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Abstract. Source apportionment models were widely used to successfully assign highly time-resolved aerosol
data to specific emissions and/or atmospheric chemical processes. These techniques are necessary for target-
ing the sources affecting air quality and for designing effective mitigation strategies. Moreover, evaluation of
the toxicity of airborne particulate matter is important since the classically measured particulate matter (PM)
concentrations appear insufficient for characterizing the impact on human health. Oxidative potential (OP) mea-
surement has recently been developed to quantify the capability of PM to induce an oxidative imbalance in the
lungs. As a result, this measurement unit could be a better proxy than PM mass concentration to represent PM
toxicity. In the present study, two source apportionment analyses were performed using positive matrix factoriza-
tion (PMF) from organic aerosol (OA) mass spectra measured at a 15 min time resolution using a time-of-flight
aerosol chemical speciation monitor (ToF-ACSM) and from 19 trace elements measured on an hourly basis us-
ing an online metal analyser (Xact 625i). The field measurements were carried out in summer 2018. While it is
common to perform PMF studies individually on ACSMs and more recently on Xact datasets, here we used a
two-step methodology leading to a complete PM1 source apportionment. The outputs from both OA PMF and
Xact PMF, the inorganic species concentrations from the ACSM, and the black carbon (BC) fractions (fossil fuel
and wood burning) measured using an Aethalometer (AE33) were gathered into a single dataset and subjected to
a combined PMF analysis. Overall, eight factors were identified, each of them corresponding to a more precise
source than performing single PMF analyses. The results show that besides the high contribution of secondary
ammonium sulfate (28 %) and organic nitrate (19 %), about 50 % of PM1 originated from distinct combustion
sources, including emissions from traffic, shipping, industrial activities, cooking, and biomass burning. Simulta-
neously, PM1 filters were collected during the experimental period on a 4 h sampling basis. On these filters, two
acellular OP assays were performed (dithiothreitol; OPDTT and ascorbic acid; OPAA) and an inversion method
was applied on factors issued from all PMFs to assess the contribution of the PM sources to the OP. This work
highlights the sensitivity of OPAA to industrial and dust resuspension sources and those of OPDTT to secondary
ammonium sulfate, shipping, and biomass burning.

Published by Copernicus Publications on behalf of the European Geosciences Union.



3258 J. Camman et al.: Oxidative potential apportionment of atmospheric PM1

1 Introduction

Airborne particulate matter (PM) is a significant contributor
to air pollution, leading to adverse effects on ecosystems, cli-
mate stability, and the environment (Beelen et al., 2014; Co-
hen, 2017; Jacob, 1999). Air quality is currently a major pub-
lic health outcome and is responsible for 4.2 million prema-
ture deaths worldwide each year (WHO, 2021). More wor-
ryingly, this figure is expected to double by 2050 (Lelieveld
et al., 2015). However, the links between air pollution and
human health effects are not fully understood yet, but PM
appears to be a key pollutant in aerosol toxicity (Medina et
al., 2016; Zhang et al., 2016). Depending on the size and
chemical composition of the particles, PM may cause signif-
icant damage to pulmonary cells due to the ability of particles
to penetrate deeply into the organism and induce inflamma-
tory responses in lung cells (Strak et al., 2012). There has
been growing interest in recent years in submicron aerosol
PM1, which are deposited deeply in the respiratory system,
reaching the alveoli of the lungs (Sturm, 2020). PM1 are as-
sociated with the physicochemical processing of compounds
also resulting from anthropogenic sources, mainly combus-
tion sources, and are known to contribute to the health im-
pacts of PM (Grigas et al., 2017; Manigrasso et al., 2020).

Although an increasing number of studies investigated the
potential effects of submicron particles on the risk of respira-
tory diseases, this subject still represents a research line that
needs further toxicological and epidemiological studies (Hu
et al., 2022). It was recently shown that these particles are
strongly linked to the occurrence of cardiovascular disease,
perhaps due to the higher surface-to-volume ratio (Münzel et
al., 2022). While the air quality guidelines regarding PM lev-
els were recently updated for PM10 and PM2.5 (WHO, 2021),
no regulation for PM1 has yet been established, and several
studies suggest their monitoring should be considered in this
respect (Kumar et al., 2010).

While all mechanisms leading to the toxicity of airborne
particles are not fully established to date, it is generally be-
lieved that the activity of reactive oxygen species (ROS)
could play an important role. These chemical species that
are carried or induced in the lung are suspected of disrupt-
ing the natural redox balance, causing oxidative stress, a key
factor in the inflammatory response in the organism, ulti-
mately leading to diseases such as asthma or chronic bron-
chitis (Abrams et al., 2017; Dellinger et al., 2001; Møller,
2014; Pope, 2004). Thus, new approaches have been investi-
gated over the past two decades to better quantify oxidative
stress and, ultimately, the impact that exposure to airborne
particulate pollution has on the population. Indeed, the mea-
surement the of oxidative potential (OP) of PM is seen as a
new promising metric and probably a better representative
proxy of health impacts than the PM mass concentration, as
it quantifies the ability to generate ROS in vivo. OP mea-
surements integrate many properties of PM that are impor-
tant for the interactions with lung fluid, such as size distri-

bution, specific surface area, or PM chemical composition
(Ayres et al., 2008). Indeed, changes in the chemical compo-
sition of aerosol and consequently the type of sources from
which they are emitted may lead to a significant difference
in airborne particle toxicity (Boogaard et al., 2012). Further-
more, previous studies showed the value of fine-mode par-
ticles in understanding the oxidative effects of PM (Chen et
al., 2017).

An active field of research for air quality is understand-
ing the emission sources of PM through source apportion-
ment techniques, using approaches such as statistical re-
ceptor models (e.g. chemical mass balance (CMB) or posi-
tive matrix factorization (PMF)) (Paatero and Tapper, 1994).
PMF, which is widely used in the community, can be based
on data from online analysers such as aerosol mass spectrom-
eters (AMSs) and aerosol chemical speciation monitors (AC-
SMs), which determine the resolution of organic mass spec-
tra with high sensitivity (Bozzetti et al., 2017a; Chen et al.,
2022; Crippa et al., 2013b) or from off-line filters analyses
(Borlaza et al., 2021, 2022).

Several methods have been explored to combined datasets
from various online analysers to perform PMF. Some studies
proposed the combination of high-resolution AMS and pro-
ton transfer reaction–mass spectrometry (PTR-MS) measure-
ments to refine the links between particle-phase organics and
their precursors (Crippa et al., 2013a; Slowik et al., 2010).
Some others performed source apportionment by including
both organic and inorganic fractions from the AMS (Äijälä
et al., 2019; McGuire et al., 2014; Sun et al., 2012), improv-
ing the resolution of the factors and their chemical nature.
More recently, Zografou et al. (2022) performed PMF anal-
ysis on a combined organic and inorganic year-long dataset
from a ToF-ACSM. Tong et al. (2022) combined into a single
dataset AMS and extractive electrospray ionization time-of-
flight mass spectrometry (EESI-ToF) measurements provid-
ing an optimized identification and quantification of the or-
ganic factors, more specifically the SOA fraction. Nursanto
et al. (2023) also tried a hybrid approach by combining or-
ganic aerosol concentrations from a ToF-ACSM with the par-
ticle size distribution from a scanning mobility particle sizer
(SMPS) and resolved organic factors related to new particle
formation and growth.

However, more efforts are needed to combine instrument
datasets and apportion the sources of the total PM1 fraction.
A multi-time resolution approach was suggested by Via et
al. (2023) mixing PM1 data from online analysers and offline
filters.

Belis et al. (2019) conducted three separated PMF analy-
ses (on offline filter data, online organic data, and online inor-
ganic species) which produced reference profiles to constrain
a fourth PMF with combined online data. Petit et al. (2014)
also followed a multi-step methodology (PMF2) comprising
the use of results from the first PMF runs as inputs for their
combined PMF using ACSM and Aethalometer (AE33) data.
To our knowledge, no other study has performed this type
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of PMF2 approach, in particular for all PM1 components.
A known drawback of performing PMF on OA mass spec-
tra from ACSM or AMS is the resolution of the secondary
organic aerosol (SOA) origin. SOA factors are usually re-
ported as either a single factor or two factors separated by
their degree of oxygenation rather than in terms of sources.
A PMF2 approach using previous OA factors combined with
other species and/or PMF factors may enable a more accurate
identification and quantification of the SOA fraction in the
PM sources. The current study addresses this challenge by
using the PMF2 method for the PM1 fraction measured with
online analysers (i.e. ToF-ACSM, Xact 625i, and AE33) at a
high time resolution (< 1 h).

While the study of the relationship between the OP and
single compounds is a step forward in understanding the
chemical mechanisms involved, it seems unrealistic to char-
acterize the OP of the aerosol as a whole in this way, given
the myriad of chemical elements that make up the aerosol.
A more integrative approach is to consider OP sources since
aerosol is a complex mixture where synergistic and antag-
onistic effects can occur (Yu et al., 2018). This enables an
estimation of intrinsic OP of sources but also of their con-
tribution to a population’s health-related exposure, which is
more practical for adapting air quality management policies
(Borlaza et al., 2018; Calas et al., 2019; Fang et al., 2016;
Grange et al., 2022; Verma et al., 2014; Weber et al., 2018;
Yu et al., 2019).

Major insights have been gained from OP measurements
on filters. Many studies, based on filters collected at differ-
ent sites, have established associations between OP and PM
sources, thus improving our understanding of the health im-
pact of specific types of airborne particles (Borlaza et al.,
2022; Daellenbach et al., 2020; Fang et al., 2016; Weber et
al., 2021). However, the next step is to develop online OP
measurements to understand one-time extreme events and ul-
timately enable near-real-time (NRT) OP acquisition for bet-
ter air quality management.

To make progress in this direction, here we propose to
investigate the submicron aerosol sources – highly relevant
in health impacts (Lin et al., 2020) – contributing most to
two types of OP (ascorbic acid assay (OPAA) and dithio-
threitol assay (OPDTT)) in a challenging environment, the
Marseille area. Effectively, the activity of the industrial port
complex and several industrial areas close to this highly ur-
banized city, combined with specific meteorological condi-
tions (wind regimes and significant photochemistry in sum-
mer), involves frequent pollution episodes (Chazeau et al.,
2022, 2021; Salameh et al., 2018). A challenging double-
PMF method using chemical online analysers (ToF-ACSM,
Xact, and the Aethalometer) is proposed as a first step. High-
frequency acquisition of OP observations with filter sampling
every 4 h for 7 weeks was then coupled to these data. On
this basis, an OP source apportionment using a multilinear
regression approach is provided. This method enables an es-
timation of the oxidizing capacity of each µg of PM1 from

the emission sources identified but also the relative contribu-
tion of each source to OPAA and OPDTT on a 4 h basis. The
complementarity of these assays gives a broader and more
representative view of the PM1 health impact.

2 Material and methods

2.1 Site and sampling

2.1.1 Site

The Marseille-Longchamp supersite is an urban back-
ground site of Marseille – the second most populated city
in France (about 870 000 inhabitants, with a density of
3600 inhabitants per km2 in 2019). The site is located in the
heart of the Parc Longchamp, in the fourth district of Mar-
seille (43°18′20′′ N; 5°23′41; m a.s.l.). Figure 1 shows the
site location in the city and the main areas in the surroundings
with the maritime port of Marseille within 2 km and indus-
trial areas within 30 km with petroleum refining, coke pro-
duction, and steel facility activities (Salameh et al., 2018).
In addition to shipping and local industrial sources, Mar-
seille suffers from the second largest traffic congestions in
France, generating a year-round source of background traf-
fic (Chazeau et al., 2021). The location of the city also leads
to influences of natural and biogenic emissions such as ma-
rine aerosol, terrestrial vegetation, Saharan dust, or crustal
dust. Finally, secondary organic aerosol (SOA) formation
events and high ozone concentrations formed by intense pho-
tochemistry are frequent during warm periods in the area (El
Haddad et al., 2013; Flaounas et al., 2009).

2.1.2 Sampling campaign

The sampling campaign and site have been detailed else-
where (Chazeau et al., 2022). Briefly, the field work took
place during the summer of 2018 over a 7-week period (from
11 July to 1 September 2018). The sampling station was
equipped with a range of analytical instruments for character-
ization of submicron aerosols: a time-of-flight aerosol chem-
ical speciation monitor (ToF-ACSM; Fröhlich et al., 2013)
to measure in near real time (10 min resolution) the chem-
ical composition of non-refractory PM1 (organic aerosol,
NH+4 , NO−3 , SO2−

4 , and Cl−); the dual-spot Magee Scien-
tific AE33 Aethalometer (Drinovec et al., 2015) equipped
with a PM2.5 cut-off inlet to measure the equivalent black
carbon concentrations (BC: with a distinction between BCFF
and BCWB origins) at a 1 min resolution; and a Xact625i
(Cooper Environmental) to measure a user-defined list of
25 PM1 trace elements with a time resolution of 60 min.
PM1, PM2.5, and PM10 mass concentrations were determined
with an optical particle counter (FIDAS 200; PALAS). A 3D
sonic anemometer for temperature, wind direction, and ve-
locity measurements and O3, NOx , and SO2 analysers are
also amongst the permanent instruments of the station. Fi-
nally, PM1 collection for OP analysis was performed for 15 d
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(from 11 July and 25 July 2018) every 4 h on 150 mm diam-
eter quartz fibre filters (Whatman Tissuquartz; pre-heated at
500 °C for 8 h), using a high-volume aerosol sampler (HiVol,
Digitel DA80) at a flow rate of 30 m3 h−1. A total of 90 sam-
ples and four blank filters were collected with a time resolu-
tion of 4 h. Procedural care for filter handling, sampling, and
storage was taken to avoid contamination and modification
of the filter deposit after sampling (Weber et al., 2018).

All the instruments ran acquisitions during the whole cam-
paign period (i.e. 11 July to 1 September 2018). However, it
should be noted that ToF-ACSM stopped between 12 July
2018 19:00 and 13 July 2018 03:00 (UTC) and between
14 July 2018 15:00 and 15 July 2018 03:00 (UTC), which
means the number of filter samples decreased to 83 instead
of 90 for the OP deconvolution model discussed below.

2.2 OP analysis

OP was assessed by the depletion rate of anti-oxidant com-
pounds, using two methods with dithiothreitol (DTT) and
ascorbic acid (AA) (Calas et al., 2019, 2018, 2017). DTT de-
pletion in contact with PM extracts was determined by dos-
ing the remaining amount of DTT with dithionitrobenzoic
acid (DTNB) at different reaction times (0, 15, and 30 min),
and absorbency was measured at 412 nm using a plate spec-
trophotometer (Tecan, M200 Infinite). Briefly, 25 µM of DTT
and phosphate buffer react for 30 min with PM suspensions
at 25 µg mL−1 in a simulated lining fluid. The AA assay is
a simplified version of the synthetic respiratory tract lining
fluid (RTLF) assay (Kelly, 2003), where only AA is used. A
mix of 80 µL of PM suspension with 24 nmol of AA (100 µL
of 0.24 mM AA solution in Milli-Q water) is used, and AA
depletion is read continuously for 30 min by absorbency at
265 nm (TECAN, M1000 Infinite). The depletion rate of AA
was determined by linear regression of the linear section
data. For both assays, a 96-well plate was auto-shaken for
3 s before each measurement and kept at physiological con-
ditions (37.4 °C).

Three filter blanks (laboratory blanks) and three positive
controls (1,4-naphthoquinone, 24.7 µmol L−1) were included
in each plate (AA and DTT). The average values of these
blanks were then subtracted from the sample measurements
of the given plate. The detection limit value was defined
as 3 times the standard deviation of laboratory blank mea-
surements (laboratory blank filters in Gamble + DPPC so-
lution). Three replicates are performed with two absorbance
measurements at each time. The short duration of the sam-
pling time (4 h), the type of PM fraction (PM1), and con-
sequently the low mass recovered on each filter resulted in
some OP replicate measurements being below the detection
limit, suggesting the highest uncertainties in these results as
is usual for such measurements (Calas et al., 2018; Weber et
al., 2021). A propagation of these uncertainties was carried
out (on average 15 % of the OP measurement) to deal with
thus issue. Hereafter, the OP normalized in volume relative

to the AA assay and the DTT assay is denoted OPAA
v and

OPDTT
v , respectively.

2.3 Source apportionment using positive matrix
factorization

Source apportionment was performed through the posi-
tive matrix factorization (PMF; Paatero and Tapper, 1994)
method using the multi-linear engine (ME-2) solver (Paatero,
1999) and run within the Source Finder Professional
(SoFi Pro) software (Datalystica Ltd., Villigen, Switzerland;
Canonaco et al., 2021, 2013). PMF is a bilinear unmixing
model widely used to determine the atmospheric aerosol
sources based on online measurements (Canonaco et al.,
2021; Chazeau et al., 2022; Chen et al., 2022). The equation
is described as follows:

xi,j =
∑n

k=1
gi,k.fk,j + ei,j , (1)

with xi,j a non-negative matrix of measurements which is
factorized into gi,k the factor time series, fk,j the factor pro-
files, and ei,j the model residuals. The indexes i, j , k, and
n are the time, variables, discrete factor numbers, and total
number of factors in a solution, respectively.

ME-2 solves the model solution by using a least squares
algorithm to iteratively minimize the following object func-
tion Q defined as the sum of the squared model residuals
weighted by their respective uncertainties (σij ):

Q=
∑

i

∑
j

(
eij

σij

)
.2 (2)

Generally, the PMF model does not result in a mathemati-
cally unique solution as a multiple combination of fk,j and
gi,k may provide a similar value of Q. ME-2 allows us to in-
troduce a priori information in the model using known source
profiles or time series to orient solutions towards environ-
mentally meaningful rotations (Paatero, 1999; Paatero and
Hopke, 2009). An advantage of SoFi Pro is that it makes it
possible to control the rotational ambiguity of the solution by
applying constraints with the a-value approach (Canonaco et
al., 2013):

fkj = f
′
kj ± a · f

′
kj (3)

gik = g
′
ik ± a · g

′
ik, (4)

where the scalar a defines the range (between 0 and 1) to
which f ′kj and g′ik can vary from the known input profile
(fkj ) or time series (gik).

In the current study, source apportionment was conducted
using the PMF model on three distinct datasets. In the first
two analyses, PMF was applied separately to the OA dataset
(PMForganics) and the Xact dataset (PMFmetals). As a sec-
ond step, the outputs from the previous source apportionment
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Figure 1. Location of the Marseille-Longchamp supersite and localization of the main industrial areas around Marseille, France (© Plane-
tObserver, Geoportail/© Google Maps).

analyses, the inorganic species concentrations from the ToF-
ACSM measurements (NO−3 , NH+4 , SO2−

4 , and Cl−), and the
deconvolved BC source (BCFF and BCWB) concentrations
from the AE33 were combined into a single dataset to per-
form a total PM1 source apportionment (PMFPM1 ).

2.4 PMF preparation and optimization

2.4.1 OA dataset

ACSM data were acquired with the Igor-based Acquility
v2.1.4 software and analysed with Tofware v3.2 also de-
veloped in Igor Pro (Wave Metric inc., Lake Oswego, Ore-
gon, USA). The data treatment including ionization effi-
ciency (IE) and relative ionization efficiency (RIE) calibra-
tions, collection efficiency (CE) correction, and detection
limit determination is detailed in Chazeau et al. (2021). The
complete PMF methodology and optimization applied to OA
mass spectra at MRS-LCP are described in a dedicated paper
(Chazeau et al., 2022) and we will provide only a brief sum-
mary here. The model is performed on data input including
185 variables from m/z 12 to m/z 214 and 4422 time steps
(15 min intervals) from 1 July to 1 September 2018. The error
matrix was exported from the Tofware software and the cal-
culation included ion counting statistics, background errors,
electronic noise, and a minimum error from the measurement
of a single ion.

A five-factor solution was resolved with three con-
strained and two unconstrained factors. Both hydrocarbon-
like organic aerosol (HOA) and cooking-like organic aerosol
(COA) factor profiles were constrained using the reference
profiles from Ng et al. (2011) and Crippa et al. (2013b),
respectively. Shipping and industrial organic aerosol (Sh-
IndOA) factor time series were constrained with the SO2
concentrations as this is a specific proxy for these emissions
in the Marseille area (El Haddad et al., 2013). The a-value
ranges for these constraints were optimized based on previ-
ous sensitivity analyses (Chazeau et al., 2022) and random
a values of 0–0.6, 0–0.2 and 0–0.2 for HOA, COA, and Sh-

IndOA, respectively, were retained. The two remaining fac-
tors corresponded to the secondary oxygenated organic frac-
tion separated into two components: a less oxidized organic
aerosol (LOOA) factor and a more oxidized organic aerosol
(MOOA) factor.

In order to explore the rotational ambiguity and statisti-
cal uncertainties of the PMF solution, a bootstrap resampling
strategy is applied (Efron, 1979), where 100 repeated runs
are performed to test the stability of the solution. The in-
spection of the 100 generated runs was achieved based on a
selection of predefined criteria customized within SoFi Pro
(Canonaco et al., 2021; Chazeau et al., 2022; Chen et al.,
2022, 2021). First, three criteria are defined as acceptance
thresholds to evaluate the quality of the PMF runs. The r
Pearson correlation (denoted as r hereafter) with BCFF for
HOA, the ratio between lunch hours (11:00 and 12:00 UTC)
and the average background hours in the morning (06:00–
08:00 UTC) for COA, and the r Pearson correlation with SO2
for Sh-IndOA were used. Then, the monitoring of f43 inten-
sity for LOOA and f 44 intensity for MOOA are used as repo-
sitioning criteria to avoid mixing of the unconstrained factors
since they are not sorted automatically among the different
PMF iterations. The bootstrapped runs fulfilling the criteria
list were then averaged into a unique PMF solution.

2.4.2 Xact dataset

The PMFmetals was performed on the Xact data matrix of
hourly element concentrations from 11 July to 1 Septem-
ber 2018. First, some individual species were excluded to
improve the quality of the analysis. Elements whose con-
centrations were below their respective minimum detection
limit (MDL) more than 90 % of the time were not included in
the inputs (Fig. S1 in the Supplement). The MDLs were pro-
vided by the manufacturer and are given in Table S1 in the
Supplement. From this approach, the following 17 elements
remained: As, Br, Ca, Cd, Cr, Cu, Fe, K, Mn, Ni, Pb, Sb, Se,

https://doi.org/10.5194/acp-24-3257-2024 Atmos. Chem. Phys., 24, 3257–3278, 2024



3262 J. Camman et al.: Oxidative potential apportionment of atmospheric PM1

Sn, Ti, V, and Zn. Co was also included in the inputs as it
showed a good correlation with the Ni element (R2

= 0.5).
A PMF error matrix (σi, j ) was estimated using Eq. 5 for

concentrations greater than the MDL (Reff et al., 2007; Ry-
der et al., 2020):

σi, j =

√
MDL2

i + u
2
i,j , (5)

where ui,j is a specific analytical uncertainty for each data
point provided by the Xact software. It includes both the
uncertainties of the sampling air volume and the uncertain-
ties of the mass spectra deconvolution calculated by the Xact
software. For the concentrations below the MDL, the values
were replaced by the MDL of metal divided by 2. The cor-
responding error is often set to 5/6×MDL (Polissar et al.,
1998). Since the relative error for each data point was mostly
less than 50 %, Polissar et al. (1998) recommended apply-
ing a relative error between 100 % and 250 % for values be-
low the MDLs. In our dataset, some relative errors for data
greater than the MDLs were much larger than 50 %. Follow-
ing Polissar et al. (2001), the elements were down-weighted
by using larger error estimates for values below the MDLs.
The methodology and the PMF tests panel applied are de-
scribed in the Supplement Sect. S1. All the data points with
a signal-to-noise ratio (S2N) below 1 were down-weighted
by adding a penalty function of 1/S2N to the error (Rai et al.,
2020; Visser et al., 2015a). The weighting is performed cell-
wise as some variables had low average S2N but some high
S2N periods.

Intense firework episodes were recorded during the French
National Day celebration on 14 July. While it is common
to exclude such episodes from the PMF analyses to reduce
modelling uncertainties linked to very high concentrations
(Ducret-Stich et al., 2013), some studies succeeded in iden-
tifying a firework factor profile. Rai et al. (2020) performed
a constrained PMF analysis only on the firework hours and
identified a firework factor based on the K/S elemental con-
centration ratio in black powder. The factor profile of fire-
works was then constrained in the final complete dataset
PMF analysis. Manousakas et al. (2022) ran a PMF on the
entire dataset constraining all the source profiles except the
firework factor and the time series of all sources. The fire-
work time series were set to 0 except during the correspond-
ing events. In this study, we followed the same logic and the
firework hours (13 July 20:00 UTC to 14 July 05:00 UTC;
14 July 20:00 UTC to 15 July 14:00 UTC) were removed
from the dataset to inspect the remaining sources. The PMF
inputs without the firework points (WFP) consist of 1201
time points with 1 h step and 18 elements. As a second step,
PMF analyses were conducted only on firework day (13 and
14 July) points (FDP) to determine a specific profile. The
dataset represented 60 time points and 19 variables. In addi-
tion to the elements previously selected, Bi was included as it
was exclusively associated with the firework events. Bi in the
form of bismuth trioxide (Bi2O3) is commonly used instead

of the toxic lead forms for crackling fireworks, the so-called
dragon’s eggs (Mohan, 2010; Perrino et al., 2011). Finally,
PMF was performed on the total dataset (1230 time points
and 19 variables) by adding a constrained firework factor.

One important step is selecting the number of factors
based on both mathematical diagnostics and the environ-
mental meaning of the factors. Solutions with a range of
one to eight factors were examined for the WFP dataset.
The selection is made based on the changes in Q/Qexp
(1Q/Qexp) and on real and noisy unexplained variation
(1UEVreal, 1UEVnoisy) when increasing the number of fac-
tors (Fig. S2). A large reduction in these values would in-
dicate limited improvements of the model residuals and ex-
plained variability. There were no significant changes in
1UEVreal and 1UEVnoisy between two and eight factors.
However, 1Q/Qexp showed a decrease of up to five fac-
tors, meaning the changes in Q/Qexp were very low. To re-
late the factors from the PMF to specific sources, the diur-
nal trends, the time series of the elements, and a compar-
ison with some external tracers were examined. We could
clearly identify five environmentally relevant factors: dust re-
suspension, shipping, industrial, tire and/or brake wear, and
regional background factors. Selecting the six-factor solution
results in an unresolved Br-rich factor which cannot be at-
tributed to a specific source or aerosol processes. Therefore,
the five-factor solution was chosen as the best representation
of the data.

For the FDP dataset, the PMF analysis resolved the same
five factors in addition to a firework factor. However, the
analysis showed some mixing between the regional back-
ground and the firework factors due to the large contribu-
tion of K in both factors. To avoid this mixing, the regional
background profile was tightly constrained using the pro-
file resolved with the WFP dataset and an a value of 0.1.
The runs were repeated 50 times with a bootstrap resam-
pling strategy to test the stability of the solution. This time
a well-defined firework factor was resolved (Fig. S3) with an
elemental composition in agreement with other studies (see
Sect. 3.2.2).

The averaged firework factor profile retrieved from the
FDP dataset was used as a constraint for the complete
dataset with a values randomly initialized between 0 and
0.5 with an increment of 0.1. This initialization is used to
evaluate whether larger deviations could improve the results
(Canonaco et al., 2021). The factor time series were also
constrained with similar a values and set to 0 except during
the firework events. The remaining factors were left uncon-
strained in the complete dataset solution.

Similarly to the PMForganics methodology, 100 boot-
strapped runs are conducted and a criteria-based selection
is used to assess the quality and position of the PMF runs
(Fig. S4). This statistical selection is described in the Sup-
plement Sect. S2.
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2.4.3 Combined PM1 dataset

Following the methodology described by Petit et al. (2014),
we combined PMF outputs with the remaining chemical
species of PM1. Thus, the factors from both PMForganics and
PMFmetals were combined with BCFF, BCWB, NO−3 , NH+4 ,
SO2−

4 , and Cl− concentrations. BCWB and BCFF were de-
convolved based on the model of Sandradewi et al. (2008).
We used the 470 and 950 nm wavelengths with a constant ab-
sorption Angström exponent of 1.68 and 1.02 for pure wood
burning and traffic, respectively, as recommended by Zotter
et al. (2017) and Chazeau et al. (2021).

The uncertainty matrix was constructed as follows: un-
certainties for the ToF-ACSM inorganic species were ex-
ported with Tofware similarly to those for the organics; BCFF
and BCWB uncertainties were estimated based on Eq. 5 and
on Eq. S1 in the Supplement, with MDLs set to 0.1 for
both species and ui,j , the relative uncertainties, set to 40 %
(Petit et al. 2014) multiplied by the species concentrations;
PMForganics and PMFmetals outputs errors were taken from the
standard deviations of the factor time series from the boot-
strap analyses, which can be used as statistical uncertainties
(Canonaco et al., 2021).

All the variables were synchronized to a 1 h time res-
olution corresponding to the 4 h time resolution of the
filter sampling, and the missing measurement periods of
each instrument were removed from the PMF analysis. The
fireworkmetals factor was excluded here since the ToF-ACSM
was not running during the main active period of this event
(i.e. 14–15 July). Finally, this leads to PMF being performed
over 16 variables and 849 time steps.

Since we combined data from three instruments present-
ing different measurement uncertainty calculations, S2N ra-
tio, and relative numbers of variables, it is necessary to en-
sure good representativeness of each group in the PMF anal-
ysis (Tong et al., 2022). Some studies suggested applying a
relative instrument weight to balance the scaled residuals of
each subgroup of data (Crippa et al., 2013a; Slowik et al.,
2010; Tong et al., 2022; Via et al., 2023). The details about
this instrument weighting process are given in the Supple-
ment Sect. S3. As described in Sect. 2.4.2, a cell-wise down-
weighting was applied to data points with a weak S2N ratio.
PMF runs were performed from 1 to 12 factors to inspect and
identify the most physically meaningful factors. Eight fac-
tors were clearly determined: biomass burning, cooking, in-
dustrial, dust resuspension, traffic, organic nitrate-rich (ON-
rich), shipping, and ammonium sulfate-rich (AS-rich) fac-
tors. However, conducting different seed runs showed a high
degree of rotational ambiguity in the solution, with some un-
stable factors which cannot be resolved systematically (Ta-
ble S4).

While it is common to set some variables to 0 in the factor
profiles based on prior chemical knowledge of the sources
(Bozzetti et al., 2017b; Weber et al., 2019), this method did
not enable a clear separation of factors. Here, the entire pro-

files were constrained for the biomass burning, cooking, and
industrial factors using their profiles from the most inter-
pretable solutions as the base case. Profile constraints were
applied with an a value of 0.4, 0.1, and 0.05 for biomass
burning, cooking, and industrial factors, respectively, lead-
ing to a more stable solution.

Further discussions on the factor identification, the rota-
tional ambiguity, the a-value selection for the constrained
profiles, and the acceptance criteria are provided in the Sup-
plement Sect. S4. Similarly to the two previous PMF analy-
ses, a bootstrap analysis was conducted over 100 runs and all
the accepted runs were averaged into the reported solution.

2.5 OP apportionment

An inversion method is applied on factors issued from all
PMFs to assess contributions of the PM sources to the OP.
The dependent variable OP expressed in nmol min−1 m−3 is
explained by a linear combination of the mass contribution
of PM sources (µg m−3) taken as independent variables as
follows:

OP =H×βn+ ε, (6)

where the OP vector (p× 1) is the measured OP (p obser-
vations) with a 4 h time resolution, H is a matrix (nx(p+1))
of n sources resolved from the PMF analyses plus the inter-
cept (data of the source PMF with a time step of 1 h have
been averaged over the 4 h time step of the OP data), and
the ε vector (p× 1) accounts for the misfit between the ob-
servations and the model. The regression coefficient β pro-
vided by the model (Eq. 6) is interpreted as an intrinsic OP
of the n sources (nmol min−1 µg−1). Basically, it expresses
how much the OP would increase if we increase 1 µg m3 of
the given source. The source-specific OP contribution is cal-
culated by multiplying the regression coefficient β of each
source by the respective mass contribution of the source
to PM. This methodology is essentially based on previous
works detailed in Borlaza et al. (2022) and Weber et al.
(2021, 2018).

Three scenarios in the construction of the matrix H (Eq. 6),
i.e. the contribution of various source factors of PM iden-
tified by each of the three PMFs, have been considered to
make the best use of the results from the different PMFs.
Three models were tested in each scenario (i.e. nine so-
lutions): weighted least squares linear regression (WLS),
weighted robust multiple linear regression with an iterative
M-estimator, and partial least square regression (PLS). The
description of the three scenarios (Eqs. S4, S5, and S6) and
the three models (Eqs. S7, S8, and S9) are shown in the
Supplement. The best model solutions with the lowest RSR
(RMSE standard deviation ratio) are presented: M-estimator
in scenarios 1 and 2 (see Table S3) and WLS in scenario 3.
Source factor contributions exhibiting a Pearson’s associa-
tion with OP of less than 0.1 were discarded from the pre-
dictor variables. Finally, to provide robust estimates of the
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model output terms in scenario 3, the process was performed
500 times with bootstrapped inputs by following the method
of Canonaco et al. (2021). Briefly, 15 % of the input sam-
ples were randomly removed or duplicated before each run.
Output runs with R2

adjusted values below the value found in
the first inversion model without bootstrapping (Eq. 6) (i.e.
R2

adjusted < 0.3 for OPDTT and R2
adjusted < 0.4 for OPAA in

scenario 3) were removed. Factors with a variance inflation
factor (VIF) of > 10 were also removed, because this sug-
gests strong collinearity between them (Calas et al., 2019).
Robust linear regression was performed with the MASS pack-
age developed in R (Grange et al., 2022; Venables and Rip-
ley, 1997) and weighted linear regression was performed us-
ing the stats package developed in R.

3 Results

3.1 OP results

Meteorological conditions typical of those prevailing during
summertime in the region occurred during the period of the
study, with land and sea breeze cycles (except between 20
and 24 July), associated with stable conditions characterized
by ozone episodes (six regulatory exceedances, with a maxi-
mum at 166 µg m−3). NOx , O3, and SO2 average concentra-
tions during the OP apportionment period were, respectively,
20, 80, and 2.5 µg m−3 (Fig. S5). The overall period (n= 83
samples) was characterized by an average PM1 concentration
of 13.2± 3.4 µg m−3.

This study is the first to characterize OP in France with
a 4 h time step, providing an overview of the daily OPv
variation. Figure 2a shows the difference between night and
day and Fig. 2b presents the typical daily OPv variation
(without firework episodes), associated with organic frac-
tions of aerosol quantified by ToF-ACSM, metallic fractions
of aerosol quantified by Xact, and PM1 variations. The av-
erages were calculated using 15 d during the period. The
mass of PM1, the metallic elements of organic aerosol, and
the OPDTT

v are quite higher during the day than at night,
while there is no significant variation in OPAA

v between
night and day. A t test demonstrates no significant differ-
ence (p < 0.05) between the OPv measured during the day
(07:00–23:00 UTC) and the OPv measured at night (23:00–
07:00 UTC), for both OP assays. Two ANOVA variance tests
were separately performed on OPAA and OPDTT 4 h series,
and the result showed no significant difference between the
two assays.

Figure S6b presents the composition in major chemical
components of PM1 measured by ToF-ACSM, Xact, and
AE33 (organic fraction, metallic fraction, NH+4 , Cl−, NO−3 ,
SO2−

4 , BCFF, and BCWB), together with the comparison of
the reconstructed mass with these chemical components and
the PM1 concentration measured with the FIDAS. The Spear-
man association between these two time series is rs = 0.47,
p < 0.001. Figure S6a shows periods when the reconstructed

Figure 2. Profiles of OPAA
v , OPDTT

v , and organic and metal frac-
tions of submicron aerosol and PM1 during (a) night (23:00–
07:00 UTC) and day (07:00–23:00 UTC) and during (b) different
times of the day following the time step of OP (4 h).

mass fits well with the mass provided by the FIDAS, and pe-
riods when the reconstructed mass is overestimated and/or
underestimated.

OPAA and OPDTT median values are, respectively, 0.62
and 1.47 nmol min−1 m−3. Figure 3 shows variations in both
OP assays set against PM1 mass. These OP values are char-
acteristic of the coastal environment in warm periods (Calas
et al., 2019), but we note that they are rather low compared
to many other series (for PM10 or PM2.5) measured with the
same methods in other environments (Weber et al., 2018).

Spearman coefficients (rs) between PM1 mass measured
by FIDAS and OP display some differences (rs PM1 vs.
OPAA

v = 0.23 (p < 0.01) and rs PM1 vs. OPDTT
v = 0.63 (p <

0.001)) where PM1 has a greater association with OPDTT
v

than with OPAA
v . These Spearman coefficients are close to

those found by in’t Veld et al. (2023) on PM1 all year long
in a similar urban coastal environment (Barcelona) (rs PM1
vs. OPAA

v = 0.29 (p < 0.001) and rs PM1 vs. OPDTT
v = 0.73

(p < 0.001)). The higher association between OPDTT
v and

PM1 compared to OPAA
v and PM1 has already been ob-

served in other studies conducted on PM10 (Calas et al.,
2019; Weber et al., 2021; Janssen et al., 2014). This phe-
nomenon is attributed to the heightened sensitivity of AA
to chemical composition, exhibiting robust specificity. More-
over, DTT demonstrates superior sensitivity to aerosol con-
centration owing to its more balanced sensitivity to chemical
constituents (Gao et al., 2020a).

3.2 Interpretation of PMF factors

3.2.1 PMF analysis of OA

The PMForganics results are presented in the Supplement
section with the profiles of the five factors (Fig. S7a), the
time series (Fig. S7b), the relative fractions (Fig. S7c), and
the diurnal cycles (Fig. S7d). As expected in this period,
the secondary fraction including both LOOA and MOOA
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Figure 3. (a) OPAA
v , OPDTT

v and PM1 mass time series over the campaign at the Marseille-Longchamp site. (b) Distribution of OPAA
v and

OPDTT
v in mean and median values.

contributed to the highest part of OA with 33.4 % each.
HOA represented 16.3 % of the total OA, followed by COA
(13.7 %) and Sh-IndOA (3.2 %). HOA is assumed to be re-
lated to traffic exhaust emissions and displayed a distinct
bimodal pattern with significant peaks during the morning
and evening rush hours. COA also showed a bimodal pattern
with increased concentrations during lunchtime and in the
evening. Sh-IndOA concentrations accounted for combined
plumes from the industrial area of Fos-sur-Mer and from the
shipping activity of Marseille harbour. These emissions are
advected on-site by sea breeze in the morning and slowly
decrease throughout the day. LOOA and MOOA are distin-
guished based on their f 44/f43 ratio, with the higher ratio
for the more oxidized part. According to the diurnal cycles,
MOOA showed a flat pattern suggesting a long-range trans-
ported origin and a slight increase at mid-day potentially at-
tributed to more local photochemical activity. By contrast,
LOOA concentrations were higher at night related to some
night-time chemistry. Further descriptions of OA sources in
MRS-LCP are provided in Chazeau et al. (2022).

3.2.2 PMF analysis of metals

The PMFmetals solution is investigated with the factor profiles
and time series presented in Fig. 4, along with the factor-
relative diurnal cycles and contributions shown in Fig. S8.
Non-parametric wind regressions (NWR) were also per-
formed to determine the source concentrations attributed to
their geographical origins using the wind direction and ve-
locity (Henry et al., 2009; Petit et al., 2017). The results are
displayed in Fig. S9.

Fireworks: This factor was only resolved for a short time
from 13 to 15 July (see Sect. 2.4.2). Over its activity period,
the factor represented a major fraction of the total element
mass (up to 80 %) and contributed to K (73 %), Bi (100 %),
Ti (71 %), and Cu (68 %). These elements are usually found
in the composition of fireworks (Manousakas et al., 2022;
Perrino et al., 2011; Rai et al., 2020; Vecchi et al., 2008). K
is both a component of gunpowder (Drewnick et al., 2006)

Figure 4. (a) Average factor profiles with the coloured sticks in-
dicating the normalized contribution of the element to the factor
(left axis) and markers showing the normalized factor contribution
to each element (right axis). Error bars represent the standard devi-
ation of each profile. (b) Time series for the six factors resolved by
the PMFmetals analysis.

and is used as an oxidizer for firework bangs, while Cu and
Ti produce blue and white flames when ignited.

Dust resuspension: This factor accounted for the largest
contribution to the total elemental composition (53.7 %). Its
profile presented the main fraction to Ca (98 %) and signif-
icant contributions to Ti (76 %), Cu (51 %), and Fe (48 %).
These elements are major constituents of crustal soils and
can be considered here to be urban dust (Almeida et al., 2020;
Rai et al., 2021). Ca is also a compound often used for con-
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struction materials (Manousakas et al., 2022). The influence
of construction work is supported by the factor diurnal pro-
file which displayed increasing concentrations at 07:00 UTC
followed by stable levels during the day and very low concen-
trations at night. The NWR plot showed a clear geographical
origin from the northwest associated with a strong wind. Dust
resuspension might occur under the mistral conditions (a re-
gional wind for the Rhone Valley) with enhanced concentra-
tions under high-velocity wind and dry conditions (Fig. S11).
The factor could also include resuspension from non-exhaust
traffic emissions due to the significant contribution of Cu.

Tire and/or brake wear: This factor showed high contribu-
tions to Zn (76 %) and Sb (29 %). The factor diurnal profile
did not exhibit a distinct pattern and the time series were of-
ten affected by some spikes (Fig. 4b), which can be attributed
to local short events. The factor time series showed a mod-
erate correlation with exhaust traffic proxies such as BCFF
(r = 0.33). However, Zn and Sb elements are known tracers
of the brake wear emissions (Grigoratos and Martini, 2015;
and references therein). While Zn is one of the most abun-
dant metals in the brake linings, Sb is contained in the form of
stibnite (Sb2S3) and employed as a lubricant to reduce vibra-
tion (Roubicek et al., 2008). Moreover, Zn is considered as a
marker of tire wear particles (Panko et al., 2018). It should be
noted that the tire and/or brake wear factor contributes to a
low extent to the total metal composition (5.3 %). In a previ-
ous study in Zurich, Bukowiecki et al. (2009) showed that
the contribution to non-exhaust emissions from both light
and heavy-duty vehicles was very low in the submicrometre
mode. Visser et al. (2015b) demonstrated that elements usu-
ally assigned to brake lining and tire wear emissions (e.g. Cu,
Sb, Fe or Sn) are mainly found in the coarse mode at the
“Marylebone Road” kerbside site, and Hays et al. (2011) re-
ported similar trends for a near-highway site in Raleigh, with
Zn being the only element significantly present in the fine
mode. Such results suggest the existence of significant al-
ternative source for these elements, potentially mixed in the
regional-scale background factor.

Regional background: This factor contributed to a large
range of elements: K (71 %), Cd (78 %), Br (74 %), Sn (74 %)
and to some extent to As (58 %), Sb (56 %), Se (54 %),
and Pb (43 %). The factor diurnal profile was mostly flat
suggesting long-range transport of aged background com-
pounds. Since most trace elements in the fine mode are non-
volatile, they can undergo long-range atmospheric transport
(Morawska and Zhang, 2002). This is supported by a strong
correlation with the MOOA factor (r = 0.6) resolved dur-
ing the PMForganics analysis. Furthermore, the NWR analy-
sis displayed a regional geographical origin, with enhanced
concentrations from the southerly sector (the Mediterranean
Sea) and from the northeast sector with land breeze advecting
aged air masses back to the site.

Shipping and industrial: The shipping factor accounted for
the main fractions of V (97 %), Ni (88 %), and Co (43 %).
The V/Ni ratio has often been suggested as a proxy of heavy

fuel combustion (Pandolfi et al., 2011; Viana et al., 2014).
Here, we found a ratio of ∼ 2, which is in agreement with
the typical range for shipping emissions (between 2 and 4)
and with a ratio found in a previous study in Marseille (2.35;
Salameh et al., 2018). The industrial factor contributed to Fe
(47 %), Mn (63 %), Pb (38 %), and Se (35 %). This factor
profile showed similarities with profiles from several indus-
trial areas (Fig. S15). The contributions of some major ele-
ments (i.e. Fe, Ca, Mn, As, Zn) to this factor were in the same
range as those of two iron converter zones and two storage
zones measured by ICP-MS for the PM2.5 fraction (Sylvestre
et al., 2017). Combining these two factors (shipping and in-
dustrial factors) showed a strong correlation (r = 0.74) and a
similar diurnal pattern with Sh-IndOA (Fig. S16), which ac-
counted for both the industrial emissions from Fos-sur-Mer
and the shipping activity from the harbour (Chazeau et al.,
2022). The shipping diurnal profile in Fig. S8b displayed a
bimodal pattern which is linked to the diurnal trend of the
ship departures and arrivals at the harbour (Chazeau et al.,
2021). Once the sea breeze sets in, the first peak related
to the ship arrivals is observed, followed by a second peak
at 17:00 UTC due to ship departures. The diurnal profile of
the industrial factor also exhibits increasing concentrations
once the sea breeze occurs, which then gradually decreases
throughout the day. The NWR analyses support the notion
that the industrial and shipping factors were advected on-site
by breeze from the Mediterranean Sea as they revealed clear
hotspots from the southwesterly sector. The shipping factor
showed high concentrations at lower wind speed compared
with the industrial factor, highlighting more local emissions
that were expected due to the proximity of the harbour.

3.2.3 PMF analysis of PM1

The full PM1 source apportionment solution is explored in
this section with the average factor profiles (Fig. 5a), the time
series (Fig. 5b), the pie chart of mass contributions (Fig. 5c),
the average diurnal profiles (Fig. 5d), and the NWR analyses
(Fig. S17). The comparison of the time series over the OP
sample period of these factor profiles with those of the two
OP assays (OPAA and OPDTT) is shown in Fig. 6.

Biomass burning contributed greatly to BCWB (81 %) and
to a lower extent to regional background metals (32 %) and
MOOA (18 %). This factor accounted for 5.1 % of the to-
tal PM1 concentration. While no primary biomass burn-
ing organic aerosol (BBOA) factor was resolved with the
PMForganics analysis in summer, the presence of a significant
MOOA contribution reflects the influence of a secondary pro-
cess in this biomass burning factor. The low concentration
of this factor is in agreement with minor regional emissions
linked to agricultural activities, wildfires, and cooking prac-
tices such as BBQs, transformed through oxidation processes
during regional transport and ageing (Chazeau et al., 2022;
Cubison et al., 2011). The NWR analysis in Fig. S17 showed
biomass burning concentrations associated with higher wind
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speed compared with sources with a local origin (traffic,
shipping, cooking, and ON-rich), corresponding to south-
westerly winds from the Mediterranean Sea. Additionally,
the northeast land breeze advected these aged emissions back
to the sampling site.

Cooking mainly contributes to COA (92 %) and MOOA
(34 %) and represents a 14.2 % contribution to the total PM1
mass. Even if its diurnal pattern is similar to that from pri-
mary COA, the factor is mixed with a secondary organic
aerosol fraction. Moreover, the cooking source included an
unexpected contribution to Cl− (19 %), which was already
observed in a rural environment in the Po Valley (Dall’Osto
et al., 2015). While this study showed high contributions of
Cl− and oxygenated organic aerosol with COA in the cook-
ing source that may be associated with some additional emis-
sions from agricultural activities and waste disposal, these
sources are not expected at our urban site.

As presumed, the industrial factor was characterized by
high contributions to industrial metals (74 %) and Sh-IndOA
(46 %). The factor contributes little to the PM1 composition
(3.2 %), which is expected as the size of the industrial parti-
cles generally belongs to the ultrafine mode (< 100 nm) (Rif-
fault et al., 2015). Chazeau et al. (2021) and El Haddad et
al. (2013) already described that plumes originating from the
main industrial area of Fos-Berre are advected on-site by sea
breeze conditions and are mainly attributed to ultrafine par-
ticles, influencing the mass concentrations only to a minor
extent.

The dust resuspension factor was exclusively driven by
metals and showed some identical features to the dust resus-
pension factor from the PMFmetals (100 % of the variable). It
should be noted that the factor also included some weak con-
tributions to the brake and/or tire wear and industrial metals
(∼ 10 % each), which can be affected by the resuspension
processes.

The traffic source was mostly composed of HOA (32 %),
BCFF (44 %), and to a lesser extent of LOOA (15 %) and
also showed a large contribution of these variables (83 %,
79 %, and 18 %, respectively). Tire and/or brake wear metals
were also important contributors to this factor (29 % of the
total variable). However, this component presented the high-
est unexplained variation (> 30 %) from all of the dataset
(Fig. S14) and revealed some over-splitting in several factors.
It should be emphasized that 23 % of the traffic source was
composed of SOA (LOOA and MOOA), meaning that the
primary traffic contribution is mixed with secondary aerosol
concentrations attributed to fast oxidation of freshly emitted
particles (Chirico et al., 2011). The factor represented the
second highest fraction of the PM1 mass (21.4 %).

The organic nitrate-rich (ON-rich) factor was resolved
based on the high contribution to NO−3 (81 %) and LOOA
(69 %). This factor accounted for 19.4 % of the PM1. The di-
urnal trend of this factor suggested contributions from night-
time chemistry. A significant pathway might be the oxidation
of biogenic VOCs by NO3 radicals to produce organic nitrate

Figure 5. (a) Average factor profiles, with the coloured sticks rep-
resenting the normalized contribution of the variable to the factor
(left axis) and the markers showing the normalized factor contri-
bution to each variable (right axis) for the eight factors from the
PMFPM1 solution. Error bars are the standard deviation of each
profile. (b) Time series, (c) pie chart contributions, and (d) diur-
nal cycles (solid lines indicate the median, red circles the mean, and
shaded areas the 25th–75th percentile range) for each factor of the
PMFPM1 solution.

particles (Kiendler-Scharr et al., 2016; Xu et al., 2015). This
factor displayed an origin from north to east within the land.

The shipping source showed an expected contribution
from shipping metals (87 %) and Sh-IndOA (56 %) and ac-
counted for 5.9 % of the PM1. This factor further accounts
for a noticeable variation in sulfate (11.6 % of the total sul-
fate concentration). This is in agreement with the results
reported by Chazeau et al. (2021), indicating that during
25 % of the days in summer 2017, sulfate concentrations
were prominently influenced by the nearby harbour. Ship-
ping emissions from the Marseille harbour are further de-
scribed in Sect. 3.3.2.

The AS-rich factor represented the largest fraction of the
PM1 (27.9 %) and was dominated by the ammonium sul-
fate contribution (80 % of SO2−

4 and 72 % of NH+4 ). The
SO2−

4 /NH+4 ratio in this profile was 2.57, which is con-
sistent with the mass ratio of ammonium sulfate in the
(NH4)2SO4 form (2.66). The remaining fraction of SO2−

4
was attributed to the shipping (12 %) and industrial (4 %)
factors. The diurnal profile of the AS-rich factor showed en-
hanced concentrations in the afternoon linked to the pho-
tochemical production of sulfate from its precursor SO2
(Zhuang et al., 1999). The presence of the SOA contribution
in this factor (16 %) suggests its formation by a similar pro-
cess (i.e. photo-oxidation) (Bozzetti et al., 2017a; Salameh
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et al., 2018; Waked et al., 2014). This ammonium sulfate
pattern was already pointed out in summer in Marseille and
was attributed to mixed Mediterranean sulfate sources (in-
cluding industrial and shipping emissions) from a regional
origin transported by processed air masses (Chazeau et al.,
2021). This interpretation is supported by the NWR analy-
sis presented in Fig. S17. It should be noted that the AS-rich
factor might also include some other anthropogenic influence
due to its moderate composition of BCFF (17 %).

To assess the robustness of the PMF2 solution, the re-
sults were compared with a PMF solution utilizing the OA
factors from PMForganics, ACSM inorganic species (SO2−

4 ,
NO−3 , NH+4 , Cl−), BC sources, and metal concentrations as
the input dataset. Consistent with the PMF2 method, con-
straints, instrument weighting, criteria selection, and boot-
strap analysis were applied and are reported in the Supple-
ment Sect. S5. This alternative approach successfully identi-
fied the same eight factors (Fig. S18), exhibiting comparable
mass contributions and very high correlations with the PMF2

factor time series (Table S5), all exceeding an R2 of 0.9, ex-
cept for shipping (R2

= 0.81).
The biomass burning and shipping factors accounted for

slightly higher concentrations in the PMF2 solution, due to
the slightly elevated contribution of SO2−

4 , NH+4 , and MOOA
concentrations which dominate the PM1 mass. The metal
composition found in the factors from this alternative PMF
approach is in agreement with the metal profiles from the
PMFmetals solution. Note that Zn and Sb, the most prominent
elements in the tire and/or brake metal factor, were mainly
present in the traffic source. However, they again displayed
some mixing with other factors (dust resuspension, AS-rich,
and cooking), suggesting additional sources unresolved by
the current PMF solutions. Previous studies suggested that
Zn may originate from waste incineration or other industrial
processes (Belis et al., 2019; Manousakas et al., 2022; Visser
et al., 2015a). Comparable results in terms of explained vari-
ability were observed, emphasizing the suitability of both
methods for such study.

A PMF analysis was also conducted on all instrument
datasets (i.e. organic fragments from m/z12 to 100, ACSM
inorganic species, BC fractions, and metals) merged into a
unique input matrix and did not result in a satisfactory so-
lution (see the Supplement Sect. S6 and Fig. S19). Over-
all, the present PMF approach successfully identified various
sources of PM1 during the summer season, consistent with
previous studies in Marseille. These sources include traffic
(El Haddad et al., 2013; Bozzetti et al., 2017a; Salameh et al.,
2018), cooking (Bozzetti et al., 2017a), and a minor contribu-
tion from biomass burning (Bozzetti et al., 2017a; Salameh et
al., 2018). However, this study marks the first identification
of an ON-rich factor. A previous source apportionment of
PM2.5 markers by Salameh et al. (2018) highlighted the dom-
inant contribution of ammonium sulfate in summer (35 %)
and identified a dust factor with a metal composition simi-
lar to the current study (Cu, Fe, Ca). While they identified

Figure 6. (a) Time series of both OP assays during the OP sam-
pling campaign. (b) Contribution of source factors provided by the
PMFPM1 to PM1 over time.

a fossil fuel factor attributed to mixed harbour and indus-
trial emissions, our results provide new insights by distinctly
separating industrial and shipping emissions simultaneously
advected on-site by sea breeze.

3.3 Results of OP inversion for the PMFPM1 sources

Associations between each of the sources provided by the
PMFPM1 and the OP measurements are shown in Table S6.
The observation of these direct correlations shows that none
of the sources identified is dominant on its own in ex-
plaining the changes in both OP assays. It is the combina-
tion of sources that ultimately leads to the observed OPAA

and OPDTT.

3.3.1 Model accuracy

The M-estimator inversion model results issued from
PMForganics (scenario 1) or PMFmetals (scenario 2) alone are,
respectively, presented in Tables S3a and S3b and are dis-
cussed in the Supplement. The results obtained with the WLS
inversion applied to the PMFPM1 (scenario 3) are the most ro-
bust and founded on a geochemical base. The cooking source
factor was not considered based on its anti-correlation with
OPAA

v . All other source factors included in the PMFPM1 were
considered, since they did not show any multicollinearity
(VIF< 5). The accuracy of this model was estimated by its
robustness (validity of the error model generated by the boot-
strap method) and by a residual analysis between the OP ob-
served and the OP reconstructed by the model. The Breusch–
Pagan test performed for each assay assessed the absence
of heteroscedasticity in the model residuals (p < 10−5) (see
Fig. S20). The observed OP and reconstructed OP showed a
fair correlation for both assays (OPAA

v : r = 0.44, R2
adjusted =

0.4 – OPDTT
v : r = 0.54, R2

adjusted = 0.3, p < 0.001 in both
cases).
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3.3.2 Intrinsic OPDTT and OPAA

Intrinsic OP (i.e β coefficients provided by WLS regression
models in scenario 3 (see Sect. 2.5), thereafter denoted OPm)
of the source factor contributions identified by PMFPM1 are
shown in Table 1 and are discussed here.

Dust resuspension and industrial factors are the main re-
active sources to the AA assay, with OPAA

m mean values of
0.26± 0.03 and 0.22± 0.05 nmol min−1 µg−1, respectively.
Since 51 % of copper is found in the dust resuspension fac-
tor and as various metals (Fe, Cr, Ti, Mn, Pb, or Se) were
found in these two factors, the AA assay confirms its metal-
sensitivity especially to Cu (Daellenbach et al., 2020; Grange
et al., 2022; Pant et al., 2015; Pant and Harrison, 2013). In
parallel, Calas et al. (2019) and Gao et al. (2020b) pointed
out the role of organic species in OPAA response, which in
this study is sensitive to both less and more oxidized organic
aerosols (LOOA and MOOA factors from the PMForganics)
and organic compounds from harbour and plant activities
(Sh-IndOA factor also from the PMForganics). Thus, 27 % and
25 % of the industrial source factor is constituted by LOOA
and Sh-IndOA factors, respectively, and 17 % of the dust re-
suspension source factor is constituted by MOOA factor. As
already reported by Weber et al. (2019) in the OP apportion-
ment study on PM10 at the same site, DTT appears to be
sensitive to a wide range of sources. In this study, AS-rich,
shipping, and biomass burning sources are the main drivers
of OPDTT with, respectively, OPDTT

m values of 0.18± 0.02,
0.16± 0.03, and 0.15± 0.06 nmol min−1 µg−1.

In addition to the inherent reactivity of the chemical
species, high levels of SO2−

4 in AS-rich and shipping sources
(respectively, 54 % and 36 % of the source factor) may in-
crease OP activity through the dissolution of some metal-
lic elements under acidic conditions (Fang et al., 2017). In
the same way, toxicological studies highlighted the role of
BCWB (81 % of the quantification of BCWB is founded on
the biomass burning source) as an indicator of co-transported
high DTT-reactive species such as metals or quinones (Niran-
jan and Thakur, 2017; Shang et al., 2016).

Although several studies emphasized the role of road
traffic in OP (Daellenbach et al., 2020; Fang et al.,
2016; Saffari et al., 2015), OPm of the traffic source
is surprisingly very low for both OP assays in our
case (OPAA

m : 0.01±0.02 nmol min−1 µg−1–OPDTT
m = 0.02±

0.02 nmol min−1 µg−1). This result might be explained by
the fact that non-exhaust traffic emissions traditionally as-
sociated with OP are mainly found in a coarser mode than
PM1 (Piscitello et al., 2021).

Interestingly, the traffic source is well correlated with
OPAA

v and OPDTT
v (r = 0.40–r = 0.34, p < 0.01) but asso-

ciated with the lowest OPm values. Although Pearson’s cor-
relation between OP values and source factor contributions
is the first indication of the OP sensitivity towards certain
sources, it is most likely preferable to be used in association

with an MLR-like model, as already underlined by Weber et
al. (2018) and in’t Veld (2022).

3.3.3 Population exposure: median contribution of OP

Source-specific contributions to OPAA, OPDTT, and PM1
mass are presented here, ranked in decreasing order, and re-
ported as median values in Fig. 7. The same results gathered
in mean values are shown in Fig. S21. These two metrics
do not address the same issue: mean value is generally used
in the atmospheric community while epidemiological stud-
ies prefer to rely on median value, excluding outlier events
which are not representative of a chronic exposure of the pop-
ulation. We observe little difference in the ranking of sources
between mean and median values due to the overall low vari-
ability of the observed OP during the sampling campaign.
However, the mean value and the median value of the contri-
bution of the AS-rich source factor to OPDTT are significantly
different, with the mean value being 4 times higher than the
median value. The median values of the contribution of the
AS-rich source are close to those of biomass burning, ship-
ping, and ON-rich source factor contributions (respectively,
with OPDTT

v values of 0.1± 0.01, 0.09± 0.01, 0.08± 0.01,
0.08± 0.02 nmol min−1 m−3).

As already observed in other studies (Borlaza et al., 2022;
Weber et al., 2021, 2018), the main observation in Fig.
7 is the clear difference in the factor source contributions
when considering the OP activity or PM1 mass. This high-
lights the fact that the sources driving OP activity are not
the same as those driving PM mass. While the industrial
source contributes little to the PM1 mass (0.26 µg m−3), it has
the highest OPAA

v value (0.06± 0.01 nmol min−1 m−3) with
ON-rich factor (0.05± 0.02 nmol min−1 m−3) and followed
by the dust resuspension (0.04± 0.00 nmol min−1 m−3)
source. In the same way, shipping and biomass burning
sources contribute greatly to OPDTT

v (0.08±0.03 and 0.09±
0.02 nmol min−1 m−3) while each source contributes less
than 13 % of PM1 total mass. On the contrary, AS-rich
and cooking sources display negative contributions to OPAA

v
while they contribute significantly to the PM1 mass. The traf-
fic source does not appear to be a main driver in both types
of OP despite its high PM1 mass contribution (21.4 %). How-
ever, we note a very large standard deviation in the contribu-
tion of this factor to OPDTT

v .
A previous study was conducted over 1 year on PM10 at

the Marseille-Longchamp site, and already emphasizes the
contribution of biomass burning and heavy fuel oil (HFO;
related to shipping activity) to OPAA

v and OPDTT
v (Weber et

al., 2021). Although similar results can be found, they should
be treated with caution as different fractions of PM are being
studied.

Even though OA and metals are found in all sources, the
results suggest that only a fraction of these compounds have a
substantial impact on OP activity of PM1. Overall, this draws
our attention to the contribution of multiple sources (local
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Figure 7. Median contribution of the sources identified by PMFPM1
over the OP sampling campaign without the firework episode (n=
78 samples) to (a) OPAA

v , (b) OPDTT
v , and (c) PM1. Error bars rep-

resent the standard deviation of the data distribution.

and regional) with low PM1 mass loading in the chronic ex-
posure of PM pollutant.

3.3.4 Discussion

As shown in Table 1 and Fig. 7, OPAA
v and OPDTT

v display
various sensitivities to sources, and considering both OP as-
says does not reveal the influence of any particular source.
For example dust resuspension and industrial emissions dis-
play significant positive OPAA

v values and negative or low
OPDTT

v values. Conversely the shipping emission source and
the AS-rich source show significant positive OPDTT

v and neg-
ative or low OPAA

v values. This disparity is most likely asso-
ciated with different oxidative pathways of the two probes,
which account for the diversity of defensive mechanisms op-
erating in the pulmonary environment (Bates et al., 2019).
AA is naturally present in the lungs, and its predominant an-
ionic form in solution (HA−) is oxidized by various mech-
anisms facilitated by OH•, O•−2 , HO•2, and other radicals,
and by transition metals such as Cu (II) or Fe (III) (Camp-
bell et al., 2019). DTT has a disulfide bond and is consid-
ered a chemical substitute for cellular reducing agents such
as nicotinamide adenine dinucleotide (NADH) or protein thi-
ols (Verma et al., 2015; Borlaza et al., 2018). Protein thiols
play an important role in major oxidative stress, restoring the
redox balance by eliminating free radicals (Baba and Bhatna-
gar, 2018). Many studies have linked these two probes (AA
and DTT) to transition metals (Cu, Fe, Mn, Zn), EC, and
OC (Gao et al., 2020b). In addition, the different sensitivity
of AA and DTT to both organic compounds and transition
metals has been evidenced by Calas et al. (2018), Gao et al.,
2020b and Pietrogrande et al. (2022).

Today, no consensus has yet been reached on which OP
test is most representative of health impact, and the commu-
nity still recommends the complementary use of OP tests, in
particular the association of both AA and thiol-based (DTT
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or GSH) assays (Moufarrej et al., 2020). This association
is currently the only way of assessing the full panel of the
most oxidizing compounds of PM. However, recent studies
have shown positive associations between OPDTT and var-
ious acute cardiac (myocardial infarction) and respiratory
endpoints, supporting the relevance of the OPDTT assay for
this purpose (Abrams et al., 2017; Weichenthal et al., 2016;
He and Zhang, 2023). On the contrary, several studies did
not find an association between OPAA and health endpoints
including early-life outcomes, respiratory and cardiovascu-
lar mortality, cardiorespiratory emergencies, and lung can-
cer mortality (Borlaza et al., 2023; Marsal et al., 2023b).
Nonetheless, a recent study has associated OPAA with ox-
idative damage to DNA (Marsal et al., 2023a). These results
so far may suggest that OPAA provides partial information
on the link between OP and adverse health effects, and fur-
ther epidemiological studies are needed to determine whether
OPAA should be considered as a proxy for health impact.

4 Limitations of the study

The robust method used in this study is promising for further
practical applications. However, there are some limitations
that can explain the moderate OP reconstruction. Mainly, lit-
tle variability in OP measurements and in the chemical com-
position was observed at the Marseille-Longchamp site over
a 15 d period, implying difficulties for models such as MLR
to accurately reconstruct OP peaks and thus lowering the
Pearson correlation coefficient r between observed OP and
modelled OP. Then, averaging the online data which have
a time step of 15 min and 1 h, respectively, for ToF-ACSM
and Xact over the time step of the OP (4 h) led to a levelling
of the pollution peaks visible on the online analysers. Also,
the times series of OP and chemistry originates from offline
and online methodologies that may introduce additional un-
certainties to the results of the study, related to some ex-
tent to the sampling artefact. Furthermore, recent studies sus-
pected non-linear relationships for the source apportionment
of OP, especially when increasing PM mass (Calas et al.,
2017; Charrier et al., 2016; Grange et al., 2022; Weber et al.,
2021). Another main limitation is the lack of data between
12 July 2018 21:00–13 July 2018 05:00 UTC (3 points) and
14 July 2018 17:00–15 July 2018 05:00 UTC (4 points), re-
sulting in difficulty for the model to reconstitute certain OP
peaks. Lastly, the propagation of uncertainties can be a limi-
tation as we increase the imprecision of the actual measured
OP. The combination of all these limitations could explain
the unrecovered percentage of the OP variance by the model
(i.e. intercept).

5 Conclusions

To the best of our knowledge, this study is the first to ap-
portion OP from sources provided by a two-step PMF ap-

proach using high time resolution online Xact and ToF-
ACSM data. The PMF2 approach successfully identified
eight well-resolved sources (AS-rich, traffic, ON-rich, cook-
ing, shipping, biomass burning, industrial, and dust resuspen-
sion), a solution not achievable through single PMFs con-
ducted separately on OA and metal datasets. The method
enabled the assignment of OA factors, which typically de-
scribed components arising from a mixture of sources and
chemical processes rather than a single emission source, to
more specific PM1 sources. Additionally, this approach al-
lowed us to assess both the primary and secondary origin of
anthropogenic sources, such as traffic and cooking. However,
a limitation of this method is that non-explained variabil-
ity and uncertainties of the factors from the first-step PMFs
will propagate into the PMF2 results and therefore need to be
carefully assessed. The inclusion of additional element mea-
surements, such as Ba, S, Cl, and Si, to the PMFmetals could
be an interesting feature for refining some sources and ad-
dressing this limitation.

A redistribution of the sources between mass and OP con-
tributions was observed in both OPAA and OPDTT assays,
highlighting the limiting capacity of the mass concentration
alone in understanding the redox activity of PM. While the
PM1 mass concentrations were dominated by AS-rich, traf-
fic, and ON-rich sources, factors with an anthropogenic ori-
gin such as industry, shipping, biomass burning, and dust re-
suspension, represented only a few percent. However, these
factors with a low mass concentration showed a high OP con-
tribution. Therefore, making an effort to reduce these spe-
cific anthropogenic sources, regardless of the PM mass reg-
ulations, might result in a significant reduction of OP in the
submicron mode.

We demonstrated that OP apportionment models per-
formed on source factors deconvolved from partial aerosol
composition (only metals or organics) are not robust. The
two-step PMF2 approach appears to be a substantial method
for integrating a wider range of markers (organic and inor-
ganic) for a better identification of PM sources. The OP ap-
portionment via a WLS inversion model led to comprehen-
sive and realistic OP sources.

Several improvements can be suggested to address the lim-
itations mentioned in Sect. 4, such as the subsequently intro-
duced source uncertainties from the PMF model into the OP
deconvolution model. Furthermore, these findings pave the
way for the coupling of recent prototypes allowing for in situ
OP data with online chemical analysers aiming to understand
short-lived processes.

Data availability. Data from the study are available at
https://doi.org/10.7910/DVN/0LMCKU (Chazeau, 2024). More
details are available upon request to the corresponding author.
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