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Abstract Our main goal is here to make a comparative analysis be-

tween the well-known MOND theory and a more recent model called

κ-model. An additional connection, between the κ-model and two

other novel MOND-type theories: Newtonian Fractional-Dimension

Gravity (NFDG) and Refracted Gravity (RG), is likewise presented.

All these models are built to overtake the DM paradigm, or at least

to strongly reduce the dark matter content. Whereas they rely on

different formalisms, however, all four seem to suggest that the uni-

versal parameter, a0, appearing in MOND theory could intrinsically

be correlated to either the sole baryonic mean mass density (RG and

κ-model) and/or to the dimension of the object under consideration

(NFDG and κ-model). We could then confer to the parameter a0 a

more flexible status of multiscale parameter, as required to explain

the dynamics together in galaxies and in galaxy clusters. Eventually,

the conformal gravity theory (CFT) also seems to have some remote

link with the κ-model, even though the first one is an extension of

general relativity, and the second one is Newtonian in essence. The

κ-model has been tested on a small sample of spiral galaxies and in

galaxy clusters. Now we test this model on a large sample of galaxies

issued from the SPARC database.

Keywords : SPARC database, galaxy, MOND, Newtonian Fractional-

Dimension Gravity, Refracted Gravity, κ-model, dark matter
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1 Introduction

As it is well known, all the studies conducted on galaxies and galaxy

clusters, lead to the seemingly firm conclusion that a significant por-

tion of the mass in the Universe seems to be hidden from the view

of the observers. This invisible (non-baryonic) matter is called dark

matter (DM). It is true that DM is the more simple and economic

hypothesis. However, the major problem with this paradigm is that

the dark matter/baryonic (DM/B) mass ratio is incredibly huge, of

the order of 6. It is not simply an addition of a small quantity of miss-

ing matter to a dominant form of visible (baryonic) matter. This is

even the opposite, and the baryonic component eventually appears

negligible in the Universe. This situation seems to be surprising and

even rather unconfortable, the visible sector being explained by an

undefined invisible sector about which we know nothing. De facto the

explanation of the flatness of the rotation spiral galaxy curves with

DM is fully indirect. A very pertinent parallel can be drawn with the

phlogistic theory, a dominant theory in nascent chemistry during the

18th century. The phlogistic hypothesis was based on the existence

of an illusive ”substance” (the phlogiston) with indeterminate prop-

erties and thus without real physical support. The theory of phlo-

giston was finally disproved by the French chemist Antoine-Laurent

Lavoisier through a series of experiments in the late eighteenth cen-

tury. Is it the fate that awaits DM? At the present time the existence

of DM is inferred only through gravitational effects. A direct proof

is missing from both an observational and an experimental point of

view.

The MACHOs (Massive Compact Halo Objects), possibly detected

through gravitational microlensing in the Galactic halo, have been

ruled out as a dark matter candidate [1]. Another interesting inter-

2



rogation is that if DM particles are really existing, these particles

can very possibly decay. Strangely enough, X-ray space telescopes

like Chandra, XMM-Newton, and Fermi have not observed any ex-

cess of DM decay [2]. Eventually a major trouble for DM is the

tantamount difficulties observing the DM particles in the laboratory.

Large classes of candidates have been suggested following highly spec-

ulative theoretical models, such as Hidden-Sector Dark Matter parti-

cles, completely neutral under Standard Model forces, but interacting

through a new force; or still Ultra-Light Dark Matter particles with

predicted masses from 10-22 eV to about a keV, and that can be

produced during inflation or phase transitions in the very early Uni-

verse [3]. However the existing dark matter experimental programs

are now more reasonably focused on weakly-interacting massive par-

ticles (WIMPs) [4, 5, 6]. Unfortunately the conclusions of all these

very costly studies are always negative. All direct detections have

come up empty. The persisting non-detection in space and in the

laboratory of DM in spite of very intense efforts is rather discourag-

ing. A simple, but very frustating, conclusion would be that if DM

interacts uniquely gravitationally with baryonic matter and definitely

not through one of the other known three forces (the strong, weak

or electromagnetic forces), we might never detect it. Another possi-

bility is that DM interacts with itself and with baryonic matter but

via an unknown (fifth) force. In spite of all of that, DM remains the

leading explanation for the dynamics of galaxies, very likely for its

high flexibility adaptable to various situations (galaxies, galaxy clus-

ters and cosmology). This view can unfortunately persist for a very

long time because the DM paradigm seems to be unfalsifiable. Yet a

good question put by McGaugh [7] is however: Is it a missing mass

problem or rather an acceleration-velocity discrepancy when observ-

ing the galaxies? Indeed the mass is an indirect data contrarily to
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the acceleration which can be directly measured. Di Paolo and coau-

thors [8] have remarked that there exists a mysterious link between

DM and the baryonic component. In fact this link is easily explained

if DM is a property of the baryonic mass itself.

Alternatively a lot of authors have tried to circumvent the trouble

by exploring other paths than DM. Without DM it is true that the

Newtonian theory of gravity, and even its basic relativistic version,

i.e. the general relativity, seem to fail on galactic scales. The first

model that has been developed in this sense is the Modified New-

tonian Dynamics or MOND [9, 10, 11]. Remarkably the basic idea

of this model is thus as simple and economic as DM concerning the

theoretical background. The initial aim was to explain the flatness

of the rotation velocity curves of the spiral galaxies uniquely with

help of the observed baryonic matter. In MOND the second law of

Newton (ma = F ) is modified in the very low regime of acceleration

a ≤ a0, a0 ∼ 1.2 10−10 m s−2 being a universal constant. MOND

replaces the acceleration a by a2

a0
. Assuming then a test particle sur-

rounding an attractive mass M , with a circular orbit of radius r and

with F = GM
r2

, we have a2

a0
= GM

r2
or a =

√
GMa0
r . For the velocity

we directly obtain v2 = ar =
√
GMa0 = Const. This leads to the

flatness of the observed rotation curves of spiral galaxies but, much

more, results in the Tully-Fisher law in a very natural manner [12].

Furthermore, MOND is sustained by the empirical Renzo’s rule.

The empirical Renzo’s rule highlights the correspondence between

detailed features observed in the observational rotational curves of

spiral galaxies and the same features seen in their Newtonian coun-

terparts [13]. This statement, that the observational rotation profiles

seem to be a magnification of the Newtonian counterparts, appears

quite natural when baryonic matter dominates the mass, but not if

DM is the dominant form of matter. Another strong support for
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MOND, as seen above, is the direct deduction, within a calculation

that takes just a few lines, of the Tully-Fisher relation. These two

facts are difficult to explain within the DM paradigm, except in an

ad hoc manner. Eventually MOND has predicted, well in advance,

the profile of the rotation curves in the case of low surface brightness

galaxies (LSB), once again a feat not possible for DM [13]. However,

the MOND phenomenology fails to explain the dynamics of galaxy

clusters. A natural remedy has been found by adopting a multi-

scale approach [14]1. In any way as for gravitational lensing and

cosmology, the classic modified-(gravity+inertia) MOND in its ini-

tial form [9] is not applicable. Various relativistic versions of MOND

(RMOND) have been proposed making clear predictions regarding

gravitational lensing and cosmology. The latest in date is that of

Skordis and Z lośnik [15]. The latter version of RMOND reproduces

the galactic and lensing phenomenology and also the key cosmological

observables2.

Another well known modified-gravity theory is the covariant scalar-

vector-tensor modified-gravity (MOG) built by J. Moffat [17]. MOG

is based on a D = 4 pseudo-Riemannian metric, a spin 1 vector

field, a corresponding second-rank skew field Bµν, and eventually

three dynamical scalar fields G (the gravitational constant), ω and

µ. The heavy price to be paid is the addition of extra vector and

scalar fields to the gravity field. On the other hand in MOG the

gravitational constant G is assumed to vary with space and time.

Moreover the introduction of new fields means that new particles are

surreptitiously hypothesized. We are not far from DM with its elusive

particles, even though MOG is much more subtle than DM because

the particles in MOG are virtual, and may not be directly observable
1 In the context of MOND, a multiscale approach adapts the parameter a0 to the size of the system

studied. However, in this case the parameter a0 is no longer universal.
2 How the κ-model performs with lensing is presented in the reference [16].
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in the laboratory. MOG has been largely applied with some success

to spiral galaxy curves, to galaxy clusters, to gravitational lensing and

eventually to cosmology [18]. RMOND and MOG are the two main

models built to get rid of DM fairly efficiently. These two models

are the only models that have been extensively studied and involved

in concrete comparisons with the observational data. Unfortunately

with the relativistic extension of MOND, or with its main concurrent

MOG, one moves away from the beautiful simplicity of the Newtonian

mechanics and even of general relativity. Let us note that RMOND

and MOG appear very much alike. Thus the major pitfall of RMOND

and MOG is the introduction of other subsidiary extra scalar and

vector fields that have not been tested in the laboratory.

A broad number of other models also exist, but they have been

more sporadically applied to real situations. Conformal gravity the-

ories (CFT), which are compelling alternatives to general relativity

theory, have been claimed to explain the observed flat rotation profiles

of spiral galaxies, without invoking DM or other exotic modifications

of gravity [19, 20]. Nevertheless the extension of this type of models to

the field of cosmology appears to be questionable. Thus it seems that

the Weyl CFT3 cannot accurately describe the stated lensing observa-

tions without again considering dark matter [21]. Eventually another

very different way is to conceive gravity, not as a conventional inter-

action, but rather as an emergent property [22]. In this case, gravity

is seen as an entropic force, i.e. closely related to thermodynamics.

Testing this hypothesis in the galaxy world is underway.

Are there other options to get rid of DM ? We can answer this

question in the affirmative. Very recently and quasi-simultaneously,

a lot of new models have been proposed by following original, even
3The Weyl CFT is built by replacing the Einstein-Hilbert Lagrangian density, proportional to the Ricci

curvature scalar, by a quadratic contraction of the conformal Weyl tensor.
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though speculative, ways [23, 24, 25, 26, 27]. These models sound

similar, even though they use a different formalism. The aim is then

to satisfy a principle of parsimony in the introduced concepts. It is

indeed about three different strategies, but which share a number

of common features. All these ideas are new and still need deep

understanding.

One very aesthetic strategy is to assume that spacetime is multi-

fractal in nature. This property is revealed in the most prominent

quantum gravity theories in a natural manner [28]. This concept

of fractional-dimension space applied to Newtonian gravity has been

suggested as an alternative to DM [23, 29, 30, 31, 32]. In the lat-

ter work a connection has been established between the Newtonian

Fractional-Dimension Gravity (NFDG) with MOND. The MOND ac-

celeration constant a0 can be related to a natural scale length l0 in

NFDG, i.e., a0 ∼ GM
l20

, for any astrophysical structure of mass M ,

and the deep-MOND regime appears in regions of space where the

dimension is reduced to D ∼ 2.

A second strategy is Refracted Gravity [33, 34]. Refracted Grav-

ity mimics dark matter by introducing a gravitational equivalent to a

permittivity, seen as a monotonic function of the local mean volumet-

ric mass density. This function is parametrized by three coefficients

which are free as in the case of DM, but which are expected to be

universal, contrarily to DM where the parameters are free and, ad-

ditionally different for each galaxy. Once again even if this second

strategy apparently relies on a very different formalism than NFDG,

both share strong links with MOND.

We turn now to the third strategy, i.e. the κ-model. The aim of

the κ-model is to reflect on how the mean volumetric mass density

(estimated at a very large scale), surrounding a given observer, can
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modify his view of the Universe.

In the framework of this model [16, 25, 26, 27] it is hypothesized

that it is the perception of the observer, modified by his environment

(the local mean volumetric mass density, calculated at a very large

scale around him), that creates the observed anomalies and also his

proper experience of gravity (with today the need to call for a hypo-

thetical dark matter in order to explain these anomalies). This idea is

speculative, but it strongly resembles the models for which we have

given an overview above [23, 24]. However one point of difference

is that the effects described in the κ-model are only apparent, de-

pending on the observer (excepting the spectroscopic velocities whose

measurement is universal, see [16] par. 2 eq. 10). It is almost as if

we are looking at any object through a perfect, even though fictive,

optical device (such as an aberration-free flat superlens4, but without

being aware of the presence of this device (which obviously does not

exist). Clearly, the object has not changed but both its apparent size

and velocity can now appear magnified from the point of view of a

distant observer. Admittedly both the inertia and the gravity seem

to be modified in the κ-model, but it is a pseudo-modified-gravity, it

is not of the same nature that a real modified-gravity as introduced,

for instance in MOG or RMOND. Moreover, in the κ-model the grav-

itational constant (and the speed of light), locally measured by any

observer, are invariant. The gravitational constant, the speed of light

and all physical constants are universal in the κ-model. To make vari-

able a constant in physics, in our case G here, could require to make

variable other constants (for instance the speed of light) with, may

be, unpredictable consequences. Furthermore no new field or exotic

particles, undetected in the laboratory, are assumed in the κ-model.
4 A superlens is a flat, lightweight option that can replace bulky traditional lenses and other components

in optical systems. It is a lens that goes beyond the diffraction limit.
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We think that it is a very important point that obeys a principle

of parsimony. Eventually even though the κ-model is Newtonian in

essence, its great advantage is that it can be naturally made rela-

tivistic. A first draft of what might be a relativistic version of the

κ-model is presented in the reference [25]. However in a galaxy the

velocities v of stars and gas are low compared to the speed of light

c (the ratio v
c ∼ 10−3), and the nonrelativistic approximation is suf-

ficient, especially in the outskirts of galaxies where gravity is weak.

The same arguments also apply to MOND. For MOND a notable

relativistic version has however been proposed [15]. Nevertheless the

elegant simplicity of the initial version of MOND has unfortunately

disappeared in the operation. At the Newtonian level the κ-effect

is mimicked by an apparent local scaling transformation applied in

an Euclidean space [16, 26]. In a Riemannian structure of space

a local scaling transformation could be applied exactly in the same

manner. Eventually let us note that the multiscale approach already

suggested in [14] is directly included in the κ-model, which assumes

that the larger the characteristic dimension (the scale) of a system,

the weaker the local mean volumetric mass density and the stronger

the magnification [16].

In order to avoid any misunderstanding, three velocities are de-

fined in the κ-model: the Newtonian velocities, vNew, which are di-

rectly calculable from the mean surface mass density profiles, but

which are virtual and not measurable, the radial velocities, which

are given by vrad ∼ κ
1
2 vNew (observationally the universal spectro-

scopic velocities, vspec) and the tangential velocities which are given

by vtan ∼ κ vNew (observationally the proper motions). Following

a more mathematical approach within the formalism of bundles, the

Newtonian velocities are ”located” in the base (not reachable) and

both the measurable radial and tangent velocities are ”located” in a
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sheet, attached to a given observer in the bundle situated ”above”

the base [16]. The latter mathematical considerations will be shortly

developed in an up-coming paper. We are only concerned here with

the observational aspect.

The synoptic table below summarizes the applicability domains of

the different models discussed in this paper :

Model Main features

MOND Very low acceleration a ≲ a0 ∼ 10−10 m s−2

κ-model

Very low mean mass density ≲ 0.15 M⊙pc
−3

Geometry of the matter distribution (bulge, disk)

Compactness (stars, gas)

NFDG
Variable dimension of the matter distribution,

between D = 3 (sphere) and D = 2 (disk)

RG
Very low mean mass density ≪ 0.17 M⊙ pc−3

Geometry of the matter distribution (bulge, disk)

2 Calculation details

In the SPARC catalogue [35] each galaxy is usually identified by three

independent main components for the densities : the bulge labeled

b in the following, the stellar disk labeled d.st and the gaseous disk

labeled d.g. This hierarchy is also preserved in the κ-model where

both the geometry and the relative values taken by the mean densities

(compact masses for the stellar component, or diffuse masses for the

gaseous component) are now playing a new role by their implication in

a magnification factor at a very large scale. A similar idea appears in

the NFDG theory, but it is the dimension of the matter distribution

that plays a major role. Let us note that the so-called κ-effect (a

retranscription of the DM-like effect), said in a practical way, is a
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”huge-volume-effect” and it only occurs at a very large scale; it is

inexistent at the solar system level (a bit like the quantum effects are

fully imperceptible at the macroscopic level). In the framework of

the κ-model, the relationship associating the corresponding (fictive)

Newtonian velocities to the measured spectroscopic velocity is [16,

26, 27]

vspec =
(κMt

κ

)1
2

[
κref

κMst.b
v2b.st +

κref

κMd.st

v2d.st +
κref

κMd.g

v2d.g

]1
2

(1)

where each peculiar velocity is weighted by a κ-ratio. The origin of

the κ-ratios results from the need to take into account explicitly both

the matter distribution dimension (bulge or disk) and the compact-

ness of this matter (stars or gas). In the κ-model all these coefficients

are directly linked to the mean volumetric mass densities ρ by a sim-

ple and universal relationship (ln denotes the natural logarithm)

κ1

κ2
= 1 + ln

[
ρ1
ρ2

]
(2)

with the necessary condition ρ1
ρ2

> 1. The indexes ”1,2” run on

all the mentioned indexes. The relation (2) is called universal in the

sense that this relation is valid whatever the type of galaxies, and

also for galaxy clusters [16, 26]. In MOND the analog of κ is not

a logarithmic function of the density, but a rational function of the

distance [9, 10, 11] (but both are sensibly equivalent in the case of an

exponential distribution of matter). In relation (1) the indexes ref ,

Mt, Mb.st, Md.st and Md.g respectively designate the reference value

for the density, the maximum value M of the total density, t, (stellar

bulge, b.st, + stellar disk, d.st, + gaseous disk, d.g) estimated at

the center of the galaxy, and the maximum value M of each of the
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independent components, also estimated at the center of the galaxy.

The non-indexed coefficient κ is the local one (there where resides

the observer who feels the gravitational field). For practical purposes

concerning the disk components, the density ρ can be expressed as a

function of the observable surface mass density (indirectly obtained

from the brightness measurement), i.e. ρ = Σ
δ with the thickness δ,

the latter quantity being here assumed to be constant throughout a

galaxy disk. Apparently, the thickness of the disks seems to play a

role in the κ-model, very similarly to what is assumed in the NFDG

model, even though in the NFDG model it is the dimension of the

mass distribution that intervenes instead of the thickness [23, 30]. A

variable thickness along a galactic radius in the κ-model could have a

close connection with the variable dimension D in the NFDG model.

However it isn’t as simple as it appears, and we return to this issue

in the following. The magnification coefficients of the active mass

composing both the stellar and gaseous components are expressed

separately, resp.
κref
κMb.st

κref
κMd.st

and
κref
κMd.g

but are still calculated with

the same universal relationship (2). When the mean surface mass

density is larger than 500 M⊙ pc−2, a saturation effect appears for
κref
κM

, and then in all the cases we put this factor invariably equal

to 0.45, as provided by the relation (2). However, in a few rare

situations, especially for galaxies with a big bulge, and in order to

adequately fit the observational profiles in the inner regions, we should

adjust the factor
κref
κMb.st

to a value between 0.45 and 1. An explanation

to this statement is that, in fact, the relation (2) is valid for a thin

disk, but not for a 3D bulge. At this level a clear reference to the

NFDG model where the dimension plays a major role can be noticed.

Another explanation is that the bulge of a spiral galaxy is a very

complex system where the stellar orbits are randomly oriented. Then
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we know that a severe velocity dispersion, larger than ∼ 50 km/s

a few kpc from the center, can strongly affect the extraction of the

pure rotation velocity (see for instance the reference [36] for the

Milky Way). The part of the cylindrical rotational support in the

inner regions of a spiral galaxy is generally difficult to estimate when

the bulge is dominant.

A fundamental question is: how many free parameters are used in

the κ-model ? We know that in physics, the fewer parameters, the

better the model. Yet by consulting relation (1), we see immediately

that four parameters (the κ-ratios) appear. Following the parsimony

principle it is not a ”good” model. In fact, once the density in the

bulge, in the stellar and gaseous disks is provided, the κ-ratios, which

are directly issued from observational data, are automatically deter-

mined, there is no longer free parameters and the κ-model eventu-

ally becomes parameter-free (the only parameters being, as usually,

the observables, i.e. the surface brightness, the inclination and the

distance, even though unfortunately not very well known in some

cases). This is in strong contrast with DM where two or three free

external, and arbitrarily chosen, parameters are introduced to just

obtain the expected results. However given that the κ-ratios are de-

pendent on the densities, the parameters in the κ-model can now

vary from one object to another, and this confers some flexibility to

the model with no violation of the parsimony principle. For instance,

the κ-model has been applied with success to the physics of galaxy

clusters [16]. The mean mass density in a galaxy cluster is lower

by three orders of magnitude compared to the mean mass density

in a galaxy. The κ-model is then naturally a multiscale model (or

density-dependent scale model), like the one proposed in [14] for the

application of MOND to galaxy clusters. The difference is that in the

κ-model the scaling is not imposed, but appears in essence, taking
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its origin in the hierarchy of the mean mass densities. By contrast,

MOND [9, 10, 11] with just one universal parameter or even the Re-

fracted Gravity [33, 34] with three universal parameters seems to be

too rigid. On the other hand, the κ-model can naturally be made rel-

ativistic [25], making possible its extension to cosmology, especially

to the analysis of the fluctuation density in the CMB. In this case it is

the density anisotropies to mean density ratio which intervene in the

relationship (2). The latter very important topic will be examined in

a next paper.

Now, if we want to compare the κ-model and MOND, we must

define a reference point for the mean mass density ρref . Unfortu-

nately, this quantity is only indirectly known by the ratio Σ
δ (surface

mass density, Σ, over the disk thickness, δ, in a spiral galaxy such

as the Milky Way). The link between the acceleration parameter

a0 ∼ 1.2 10−10 m s−2 of MOND and the reference surface density

Σref is

Σref =
a0

2πG
= 152 M⊙ pc−2 (3)

Let us note that this value is relatively close to the galactic surface

mass density estimated in the solar region (∼ 70 M⊙ pc−2) (in com-

parison with the high range of surface densities seen in a disk galaxy,

varying from ∼ 1000 M⊙ pc−2 in the inner regions, 1 kpc from the

center, to ∼ 1 M⊙ pc−2 in the outskirts, 20 kpc from the centre).

Taking into account the fact that the range of mean mass densities is

very extended in the Universe, this appears indeed very odd if we see

the parameter a0 as a cosmological parameter; because in this case

we must assume that our situation in the Universe is privileged. In

reality, the κ-model easily explains this rather strange coincidence.

We chose this reference taking into account our position in the galaxy,
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but which has nothing special. Another observer, located elsewhere,

will take his own reference. The relation (1), giving a universal result

in the framework of the κ-model, his measurements would lead ex-

actly to the same results for the spectroscopic velocities as ours, even

though with his proper local reference for the mean mass density.

Figure 1 displays a panel of velocity profiles for MOND and the κ-

model, in the schematic situation of a disk of matter where the mean

surface mass density varies exponentially (the thickness is assumed to

be constant following the radius r). The comparison between MOND

and the κ-model shows that the logarithmic relation (2) is a very

good choice. In MOND the function µ (r) plays a very similar role

(see eqs. (7) and (8) of the reference [13]), even though in MOND

µ (r) is not a logarithmic function, but a simple rational function.

We can note that the κ-effect (or MOND-effect) plays a decreasing

role, when going from low mass surface density (LSB galaxies) to-

ward high mass surface density (HSB galaxies), as confirmed by the

observations. This finding, naturally explained with MOND or the

κ-model, remains unexplained in DM. A difference between MOND

and the κ-model is however perceptible for the schematic represen-

tation of a so-called super spiral [37]. For a high surface density

(ΣM ∼ 10 000 M⊙ pc−2, see for instance the reference [38]) the κ-

model curve is located more than 200 km/s above the MOND profile

for the terminal velocity (fig. 1d).
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Figure 1 : Schematic galaxy velocity curves fitted with a simple

exponential surface mass density profile of uniform thickness (in the

approximation of the thin disk). MOND is the green line, and the κ-

model is the amber line. The dashed red line is the Newtonian curve

(baryons). The reference value for the surface density is Σref =
a0
2πG = 152 M⊙ pc−2. a. ΣM = 10, b. ΣM = 100, c. ΣM = 1000,

d. ΣM = 10 000 M⊙ pc−2.

In the more concrete cases, the situation is obviously different from
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the previous trial examples with a simple exponential disk. In real-

ity, we encounter in the SPARC catalog a number of situations where

it is not possible to fit the mean surface mass density of both thin

stellar, Σd.st, and gaseous, Σd.g, disks by just adopting a simple ex-

ponential fit. In these situations, we had to add to the exponential

component one, or sometimes two, decentered gaussian components.

The velocity curve vd(r) is then deduced from the self-evident, more

general formula (still assuming an axisymmetric disk) valid for one

component (stars or gas)

v2d(r)

r
= G

∫
Ω∞

dxdy
Σ
(√

x2 + y2
)

(r − x)

κ(r)
[
(r − x)2 + y2

]3
2

(4)

As a first step the operational method consists to fit the Newtonian

velocities available from the SPARC catalog, for the distributions of

stars and gas, taken individually, and for each galaxy. In simple

terms we fit the dashed-red (stars) and dashed-green (gas) curves of

Figure A. In this case the relationship (4) is applied with κ(r) ≡ 1

(this is the usual Newtonian level). Secondly, the same relationship

(4) is again used, but incorporating this time the coefficient κ(r)

that depends on the volumetric mass density (eq. 2). This second

step automatically provides the corresponding κ-model curves. The

great benefit of the method is that all parameters are internal to the

theory, and supported by the sole observational data, essentially the

baryonic mass density. There is no arbitrary parameter such as the

ad hoc DM/B ratio in DM.

Eventually, when a bulge is present, a de Vaucouleurs formula [39]

is used to fit the surface mass density of the bulge. Two other param-

eters, intervening in the κ-model, are still the thickness (scale height)
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of the stellar (thick) disk, δst, and that of the gaseous (thin) disk,

δg. For all the galaxies under study (SPARC catalog), these param-

eters have been taken to be equal to the reference values estimated

for the Milky Way in the vicinity of the Sun, respectively δ⊙.st and

δ⊙.g ∼ 0.5 δ⊙.st. Given that the galaxies are diversely oriented with

any inclination angle, these parameters are difficult to estimate and

certainly variable along a galactic radius. Our analysis of the SPARC

galaxies seems to indicate a neat trend where the thickness decreases

when going from the core regions to the outskirts in the flattened

galaxies.

Globally, for a mean orientation of 45◦ the thickness along the line

of view is increased by a factor of
√

2. In this case the rotation pro-

files provided by the model have to be magnified by a few percent.

In fact, the logarithmic function flattens the density ratios in relation

(2) and the influence of the variation of the thickness has a strongly

reduced, even though not negligible, impact on the corresponding κ-

ratios (of the order of 10% for a thickness variation of a factor 2. For

orientations larger than 45◦ the magnification can obviously be much

larger than 10%). Let us note that in other models where the density

is assumed to play a role, for instance in [24, 30], the conclusions

should be very similar when applied to a large sample of galaxies,

such as the SPARC database. The thickness of various types of spi-

ral galaxies has been estimated by different methods [40, 41, 42]. For

irregular dwarf galaxies, the situation appears relatively confusing,

but the latter category can exhibit quasi-round galaxies with a high

mean thickness [40]. The measurement of the thickness seems to give

values of the order of δ⊙.st or δ⊙.g to within a multiplicative in the

range 0.25 (in the outer regions) to 4 (in the inner regions toward

the bulge if existing), compared to the reference values, independent

of the size of the galaxy (with a few exceptions for the very small
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galaxies, where smaller values for the thickness are favored). Thus, a

positive point is that an estimate of the thickness can be reached in

the framework of the κ-model. However in figure A, for all the galax-

ies and for the sake of homogeneity, the thickness has been taken as

invariable throughout the stellar and gaseous disks. The correspond-

ing values are indicated in each individual figure. Taking into account

a variable thickness would make it possible to obtain better profiles.

A work that remains to be done.

Additionally, let us specify that the observations rather provide

non-monotonous galactic rotation profiles. Nevertheless it is illusory

to try to perfectly fit the rotational curves with their delicate patterns

of bumps and wiggles. Very likely, these patterns are caused by the

presence of spiral arms or portions of rings, a variable thickness or

inclination, not taken into account by assuming smoothed axisym-

metric and monotonous density profiles. Even DM with two or even

three external parameters cannot make that5. One of the better DM

methods, built on the Einasto profiles with three ad hoc parameters in

the fits, is discussed in reference [45]. We can see that the fine details

cannot be adequately fitted (see, for instance, NGC6015, NGC 7793,

NGC3726, IC4202, NGC0289, UGC06787, etc). In any case a lot of

physical parameters are very poorly known: the inclination of the

galaxy (moreover, very likely variable along the galactic radius), the

mass-to-light ratio, the thickness along the line of sight, the distance,

etc. We must add that the observational profiles can substantially

differ in some cases from one author to another, sometimes by more

than 20 km/s. We can compare two different catalogs, for instance,

that of Sofue [46] versus SPARC [35], when the rotation curve for

the same galaxy is presented (see especially NGC 2903 where a dis-

crepancy of 40 km/s can be notified). Even for the Milky Way, in
5 A list of DM methods with two or three ad hoc parameters is presented in the references [43, 44].
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the vicinity of the Sun, divergences also exist [47]. Let us note that

the DM paradigm could, however, be made in agreement with any

inclination by adequately adjusting the DM/B rate! A contrario both

MOND and the κ-model apparently fail if the inclination is not ac-

curately estimated [26]. An example where the inclination factor can

sometimes play an important role in the determination of the rota-

tion velocity profiles is given in [48]. In the latter paper it is shown

that the inclination can vary by 20◦ following the authors, eventually

favoring a model rather than another one. Eventually, we can say

that, unfortunately, the determination of the inclination is not the

sole trouble. Additionally the gas and the stars in a galaxy, following

their types, do not rotate in the same manner, the velocities are not

circular, the galaxy disks are not symmetric, etc. The multiple con-

sequences on the observational profiles are difficult to estimate. This

is why various observational techniques can lead to different profiles

for the same galaxy.

In spite of these difficulties, and in order to make a valuable com-

parative analysis between different theoretical models, the idea is to

use a same set of extended data. For instance, the SPARC catalog

seems in this case necessary. This catalog gathers a large, and homo-

geneous, sample of rotation profiles. A very good point of the SPARC

database is that it represents a uniform estimate of the surface den-

sities of galaxies, starting from Spitzer near-infrared data [35]. Then

our procedure as to starting from mean fits of the Newtonian curves,

and then mean fits for the observed rotational curves can be deduced.

In some cases, the DM fits seem to be much more impressive [44, 45],

but a major drawback for a physical model is that the DM technique

of fitting is not at all predictive. Then, starting from any Newtonian

curve (even false), we can build any ”good” predicted profiles, ob-

viously by adding the ”good” rate of DM. Admittedly, MOND and
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κ-model profiles are generally of lesser quality, but in most cases,

both of them produce a good trend for the fits compared to the ob-

servational rotation curves. Let us specify again that the latter ones,

empaired by various biases, are also not perfect either.

3 Results

3.1 MOND versus κ-model

The results of the calculations for the individual galaxies in the

SPARC catalog are collected in Figure A in the Appendix. The

galaxies have been classified in alphabetical order to facilitate the

research. For the disks, it is assumed that the thickness is constant

along a radius of the galaxy. In most cases, the thickness has been

taken to be equal to the corresponding reference values taken at the

Sun position in the Milky Way, for both the stellar, let δ⊙.st, and

gaseous disk, let δ⊙.g. In view of the results, a first general remark is

that the κ-model is clearly as predictive as MOND6. For both models,

the results statistically deviate by less than 10% as for the prediction

of the terminal velocities (Figure 2).
6The MOND profiles have been obtained with the formula

v2MOND = v2bew

1

2
+

1

2

[
1 + 4

(
a0

gnew

)2
] 1

2


1
2

(5)

where vnew and gnew are respectively the Newtonian velocity and acceleration.
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Figure 2 The terminal velocities for the sample of galaxies (SPARC

data base). MOND is in green, the κ-model is in amber, and the

observed velocities, provided by the SPARC database, are represented

in black. Linear regression lines are also represented.

Examining the individual cases, by browsing figure A, we can see

that the κ-model leads to predictions similar to the MOND phe-

nomenology, even though in some cases, the profiles are not quite

identical. Moreover, a comparison with the observational profiles

shows that the predicted curves for both MOND and the κ-model

don’t perfectly match the observations7. Reporting to figure A we see

that the theoretical curves predicted by MOND or the κ-model can be

indifferently located slightly above or below the observational curves.

However, there are remedies for this. First, in the outer regions, the

predicted curve is quite often located above the observational one.

In MOND the bias can then be corrected by EFE (External Field

Effect) [52]. Likewise, this bias could be corrected by a diminushing
7We can remark that whereas some authors affirm that the MOND fits are fairly good [47, 49], on the other

hand, other authors, who rather seem to defend the DM paradigm, conclude that the MOND fits are bad in
a large percentage of analyzed individual cases [50, 51]. It is true that MOND gives fairly acceptable fits in
a large number of cases and is less good in other cases. This situation can easily be explained if we admit
that the mass-to-light ratios, the inclinations, and the distances are poorly known. We can then postulate
that MOND systematically provides ”perfect” fits and can then predict the inclinations and distances. A
contrario DM fits are apparently better but, ironically enough, even if we choose a bad inclination or an
erroneous distance.
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thickness of the disks (at constant surface density Σ) in the κ-model.

A contrario, there exist a number of cases where the predicted curve

is located below the observational one, especially in the innermost

regions of galaxies (for instance, in the more striking cases: F563-V2,

F568-1, F568-V1, F571-8, F579-V1, F583-1, NGC 2915, NGC 3992,

NGC 5907, NGC 5985, NGC 6674, UGC 00128, UGC 00731, UGC

02259, UGC 6446, UGC 06667, UGC 07399, UGC 7490, and UGC

8286). It is interesting to note that the magnitude of this bias is

very similar in both MOND and in the κ-model for a given galaxy.

Very possibly, a modification of the inclination in MOND (and also

in the κ-model) could partially remove the discrepancy in the inner

regions for these galaxies. As demonstrated in [48] the modification

of the inclination can substantially modify the profile of the rota-

tion curve. However this effect appears rather systematic throughout

figure A in the inner regions. In other words, the measurement of

the inclination would be systematically biased in the inner of spiral

galaxies and, strangely enough, always in the same direction. This

hypothesis is hardly acceptable. The fact that the MOND curve is

located below the observational one results from the fact that the

acceleration a is equal to or larger than the critical value a0 in the

inner regions. In this case, we are in a domain where the Newto-

nian regime is still supposed to be valid. To save MOND, we can

then assume that the parameter a0 is larger in the inner region, but

then this parameter is no longer universal. Another solution is that

the baryonic mass-to-light ratios are largely underestimated (by a

factor 2) in the inner regions of the quoted galaxies. Eventually, a

more credible explanation is to imagine that some non-exotic form

of DM exists in the innermost regions of galaxies. We could invoke,

for instance, a neutrino species with mass ∼ eV (but in acceptable

quantity with DM/B ∼ 2). A very similar idea has been assumed

23



for the inner regions of galaxy clusters [53]. This hypothesis appears

admittedly reasonable; however, the κ-model can propose another

natural solution. In the κ-model, the leading role is not held by a

fixed parameter, i.e. the acceleration a0, but by the mean volumetric

mass density. This hypothesis makes the κ-model more flexible than

MOND. Figure A displays the results under the reductive hypothesis

of a constant thickness throughout the galactic disks. However an

increase in disk thickness (at constant mean mass surface density) in

the inner regions of spiral galaxies could help to lessen the discrep-

ancy. An interesting conclusion is that the κ-model could hence help

to obtain an estimation of the mean thickness, a parameter difficult

to derive from the observations. In any case in the cases mentioned

above, even if the κ-model gives imperfect fits in the innermost re-

gions of these galaxies, we can see that the terminal velocities are

correctly predicted. A simple response to these statements is that

the empirical relationship (2) is very well adapted to a thin disk, but

far less applicable to a thick disk or a 3D bulge. For the galaxies

listed just above, where a discrepancy exists between the κ-model (or

equivalently MOND) and the observational data, a comparison with

DM profiles with two or three (ad hoc) parameters (as in reference

[44]) appears very interesting. Examining the cases displayed in figure

6.10 of [44], we can see that the underlined discrepancy also persists

in some of the cases, even though slightly lessened (see, for instance,

the rotation profiles for F568-1, F579-V1, NGC 2915, NGC 5907 and

NGC 6674). F571-8 is a pathological example where MOND, the

κ-model and DM yet provide very similar profiles, but paradoxically

enough far from the observational one in the outer regions. The three

theoretical profiles, even though very similar, are located 50 km/s

below the observational profile in the outer regions. In any way, we

know that trying to predict the rotation velocity curves with a better

24



statistical precision than 10% (and even, in some pathological cases,

the incertitude can rise to 20%) appears unwarranted, considering

the dispersion in the observational data coming from various sources.

That matter aside, in the framework of the κ-model, at least we have

a fairly good estimation of the terminal velocities (Fig. 2 and see also

figure A for the individual cases), a conclusion that cannot be reached

by the ad hoc DM methodology. Obviously, the flexibility of the κ-

model by taking into account a variable thickness in the stellar and

gaseous disks would allow to fix the residual discrepancy between the

theoretical curves and the observational ones. In the same vein, this

statement is rather attractive because it implies that the κ−model

could predict the variation of the thickness in spiral galaxies along a

radius. This data is indeed difficult to obtain by sole observation.

3.2 Newtonian Fractional-Dimension Gravity

Newtonian Fractional-Dimension Gravity (NFDG) is an extension of

the laws of Newtonian gravitation to lower dimensional spaces, in-

cluding those with non-integer, ”fractional” dimension (for a general

introduction see [23]). NFDG is based on a generalization of the

gravitational Gauss’s law, replacing standard space integration over

R3 with an appropriate Hausdorff measure over the space, which was

related to Weyl’s fractional integrals. As for MOND or κ-model, the

goal of NFDG is to describe galactic dynamics without using the con-

troversial DM component. A quick review of NFDG is presented in

the reference [30]. NFDG was introduced heuristically by extending

Gauss’s law for gravitation to a lower dimensional space-time D + 1,

where D ≤ 3 can be a non-integer space dimension. A scale length,

l0, is needed to ensure the dimensional correctness of all expressions

for D ̸= 3. Let us note that NFDG does not imply a change in the
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tri-dimensionality of space in galaxies, but rather the local Hausdorff

dimension D ̸= 3 is associated to the matter distribution (bulge or

disk). In this sense there is an analogy with the κ-model, where the

κ ratios (eq. 1) are assumed to be dependent on both the dimension

of the matter distribution (bulge or disk), and also the compactness

of matter (stars or gas).

In [29] Varieschi discusses in depth the case of NGC 6503. For

NFDG with a dimension D = 2, the theoretical curve is slightly

above the observational one and is remarkably flat (see Fig. 6 of [29]).

However, assuming that NGC 6503 behaves as a fractal medium, with

a variable fractional dimension, NFDG can produce a curve with a

perfect superimposition with the observational one. Reporting now

to Fig.A for this galaxy we can see that both the MOND and κ-model

curves are slightly below the observational curve in the inner regions

and slightly above in the outskirts. In the κ-model framework, the

statement of variable fractional dimension could be re-interpreted as

a variable thickness of the disk. In the case of NGC 6503 for in-

stance, an increase in the thickness in the inner regions (thick disk)

and, concomitantly, a decrease in the thickness in the outer regions

(thin disk), could also lead to an improved profile, such as in NFDG

theory. In [30] the same author applies his analysis to other rota-

tionally supported galaxies : NGC 7814 and NGC 3741, for which

very good NFDG fits are supplied. If we consider these galaxies,

MOND and the κ-model provide a fairly good value for the terminal

velocity. However, a same bias is perceptible for the inner veloci-

ties (the predicted curve is below the observational one). This bias

is not present on the NFDG profiles, which perfectly fit the corre-

sponding observational curves, even with their humps and wiggles.

However this perfect fit results from the fact that the NFDG the-

ory imposes on the fractional dimension to vary in ”an appropriate
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manner” along a galactic radius, in order to obtain a ”good” profile.

Nevertheless, the positive point of this procedure is that NFDG can

thus be predictive for variable dimension. Once again, the κ-model

can correct the mentioned bias by invoking a variable thickness. In

the framework of this model, a volume-effect, i.e. the influence of

the mean volumetric mass density surrounding a given observer, and

estimated at a very large scale, is playing a similar role to that of

the dimension in NFDG. Yet Varieschi underlines that the variable

dimension D should be interpreted as the dimension of the matter

distribution of the galactic structure and definitely not at all as the

local space dimension that an observer would measure at a specific

galactic location. In any event, the link between a variable dimension

in NFDG theory and a variable thickness in the κ-model could be

more subtle, and should be reconsidered in more depth. Furthemore,

examining relation (1), we can see that the coefficients κ for the bulge

and the stellar and gaseous disks are different. For the bulge and the

disk, the dimensions are admittedly different, but what about for the

stellar versus gas components ? All these questions deserve further

examination.

It will be very interesting for comparison with the κ-model that the

NFDG theory be applied to a larger sample of galaxies, for instance,

the totality of the galaxies of the SPARC database. A particular

attention must then be paid to the following cases : F563-V2, F568-

1, F568-V1, F571-8, F579-V1, F583-1, NGC 2915, NGC 3992, NGC

5907, NGC 5985, NGC 6674, UGC 00128, UGC 00731, UGC 02259,

UGC 6446, UGC 06667, UGC 07399, UGC 7490, and UGC 8286, for

which both MOND and κ-model substantially differ from the obser-

vational profiles in the innermost regions, while however providing

fairly good estimates in the outskirts of these galaxies (the terminal

velocities).
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3.3 Refracted Gravity

Along with the NFDG model, another new classical gravity modified

theory is the so-called Refracted Gravity (RG) [24, 33, 34]. RG can

be reformulated as a scalar-tensor theory [34]. RG mimics DM with

a gravitational permittivity (a kind of variable gravitational ”con-

stant” G), and that boosts the gravitational field in low-density envi-

ronments. In RG the link between the volumetric mass density ρ and

the gravitational permittivity ϵ is expressed by using the relationship

ϵ(ρ) = ϵ0 +
(1 − ϵ0)

2

{
tanh[ln(

ρ

ρc
)Q] + 1

}
(6)

where ϵ0, Q and ρc are three free parameters. The formula (6)

is an arbitrary monotonic function of the volumetric mass density

with the asymptotic limits ϵ(ρ) = 1 for ρ >> ρc and ϵ(ρ) = ϵ0 for

ρ << ρc. This formula is the equivalent in RG of the relation (2)

in the κ-model. This permittivity also shares a very strong anal-

ogy with the function µ in MOND [13], or still the function κ in

the κ-model [16, 26]. However ϵ is supported by three universal pa-

rameters, instead of just one, for instance as in MOND (a0). Thus

RG seems, at first sight, to be less economic than MOND, but its

great interest is that it is now a multiscale version of MOND. In

this sense, the objective of RG is very similar to that proposed by

the κ-model; but with an essential difference : the κ-model model

uses exclusively internal parameters (i.e. the mean volumetric mass

densities of the bulge, stellar and gaseous disk components) and no

free external parameters. Then, by contrast in RG the three arbi-

trary parameters still need to be obtained through a long statistical

analysis of the observational data [24]. RG has been applied to both

flattened galaxies [24] and a small number of elliptical galaxies [33].
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The results presented in [24] rely on setting the three free parameters

for each individual galaxy. However, the authors show that the vari-

ations of these parameters from galaxy to galaxy can, in principle,

be ascribed to statistical fluctuations. Then the authors adopt an

approximate procedure to estimate a single series of parameters that

may properly describe the kinematics of the entire sample of galax-

ies, They eventually conclude that the gravitational permittivity is

indeed a universal function. Unfortunately, a direct, and yet fruit-

ful, comparison between RG and the κ-model is difficult because the

galaxies under consideration are not issued from the same catalog.

However, a close examination of the results displayed in [24] leads to

the firm conclusion that the fits of the rotation profiles are of similar

quality to those produced by MOND and the κ-model.

3.4 Conformal Gravity

Eventually, a comparison with conformal gravity can also be proven

worthwhile. In the Conformal Gravity (CFT) [20] two universal pa-

rameters are introduced, setting apart the usual observational data,

i.e. the luminosity and the M/L ratio, the distance, and the incli-

nation, common to any model. The first parameter (γ∗) is related

to the local geometry, while the second parameter (γ0) describes the

global geometry due to all the other galaxies in the Universe. These

two parameters are statistically derived from the observational rota-

tion curves of a chosen sample of 104 galaxies (this sample is limited

to the galaxies whose mass density is fittable by a simple exponen-

tial thin disk). By comparison, we recall that in the κ-model the

coefficients κ are calculated from the mean mass density profiles at-

tached to each galaxy. However, it is very difficult to decide which

model is the best. Statistically, MOND, the κ-model and CFT pro-
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vide equivalent results as for the proximity of the theoretical curves

to the observational ones. We can examine the fit through the indi-

vidual cases presented in [20]. For NGC 1003, NGC 3972, NGC 5585,

and UGC 7089, MOND and κ-model fit is better than the CFT fit.

For NGC 2903, UGC 5005,and UGC 5999 the fits are equivalent, For

NGC 4100 the CFT fit is better than the MOND and κ-model fits,

etc. Some cases are favorable to MOND or to the κ-model while in

other cases the CFT is better. At the present time, this situation is

very embarrassing because each author can validly support his own

model against that of others through a judicious choice of the data.

It is for that reason that the models have to be compared on a very

large sample of galaxies such as the SPARC database, and not on a

very small sample of a few galaxies.

4 Conclusion

This paper is a discussion on the capacity of a number of MOND-type

models [16, 23, 24] and a CFT-based model [20], which have been re-

cently proposed, to understand the dynamics of a large variety of

flattened galaxies. Admittedly, these models do not provide very

perfect fits (except may be NFDG that possesses a flexible dimension

associated to the mass distribution), but, nonetheless, they produce

fairly predictive mean rotational curves. It is nonetheless true that

DM can indeed lead to better fits with two or still three [44, 45]

parameters, but unfortunately, these parameters are freely adjusted

to each galaxy. This implies that by starting from any Newtonian

profile, even one strongly empaired by various biases, we can derive a

”very good” fit for any given observational rotation profile8. MOND
8Once again in the framework of the κ-model starting from the Newtonian curves, we generate a predictive

profile for the observational one in an univocal manner. The baryonic mean mass density alone is the
conductor of the situation.
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and the κ-model are at least falsifiable and upgradable, while DM

definitively not. For a physicist, the choice is quickly made. With no

confirmation by experimental methods, DM unfortunately has very

limited scientific significance. Obviously this conclusion would dras-

tically change if, one day, we discover the signature of DM in the

laboratory. We can always expect it over the next few years. Even

though obviously the κ-model is not a definitive solution, at least

it shows that the baryonic mean mass density could play an unex-

pected role in the determination of the galactic rotational velocities

and that both are strongly correlated. If this model is on the right

track, then the rotational velocities alone could allow us to directly

determine the baryonic mean mass density (and not indirectly from

the brightness measurements) and vice versa in a self-consistent man-

ner. In this case, the delicate step, i.e. brightness → mean mass

density would be short-circuited. After an analysis of spiral galaxies

and galaxy clusters, the work is far from finished. The κ-model has

to be still applied to the elliptical galaxies, to the globular clusters,

to the formation and stability of primordial galaxies, and eventually

to CMB/cosmology. Let us also note the very captivating open de-

bate concerning the wide binary stars ([54] versus [55]). The κ-model

obviously predicts a very weak κ-effect in the immediate vicinity of

the Sun, i.e. the motion of the wide binaries is predicted to be quasi-

keplerian in this region. Much work remains to be done. It would

be interesting to concomitantly perform the same studies, on the

same collection of galaxies, with other models, such as the Newto-

nian Fractional-Dimension Gravity [29, 30, 31, 32], the Refracted

Gravity [33, 34] and also the CFT model [20].
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Appendices

A Section Rotation curve fits results

Figure A Rotation curves of the SPARC galaxies. The green line is

predicted by MOND, the amber line is predicted by the κ-model, the

red dashed line represents the stars, the green dotted line represents

the gas, the blue line represents the sum of all baryonic components

(stars + gas). The observed velocities are shown as a series of filled

black circles.
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Figure A : Continued rotation profiles
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Figure A : Continued rotation profiles
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Figure A : Continued rotation profiles
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