212	and	292,	respectively),	but	enriched	terms	themselves	were	simi-
lar	to	those	reported	for	the	outlier	and	RDA	candidate	SNP	gene	sets	
(Tables S9 and S10).	Raw	GO	enrichment	result	tables	(prior	to	simpli-
fication	with	REVIGO)	can	be	found	in	Data	S1.

4  |  DISCUSSION

Structural	 variants	 now	 appear	 as	 major	 components	 of	 ge-
netic polymorphism with increasingly recognized implications 

F I G U R E  4 Population	structure	of	Romaine	(RO)	and	Puyjalon	(PU)	salmon	based	on	principal	component	analysis	from	filtered	and	
genotyped	(a)	SVs,	(b)	SNPs	and	(c)	short	indels.	Each	point	represents	one	of	the	60	salmon	sampled	for	the	study.
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for phenotype and adaptation, but they are inherently difficult 
to characterize, especially at the population level. By propos-
ing a hybrid pipeline combining short-  and long- read sequencing 
with graph- based genotyping, we aimed to alleviate some of the 
challenges	 hampering	 the	 study	 of	 SVs	 in	 population	 genomics.	
Applying this pipeline to a set of 60 Atlantic salmon genomes 

allowed us to catalog a wide spectrum of polymorphism, from 
SNPs	 to	multi-	kilobase	SVs.	From	this	catalog,	we	described	 the	
population structure of salmon populations inhabiting two adja-
cent	 tributaries,	 the	Romaine	and	Puyjalon	 rivers,	 estimated	 the	
level of differentiation between them, and uncovered putative 
variants underlying local adaptation.

F I G U R E  5 FST	along	the	genome	between	Romaine	and	Puyjalon	salmon,	estimated	by	100-	kb	windows	(with	10-	kb	steps)	from	SVs	(top),	
SNPs	(middle)	and	short	indels	(bottom).	Dotted	white	lines	correspond	to	the	weighted	mean	genome	wide	FST	for	each	variant	type.	Each	
vertical panel represents one chromosome.
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4.1  |  Multiplatform variant 
detection and pangenome- based approaches 
facilitate population- scale analysis of SVs

The combination of long-  and short- read sequencing with graph- 
based genotyping is a promising, yet incomplete solution to the 
challenges	 raised	 by	 analyzing	 SVs	 at	 the	 population	 scale.	 Our	
results	 indicate	that	 long	reads	are	a	highly	valuable	asset	for	SV	
characterization,	because	the	vast	majority	of	SVs	were	identified	
from	the	only	four	genomes	sequenced	in	Oxford	Nanopore	long	
reads,	despite	high-	coverage	(16X)	paired-	end	Illumina	short-	read	
data being available for all 60 samples. Long- read data was par-
ticularly crucial for detecting putative insertions and characterizing 
their	sequence,	as	expected	from	previous	studies	(Ho	et	al.,	2020).	
Since	insertions	and	deletions	are	the	most	prevalent	forms	of	SVs	
in	genomes	(Gamazon	&	Stranger,	2015),	the	incorporation	of	third	
generation sequencing enabled a considerable gain in the amount 
of	 genetic	 variation	 uncovered.	 However,	 elevated	 costs	 remain	
an obstacle for population- scale implementation of long- read se-
quencing, especially for species with large genomes such as sal-
monids,	with	prices	 ranging	 from	22	 to	200	$	USD	per	 gigabase	
depending	 on	 technology	 used	 (De	 Coster	 et	 al.,	 2021).	 Here,	
graph-	based	genotyping	allowed	us	to	exploit	short	reads	to	geno-
type	putative	SVs	in	a	much	higher	number	of	samples	whose	ge-
nomes	were	only	sequenced	in	short	reads.	Indeed,	about	93.9%	of	
the	115,907	final,	filtered	and	genotyped	SVs	were	initially	called	
from	long	reads	(or	from	both	short	and	long	reads;	Table S11)	and	
could be genotyped in more than half of all samples, indicating that 
even	 though	 short	 reads	 are	 suboptimal	 for	 SV	 detection,	 they	
are	highly	relevant	for	genotyping	SVs	 in	populations.	The	hybrid	
approach	 thus	offered	 a	major	 increase	 in	overall	 SV	genotyping	

power at a much lower cost, which therefore represents a reason-
able compromise between cost and efficiency.

This multiplatform approach nevertheless does not address 
all	issues	pertaining	to	SV	characterization.	First,	merging	SV	calls	
across tools relies on arbitrary thresholds and may be suboptimal, 
depending	on	the	precision	of	SV	characterization	procedures.	We	
made	the	arbitrary	decision	to	retain	only	SVs	that	were	supported	
by at least two callers, which might be an overly conservative fil-
tering	 approach.	 Given	 the	 high	 false	 discovery	 rates	 previously	
reported	 for	SV	calling	 in	 the	Atlantic	 salmon	genome	 (Bertolotti	
et al., 2020),	 we	 chose	 to	 attempt	 improving	 precision	 over	 sen-
sitivity.	 However,	 multitool	 calling	 is	 not	 guaranteed	 to	 improve	
precision nor sensitivity, depending on datasets and callers used 
in combination, and callers relying on the same evidence types are 
likely	to	call	the	same	false	positives	(Chaisson	et	al.,	2019;	Kosugi	
et al., 2019; Mahmoud et al., 2019).

In	addition,	despite	using	Jasmine,	an	up-	to-	date	graph-	based	min-
imum	spanning	forest	algorithm	that	integrates	numerous	SV	param-
eters,	 a	 surprisingly	 small	number	of	 all	 SVs	called	by	multiple	 tools	
could be merged together. This is especially true for merged long- read 
SVs,	for	which	the	proportion	of	shared	calls	was	even	smaller	than	in	
the	merged	short-	read	SV	set.	We	suggest	that	the	lower	basecalling	
accuracy inherent to third generation sequencing data might increase 
breakpoint	imprecision	(Lemay	et	al.,	2022)	and	lead	to	undermerging	
of	shared	variants,	especially	for	those	that	could	not	be	refined	by	Iris.	
For	example,	 long-	read-	based	callers	each	 reported	a	 few	 thousand	
inversions,	but	only	208	were	successfully	merged	across	Sniffles	and	
NanoVar.	This	likely	results	from	imprecision	of	inversion	breakpoints	
(Sudmant	et	al.,	2015),	as	the	breakpoints	refinement	tool	(Iris)	cannot	
process inversions at this time, or from differences in how inversions 
are identified or reported by different tools. All these issues highlight 

Variant type

Outliers

RDA candidatesFST Fisher Intersection

SVs 3484 5298 2079 1280

SNPs 263,316 591,621 71,953 114,637

Indels 32,544 103,829 6223 13,871

Note: The intersection outlier set corresponds to variants that were among the upper 3% quantile 
of per site FST	and	that	had	a	Fisher	test	q-	value	lower	than	the	0.01	threshold,	whereas	RDA	
candidate	variants	were	identified	through	RDA	(redundancy	analysis)	using	a	threshold	of	three	
standard deviations.

TA B L E  7 Outlier	and	candidate	variant	
sets for each type of polymorphism.

TA B L E  8 Number	of	genes	overlapping	intersection	outlier	variants	and	RDA	candidate	variants	for	each	type	of	polymorphism,	along	
with	the	number	of	significant	enriched	GO	terms	for	each	gene	set.	Variants	and	genes	were	considered	as	overlapping	if	they	were	located	
within	10 kb	of	each	other,	either	from	their	start	or	their	end	positions.

Variant type

Outliers of differentiation RDA candidates

Variants Nearby genes
Significant enriched 
GO terms Variants Nearby genes

Significant enriched 
GO terms

SVs 2079 1407 108 1280 940 27

SNPs 71,953 11,578 223 114,637 15,711 528

Indels 6223 3285 212 13,871 5872 292
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    |  15 of 22LECOMTE et al.

the	need	for	more	efficient	validation	methods	for	large	SV	datasets.	
Since	 visualization	 remains	 the	 most	 robust	 SV	 validation	 method	
(Spies	 et	 al.,	 2015),	 emerging	 machine	 learning-	based	 and/or	 auto-
mated methods show promising applications for this purpose, such 
as	 samplot-	ML	 (Belyeu	et	 al.,	2021),	MAVIS	 (Reisle	et	 al.,	 2019)	 and	
DeepSVFilter	(Liu	et	al.,	2020),	but	also	for	SV	detection	and	genotyp-
ing	(Cue;	Popic	et	al.,	2023).	We	can	expect	that	such	tools,	which	cur-
rently primarily target short- read data, will eventually allow automated 
long-	read	SV	validation	as	well,	thus	further	improving	SV	analysis	in	
the upcoming years.

Although graph- based genotyping has been essential for geno-
typing	long-	read	SVs	from	short-	read	data,	it	is	not	immune	to	bias	
in	SV	characterization.	We	explicitly	treated	genotypes	with	insuf-
ficient	read	support	(or	genotype	quality)	as	missing	data,	and	up	to	
40%	of	SVs	were	filtered	out	due	to	missing	genotypes	 in	at	 least	
half of the samples, meaning that very few reads could be mapped 
to	 these	SV	 regions	 in	 the	pangenome.	Since	 long-	read	SVs	had	a	
consistently higher proportion of missing genotypes than short- read 
SVs,	both	before	and	after	filtering	on	genotype	quality,	depth	and	
minor	 allele	 frequency	 (Figure S7),	 we	 speculate	 that	 some	 short	
reads	still	cannot	be	accurately	mapped	to	certain	SV	regions	where	
long	reads	could	be	confidently	aligned.	This	might	also	explain	the	
lower concordance between the genotypes outputted by vg and the 
genotypes	provided	by	caller	genotypes	for	candidate	long-	read	SVs	
than	for	candidate	short-	read	SVs	(Table S12).	As	stated	above,	the	
higher	breakpoint	imprecision	for	long-	read	SVs	might	also	increase	
noise	 around	SV	positions	 and	 therefore	 contribute	 to	 the	poorer	
mapping	of	short	reads	to	the	graph.	Various	features	of	the	Atlantic	
salmon genome are known to promote spurious mapping of reads 
to	 the	 linear	 reference	 genome,	 such	 as	 residual	 tetrasomy	 (10	 to	
20%;	Houston	&	Macqueen,	2019),	highly	similar	duplicated	regions	
(81–89%;	Davidson	et	al.,	2010)	 and	a	 large	proportion	of	 repeats	
(50–60%;	de	Boer	et	al.,	2007).	We	can	expect	that	these	features	
also	impact	pangenome-	based	mapping	and	genotyping	to	some	ex-
tent,	especially	repeats	(Chen	et	al.,	2019;	Outten	&	Warren,	2021).	
Indeed,	low-	confidence	SVs	that	were	filtered	out	after	genotyping	
were	more	prevalent	 in	 regions	with	 repeated	contents	 (transpos-
able	elements	and	repeats)	and/or	in	syntenic	regions	with	elevated	
levels of homology following a past whole- genome duplication event 
in	salmonids	 (Figure S8).	Second,	very	 large	putative	SVs	spanning	
considerable chromosomal regions, such as the 2.5- Mb deletion 
on chromosome ssa10, could not be successfully genotyped using 
graphs, likely because such large rearrangements cannot be reliably 
represented	by	complex	graph	structures	(Hübner,	2022).	This	lim-
itation	 is	particularly	problematic	 for	 the	 study	of	SVs	 in	 the	con-
text	of	population	genomics,	as	 larger	rearrangements	were	found	
to	play	a	key	role	in	adaptive	processes	(Wellenreuther	et	al.,	2019; 
Wellenreuther	&	Bernatchez,	2018).	Alternatively,	some	of	the	very	
large	candidate	SVs	that	were	not	successfully	genotyped	could	have	
been	false	positives,	as	over	half	of	putative	SVs	 larger	than	30 kb	
were	 inversions	and	deletions	exclusively	supported	by	short-	read	
callers	(Table S13).	Our	study	would	therefore	benefit	from	the	ad-
dition of complementary approaches, such as assembly comparison 

or chromatin conformation data, to identify, validate and genotype 
large	SVs	(Mérot	et	al.,	2020),	hence	further	expanding	the	range	of	
SVs	identified.	Despite	these	limitations,	the	multiplatform	strategy	
developed for this study represents a considerable improvement 
over short- read- only approaches, and the incorporation of novel 
automated curation approaches will undoubtedly lead to further ad-
vancements	in	population-	scale	SV	characterization.

4.2  |  SVs are a key feature of the Atlantic 
salmon genome

Our	findings	showed	that	the	contribution	of	SVs	to	standing	genetic	
polymorphism	 is	 important	 in	 Atlantic	 salmon.	 High-	confidence,	
genotyped	 SVs	 accounted	 for	 4.8	 times	more	 genome	 base	 pairs	
than	 SNPs.	 This	 proportion	 is	 in	 the	 same	 order	 of	magnitude	 as	
previously estimated using an equivalent approach in lake whitefish, 
a	 closely	 related	 species	 (e.g.,	 five	 times;	Mérot	 et	 al.,	2023).	 The	
number	 of	 SVs	 identified	 in	 our	 study	 is	 over	 seven	 times	 larger	
than	previously	documented	 in	 rainbow	trout	 (almost	14,000	SVs;	
Liu et al., 2021)	and	in	Atlantic	salmon	(over	15,000	SVs;	Bertolotti	
et al., 2020)	 in	 previous	 studies	 involving	more	 samples,	 but	 rely-
ing	only	on	short-	read	data.	Similarly,	we	reported	between	20	and	
30	SVs	per	100-	kb	window,	whereas	the	median	per-	megabase	SV	
count	reported	by	Bertolotti	et	al.	(2020)	is	under	10.	SV	counts	de-
scribed in our study might be inflated due to a certain number of 
false	positives	in	our	dataset,	since	we	did	not	exclude	calls	located	
in	 problematic	 regions	 (e.g.,	 high	 coverage	 regions,	 assembly	 gaps	
and	low	complexity	regions)	nor	performed	manual	curation	of	SVs.	
However,	such	an	important	difference	in	SV	count	can	most	likely	be	
explained	by	the	integration	of	long-	read	sequencing	data.	Indeed,	in	
the	human	genome,	over	six	times	more	high-	confidence	SVs	were	
identified	from	long	reads	 (27,662	SVs;	Chaisson	et	al.,	2019)	than	
from	short	reads	in	another	study	(4442	SVs;	Abel	et	al.,	2020).

4.3  |  SVs are informative markers relevant for 
population genomics studies

SVs	also	appear	to	reliably	capture	population	structure	and	differ-
entiation	 to	 the	 same	 extent	 as	 SNPs.	 The	 very	 high	 correspond-
ence	of	population	structure	inferred	from	PCA	across	variant	types	
was	 also	 observed	 in	 previous	 studies	 of	 SVs	 in	 soybean	 (Lemay	
et al., 2022),	 in	 cacao	 (Theobroma cacao;	 Hämälä	 et	 al.,	 2021),	 in	
grapevine	 (Vitis vinifera ssp. Sativa;	 Zhou	 et	 al.,	 2019),	 lake	white-
fish	(Mérot	et	al.,	2023)	and	Corvus	genus	species	(Weissensteiner	
et al., 2020).	Patterns	of	fluctuations	in	per-	window	variant	density	
and FST along the genome were also strongly conserved, e.g., regions 
of	high	SV	density	were	usually	dense	 in	SNPs	and	short	 indels	as	
well.	We	reported	a	quick	linkage	disequilibrium	decay	in	all	pairs	of	
variants,	with	minimal	linkage	between	SNPs	and	SVs	for	distances	
greater	 than	 250 bp	 (Figure S9).	 This	 suggests	 that	 the	 observed	
correspondence between all three types of variants might not be 

 17524571, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13653 by C

ochrane France, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 22  |     LECOMTE et al.

attributable to strong physical linkage between them, but rather that 
SVs,	SNPs	and	short	 indels	may	be	subject	 to	similar	evolutionary	
processes	in	the	Romaine	and	Puyjalon	system,	despite	them	being	
very	different	 in	 size.	 Per-	variant	 and	per-	window	FST was usually 
slightly	lower	for	SVs	than	for	SNPs	and	small	indels,	which	was	also	
reported	in	the	lake	whitefish	study	(Mérot	et	al.,	2023).	We	suspect	
that this slight discrepancy is attributable to the fact that the FST 
calculation	relies	on	fewer	markers	for	SVs,	thus	 introducing	more	
noise in FST	estimates	than	with	SNPs	and	small	indels.

By contrast, in American lobster, a non- related and less 
structured	 marine	 species	 (Benestan	 et	 al.,	 2015;	 Kenchington	
et al., 2009),	copy	number	variants	harbored	stronger	interpopula-
tion	differentiation	than	SNPs	and	a	more	defined	population	struc-
ture,	correlated	with	environmental	variables	(Dorant	et	al.,	2020).	
Similarly,	deletions	showed	stronger	spatial	population	structure	and	
were under stronger selection than duplications in human popula-
tions	 (Sudmant,	Mallick,	et	al.,	2015).	 In	European	starling	 (Sturnus 
vulgaris),	 SVs	 and	 SNPs	 revealed	 different	 patterns	 of	 population	
structure, interpopulation genetic diversity and divergence across 
the	genome	(Stuart	et	al.,	2023).	Consequently,	we	cannot	assume	
that	SVs,	SNPs	and	small	indels	are	interchangeable	and	equally	in-
formative in all systems and species as we observed in the Romaine 
and	 Puyjalon	 system.	We	 therefore	 argue	 that	we	 ought	 to	 char-
acterize	SVs	in	population	genomics	studies	to	the	same	extent	as	
SNPs,	as	they	may	display	different	signatures	and	provide	relevant	
insights on evolutionary and adaptive processes shaping population 
structure.

4.4  |  Genetic divergence between the 
Romaine and Puyjalon populations is likely driven by 
divergent selection

Given	 their	 spatial	 proximity	 and	habitat	overlap,	 gene	 flow	 is	 ex-
pected	 to	 occur	 between	 the	 Romaine	 and	 Puyjalon	 populations.	
The moderate average genome- wide FST values estimated from the 
different classes of variants, as well as a previous estimation based 
on	microsatellites	(Albert	&	Bernatchez,	2006),	are	consistent	with	
a	rate	of	two	to	seven	migrants	per	generation,	based	on	Wright's	
approximation	(1984).	However,	we	reported	numerous	outliers	of	
differentiation and peaks of very strong FST dispersed throughout 
the genome that are seemingly resisting such gene flow. The persis-
tence	of	pronounced	divergence	in	these	regions	could	be	explained	
by	a	few	alternative	and	not	mutually	exclusive	mechanisms.	Genetic	
drift could lead to random differences in variant allelic frequency in 
both populations. Alternatively, given that recombination rates are 
known	to	differ	within	species	and	even	within	populations	 (Kong	
et al., 2010; Ritz et al., 2017),	some	localized	regions	of	low	recombi-
nation could have emerged independently in both populations, cap-
turing different alleles and being subject to increased genetic drift 
as	a	result	of	apparent	reduced	effective	population	size	(Ne).	Such	
“differentiation islands” can result from the interplay of variation in 
recombination	 rate	due	 to	genetic	 architecture	 (e.g.,	 the	presence	

of	 SVs	 or	 large	 rearrangements)	 and	 natural	 selection	 (Wolf	 &	
Ellegren,	2017).	Finally,	variants	with	a	 functional	 impact	could	be	
subject to divergent selection between habitats leading to differ-
ences in allelic frequencies.

Our	findings	tend	to	support	the	hypothesis	of	local	adaptation.	
First,	we	reported	a	 repeated	enrichment	 for	GO	terms	related	to	
nervous	system	function	 for	genes	nearby	outlier	and	RDA	candi-
date	variants,	 regardless	of	variant	type.	We	 initially	expected	en-
richment for functions related to other observed phenotypic trait 
variation	 in	 the	 Romaine	 and	 Puyjalon	 system,	 such	 as	 growth,	
sexual	maturation	and	reproduction.	On	the	contrary,	we	observed	
enrichment	 mainly	 related	 to	 nervous	 functions.	We	 hypothesize	
that enrichment for nervous functions could be linked to variation 
in these traits through their link with age at smoltification that dif-
fer	between	these	two	populations.	Indeed,	changes	in	photoperiod,	
which are recognized as the main factor triggering smoltification 
(Hoar,	1988),	are	perceived	and	processed	through	the	 light-	brain-	
pituitary	 axis,	 inducing	 the	 hormonal	 cascade	 responsible	 for	
physiological, morphological and behavioral changes underlying 
smolt-	to-	parr	 transition	 (Stefansson	 et	 al.,	 2008).	 Smoltification	
itself causes reorganization of nervous connections, both at the 
structural	and	the	chemical	level	(Ebbesson	et	al.,	2003).	Although	
empirical evidence is required to support this hypothesis, polymor-
phism around genes involved in nervous system function, develop-
ment	and	plasticity	could	alter	the	expression	or	function	of	these	
genes and lead to physiological differences underlying variation in 
age at smoltification and other relevant life history traits in Romaine 
and	Puyjalon	salmon.	This	 indirect,	but	plausible	 link	between	ob-
served phenotypic variation and genetic polymorphism does not 
support the hypothesis of persistent genetic differentiation due to 
genetic drift alone. Moreover, peaks of differentiation are unlikely 
a result of low recombination alone because such peaks and outli-
ers of differentiation are dispersed throughout chromosomes and 
across the whole genome, and not clustered into contiguous and lo-
calized regions. Along with preliminary knowledge of the Romaine 
and	 Puyjalon	 system,	 our	 results	 suggest	 that	 the	 persistence	 of	
localized regions of strong differentiation could at least partly be 
attributable to local adaptation in response to divergent selection. 
Indeed,	both	rivers	differ	in	habitat	quality,	substrate	and	hydrolog-
ical	profiles	(Schieffer,1975;	Fontaine	et	al.,	2000;	GENIVAR,	2002; 
Belles-	Isles	et	al.,	2004;	WSP	Global,	2019),	which	may	impose	dif-
ferent constraints on salmon and thus favor alternate life strategies 
in both populations.

Besides showing variation in age at smoltification, Romaine and 
Puyjalon	salmon	also	differ	in	regards	to	age	at	sexual	maturity	in	a	
controlled	 hatchery	 environment	 (T.	Dion,	 Chayer,	 et	 al.,	2020; T. 
Dion,	Langlois-	Parisé,	&	Proulx,	2020;	Langlois-	Parisé	et	al.,	2018; 
Therrien et al., 2017).	 Interestingly,	we	 found	 no	 variant	 of	 inter-
est overlapping with major- effect loci previously associated with 
life history variation in age at maturity in wild and domesticated 
European	 salmon	 populations,	 such	 as	 vgll3	 (Ayllon	 et	 al.,	 2015; 
Barson et al., 2015; Czorlich et al., 2018)	and	six6	 (Sinclair-	Waters	
et al., 2020;	Waters	et	al.,	2021).	While	one	study	in	North	America	
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highlighted a correlation between vgll3 polymorphism, sea age and 
sex	in	the	Trinité	river	population	(Kusche	et	al.,	2017),	located	in	the	
same	geographic	region	as	the	Romaine	and	Puyjalon	rivers,	other	
studies did not reveal a significant association between polymor-
phism	in	these	major-	effect	loci	and	age	at	maturity	in	other	North	
American	populations	(Boulding	et	al.,	2019; Mohamed et al., 2019).	
The	genetic	architecture	of	such	complex	 life	history	traits	 is	pos-
sibly variable across populations, especially between highly di-
vergent	 populations	 from	 different	 continents.	 In	 addition,	 age	 at	
maturity	 was	 found	 to	 have	 a	mixed	 genetic	 architecture	 in	 both	
North	 American-	derived	 farmed	 salmon	 (Eisbrenner	 et	 al.,	 2014; 
Mohamed et al., 2019)	and	European-	origin	salmon	(Sinclair-	Waters	
et al., 2020),	 involving	 both	 major-	effect	 loci	 and	 multiple	 small-	
effect	 loci.	 Since	 we	 identified	 numerous	 candidate	 small-	effect	
variants	through	RDA,	we	propose	that	phenotype	variation	in	age	
at	maturity	in	Romaine	and	Puyjalon	salmon	might	have	a	polygenic	
basis as well.

Further	work	is	required	to	understand	the	genetic	architecture	
of major life history trait variation in Atlantic salmon populations as 
well	as	other	salmonid	species.	Such	work	would	considerably	ben-
efit from an improved knowledge of the full spectrum of genetic 
variation	 segregating	 in	 populations,	 especially	 SVs.	 The	 pipelines	
developed and optimized for this study may therefore contribute 
this knowledge by facilitating population- scale characterization of 
SV,	as	well	as	serve	as	a	basis	for	further	refinement	of	variant	call-
ing	and	genotyping	procedures	in	the	near	future.	With	ongoing	and	
rapid developments in computational genomic approaches, such as 
pangenome- based tools or machine- learning- based variant detec-
tion	and	validation,	SV	analysis	 is	bound	 to	 take	a	 significant	 leap	
towards robust and reliable characterization in the upcoming years, 
which will foster their inclusion in evolutionary genomics.
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