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THE SET OF ELEMENTARY TENSORS IS WEAKLY CLOSED

IN PROJECTIVE TENSOR PRODUCTS.

COLIN PETITJEAN

Abstract. In this short note, we prove that the set of elementary tensors is
weakly closed in the projective tensor product of two Banach spaces. As a
result, we are able to answer a question from the literature proving that if
(xn) ⊂ X and (yn) ⊂ Y are two weakly null sequences such that (xn ⊗ yn)

converges weakly in X⊗̂πY , then (xn ⊗ yn) is also weakly null.

1. Weak convergence in projective tensor product

Let X , Y and Z be real Banach spaces. We denote B(X × Y, Z) the space
of continuous bilinear operators from X × Y into Z. If Z = R, we simply write
B(X × Y ). For x ∈ X and y ∈ Y , define the elementary tensor x⊗ y ∈ B(X × Y )∗

by:
∀B ∈ B(X × Y ), 〈x ⊗ y,B〉 = B(x, y).

We then introduce X ⊗ Y := span{x ⊗ y : x ∈ X, y ∈ Y }. Recall that the norm
on B(X × Y ) is defined by ‖B‖B(X×Y ) = supx∈BX ,y∈BY

|B(x, y)|. Let ‖ · ‖π be the
dual norm of ‖ · ‖B(X×Y ). It is well known (see e.g. [1, Proposition VIII. 9. a)])
that if u ∈ X ⊗ Y then

‖u‖π = inf
{ n∑

i=1

‖xi‖‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
.

The projective tensor product of X and Y is defined as follows:

X⊗̂πY = span‖·‖π{x⊗ y : x ∈ X, y ∈ Y } ⊆ B(X × Y )∗.

As a consequence of the fundamental linearisation property of tensor products, one
easily deduce the following isometric identification (X⊗̂πY )∗ ≡ B(X × Y ). Since
B(X × Y ) ≡ L(X,Y ∗), where L(X,Y ∗) stands for the space of bounded linear
operators from X to Y ∗, one also has that L(X,Y ∗) ≡ (X⊗̂πY )∗.

The aim of this short note is to answer Question 3.9 in [5]:

Let X and Y be Banach spaces. Let (xn)n∈N and (yn)n∈N be weakly null sequences
in X and Y , respectively, such that (xn ⊗ yn)n∈N is weakly convergent in X⊗̂πY .

Is (xn ⊗ yn)n∈N weakly null in X⊗̂πY ?

Let

(1) T = {x⊗ y : x ∈ X, y ∈ Y }

be the set of elementary tensors in X⊗̂πY . We shall start with a simple but key
observation. Recall that a Banach space X has the approximation property (AP
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2 C. PETITJEAN

in short) if for every ε > 0, for every compact subset K ⊂ X , there exists a finite
rank operator T ∈ L(X,X) such that ‖Tx− x‖ ≤ ε for every x ∈ K.

Lemma 1.1. Let X,Y be Banach spaces such that X or Y has the AP. Let
T ∈ X⊗̂πY . Then T ∈ T if and only if for every linearly independent families
{x∗

1, x
∗
2} ⊂ X∗ and {y∗1 , y

∗
2} ⊂ Y ∗ we have:

(⋆)

∣∣∣∣
〈T, x∗

1 ⊗ y∗1〉 〈T, x∗
1 ⊗ y∗2〉

〈T, x∗
2 ⊗ y∗1〉 〈T, x∗

2 ⊗ y∗2〉

∣∣∣∣ = 0.

Proof. Thanks to [6, Proposition 2.8], every T ∈ X⊗̂πY can be written as

T =

∞∑

n=1

xn ⊗ yn

with
∑∞

n=1 ‖xn‖‖yn‖ ≤ 2‖T ‖. Moreover, the linear map Φ : X⊗̂πY → L(X∗, Y )
obtained by

∀x∗ ∈ X∗, Φ
( ∞∑

n=1

xn ⊗ yn

)
(x∗) =

∞∑

n=1

x∗(xn)yn

defines a bounded operator. Since X or Y has the AP, Φ is moreover injective; see
[6, Proposition 4.6].

If T = x⊗y ∈ T , then it is straightforward to check that condition (⋆) is verified:
∣∣∣∣
〈T, x∗

1 ⊗ y∗1〉 〈T, x∗
1 ⊗ y∗2〉

〈T, x∗
2 ⊗ y∗1〉 〈T, x∗

2 ⊗ y∗2〉

∣∣∣∣ =
∣∣∣∣
x∗
1(x)y

∗
1(y) x∗

1(x)y
∗
2(y)

x∗
2(x)y

∗
1(y) x∗

2(x)y
∗
2(y)

∣∣∣∣ = 0.

Assume now that T 6∈ T . Then Φ(T ) is an operator of rank greater than 2 in
L(X∗, Y ). Thus, there exists a linearly independent family {x∗

1, x
∗
2} ⊂ X∗ such

that Φ(T )(x∗
1) 6= 0, Φ(T )(x∗

2) 6= 0 and {Φ(T )(x∗
1),Φ(T )(x

∗
2)} ⊂ Y is a linearly

independent family. To finish the proof, simply pick a linearly independent family
{y∗1 , y

∗
2} ⊂ Y ∗ satisfying:

〈Φ(T )(x∗
1), y

∗
1〉 6= 0 〈Φ(T )(x∗

1), y
∗
2〉 = 0

〈Φ(T )(x∗
2), y

∗
1〉 = 0 〈Φ(T )(x∗

2), y
∗
2〉 6= 0.

�

Proposition 1.2. Let X,Y be two Banach spaces such that X or Y has the AP.
Then the set of elementary tensors T is weakly closed in X⊗̂πY .

Proof. We let I be the set of all vectors (x∗
1, x

∗
2, y

∗
1 , y

∗
2) such that {x∗

1, x
∗
2} ⊂ X∗ and

{y∗1 , y
∗
2} ⊂ Y ∗ are both linearly independent families. Next, for every T ∈ X⊗̂πY

and S = (x∗
1, x

∗
2, y

∗
1 , y

∗
2) ∈ I, we define

DS(T ) =

∣∣∣∣
〈T, x∗

1 ⊗ y∗1〉 〈T, x∗
1 ⊗ y∗2〉

〈T, x∗
2 ⊗ y∗1〉 〈T, x∗

2 ⊗ y∗2〉

∣∣∣∣ .

The result now directly follows from Lemma 1.1 together with the fact that DS

is continuous with respect to the weak topology. Indeed, one can write T as an
intersection of weakly closed sets:

T =
⋂

S∈I

D−1
S ({0}).

�
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The next corollary answers [5, Question 3.9] positively under rather general
assumptions.

Corollary 1.3. Let X and Y be Banach spaces such that X or Y has the AP.
If (xn)n∈N ⊂ X converges weakly to x, (yn)n∈N ⊂ Y converges weakly to y, and
(xn ⊗ yn)n∈N is weakly convergent in X⊗̂πY , then (xn ⊗ yn)n∈N converges weakly
to x⊗ y.

Before proving this corollary, let us point out that the canonical basis (en)n∈N

of ℓ2 shows that if (xn)n∈N ⊂ X and (yn)n∈N ⊂ Y are weakly null sequences, the
sequence (xn ⊗ yn)n∈N may fail to be weakly null in X⊗̂πY . Indeed, (en ⊗ en)n∈N

is isometric to the ℓ1-canonical basis; see [6, Example 2.10].

Proof. Assume first that (xn)n∈N ⊂ X and (yn)n∈N ⊂ Y are weakly null sequences
such that (xn ⊗ yn)n∈N is weakly convergent in X⊗̂πY . Since T is weakly closed,
there exists x ∈ X and y ∈ Y such that xn ⊗ yn → x ⊗ y in the weak topology.
Arguing by contradiction, suppose that x⊗ y 6= 0. Pick x∗ ∈ X∗ and y∗ ∈ Y ∗ such
that x∗(x) = ‖x‖ 6= 0 and y∗(y) = ‖y‖ 6= 0. On the one hand, xn ⊗ yn → x ⊗ y

weakly, so that

〈x∗ ⊗ y∗, xn ⊗ yn〉 → 〈x∗ ⊗ y∗, x⊗ y〉 = x∗(x)y∗(y) = ‖x‖‖y‖ 6= 0.

On the other hand, since (xn)n∈N and (yn)n∈N are weakly null, one readily obtains
a contradiction:

〈x∗ ⊗ y∗, xn ⊗ yn〉 = x∗(xn)y
∗(yn) → 0.

Similarly, if (xn)n∈N ⊂ X converges weakly to x, (yn)n∈N ⊂ Y converges weakly
to y, and (xn ⊗ yn)n∈N is weakly convergent in X⊗̂πY , then we write:

(x− xn)⊗ (y − yn) = x⊗ y − x⊗ yn − xn ⊗ y + xn ⊗ yn.

But, x⊗yn
w

−→
n→+∞

x⊗y and xn⊗y
w

−→
n→+∞

x⊗y. Therefore
(
(x−xn)⊗ (y−yn)

)
n∈N

converges weakly and moreover the weak limit must be 0 thanks to the first part

of the proof. This implies that xn ⊗ yn
w

−→
n→+∞

x⊗ y. �

In connection with Proposition 1.2, we also wish to mention [2, Theorem 2.3]
which we describe now. If C and D are subsets of X and Y respectively, then let

C ⊗D := {x⊗ y : x ∈ C, y ∈ D} ⊂ T .

Theorem 2.3 in [2] states that if C and D are bounded then C
w
⊗D

w
= C ⊗D

w
in

X⊗̂πY . The technique which we introduced in the present note permits to remove
the boundedness assumption in the particular case when C and D are subspaces.
It also allows us to slighly simplify the original proof of [2, Theorem 2.3]. The next
lemma is the main ingredient.

Lemma 1.4. Let X and Y be Banach spaces such that X or Y has the AP.
Let (xs)s ⊂ X and (ys)s ⊂ Y be two nets such that xs → x∗∗ in the weak∗-topology
of X∗∗, ys → y∗∗ in the weak∗-topology of Y ∗∗, and (xs ⊗ ys)s converges in the
weak∗-topology of (X⊗̂πY )∗∗. Then (xs ⊗ ys)s converges weakly∗ to x∗∗ ⊗ y∗∗.

The proof is essentially the same as that of Corollary 1.3, so we leave the details
to the reader.



4 C. PETITJEAN

Corollary 1.5. Let X and Y be Banach spaces such that X or Y has the AP.
If C and D are subsets of X and Y respectively, then C

w
⊗D

w
= C ⊗D

w
if one

of the following additional assumptions are satisfied:

(i) If C and D are subspaces.
(ii) If C and D are bounded.

Proof. First of all, it is readily seen that one has C
w
⊗ D

w
⊂ C ⊗D

w
without

any additional assumption on C and D (see the first part of the proof of [2, Theo-
rem 2.3]). Therefore we only have to prove the reverse inclusion in both cases.

To prove (i), it suffices to apply Proposition 1.2:

C ⊗D ⊂ C ⊗D =⇒ C ⊗D
w
⊂ C ⊗D

w

= C ⊗D.

To prove (ii), let z ∈ C ⊗D
w
. We fix a net (xs ⊗ ys)s ⊂ C ⊗D which converges

weakly to z. Thanks to Proposition 1.2, there exist x ∈ X and y ∈ Y such that
z = x ⊗ y. Since C and D are bounded, up to taking a suitable subnet, we may
assume that both xs → x∗∗ in the weak∗-topology of X∗∗ and ys → y∗∗ in the
weak∗-topology of Y ∗∗. Thanks to Lemma 1.4, xs ⊗ ys → x∗∗ ⊗ y∗∗ in the weak∗-
topology of (X⊗̂πY )∗∗. By uniqueness of the limit, x∗∗ ⊗ y∗∗ = z = x ⊗ y. We
distinguish two cases.

If z = 0 then x∗∗ = 0 or y∗∗ = 0. Say x∗∗ = 0 for instance. This means that
0 ∈ C

w
. Now pick any y ∈ C and observe that z = 0⊗ y, which was to be shown.

If z 6= 0, then it is readily seen that x∗∗ ∈ span{x} and y∗∗ ∈ span{y}. Therefore

x∗∗ ∈ C
w∗

∩X = C
w
and y∗∗ ∈ D

w∗

∩ Y = D
w
, which concludes the proof. �

2. Applications to vector-valued Lipschitz free spaces

If M is a pointed metric space, with base point 0 ∈ M , and if X is a real Banach
space, then Lip0(M,X) stands for the vector space of all Lipschitz maps from M

to X which satisfy f(0) = 0. Equipped with the Lipschitz norm:

∀f ∈ Lip0(M,X), ‖f‖L = sup
x 6=y∈M

‖f(x)− f(y)‖X
d(x, y)

,

Lip0(M,X) naturally becomes a Banach space. When X = R, it is customary to
omit the reference to X , that is Lip0(M) := Lip0(M,R). Next, for x ∈ M , we let
δ(x) ∈ Lip0(M)∗ be the evaluation functional defined by 〈δ(x), f〉 = f(x), ∀f ∈
Lip0(M). The Lipschitz free space over M is the Banach space

F(M) := span‖·‖ {δ(x) : x ∈ M} ⊂ Lip0(M)∗.

The universal extension property of Lipschitz free spaces states that for every f ∈
Lip0(M,X), there exists a unique continuous linear operator f ∈ L(F(M), X) such
that:

(i) f = f ◦ δ, and
(ii) ‖f‖L(F(M),X) = ‖f‖L.

In particular, the next isometric identification holds:

Lip0(M,X) ≡ L(F(M), X).

A direct application (in the case X = R) provides another basic yet important
information:

Lip0(M) ≡ F(M)∗.



THE SET OF ELEMENTARY TENSORS IS w-CLOSED IN PROJ. TENSOR PRODUCTS 5

It also follows from basic tensor product theory that Lip0(M,X∗) ≡ (F(M)⊗̂πX)∗,
which leads to the next definition (see [4] for more details):

Definition 2.1 (Vector-valued Lispschitz free spaces). Let M be a pointed metric
space and let X be a Banach space. We define the X-valued Lipschitz free space
over M to be: F(M,X) := F(M)⊗̂πX .

2.1. Weak closure of δ(M,X). It is proved in [3, Proposition 2.9] that δ(M) =
{δ(x) : x ∈ M} is weakly closed in F(M) provided that M is complete. Our first
aim is to prove the vector-valued counterpart. For this purpose, we need to identify
a set that corresponds to δ(M) in the vector-valued case. A legitimate set to look
at is the following:

δ(M,X) := {δ(y)⊗ x : y ∈ M, x ∈ X} ⊂ F(M,X).

Notice that this does not exactly correspond to δ(M) in the case X = R since we
have δ(M,R) = R · δ(M). This discrepancy is not a major issue since R · δ(M) is
also a weakly closed set when M is complete. The next result is thus a natural
extension to the vector valued setting of [3, Proposition 2.9].

Proposition 2.2. Let M be a complete pointed metric space and X be a Banach
space such that F(M) or X have the approximation property. Then δ(M,X) is
weakly closed in F(M,X).

Proof. In what follows, T denotes the elementary tensors in F(M)⊗̂πX . Consider a
net (δ(mα)⊗ xα)α ⊂ δ(M,X) which is weakly convergent. Since δ(M,X) ⊂ T and
T is weakly closed (Proposition 1.2), there exist γ ∈ F(M) and x ∈ X such that the
net goes to γ⊗x in the weak topology. We may assume that x 6= 0, otherwise there
is nothing to do. Pick x∗ ∈ X∗ such that x∗(x) 6= 0. Then, for every f ∈ Lip0(M),

we have that f(mα)x
∗(xα) → f(γ)x∗(x). So the net

(
x∗(xα)
x∗(x) δ(mα)

)
α
⊂ R · δ(M)

weakly converges to γ. Since R · δ(M) is weakly closed, there is λ ∈ R and m ∈ M

such that γ = λδ(m). Consequently γ ⊗ x = δ(m)⊗ λx ∈ δ(M,X). �

2.2. Natural preduals. Next, following [3, Section 3], S ⊂ Lip0(M) is a natural
predual of F(M) if S∗ ≡ F(M) and δ(B(0, r)) is σ(F(M), S)-closed for every r ≥ 0.
A reasonable extension of this notion in the vector-valued setting is the following.

Definition 2.3. Let M be a pointed metric space and X be a Banach space with
dim(X) ≥ 2. We say that a Banach space S is a natural predual of F(M,X∗) if
Y ∗ ≡ F(M,X∗) and

δ(B(0, r), X∗) = {δ(m)⊗ x∗ : m ∈ B(0, r), x∗ ∈ X∗} ⊂ F(M,X∗)

is σ(F(M,X∗), S)-closed for every r ≥ 0.

Notice again that δ(B(0, r),R) = R · δ(B(0, r)). In the next statement, lip0(M)
denotes the subspace of Lip0(M) of all uniformly locally flat functions. Recall that
f ∈ Lip0(M) is uniformly locally flat if

lim
d(x,y)→0

|f(x)− f(y)|

d(x, y)
= 0.

Lemma 2.4. Let M be a separable pointed metric space. Suppose that S ⊂ lip0(M)
is a natural predual of F(M). Then, for every r ≥ 0, R · δ(B(0, r)) is weak∗ closed
in F(M).
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Proof. Let us fix r ≥ 0. Let (λnδ(xn))n ⊂ R · δ(B(0, r)) be a sequence converging
to some γ ∈ F(M) in the weak∗ topology. We assume that γ 6= 0, otherwise there
is nothing to do. Since a weak∗ convergent sequence is bounded, and by weak∗

lower-semi-continuity of the norm, we may assume that there exists C > 0 such
that for every n:

0 <
‖γ‖

2
≤ |λn|‖δ(xn)‖ = |λn|d(xn, 0) ≤ C.

Thus, d(xn, 0) 6= 0 and λn 6= 0 for every n. Up to extracting a further subsequence,
we may assume that the sequence (λnd(xn, 0))n converges to some ℓ 6= 0. Since
(xn)n ⊂ B(0, r), we also assume that (d(xn, 0))n converges to some d. We will
distinguish two cases.

If d 6= 0, then (λn)n converges to λ := ℓ
d
and so (δ(xn))n weak∗ converges to γ

λ
.

Since S is a natural predual of F(M), δ(B(0, r)) is weak∗ closed in F(M). So there
exists x ∈ M such that γ = λδ(x).

If d = 0, then (δ(xn))n converges to 0 in the norm topology (and (λn)n tends to
infinity). Note that we may write:

λnδ(xn) = λnd(xn, 0)
δ(xn)− δ(0)

d(xn, 0)
.

Since S ⊂ lip0(M), the sequence ( δ(xn)−δ(0)
d(xn,0)

)n weak∗ converges to 0. Moreover

the sequence (λnd(xn, 0))n converges to ℓ 6= 0. Consequently (λnδ(xn))n weak∗

converges to 0 and so γ = 0, which is a contradiction. �

Before going further, we need to introduce the injective tensor product of two
Banach spaces. Recall that, to define the projective tensor product, we introduced
x⊗ y as an element of B(X × Y )∗. For the injective tensor product, we change the
point of view since we now consider x⊗ y as an element of B(X∗ × Y ∗) defined as
follows:

∀(x∗, y∗) ∈ X∗ × Y ∗, 〈x⊗ y, (x∗, y∗)〉 = x∗(x)y∗(y).

In this case, we denote ‖ · ‖ε the canonical norm on B(X∗ × Y ∗). Thus, if u =∑n
i=1 xi ⊗ yi ∈ X ⊗ Y then

‖u‖ε = sup
{∣∣∣

n∑

i=1

x∗(xi)y
∗(yi)

∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
.

The injective tensor product of X and Y is defined by:

X⊗̂εY = span‖·‖ε{x⊗ y : x ∈ X, y ∈ Y } ⊆ B(X∗ × Y ∗).

In the sequel, we will use a classical result from tensor product theory (see e.g.
[6, Theorem 5.33]): If X∗ or Y ∗ has the Radon-Nikodým property (RNP in short)
and that X∗ or Y ∗ has the AP, then (X⊗̂εY )∗ ≡ X∗⊗̂πY

∗. The RNP has many
characterizations, we refer to reader to Section VII.6 in [1] for a nice overview.

Assume now that there exists a subspace S of Lip0(M) such that S∗ ≡ F(M).
Then one has

F(M,X∗) = F(M)⊗̂πX
∗ ≡ (S⊗̂εX)∗

whenever either F(M) or X∗ has the AP and either F(M) or X∗ has the RNP. It
is quite natural to wonder whether there are conditions which ensure that S⊗̂εX is
a natural predual of F(M,X∗). The next result asserts that this sometimes relies
on the scalar case.
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Proposition 2.5. Let M be a separable pointed metric space, S ⊂ lip0(M) be a
natural predual of F(M) and X be a Banach space (with dim(X) ≥ 2). Assume
moreover that either F(M) or X∗ has the AP and either F(M) or X∗ has the
RNP. Then S⊗̂εX is a natural predual of F(M,X∗).

Proof. To show that S⊗̂εX is a natural predual, we essentially follow the proof of
Proposition 2.2. First of all, we show that T := {γ ⊗ x∗ : γ ∈ F(M), x ∈ X∗} is
weak∗ closed in F(M,X∗). Indeed, it is not hard to show that if T ∈ F(M,X∗),
then T ∈ T if and only if for every linearly independent families {f1, f2} ⊂ S and
{x1, x2} ⊂ X we have:

∣∣∣∣
〈T, f1 ⊗ x1〉 〈T, f1 ⊗ x2〉
〈T, f2 ⊗ x1〉 〈T, f2 ⊗ x2〉

∣∣∣∣ = 0.

Accordingly, T is weak∗ closed. Now we fix r > 0. Let us consider a net (δ(mα)⊗
x∗
α)α ⊂ δ(B(0, r), X∗) which weak∗ converges to some γ ⊗ x∗ ∈ T . We may

assume that x∗ 6= 0 otherwise there is nothing to do. Consider x ∈ X such that
x∗(x) 6= 0. Then, for every f ∈ S we have that f(mα)x

∗(xα) → f(γ)x∗(x). So

the net
(
x∗(xα)
x∗(x) δ(mα)

)
α
⊂ R · δ(M) weak∗ converges to γ. Since R · δ(M) is weak∗

closed (Lemma 2.4), there is λ ∈ R and m ∈ M such that γ = λδ(m). �
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