Unsupervised and computationally lightweight spectrum sensing in IoT devices - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Unsupervised and computationally lightweight spectrum sensing in IoT devices

Résumé

Principal component analysis (PCA) is a widespread technique in data analysis. Recently, the L1-norm has been proposed as an alternative criterion to classical L2-norm in PCA due to its greater robustness to outliers. The present work shows that, with a whitening step, L1-PCA can perform spectrum sensing and modulation recognition in IoT applications. Numerical experiments confirm this finding.
Fichier principal
Vignette du fichier
ecsa22.pdf (427.33 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04533656 , version 1 (05-04-2024)

Identifiants

Citer

Rubén Martín-Clemente, Vicente Zarzoso. Unsupervised and computationally lightweight spectrum sensing in IoT devices. 9th International Electronic Conference on Sensors and Applications, Nov 2022, Online, Switzerland. ⟨10.3390/ecsa-9-13159⟩. ⟨hal-04533656⟩
14 Consultations
13 Téléchargements

Altmetric

Partager

More