
SNAKE-fMRI: A modular fMRI data simulator
from the space-time domain to k-space and back.

Supplementary material.

A Interacting with SNAKE-fMRI

A.1 Create your custom handler

Due to the modularity of Snake-fMRI it is easy to add your own modeling steps. Here we propose a simple
example that adds scanner drift to the acquired data.

import numpy as np
from nilearn.glm.first_level.design_matrix import _make_drift
from snkf.handlers import AbstractHandler, requires_field

@requires_field("data_acq") # ensure that simulation has the required data.
class PolynomialScannerDriftHandler(AbstractHandler):

"""Add Polynomial drift to the data."""

__handler_name__ = "scanner-polydrift"

parameters for the Handler, dataclass-like definition.
drift_order: int
drift_intensities: np.ndarray

def _handle(self, sim):
Nilearn does the heavy lifting
frames_tr =np.linspace(0, sim.sim_time, sim.n_frames)
drift_matrix = _make_drift("polynomial", frame_times=frames_tr, order=self._drift_order)
drift_matrix = drift_matrix[:, :-1] # remove intercept column
drift_intensity = np.linspace(1, 1 + self.drift_intensities, sim.n_frames)
timeseries = drift_intensity @ drift_matrix
sim.data_acq[:, sim.static_vol > 0] *= timeseries[:, np.newaxis] # apply drift
return sim

A.2 Declaring a new simulation

Now we can create a new simulation using our handler. More examples of handlers usage are available in
SNAKE-fMRI documentation.

from snkf.simulation import SimData
from my_local_package import ScannerDriftHandler
from snkf.handlers import H

sim = SimData(shape=(64,64), fov=(.192, .192), sim_time=300, sim_tr= 0.1,)
simulator = H["phantom-big"] >> H["activation-block"] >> H["scanner-poly-drift"]
sim = simulator(sim) # update the simulation by running it through the handlers.

A simulation can also be described using a configuration file, using hydra conventions:

1

https://github.com/facebookresearch/hydra

defaults:
- handlers:

- phantom-brainweb
- activation-block
- noise-gaussian
- acquisition-vds

- reconstructors: adjoint
- _self_

cache_dir: ${oc.env:PWD}/cache

sim_params:
sim_tr: 0.1 # time resolution in image domain (s)
sim_time: 300 # total time of experiments
shape: [-1,-1,-1] # inherited from phantom
fov: [-1,-1,-1] # inherited from phantom.
n_coils: 1 # single coil for fast computations
rng: 19980408 # random seed
lazy: True # Use the lazy generation of volume.

handlers:
phantom-brainweb: # Create the phantom

sub_id: 5
bbox: [0.225,-0.07, 0.06, -0.055, null, null] # reduce the FOV to exclude spine
brainweb_folder: ${cache_dir}/brainweb
res: [3.0, 3.0, 3.0] # resolution in mm

activation-block: # Add bold signal
event_name: block_on
block_on: 20
block_off: 20
duration: 300
bold_strength: 0.02

noise-gaussian: # add gaussian noise
snr: 10

acquisition-vds: # perform acquisition, fully sampled is a special case of VDS sampling.
shot_time_ms: 50
acs: 1
accel: 1
accel_axis: -1
constant: true
order: TOP_DOWN
smaps: false

reconstructors:
adjoint: {} # Simple FFT reconstruction.

stats:
contrast_name: ${handlers.activation-block.event_name}

All configuration files for running the scenarios described in the manuscript are available in the snake-fmri
repository. After installation they can be run as follows:

$ pip install snake-fmri
$ snkf-main --config-name="scenario1"
Using Hydra, parameters can be modified and run over a grid of parameter.
$ snkf-main --config-name="scenario2" -m ++reconstructors.sequential.restart_strategy=cold,warm,refine

2

B Study of SNR impact in Scenario 1

To help analyse the impact of input SNR (SNRi) on the results we performed simulation with a sweep of
different SNR values as well as the number of coils in the setup of Scenario S1. The reconstruction being a
simple linear operation (Smaps combination and Inverse fourier transform) we can directly see the impact on
the reconstruction.

The addition of uniform gaussian noise in the image results in the degradation of image quality metrics, in a
linear fashion (Figure 1). For tSNR, the relation follows the same principle. Overall, setting SNRi = 10 as in
our scenarios, provides a realistic SNRexp ≃ 40 and tSNR ≃ 30. This reproduces a thermal noise dominant
setting, which particularly occurs at high resolution.

0 20 40 60 80 100 120 140
SNRi

0

50

100

150

200

250

300

350

400

SN
R e

xp

Ncoils

1
32

0 50 100 150 200 250 300 350
median(SNRexp)

0

25

50

75

100

125

150

175

200

m
ed

ia
n(

tS
N

R e
xp

)

Ncoil

1
32

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SNRi

5
10
15
20
Ncoils

1
32

Figure 1: Impact of input SNR in Scenario 1 on image quality and statistics.

C Non-Cartesian trajectories design and expansion

By combining SNAKE-fMRI with MRI-NUFFT, it is possible to create and explore non-Cartesian trajectories,
and small example of base trajectories (2D shots) and expansions (stack, rotate, conifying) are represented on
Figure 2.

Ra
di

al

stack rotate precess conify

Sp
ira

l
2D

 C
on

es
3D

 C
on

es

0.5

0.0

0.5

kz

(a) top-down(a) top-down(a) top-down(a) top-down(a) top-down(a) top-down(a) top-down(a) top-down(a) top-down(a) top-down

0.5

0.0

0.5

kz

(b) center-out(b) center-out(b) center-out(b) center-out(b) center-out(b) center-out(b) center-out(b) center-out(b) center-out(b) center-out

0 15 30 45 60 75 90 105 120 135 150
frame index

0.5

0.0

0.5

kz

(c) random(c) random(c) random(c) random(c) random(c) random(c) random(c) random(c) random(c) random

Figure 2: Left: Overview of trajectories generation possible with MRI-NUFFT. Right: Further expansions
available in SNAKE-fMRIover the time axis are also possible, notably in which order the shot of each k-space
frames are acquired, here for a stacked acquisition

3

	Interacting with SNAKE-fMRI
	Create your custom handler
	Declaring a new simulation

	Study of SNR impact in Scenario 1
	Non-Cartesian trajectories design and expansion

