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Time-harmonic wave propagation in junctions of two periodic
half-spaces

Pierre Amenoagbadji, Sonia Fliss, Patrick Joly∗

POEMS, CNRS, Inria, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau,
France

Abstract

We are interested in the Helmholtz equation in a junction of two periodic half-spaces. When
the overall medium is periodic in the direction of the interface, Fliss and Joly (2019) proposed
a method which consists in applying a partial Floquet-Bloch transform along the interface, to
obtain a family of waveguide problems parameterized by the Floquet variable. In this paper, we
consider two model configurations where the medium is no longer periodic in the direction of the
interface. Inspired by the works of Gérard-Varet and Masmoudi (2011, 2012), and Blanc, Le Bris,
and Lions (2015), we use the fact that the overall medium has a so-called quasiperiodic structure,
in the sense that it is the restriction of a higher dimensional periodic medium. Accordingly,
the Helmholtz equation is lifted onto a higher dimensional problem with coefficients that are
periodic along the interface. This periodicity property allows us to adapt the tools previously
developed for periodic media. However, the augmented PDE is elliptically degenerate (in the
sense of the principal part of its differential operator) and thus more delicate to analyse.

1 Introduction and description of the method

1.1 Presentation of the model problem

Initially motivated by solid state theory in the 1940s [26], the study of periodic media has since
then sparked some significant interest in the mathematical physics litterature, especially with the
recent advent of photonic crystals [20, 21, 28, 34]. When it comes to wave propagation, one of
the most remarkable properties of such structures from a practical point of view is the possibility of
having band gaps, that is, frequency ranges for which waves cannot propagate (we refer to [28, 29]
for a mathematical explanation). This feature is of particular interest in micro or nano-technology,
for building optical filters or wave localization devices. In order to understand the underlying
phenomena and to design these applications, it is important to have efficient numerical tools to
solve the time-harmonic wave equation in presence of periodic media.

This paper is devoted to time-harmonic wave propagation in presence of two periodic half-spaces
R2
± := {x = (x, z) ∈ R2 / ±x > 0} (see Figure 1). More precisely, let σ := {x = (x, z) ∈ R2 / x = 0}

denote the interface between R2
+ and R2

−. The canonical basis of R2 is {ex, ez}. We are interested
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Figure 1: Juxtaposition of arbitrary periodic half-spaces

in finding u ∈ H1(R2) such that − t∇A∇u− ρω2 u = 0 in R2
+ ∪ R2

−,

JA∇u · exKσ = g on σ,
(P)

where the presence of some (arbitrarily small) absorption is assumed (see Remark 1.1), namely

the frequency ω satisfies Imω > 0. (1.1)

The overall medium is represented by the tensor A ∈ L∞(R2;R2×2) and the coefficient ρ ∈ L∞(R2).
We assume that A is symmetric, and that

∃ a, r > 0, ∀ x, ξ ∈ R2, 0 < a |ξ|2 ≤ tξ A(x) ξ and 0 < r ≤ ρ(x). (1.2)

Let p±
1 ,p

±
2 ∈ R2 be linearly independent vectors. The tensor A (resp. the coefficient ρ) is assumed

to coincide in R2
± with a continuous function A± (resp. ρ±) which is Zp±

1 + Zp±
2 –periodic, as

illustrated in Figure 1. The exact structural properties of (A, ρ) considered in this paper, namely the
assumptions on (A±, ρ±) and (p±

1 ,p
±
2 ), are detailed in Section 2.1 and shown in Figures 3 and 4.

In (P), we use the notation Jw · exKσ ∈ H−1/2(σ) for the jump accross σ of the normal component
of a function w ∈ [L2(R2)]2 such that w|R2

±
∈ H(div;R2

±):

Jw · exKσ := (w− · ex)|σ − (w+ · ex)|σ, with w± := w|R2
±
. (1.3)

Finally g ∈ H−1/2(σ) is a given jump data.

Remark 1.1. For real-valued frequencies ω, it is delicate to define the outgoing solution of (P). In
fact, one expects that this solution may not belong to H1(R2), whereas uniqueness of a solution in
H1

loc(R
2) does not hold in general. This is well-known in the “homogeneous case”, that is, when A and ρ

are constant. In the homogeneous case, for a compactly supported source term, uniqueness is recovered
by adding the Sommerfeld radiation condition [35]. However, to our knowledge, such a radiation
condition is not known in presence of unbounded periodic media.

The classical tool to define the outgoing solution is the limiting absorption principle, which consists
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in (1) adding an imaginary part to ω (called absorption), and in (2) studying the limit process as
Imω → 0. The limiting absorption principle is well-established for time-harmonic wave propagation
problems in unbounded media that are homogeneous or stratified outside a bounded domain; see for
instance [1, 9, 37, 39]. More recently, it has been successfully applied to periodic closed waveguides [10,
14, 15, 19], periodic layers [23, 24, 25] (see also [5]), and to n–dimensional fully periodic media with
n ≥ 2 [31, 32, 33]. However, as far as we know, there is no complete answer for transmission problems
between periodic half-spaces. This is the reason why we assume the presence of some arbitrarily small
but non-vanishing absorption (namely (1.1)), which is an essential step in understanding the non-
absorbing case.

Under Assumptions (1.1) and (1.2), it follows from Lax-Milgram’s theorem that Problem (P) ad-
mits a unique solution u ∈ H1(R2). Moreover, if g ∈ L2(σ) is compactly supported, then, a Combes-
Thomas estimate [8] allows to prove that this solution decays exponentially at infinity in all direc-
tions, namely

∃ c, α > 0,
∥∥u exp(α Imω |x|)

∥∥
H1(R2)

≤ c ∥g∥L2(σ). (1.4)

To solve (P), a naive method relying on this decay estimate would consist in truncating the com-
putational domain at a certain distance related to Imω, with homogeneous Dirichlet boundary con-
ditions for instance. However the accuracy of such a method is prone to deterioration as Imω → 0.
Worse, if g is not compactly supported, then only the exponential decay in the direction normal to
the interface is guaranteed:

∃ c, α > 0,
∥∥u exp(α Imω |x|)

∥∥
H1(R2)

≤ c ∥g∥L2(σ). (1.5)

Using the properties of A and ρ, our goal is to develop a rigorous numerical method which allows to
deal with the unboundedness of the domain, and which we hope will remain robust as Imω tends
to 0. In the case where A and ρ are periodic in the direction of the interface σ, such a method has
been proposed by [11], in the spirit of [3, 12, 13]. The underlying idea is to apply a Floquet-Bloch
transform with respect to the variable z along the interface, to obtain a family of closed waveguide
problems parameterized by the Floquet variable, and which can be solved using the Dirichlet-to-
Neumann (DtN) approach proposed in [10, 22].

Our goal is to extend the method in [11] to the case where the global medium represented by
A and ρ is no longer periodic in the direction of the interface. We shall use the crucial (but non-
obvious) observation that the medium has a quasiperiodic structure along the interface, namely, that
it is the restriction of a higher dimensional periodic structure. Accordingly, the idea is to interpret
(P) as the “restriction” of an augmented boundary value problem in higher dimensions, where
periodicity along the interface is recovered. This so-called lifting approach allows one to adapt the
ideas in [11], but comes with the price that the augmented partial differential equation (PDE) is
elliptically degenerate (in the sense of the principal part of its differential operator), and hence
more complicated to analyse and approximate.

Although the lifting approach already appears in the works by Kozlov [27], the idea of using this
approach for periodic half-spaces came to us mainly from the more recent papers [4, 16, 17]. In
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these papers, the lifting approach has been used in the homogenization setting (that is for instance,
when the period of the structure is negligible with respect to the wavelength) in presence of a
boundary or an interface. The lifting approach has also been used in [6, 38] for the homogenization
of quasicrystals. However, to our knowledge, it seems that this idea has never been used for the
analysis or simulation of wave propagation phenomena. The first approach in this direction has
been developed in [2] for wave propagation in 1–dimensional quasiperiodic structures.

1.2 Formal description of the method

We provide a brief and formal description of the method developed in this paper. In what follows,
the generic 3–dimensional space variable is denoted by x = (x, z1, z2). The canonical basis of R3 is
denoted by {ex, e1, e2}.

Depending on the restrictions (A±, ρ±) and the periodicity vectors (p±
1 ,p

±
2 ), A and ρ may not be

periodic with respect to z. Nevertheless, under some suitable assumptions on (A±, ρ±) and (p±
1 ,p

±
2 )

that we shall introduce in Section 2.1 (see also Figures 3 and 4), we have from Section 2.2 that

a. e. x ∈ R2, A(x) = Ap(Θx) and ρ(x) = ρp(Θx), (1.6)

for some Θ ∈ R3×2. The tensor Ap ∈ L∞(R3;R2×2) (resp. the coefficient ρp ∈ L∞(R3)) coincides in
the half-space R3

± := {x = (x, z1, z2) ∈ R3 / ± x > 0} with a Z3–periodic function A±
p (resp. ρ±p ), as

Figures 5 and 6 show. As a consequence, contrary to A and ρ, Ap and ρp are 1–periodic with respect
to the variables (z1, z2) of the interface Σ between R3

+ and R3
−:

Σ := {x = (x, z1, z2) ∈ R3 / x = 0}. (1.7)

Equation (1.6) shows the quasiperiodic nature of A and ρ, and suggests seeking the solution u of
(P) as the restriction of a 3D function U along the hyperplane Θ R2, that is:

∀ x ∈ R2, u(x) = U(Θx). (1.8)

The extension U shall be characterized as the solution of a 3D “augmented” problem with periodic
coefficients Ap and ρp. In order to construct such a problem for U , we formally use a chain rule
which links the partial derivatives of u with those of U : if ∇ := t(∂x ∂z1 ∂z2) denotes the 3D
gradient operator, then given F ∈ C 1(R3), one has

∀ x ∈ R2,
[
∇F (Θ·)

]
(x) =

[ tΘ∇F
]
(Θx) =

(
∂xF

θ1∂z1F + θ2∂z2F

)
. (1.9)

Using the ansatz (1.8) and the chain rule (1.9) in the volume equation satisfied by u suggests to
introduce

− t∇ΘAp
tΘ∇U − ρp ω

2 U = 0 in R3
+ ∪ R3

−. (1.10a)

In addition, the jump condition in (P) on the line σ may be formally lifted into a jump condition
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on the plane Σ, which is the interface defined by (1.7). This can be written as

J(ΘAp
tΘ∇U) · exKΣ = G. (1.10b)

Here, JΘW · exKΣ := (ΘW− · ex)|Σ − (ΘW+ · ex)|Σ with W± := W |R3
±

for any W : R3 → C2, and
the data G : Σ → C must formally satisfy the following condition

a. e. x = (0, z) ∈ σ, G(Θx) = g(x), (1.11)

by consistency with the jump condition in (P). The appropriate functional framework to study the
augmented problem (1.10) is developed in Section 3.

R3

R2 × (0, 1)

Step (a)

R × (0, 1)2

Step (b)

(−1, 1)× (0, 1)2

Step (c)

ex
e1

e2

Figure 2: Reduction of the domains through the steps a, b, and c.

The advantage of Problem (1.10) lies in the periodicity properties of (Ap, ρp) along Σ, which are
exploited in Section 4 to reduce computations to a bounded domain. More precisely, the procedure
is divided into three steps, each of which is devoted to bounding the domain in one direction, as
illustrated in Figure 2:

(a) Periodic augmented jump data. The condition (1.11) offers some great latitude in choosing G.
If g is smooth enough, then one obvious pick would be a G that is constant in the e2–direction
for instance, namely G(0, z1, z2) := g(0, z1/θ1) for (z1, z2) ∈ R2. Then, since Ap and ρp are
1–periodic in the e2–direction, one can expect U to be also 1–periodic in the e2–direction,
that is U(· + e2) = U , so that (1.10) reduces to a problem defined in the strip R2 × (0, 1).
This property holds if one considers, for generality, extensions G that are formally speaking
1–periodic in the e2–direction, that is G(· + e2) = G. The corresponding strip problem is
studied in Section 4.1.

(b) Partial Floquet-Bloch transform. In Section 4.2, we introduce the partial Floquet-Bloch trans-
form with respect to z1. Thanks to the periodicity of (Ap, ρp) in the e1–direction, this transform
leads to a family of waveguide problems defined in the cylinder R × (0, 1)2.
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(c) DtN approach. At last, using the periodicity of (A±
p , ρ

±
p ) in the ex–direction, we resort in Section

4.3 to the DtN method developed in [12, 22]. This method allows to reduce computations to
the interface {0}×(0, 1)2 thanks to local Dirichlet problems defined in the cells (0,±1)×(0, 1)2,
and a propagation operator which satisfies a Riccati equation.

1.3 Outline of the paper

The paper is structured as follows. In Section 2, two specific configurations of 2D media represented
by A and ρ are introduced. We prove (1.6), namely that these 2D media can be viewed as the
restriction of 3D augmented structures (represented by Ap and ρp) along the hyperplane oriented
along a particular matrix Θ ∈ R3×2. Accordingly, as explained in Section 1.2, we extend (P)
onto a 3D augmented problem which is studied and solved in Section 4 using the Floquet-Bloch
transform and the DtN approach developed in [22]. But beforehand, we have to dedicate Section
3 to setting up an appropriate functional framework for the analysis of the augmented 3D problem.
In particular, we introduce anisotropic Sobolev spaces for which we establish trace theorems and
Green’s formulas. In Section 5, we summarize the algorithm and present its discretization. A
particular attention is given to the discretization of local Dirichlet cell problems involved in the
procedure. Eventhough these problems can be solved directly using 3D finite elements, we exploit
their anisotropic structure to instead solve a family of 2D cell problems. This so-called quasi 2–
dimensional (or quasi-2D) method is inspired from the quasi-1D developed in [2], although less
obvious, as we demonstrate. Section 6 provides numerical results to illustrate the efficiency of the
method in different situations. Finally, the present work suggests some extensions and perspectives,
which we highlight in Section 7.

Notation

• We use the notation Oν ⊂ Rn, ν ∈ {∅,+,−} to refer to any triple of the form {O,O+,O−},
with the convention that Oν = O for ν = ∅.

• The indicator function of an open set O ⊂ Rn is denoted by 1O.

• Given p1,p2 ∈ R2, we denote by Zp1+Zp2 the lattice Zp1+Zp2 := {n1 p1+n2 p2 / n1, n2 ∈ Z}.
Similarly, for p1,p2,p3 ∈ R3, let Zp1 + Zp2 + Zp3 = {n1 p1 + n2 p2 + n3 p3 / n1, n2, n3 ∈ Z}.

• tA ∈ Cm×n denotes the transpose of A ∈ Cn×m. The n× n identity matrix is denoted by In.

• For O ⊂ Rn, the scalar product on L2(O) is denoted by (·, ·)L2(O). We denote by ⟨·, ·⟩∂O the
duality product between H−1/2(∂O) and H1/2(∂O).

• Given two Banach spaces X1 and X2, the space of bounded linear operators from X1 to X2

is denoted by L (X1,X2). We set L (X ) := L (X ,X ).

2 The model configurations and their hidden quasiperiodic nature

In this section, we present the properties of the functions A ∈ L∞(R2;R2×2), ρ ∈ L∞(R2) involved in
(P), and we highlight their quasiperiodic nature as restrictions of 3D functions along a hyperplane.
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2.1 Two specific configurations

We assume that A and ρ can be written as:

a. e. x = (x, z) ∈ R2, A(x) :=

{
A−(x) if x < 0,

A+(x) if x > 0,
and ρ(x) :=

{
ρ−(x) if x < 0,

ρ+(x) if x > 0,
(2.1)

where A± ∈ C 0(R2;R2×2), ρ± ∈ C 0(R2). We consider two specific classes of functions (A±, ρ±) (see
Section 7 for the general case).

1. Configuration (A ) — The media are periodic along the interface σ = {x = 0}

This setting consists in A± and ρ± being Zex + Z(p±z ez)–periodic for some numbers p±z > 0, that is,

∀ x ∈ R2,

 A±(x+ ex) = A±(x), and A±(x+ p±z ez) = A±(x),

ρ±(x+ ex) = ρ±(x), and ρ±(x+ p±z ez) = ρ±(x).
(2.2)

This is illustrated in Figure 3.

Remark 2.1.

(a). If the ratio p+z /p
−
z is a rational number that can be written as a/b for some coprime (a, b) ∈ Z×N∗,

then (A+, ρ+) and (A−, ρ−) share a common period τ := b p+z = a p−z in the ez–direction. It
follows that the overall medium represented by (A, ρ) is periodic in the ez–direction. Hence, as
done in [11], a Floquet-Bloch transform can be applied with respect to the variable z along the
interface, reducing (P) to a family of waveguide problems set in R × (0, τ), and parameterized
by the Floquet variable. However, this method becomes more costly as the denominator of p+z /p

−
z ,

and thus the period τ increases. It could then be relevant to use, in this case, the method described
in this paper.

(b). When p+z /p
−
z is irrational, the method in [11] cannot be applied directly because A and ρ are

no longer periodic along the interface. In this case, one might be tempted to construct a rational
approximation (an/bn)n of p+z /p

−
z , and to compute, using [11], the solution un of (P), obtained

by replacing p+z /p
−
z by an/bn for n large enough. However, in addition to the theoretical questions

that such a strategy raises (regarding for instance the convergence of (un)n to u), there are some
numerical drawbacks. In fact, for a sequence of rationals (an/bn)n to converge to an irrational
p+z /p

−
z , the sequence of denominators (bn)n must tend to infinity. Therefore, as explained in the

first point, computational costs would inevitably increase with the periods (τn)n as (an/bn)n tends
to p+z /p

−
z . Furthermore, the approximation quality would be strongly related to the irrationality

measure of p+z /p
−
z , which indicates how efficiently it can be approximated by rational numbers.

More detail about this aspect on rational approximation can be found in [18, Chapter XI].

2. Configuration (B) — Junction of a homogeneous medium and a periodic one

This corresponds to the case where A− and ρ− are constant while A+ and ρ+ are Zex+Zp+–periodic
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R2
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Figure 3: Configuration (A ): Juxtaposition of two media that are periodic along the interface

for some vector p+ = (p+x , p
+
z ) ∈ R2 such that p+z ̸= 0: for x ∈ R2,

∀ x ∈ R2,

 A−(x) ≡ A− and A+(x+ ex) = A+(x), A+(x+ p+) = A+(x),

ρ−(x) ≡ ρ− and ρ+(x+ ex) = ρ+(x) , ρ+(x+ p+) = ρ+(x),
(2.3)

as illustrated in Figure 4.

Remark 2.2. Note that p+z ez = p+ − p+x ex. Therefore if p+x is rational with the irreducible form a/b,
(a, b) ∈ Z × N∗, then b p+z ez = bp+ − aex and thus (A+, ρ+) are τ–periodic in the ez–direction with
τ := b p+z . Conversely, if p+x is irrational, then the medium is no longer periodic in the direction of the
interface. In that regard, Remark 2.1 translates to Configuration (B) when p+z /p

−
z is replaced by p+x .

ex

p+

ex

ez

x

z

R2
− R2

+

σ

Figure 4: Configuration (B): Juxtaposition of a periodic medium and a homogeneous one

Remark 2.3. In order to simplify the presentation, we assumed one of the periodicity vectors to be ex
for both Configurations (A ) and (B). Although it may seem restrictive, this assumption can be made
without any loss of generality by means of some geometric transformations, as shown in Appendix A.

2.2 A hidden quasiperiodicity along the interface

The goal of this section is to show that the functions A and ρ given by Configurations (A ) and (B)
can be viewed as quasiperiodic along the interface σ, in the sense that they are restrictions to a
hyperplane of 3D functions that are periodic along a 2D interface containing σ. More precisely, we
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shall prove (1.6), which is recalled below

a. e. x ∈ R2, A(x) = Ap(Θx) and ρ(x) = ρp(Θx), (2.4a)

where Ap and ρp are defined by

∀ x = (x, z1, z2) ∈ R3, Ap(x) :=

{
A+
p (x), x > 0

A−
p (x), x < 0

and ρp(x) :=

{
ρ+p (x), x > 0

ρ−p (x), x < 0,
(2.4b)

with A±
p , ρ

±
p ∈ C 0(R3) which are Z3–periodic. Furthermore, the matrix Θ ∈ R3×2, which will be

referred to as the cut matrix, has the following form:

Θ =

1 0

0 θ1
0 θ2

 with θ1 ̸= 0, (2.4c)

the exact expression of θ1 and θ2 depending on the configuration.

2.2.1. Quasiperiodicity of Configuration (A ). To find (Ap, ρp), the formal idea is to split the
tangential variable z into two variables z1 and z2, where z1 is associated to the periodicity of the
medium in R2

+, and where z2 is associated to the periodicity of the medium in R2
−. In addition, to

ensure that the medium is 1–periodic with respect to z1 and z2, this splitting comes with a rescaling:
z1 will correspond to z/p+z , while z2 will correspond to z/p−z . This suggests to introduce

∀ x = (x, z1, z2) ∈ R2,

 A+
p (x) := A+(x, p+z z1) and ρ+p (x) := ρ+(x, p+z z1)

A−
p (x) := A−(x, p−z z2) and ρ−p (x) := ρ−(x, p−z z2),

(2.5)

where (A+
p , ρ

+
p ) are 1–periodic in x, 1–periodic in z1, and independent of z2, while (A−

p , ρ
−
p ) are

1–periodic in x, independent of z1, and 1–periodic in z2, as illustrated in Figure 5.

Now let (Ap, ρp) be given by (2.4b) using (A±
p , ρ

±
p ). Then, since both (A+

p , ρ
+
p ) and (A−

p , ρ
−
p ) are

1–periodic with respect to z1 and z2, it follows that (Ap, ρp) are periodic along the interface Σ.

Moreover, by “inverting” (2.5), we deduce that

∀ x = (x, z) ∈ R2, A±(x) = A±
p (x, z/p

+
z , z/p

−
z ) and ρ±(x) = ρ±p (x, z/p

+
z , z/p

−
z ). (2.6)

This corresponds to (2.4a) and (2.4c) with

θ1 := 1/p+z and θ2 := 1/p−z . (2.7)

Finally, note that the half-plane Θ R2
± (resp. the line Θσ) is included in the half-space R3

± (resp. the
interface Σ defined by (1.7)).
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x

Σ

z2
z1

ex

e1
e2

Figure 5: The augmented structure for Configuration (A )

2.2.2. Quasiperiodicity of Configuration (B). From its properties (2.3), we shall see that A+

admits the expression (2.4a), although it is less obvious than in Configuration (A ). It is useful to
“look at A+ in the basis {ex,p+}” by defining

∀ (
◦
x,

◦
z) ∈ R2,

◦
A+(

◦
x,

◦
z) := A+(

◦
x ex +

◦
z p+) := A+(

◦
x+

◦
z p+x ,

◦
z p+z ). (2.8)

From the periodicity properties (2.3) of A+ it follows that
◦
A+ is 1–periodic with respect to its

variables. Moreover, considering the change of variables

◦
x+ p+x

◦
z = x

p+z
◦
z = z

}
⇐⇒

{ ◦
x = x− (p+x /p

+
z ) z

◦
z = z/p+z ,

which is well-defined because p+z ̸= 0, (2.8) can be “inverted” as

∀ x = (x, z) ∈ R2, A+(x) =
◦
A+(x− (p+x /p

+
z ) z, z/p

+
z ). (2.9)

Thus, similarly to Configuration (A ), we split the tangential variable z into a variable z1 corre-
sponding to z/p+z , and a variable z2 corresponding to −(p+x /p

+
z ) z. Accordingly, it is natural to

define the function

∀ x = (x, z1, z2) ∈ R3, A+
p (x) :=

◦
A+(x+ z2, z1), (2.10)

where A+
p is Z3–periodic, and in particular periodic with respect to the variables (z1, z2) of the

interface Σ defined by (1.7), as illustrated in Figure 6. Then, (2.9) becomes

∀ x = (x, z) ∈ R2, A+(x) = A+
p (x, z/p

+
z ,−(p+x /p

+
z ) z). (2.11)
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The same arguments can be applied to ρ, to define ρ+p similarly to (2.10). In addition, A− and ρ−

are extended as constant functions over R3. More precisely, we set

∀ x = (x, z1, z2) ∈ R3, A−
p (x) := A− and ρ−p (x) := ρ−, (2.12)

and we define Ap and ρp as in (2.4b), so that (2.4a) and (2.4c) hold with

θ1 := 1/p+z ̸= 0 and θ2 := −p+x /p+z . (2.13)

Finally, note that the half-plane Θ R2
± (resp. the line Θσ) is included in the half-space R3

± (resp. the
interface Σ).

x

Σ

z1

z2

ex

e1
e2

Figure 6: The augmented structure for Configuration (B)

3 Functional framework

The formal procedure described in Section 1.2 consists in seeking the solution u of (P) under the
form u(x) = U(Θx), where U satisfies − t∇ΘAp

tΘ∇U − ρp ω
2 U = 0 in R3

+ ∪ R3
−,

J(ΘAp
tΘ∇U) · exKΣ = G.

(3.1)

The advantage of the augmented equation (3.1) lies in its periodic nature, which allows to use
adapted tools for periodic PDEs, such as the Floquet-Bloch transform. Nevertheless, a difficulty is
that the differential operator − t∇ΘAp

tΘ∇ is elliptically degenerate because the matrix Θ given by

11



(2.4c) is of rank 2. More precisely,

a. e. x ∈ R2, Ker
[
ΘAp(x)

tΘ
]
= Span

 0

−θ2
θ1

 .

As a consequence, the properties of (3.1) differ substantially from those of the classical Helmholtz
equation given by − t∇Ap∇U − ρω2 U = 0. In particular, one needs an appropriate functional
framework to take the anisotropic nature of (3.1) into account. This is the object of this section,
which sets up the framework that will be used afterwards.

3.1 Anisotropic Sobolev spaces: motivation and outline

To begin, let us define for any open set O ⊂ R3 the anisotropic Sobolev spaces

H1
Θ(O) := {U ∈ L2(O) / tΘ∇U ∈ [L2(O)]2},

HΘ(div;O) := {W ∈ [L2(O)]2 / t∇ΘW ∈ L2(O)}.
(3.2)

These are Hilbert spaces when equipped with the respective scalar products

∀ U, V ∈ H1
Θ(O), (U, V )H1

Θ(O) :=

∫
O

[
U V +

( tΘ∇U
)
·
( tΘ∇V

)]
,

∀ W , W̃ ∈ HΘ(div;O), (W , W̃ )HΘ(div;O) :=

∫
O

[
W · W̃ + (t∇ΘW ) (t∇ΘW̃ )

]
.

We shall denote by ∥ · ∥H1
Θ(O) and ∥ · ∥HΘ(div;O) the respective induced norms.

Due to the domains introduced throughout the paper, a specific attention will be given to “rectangle”
based cylindrical domains in what follows. Let Ix, I1 be intervals which do not need to be bounded,
and such that 0 ∈ Ix. We consider the 3–dimensional domain Ω and the 2–dimensional transverse
set Στ given by

Ω :=
{
(x, z1, z2) ∈ R3 / x ∈ Ix, z1 ∈ I1, z2 ∈ R

}
≡ Ix × I1 × R,

∀ τ ∈ Ix, Στ :=
{
(x, z1, z2) ∈ R3 / x = τ, z1 ∈ I1, z2 ∈ R

}
≡ {τ} × I1 × R,

(3.3)

with Στ =: Σ for τ = 0. The above domains are unbounded in the e2–direction. We will be
interested in the “z2–cell domains”, bounded in z2:

Ω# :=
{
(x, z1, z2) ∈ Ω / z2 ∈ (0, 1)

}
≡ Ix × I1 × (0, 1),

∀ τ ∈ Ix, Στ
# :=

{
(x, z1, z2) ∈ Στ / z2 ∈ (0, 1)

}
≡ {τ} × I1 × (0, 1),

(3.4)

with Στ
# =: Σ# for τ = 0, and where the subscript “#” refers to the boundedness of the domains in

the e2–direction. Still, note that Ω# can be unbounded in the ex and e1–directions, while Στ
# can be

unbounded in the e1–direction. Figure 7 (left) represents these domains for Ix = R− and I1 ⊂ R+.
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Ω#

Στ
#

x

z1

z2

τ

Σ#

I1

Q

x

z

Î

Figure 7: Left: the rectangle-based cylindrical domain Ω# and the lateral set Σ# given by (3.4).
Right: the domains Q and Î given by (3.8). Ix = R− and I1 ⊂ R+.

For smooth functions V ∈ C 1(Ω#), W ∈ [C 1(Ω#)]
2, one has the Green’s formula∫

Ω#

[
(t∇ΘW )V +W · tΘ∇V

]
=

∫
∂Ω#

(ΘW · n)V ,

where n denotes the unit normal vector on ∂Ω# which is outward with respect to Ω#. We are
interested in two cases:

(C.1) The strip: I1 = R and V,W are 1–periodic with respect to z2;

(C.2) The cylinder: I1 = (0, 1) and V,W are 1–periodic with respect to z1 and z2.

In both cases, the above Green’s formula becomes∫
Ω#

[
(t∇ΘW )V +W · tΘ∇V

]
=
∑
τ∈∂Ix

∫
Στ

#

(ΘW · n)V , (3.5)

where the right-hand side is reduced to the surface integral on the transverse faces Στ
#, τ ∈ ∂Ix.

Our goal is to extend the above formula to (V,W ) ∈ H1
Θ(Ω#) × HΘ(div;Ω#) (that is, to prove

(3.26) and (3.33) for the cases (C.1) and (C.2) defined above respectively). This requires to define
properly the traces V |Στ

#
(Section 3.3) and (ΘW · n)|Στ

#
(Section 3.4), and to replace the integral

in the right-hand side of (3.5) by a duality product between the appropriate trace spaces (Section
3.4 for Case (C.1) and Section 3.5 for Case (C.2)).

As a first step, it is useful to introduce a so-called shear map (see (3.13)), to charaterize any function
in H1

Θ(Ω#) (resp. in HΘ(div;Ω#)) which is periodic with respect to z2 in terms of its L2–regularity
in the e2–direction and its H1–regularity in the ex and θ1e1 + θ2e2–directions. This is the object of
the next section.

3.2 Anisotropic spaces of Ze2–periodic functions

Given numbers −∞ ≤ a < b ≤ +∞ and a Banach space (X , ∥ · ∥X ), we recall that

L2(a, b;X ) :=
{
VΘ / ∥VΘ∥2L2(a,b;X ) :=

∫ b

a
∥VΘ(·, s)∥2X ds < +∞

}
. (3.6)
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Our starting point is the oblique transformation

Tθ : (x, s) ∈ R3 7−→ Θx+ s e2 = (x, θ1z, θ2z + s) ∈ R3, (3.7)

which relates the 3D operator tΘ∇ to the 2D gradient ∇ by means of the chain rule (1.9) recalled
as ∇[F ◦ Tθ(·, s)](x) = (tΘ∇F ) ◦ Tθ(x, s), for any C 1 function F . Consider the 2D domain Q and
the edge Îτ given by

Q :=
{
(x, z) ∈ R2 / x ∈ Ix, θ1z ∈ I1

}
,

Îτ :=
{
(x, z) ∈ R2 / x = τ, θ1z ∈ I1

}
,

(3.8)

with Îτ =: Î for τ = 0 (see Figure 7 (right) for Ix = R− and I1 ⊂ R+). We note that Q and Îτ are
well-defined, since for Configurations (A ) and (B), we have θ1 ̸= 0. Moreover, Tθ is bijective from
Q× R (resp. Îτ × R) to Ω (resp. Στ ). The image of Q× (0, 1) (resp. Îτ × (0, 1)) by Tθ is the oblique
domain Ω#,θ (resp. the oblique face Στ

#,θ) represented in Figure 8b:

Ω#,θ := Tθ

(
Q× (0, 1)

)
and Στ

#,θ := Tθ

(
Îτ × (0, 1)

)
, (3.9)

with Στ
#,θ =: Σ#,θ for τ = 0.

As a preliminary step, one can use the change of variables (x, s) 7→ Tθ(x, s) and Fubini’s theorem,
to prove the charactization

H1
Θ(Ω#,θ) =

{
V ∈ L2(Ω#,θ) / V ◦ Tθ ∈ L2

(
R;H1(Q)

)}
,

HΘ(div;Ω#,θ) =
{
W ∈ [L2(Ω#,θ)]

2 /W ◦ Tθ ∈ L2
(
R;H(div;Q)

)}
,

(3.10)

which is useful to derive the properties of H1
Θ(Ω#,θ) and HΘ(div;Ω#,θ) from the well-studied spaces

L2(R;H1(Q)), L2(R;H(div;Q)). We would like to provide similar expressions for the spaces of Ze2–
periodic H1

Θ or HΘ(div) functions defined on the straight domain Ω# (instead of Ω#,θ). To this end,
we shall, roughly speaking, identify functions on Ω# and Ω#,θ, using the notion of periodic extension
in the e2–direction. In the sequel, we fix d ∈ {1, 2}, and we use the notation V (in bold) to refer to
a Cd–valued function.

Definition 3.1 (Periodic extension). Let p > 0 and V ∈ [Lp(Ω#)]
d. The periodic extension of V in

the e2–direction is the function E2
#V ∈ [Lp

loc(Ω)]
d defined by:

a. e. x = (x, z1, z2) ∈ Ω#, ∀ n ∈ Z, E2
#V (x + ne2) := V (x). (3.11)

For any Φ ∈ Lp(Σ#), we define E2
#Φ ∈ Lp

loc(Σ) similarly, by replacing x ∈ Ω# in (3.11) by x ∈ Σ#.

Let C∞
0,#(Ω#) denote the space of smooth functions in Ω# that are compactly supported in the ex

and e1–directions, and 1–periodic in the e2–direction, that is,

C∞
0,#(Ω#) :=

{
V ∈ C∞

0 (Ω#) / E
2
#V ∈ C∞(Ω)

}
. (3.12)
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(a)

x

z

s

Î

Q
Tθ

(b)

Ω#,θ

x

z1

z2
Σ#,θ

I1

Figure 8: (a) The strip Q × (0, 1), where Q is the
hatched domain defined by (3.8). (b) The oblique
domains Ω#,θ, Σ#,θ defined by (3.9). The hatched
domain is Tθ(Q× {0}). Any function in H1

Θ(Ω#,θ)
or H1

Θ#(Ω#) is L2 in the e2 direction, and H1 in
the ex and θ1e1+θ2e2–directions indicated by the
dashed arrows. (c) The point Tθ(x, s) defined by
(3.7) for (x, s) ∈ Q × (0, 1) and for |(θ1, θ2)| = 1.
We fix Ix = R− and I1 ⊂ R+.

(c)

•s

•

z

θ1z

s+ θ2z

z1

z2

Σ#

Σ#,θ

Note that C∞
0,#(Ω#) contains C∞

0 (Ω#), and hence, is dense in L2(Ω#).

The change of variables (3.7) combined with the periodic extension along e2 in Definition 3.1 allows
us to introduce the so-called shear transform defined by

SΘ : [C∞
0,#(Ω#)]

d −→ [C∞(Q× R)]d

V 7−→ VΘ,
VΘ(x, s) := (E2

#V ) ◦ Tθ(x, s), ∀ (x, s) ∈ Q× R. (3.13)

The definition of E2
# implies that SΘV (·, s+ 1) = SΘV (·, s). For this reason, the study of SΘ will

be restricted to s ∈ (0, 1). As stated in the next proposition proved in Appendix B.1, SΘ extends by
density to L2–functions.

Proposition 3.2. The mapping SΘ defined by (3.13) extends by density to a mapping defined from
[L2(Ω#)]

d to L2(0, 1; [L2(Q)]d), with

∀ U ,V ∈ [L2(Ω#)]
d,

1

θ1

∫ 1

0

∫
Q

SΘU(x, s) · SΘV (x, s) dxds =

∫
Ω#

U · V . (3.14)

Moreover, SΘ is an isomorphism from [L2(Ω#)]
d to L2(0, 1; [L2(Q)]d), and its inverse is given for any
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VΘ ∈ L2(0, 1; [L2(Q)]d) by

a. e. x = (x, z1, z2) ∈ Ω#, S −1
Θ VΘ(x) =

√
θ1 E

s
#VΘ

(
x, z1/θ1, z2 − z1(θ2/θ1)

)
, (3.15)

where Es
#VΘ ∈ [L2

loc(Q×R)]d denotes the periodic extension of VΘ with respect to the variable s, defined
for almost any (x, s) ∈ Q× (0, 1) and for any n ∈ Z by Es

#VΘ(x, s+ n) := VΘ(x, s).

Now, by analogy with (3.10), we define

H1
Θ#(Ω#) :=

{
V ∈ L2(Ω#) / SΘV ∈ L2(0, 1;H1(Q))

}
,

HΘ#(div;Ω#) :=
{
W ∈ [L2(Ω#)]

2 / SΘW ∈ L2(0, 1;H(div;Q))
}
.

(3.16)

It is not obvious from their definition that H1
Θ#(Ω#) and HΘ#(div;Ω#) are respectively subspaces

of H1
Θ(Ω#) and HΘ(div;Ω#). This is however true from the chain rule, as highlighted in the next

proposition proved in Appendix B.2.

Proposition 3.3. Any V ∈ H1
Θ#(Ω#) belongs to H1

Θ(Ω#) and

a. e. (x, s) ∈ Q× (0, 1), SΘ (
tΘ∇V )(x, s) = ∇x(SΘV )(x, s). (3.17)

Similarly, any W ∈ HΘ#(div;Ω#) belongs to HΘ(div;Ω#) and

a. e. (x, s) ∈ Q× (0, 1), SΘ (
t∇ΘW )(x, s) = t∇x(SΘW )(x, s), (3.18)

where ∇x is the gradient operator with respect to x.

In what follows, we equip H1
Θ#(Ω#) with the scalar product (·, ·)H1

Θ(Ω#), and HΘ#(div;Ω#) with the
scalar product (·, ·)HΘ(div;Ω#). Propositions 3.2 and 3.3 then lead to the next result.

Corollary 3.4. The shear map SΘ is an isomorphism from H1
Θ#(Ω#) to L2(0, 1;H1(Q)), and from

HΘ#(div;Ω#) to L2(0, 1;H(div;Q)). Consequently, equipped with the H1
Θ (resp. HΘ(div))) scalar

product, H1
Θ#(Ω#) (resp. HΘ#(div;Ω#)) is a Hilbert space.

We finish this section with two density results which provide more insight on the nature of H1
Θ#(Ω#)

and HΘ#(div;Ω#). The proof is delayed to Appendix C.

Proposition 3.5.

(a). The space C∞
0,#(Ω#) is dense in H1

Θ#(Ω#).

(b). The space [C∞
0,#(Ω#)]

2 is dense in HΘ#(div;Ω#).

Remark 3.6. Proposition 3.5 implies that for smooth functions, the definition of H1
Θ#(Ω#) corresponds

to 1–periodicity in the e2–direction. More generally, one could show the characterization

H1
Θ#(Ω#) = {V ∈ H1

Θ(Ω#) / V |z2=0 = V |z2=1},
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eventhough the equality in this last characterization has to be understood not in the L2 sense, but in
the L2

loc sense. In fact, by adapting the results in [2, Section 3.2.1], it can be shown that the space of
traces on {z2 = a} involves a weighted L2 space.

3.3 Trace operator on transverse interfaces Στ
#

In order to prove Green’s formulas, we need to define traces of functions in H1
Θ#(Ω#) on the trans-

verse face Στ
# defined by (3.4) for τ ∈ Ix. Throughout the section, we assume for simplicity that

τ = 0 ∈ Ix, so that Στ
# = Σ#. The extension to an arbitrary τ ∈ Ix is explained in Remark 3.9.

Note that
∀ V ∈ H1

Θ#(Ω#), V, ∂xV ∈ L2(Ω#).

Therefore, the usual trace theorem applied to each 1D function x 7→ V (x, z1, z2) ∈ H1(Ix) provides
an estimate which can be integrated with respect to (z1, z2) ∈ I1 × (0, 1), to obtain the following
preliminary result.

Proposition 3.7. The trace application γ0,#, defined by γ0,#V := V |Σ#
for V ∈ C∞

0,#(Ω#), extends by
continuity to a linear map still denoted by γ0,#, and defined from H1

Θ#(Ω#) to L2(Σ#).

In what follows, we will abusively write V |Σ#
instead of γ0,#V when referring to traces on Σ#.

We are next interested in characterizing the range of the trace map γ0,#. To this end, we first extend
the definition of SΘ to functions defined on Σ#. For any Φ ∈ C∞

0 (Σ#) such that E2
#Φ ∈ C∞(Σ), we

can define SΘΦ = ΦΘ as in the volume case (3.13) by choosing (x, s) ∈ Î × R, where Î is the edge
in (3.8). From

∀ x = (0, z) ∈ Î , ∀ s ∈ R, SΘΦ(x, s) := E2
#Φ(0, θ1z, θ2z + s),

we deduce that SΘΦ(·, s) is simply the trace of E2
#Φ along the line {(θ1z, θ2z+s), z ∈ R}. Similarly

to Proposition 3.2, SΘ extends by density as an isomorphism from L2(Σ#) to L2(0, 1;L2(Î)).

Consider the space

H
1/2
Θ# (Σ#) :=

{
Φ ∈ L2(Σ#) / SΘΦ ∈ L2(0, 1;H1/2(Î))

}
, (3.19)

which is equipped with the norm Φ 7→ ∥SΘΦ∥L2(0,1;H1/2(Î))
. Then the next result holds.

Proposition 3.8. The trace operator γ0,# is continuous and surjective from H1
Θ#(Ω#) to H1/2

Θ# (Σ#),
and commutes with the shear map SΘ :

∀ V ∈ H1
Θ#(Ω#), ∀ s ∈ (0, 1), SΘ (V |Σ#

)(·, s) = SΘV (·, s)|
Î
. (3.20)

Proof. Equation (3.20) is obtained easily for smooth functions V ∈ C∞
0,#(Ω#) using the definition

of SΘ . It extends to V ∈ H1
Θ#(Ω#) using: (i) the density of C∞

0,#(Ω#) inH1
Θ#(Ω#), (ii) the continuity

of SΘ from H1
Θ#(Ω#) to L2(0, 1;H1(Q)) (Corollary 3.4) and from H

1/2
Θ# (Σ#) to L2(0, 1;H1/2(Î)) (by
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L2(0, 1;H1(Q)) H1
Θ#(Ω#)

L2(0, 1;H1/2(Î)) H
1/2
Θ# (Σ#)

SΘ

SΘ

γ0,#γ0

L2(0, 1;H(div;Q)) HΘ#(div;Ω#)

L2(0, 1;H−1/2(Î)) H
−1/2
Θ# (Σ#)

SΘ

SΘ

γ1,#γ1

Figure 9: Left: In Proposition 3.8, the range of γ0,# is characterized using the shear map SΘ and
the usual trace operator γ0 defined by (3.21). More precisely, γ0,# = S −1

Θ γ0SΘ . Right: the same
holds for the normal trace operator γ1,# defined in Proposition 3.11 for I1 = R

definition (3.19)), and (iii) the continuity from L2(0, 1;H1(Q)) to L2(0, 1;H1/2(Î)) of the trace map
γ0 given by:

∀ VΘ ∈ L2(0, 1;H1(Q)), γ0VΘ(·, s) := VΘ(·, s)|Î , (3.21)

which is a direct consequence of the classical trace theorem in H1(Q).

Since SΘ is an isomorphism, (3.20) implies that γ0,# = S −1
Θ γ0SΘ . The continuity and surjectivity

of γ0,# then result from the continuity of (γ0,SΘ ,S
−1
Θ ) and the surjectivity of γ0. ■

Remark 3.9. Let τ ∈ Ix. By applying the above arguments to V (· + τ ex) where V ∈ H1
Θ#(Ω#), one

can define the trace of V on the face Στ
# for any τ ∈ Ix.

3.4 Normal trace operator and Green’s formula for a strip

In this section, we restrict ourselves to the case (C.1) of a strip, which corresponds to

I1 = R.

The domains Ω#, Στ
#, Q, and Îτ defined by (3.4, 3.8) then become

Ω# = Ix × R × (0, 1), Στ
# = {τ} × R × (0, 1), Q = Ix × R and Îτ = {τ} × R.

In what follows, we assume that Ix ̸= R, so that ∂Ix ̸= ∅; typically Ix = R+, R−, or (a, b). We fix
τ ∈ ∂Ix. Let n = ±ex (resp. n = ±ex) denote the unit normal vector on Στ

# (resp. Îτ ) which is
outward with respect to Ω# (resp. Q). Our objective is to define a normal trace operator on Στ

# and
to prove the Green’s formula given in Proposition 3.11.

The topological dual space of H1/2
Θ# (Στ

#) is denoted by H−1/2
Θ# (Στ

#), and is equipped with the dual

norm for now. Let ⟨·, ·⟩Στ
#

denote the duality product between H
−1/2
Θ# (Στ

#) and H
1/2
Θ# (Στ

#), defined

as a natural extension of the L2(Στ
#)–scalar product. In order to define a normal trace operator, we

first extend the shear map SΘ as an isomorphism from H
−1/2
Θ# (Στ

#) to [L2(0, 1;H1/2(Îτ ))]′. This is
achieved through duality, using the Parseval-like formula (3.14):

∀ Ψ ∈ H
−1/2
Θ# (Στ

#),
1

θ1

〈
SΘΨ,ΦΘ

〉
[L2(0,1;H1/2(Îτ ))]′,L2(0,1;H1/2(Îτ ))
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:=
〈
Ψ,S −1

Θ ΦΘ
〉

Στ
#

, ∀ ΦΘ ∈ L2(0, 1;H1/2(Îτ )). (3.22)

The next classical lemma provides a more convenient characterization of L2(0, 1;H1/2(Îτ ))′.

Lemma 3.10. Given a < b ∈ R and a Hilbert space (X , (·, ·)X ), one has [L2(a, b;X )]′ = L2(a, b;X ′)
as well as the following identity: for any Φ ∈ L2(a, b;X ) and Ψ ∈ L2(a, b;X ′):

〈
Ψ,Φ

〉
L2(a,b;X )′,L2(a,b;X )

=

∫ b

a

〈
Ψ(·, s), Φ(·, s)

〉
X ′,X

ds, (3.23)

where ⟨·, ·⟩X ′,X denotes the duality product between X ′ and X .

Proof. One checks without any difficulty that the inclusion [L2(a, b;X )]′ ⊃ L2(a, b;X ′) holds.
Conversely, the inclusion [L2(a, b;X )]′ ⊂ L2(a, b;X ′) and (3.23) result from the Riesz representa-
tion theorem applied to X and to the space L2(a, b;X ) equipped with the scalar product

(Φ, Ψ) 7→
∫ b

a
(Φ(·, s), Ψ(·, s))X ds.

■

By applying Lemma 3.10 with (a, b) = (0, 1) and X := H1/2(Îτ ), we deduce that SΘ is an isomor-
phism from H

−1/2
Θ# (Στ

#) to L2(0, 1;H−1/2(Îτ )). Moreover, the bijectivity of SΘ implies that:

H
−1/2
Θ# (Στ

#) =
{
Ψ / SΘΨ ∈ L2(0, 1;H−1/2(Îτ ))

}
. (3.24)

Finally, (3.22) combined with (3.23) leads to the following, which is analogous to (3.14):

∀ (Φ,Ψ) ∈ H
1/2
Θ# (Στ

#)×H
−1/2
Θ# (Στ

#),
〈
Ψ, Φ

〉
Στ

#

=
1

θ1

∫ 1

0

〈
SΘΨ(·, s), SΘΦ(·, s)

〉
Îτ
ds. (3.25)

In what follows, H−1/2
Θ# (Στ

#) is endowed with the norm Ψ 7→ ∥SΘΨ∥
L2(0,1;H−1/2(Îτ ))

.

At last, we are able to define the normal trace operator thanks to the next result.

Proposition 3.11. Given τ ∈ ∂Ix, the normal trace application γτ1,# defined by γτ1,#W := (ΘW ·n)|Στ
#

for any W ∈ [C∞
0,#(Ω#)]

2, extends by continuity to a linear and surjective map still denoted by γτ1,#,

and defined from HΘ#(div;Ω#) to H−1/2
Θ# (Στ

#).

Moreover, we have the Green’s formula: for any V ∈ H1
Θ#(Ω#) and W ∈ HΘ#(div;Ω#),∫

Ω#

[
(t∇ΘW ) V +W · tΘ∇V

]
=
∑
τ∈∂Ix

〈
ΘW · n, V

〉
Στ

#

, (3.26)

where we have written abusively ΘW · n ≡ (ΘW · n)|Στ
#

instead of γτ1,#W .

Remark 3.12. Note that the integrals on ∂Ω# ∩ {z2 ∈ {0, 1}} do not appear in the Green’s formula
(3.26) because the functions are “periodic” in the e2–direction (see Remark 3.6).
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Proof of Proposition 3.11. Similarly to the proof of Proposition 3.8, we begin by observing that
SΘ commutes with γτ1,# in the sense that for any W ∈ [C∞

0,#(Ω#)]
2 (with n = ±ex and n = ±ex),

∀ s ∈ (0, 1), SΘ
(
(ΘW · n)|Στ

#

)
(·, s) =

(
SΘW (·, s) · n

)
|
Îτ
. (3.27)

Equation (3.27) extends to W ∈HΘ#(div;Ω#) using (i) the density of [C∞
0,#(Ω#)]

2 in HΘ#(div;Ω#),
(ii) the continuity of the shear map SΘ from HΘ#(div;Ω#) to L2(0, 1;H(div;Q)) (Corollary 3.4)
and from H

−1/2
Θ# (Σ#) to the space L2(0, 1;H−1/2(Îτ )) (by definition (3.19)), and (iii) the continuity

from L2(0, 1;H(div;Q)) to L2(0, 1;H−1/2(Îτ )) of the following normal trace application:

∀ WΘ ∈ L2(0, 1;H(div;Q)), γ1WΘ(·, s) :=
(
WΘ(·, s) · n

)
|
Îτ
,

which follows directly from the classical trace theorem in H(div;Q).

Since SΘ is an isomorphism, (3.20) implies that γτ1,# = S −1
Θ γ1SΘ . The continuity and surjectivity

of γτ1,# then follows from the continuity of (γ1,SΘ ,S
−1
Θ ) and from the surjectivity of γ1.

To finish we prove the Green’s formula (3.26). For V ∈ H1
Θ#(Ω#) and W ∈ HΘ#(div;Ω#), the

classical Green formula applied to (SΘV (·, s),SΘW (·, s)) ∈ H1(Q) × H(div;Q) for almost any
s ∈ (0, 1) and integrated with respect to s leads to

∫ 1

0

∫
Q

[ t∇x(SΘW ) SΘV + SΘW · ∇xSΘV ](x, s) dxds

=
∑
τ∈∂Ix

∫ 1

0

〈
(SΘW (·, s) · n)|

Îτ
, SΘV (·, s)|

Îτ

〉
Îτ
ds,

where we recall that ⟨·, ·⟩
Îτ

is the duality product between H−1/2(Îτ ) and H1/2(Îτ ). To conclude,
we use the properties (3.14, 3.17, 3.18) of SΘ for the left-hand side, as well as the identity (3.25)
for the right-hand side. ■

3.5 Subspaces of periodic functions in a cylinder

We now adress the case (C.2) of the cylinder. In addition to the strip Ω# = Ix × R × (0, 1) and the
interface Στ

# = {τ}×R× (0, 1) defined in Section 3.4 for I1 = R, we also introduce the cylinder and
the interface

Ω#2 := Ix × (0, 1)× (0, 1) and Στ
#2 := {τ} × (0, 1)× (0, 1), (3.28)

where the subscript “#2” refers to the boundedness of the domains in the e1 and the e2–directions.

Note that Ω#2 and Στ
#2 correspond to the domains Ω# and Στ

# in (3.4) with I1 = (0, 1). Therefore,

one can use the spaces H1
Θ#(Ω#2), HΘ#(div;Ω#2), H1/2

Θ# (Στ
#2), and H

−1/2
Θ# (Στ

#2). In the sequel, we
assume that Ix ̸= R, so that ∂Ix ̸= ∅.

For the purpose of Sections 4.2 and 4.3, we want to define spaces of H1
Θ or HΘ(div)–functions

in Ω#2 which are 1–periodic with respect to z1 and z2. To do so, let us begin with the following
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definition.

Definition 3.13. Let V ∈ [L2(Ω#2)]d. The periodic extension E1
#V ∈ [L2

loc(Ω#)]
d of V in the e1–

direction is defined by:

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, (E1
#V )(x + ne1) := V (x). (3.29)

For Φ ∈ L2(Στ
#2), we define E1

#Φ ∈ L2
loc(Σ

τ
#) similarly, with x ∈ Στ

#2 instead of x ∈ Ω#2 .

In addition, let C∞
0,#2(Ω#2) be the space of smooth functions in Ω#2 that are compactly supported in

the ex–direction and 1–periodic in the e1 and e2–directions, namely

C∞
0,#2(Ω#2) :=

{
V ∈ C∞

0 (Ω#2) / E1
#V ∈ C∞

0,#(Ω#)
}
, (3.30)

where C∞
0,#(Ω#) is given by (3.12). Note that C∞

0,#2(Ω#2) contains C∞
0 (Ω#2), and therefore, is dense

in L2(Ω#2).

Now, we introduce H1
Θ#2(Ω#2) (resp. HΘ#2(div;Ω#2)) which is defined as the closure of C∞

0,#2(Ω#2)

(resp. [C∞
0,#2(Ω#2)]2) in H1

Θ(Ω#2) (resp. HΘ(div;Ω#2)):

H1
Θ#2(Ω#2) := C∞

0,#2(Ω#2)
H1

Θ(Ω#2)
and HΘ#2(div;Ω#2) := [C∞

0,#2(Ω#2)]2
HΘ(div;Ω#2)

. (3.31)

We note that H1
Θ#2(Ω#2) and HΘ#2(div;Ω#2) are respectively closed subspaces of H1

Θ#(Ω#2) and
HΘ#(div;Ω#2), and hence, are Hilbert spaces when equipped with the respective norms of these
last spaces.

Remark 3.14. Similarly to Remark 3.6, for smooth functions, the definition of H1
Θ#2(Ω#2) corresponds

to periodicity in the e1 and e2–directions. More generally, one could show the characterization

H1
Θ#2(Ω#2) = {V ∈ H1

Θ(Ω#2) / V |z1=0 = V |z1=1 and V |z2=0 = V |z2=1},

where the equalities have to be understood not in the L2 sense, but in the L2
loc sense. We refer to [2,

Section 3.2.1] for similar considerations.

The trace operator on Στ
#2 (τ ∈ ∂Ix) defined in Section 3.3 for functions in H1

Θ#(Ω#2) enables us to
introduce

H
1/2
Θ#2(Στ

#2) :=
{
V |Στ

#2
/ V ∈ H1

Θ#2(Ω#2)
}
, (3.32)

to which we associate the graph norm. Let H−1/2
Θ#2 (Στ

#2) be the topological dual space of H1/2
Θ#2(Στ

#2),

equipped with the dual norm. The duality product ⟨·, ·⟩Στ
#2

between H−1/2
Θ#2 (Στ

#2) and H1/2
Θ#2(Στ

#2) is
defined as a natural extension of the L2(Στ

#2)–scalar product.

The density of C∞
0,#2(Ω#2) in H1

Θ#2(Ω#2), the density of [C∞
0,#2(Ω#2)]2 in HΘ#2(div;Ω#2), and the

continuity of the trace operator on Στ
#2 lead directly to the next result.
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Proposition 3.15. For τ ∈ ∂Ix, the normal trace map γτ1,#2 defined by γτ1,#2W := (ΘW · n)|Στ
#2

for
any W ∈ [C∞

0,#2(Ω#2)]2 extends by continuity to a linear and surjective map still denoted by γτ1,#2 , and

defined from HΘ#2(div;Ω#2) to H−1/2
Θ#2 (Στ

#2).

Moreover, we have the Green’s formula: for any V ∈ H1
Θ#2(Ω#2) and W ∈ HΘ#2(div;Ω#2),∫

Ω
#2

[
(t∇ΘW ) V +W · tΘ∇V

]
=
∑
τ∈∂Ix

〈
(ΘW · n), V

〉
Στ

#2
, (3.33)

where we have abusively written (ΘW · n) ≡ (ΘW · n)|Στ
#2

instead of γτ1,#2W .

We finish with the following result, which will be used in Section 4.3. The proof is similar to the
proof of the jump rule for isotropic Sobolev spaces, and relies on the Green’s formula (3.33).

Proposition 3.16. Assume that Ω#2 = Ω1
#2 ∪ Ω2

#2 where Ω1
#2 and Ω2

#2 are disjoint cylinders defined by

Ωi
#2 := J i

x × (0, 1)× (0, 1) ⊂ Ω#2 , ∀ i ∈ {1, 2}.

where J1
x ∪ J2

x = Ix and J1
x ∩ J2

x = {τ} (see Figure 10). Let Στ
#2 := Ω1

#2 ∩ Ω2
#2 .

(a). Let Vi ∈ H1
Θ#2(Ωi

#2), i ∈ {1, 2}. Then the function defined by

a. e. x ∈ Ω#2 , V (x) :=

{
V1(x) if x ∈ Ω1

#2

V2(x) if x ∈ Ω2
#2

belongs to H1
Θ#2(Ω#2) if and only if V1|Στ

#2
= V2|Στ

#2
.

(b). Let Wi ∈ HΘ#2(div;Ωi
#2), i ∈ {1, 2}. Then the function given by

a. e. x ∈ Ω#2 , W (x) :=

{
W1(x) if x ∈ Ω1

#2

W2(x) if x ∈ Ω2
#2

belongs to HΘ#2(div;Ω#2) if and only if (ΘW1 · ex)|Στ
#2

= (ΘW2 · ex)|Στ
#2

.

x

z1
Ω2

#2

Ω1
#2

z2

Figure 10: The domains Ω1
#2 and Ω2

#2 in Proposition 3.16 for Ix = R, J1
x = R+, and J2

x = R−.
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4 The solution of the augmented periodic problem

Using the function spaces introduced in Section 3, we propose in this section a rigorous version of
the problem (3.1). This problem is studied and solved by exploiting the periodic nature of (Ap, ρp),
following the steps (a)–(c) described in Section 1.2.

4.1 The augmented strip problem and its quasi-2D structure

We consider the 3–dimensional strips Ω#,Ω
±
# and the 2–dimensional interface Σ# defined by

Ω# := {(x, z1, z2) ∈ R3 / z2 ∈ (0, 1)},

Ω±
# := {(x, z1, z2) ∈ Ω# / ± x > 0},

Σ# := {(x, z1, z2) ∈ Ω# / x = 0}.

(4.1)

These domains are represented in Figure 11. We recall the use of the indexing Ων
#, ν ∈ {∅,+,−}

where by convention, Ων
# = Ω# for ν = ∅. Note that Ων

# and Σ# correspond respectively to the
domains Ω# := Ix × I1 × (0, 1) and Σ# := {0} × I1 × (0, 1) defined by (3.4) with

Ix := Rν , I1 := R, Q = Rν × R, and Î = {0} × R.

Therefore Sections 3.2, 3.3, and 3.4 enable us to use H1
Θ#(Ω

ν
#), HΘ#(div; Ω

ν
#) which are defined by

(3.16), the space H1/2
Θ# (Σ#) given by (3.19) and its dual H−1/2

Θ# (Σ#) characterized by (3.24), and
the trace and normal trace applications on Σ#.

x

z1
Ω−

#

z2

Ω+
#

Figure 11: The half-strips Ω+
# and Ω−

# defined in (4.1)

Using the formal observations in the step (a) of Section 1.2, we introduce for any G ∈ H
−1/2
Θ# (Σ#)

the strip problem: find U ∈ H1
Θ(Ω#) such that

− t∇ΘAp
tΘ∇U − ρp ω

2 U = 0 in Ω+
# ∪ Ω−

# ,

U ∈ H1
Θ,#(Ω#), (Ap

tΘ∇U)|Ω±
#
∈ HΘ#(div; Ω

±
#),

J(ΘAp
tΘ∇U) · exKΣ#

= G,

(P#)

where Ap, ρp are given by (2.5) for Configuration (A ) and by (2.10, 2.12) for Configuration (B).
Note that from the first equation, one has (Ap

tΘ∇U)|Ω±
#
∈ HΘ(div; Ω

±
#). Formally speaking, the

second equation requires U and (Ap
tΘ∇U)|Ω±

#
to be 1–periodic with respect to z2 (see Remark 3.6).
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Finally, JΘW · exKΣ#
is the jump accross Σ# of the normal components of a function W ∈ [L2(Ω#)]

2

which satisfies W± := W |Ω±
#
∈ HΘ#(div; Ω

±
#):

JΘW · exKΣ#
:= (ΘW− · ex)|Σ#

− (ΘW+ · ex)|Σ#
, (4.2)

and the third equation holds in H−1/2
Θ# (Σ#).

In what follows, we shall study Problem (P#) and emphasize its fibered structure as a “concate-
nation” of 2–dimensional problems. For that latter purpose, it is useful to introduce the family of
functions indexed by s ∈ R:

∀ s ∈ R, As(x) := Ap(Θx+ s e2) and ρs(x) := ρp(Θx+ s e2), ∀ x ∈ R2. (4.3)

Note that the restrictions of As and ρs to R2
± are well-defined and continuous since for both Configu-

rations (A ) and (B), Ap and ρp depend in a simple manner on A and ρ which are continuous on R2
±.

Furthermore, s 7→ As and s 7→ ρs are continuous from R to L∞(R2;R2×2) and L∞(R2) respectively.
Note also that for any s ∈ R, As and ρs satisfy the ellipticity assumption (1.2), and that As+1 = As

and ρs+1 = ρs.

Given ψ ∈ H−1/2(σ), we consider the 2–dimensional problem: Find us ∈ H1(R2) such that − t∇As(x)∇us(x)− ρs(x)ω
2 us(x) = 0 for x ∈ R2

+ ∪ R2
−,

JAs∇us · exKσ = ψ.
(Ps)

Remark 4.1. One has A0 = A and ρ0 = ρ, and (P) corresponds to (Ps) with s = 0 and ψ = g.

Because of the ellipticity assumption (1.2) and the presence of absorption (1.1), Problem (Ps)
admits a unique solution us[ψ] ∈ H1(R2). Furthermore, the well-posedness of Problem (P#) and
the link between its solution U and the solutions us[ψ] is given by the following result.

Proposition 4.2. For any G ∈ H
−1/2
Θ# (Σ#), Problem (P#) is equivalent to the variational problem∣∣∣∣∣∣∣∣

Find U ∈ H1
Θ#(Ω#) such that ∀ V ∈ H1

Θ#(Ω#),∫
Ω#

[
(Ap

tΘ∇U) · (tΘ∇V )− ρp ω
2 U V

]
=
〈
G, V

〉
Σ#

,
(FV#)

which is well-posed in H1
Θ#(Ω#). Furthermore,

a. e. s ∈ (0, 1), E2
#U(x, θ1 z, θ2 z + s) = us(x), a. e. x = (x, z) ∈ R2, (4.4)

where U = U [G] and us = us[gs] with gs := SΘG(·, s) are the respective solutions of Problems (P#)
and (Ps).

Proof. To obtain the variational formulation (FV#), one multiplies the volume equation in (P#)
by V ∈ H1

Θ#(Ω#), and integrates over Ω+
# and Ω−

# separately. Since Ap
tΘ∇U ∈ HΘ#(div; Ω

±
#), we
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then apply Green’s formula (3.26) on each domain Ω+
# and Ω−

# , add the corresponding identities,
and we finally use the transmission condition (that is, the third equation in (P#)) to conclude.

The well-posedness of the variational formulation (FV#) is guaranteed by Lax-Milgram’s theorem.
In particular, the bilinear form A associated to (FV#) satisfies

∀ V ∈ H1
Θ#(Ω#), Im

[A (V, V )

ω

]
= − Imω

∫
Ω#

[ 1

|ω|2 Ap| tΘ∇V |2 + ρp |V |2
]
, (4.5)

and therefore is coercive in H1
Θ#(Ω#) due to the presence of absorption (1.1), that is, Imω > 0.

Now we shall prove (4.4), which will enable us to deduce the equivalence between (FV#) and
(P#) at last. To this end, given s ∈ (0, 1), we show that SΘU(·, s) ∈ H1(R2) satisfies the same
problem as us[SΘG(·, s)]. For V ∈ H1

Θ#(Ω#), the properties (3.17, 3.14) of SΘ combined with
(FV#) and (3.25) imply that

∫ 1

0

∫
R2

[
As∇xSΘU(·, s) · ∇xSΘV (·, s)− ρs ω

2 SΘU(·, s)SΘV (·, s)
]
dxds

= θ1

∫
Ω#

[
(Ap

tΘ∇U) · (tΘ∇V )− ρp ω
2 U V

]
= θ1

〈
G, V

〉
Σ#

=

∫ 1

0

〈
SΘG(·, s), SΘV (·, s)|σ

〉
σ
ds. (4.6)

Now we choose V such that SΘV (x, s) = φ(s) v(x), with φ ∈ L2(0, 1) and v ∈ H1(R2). Then it
follows that ∇xSΘV (x, s) = φ(s)∇v(x), and (4.6) being true for any φ ∈ L2(0, 1) leads for almost
any s ∈ (0, 1) to the equation

∀ v ∈ H1(R2),

∫
R2

[
As∇xSΘU(·, s) · ∇v − ρs ω

2 SΘU(·, s) v
]
dx =

〈
SΘG(·, s), v

〉
σ
,

which is equivalent to the transmission problem (Ps) satisfied by us[SΘG(·, s)]. From the unique-
ness of the solution of (Ps), we then deduce SΘU(·, s) = us[SΘG(·, s)] which is (4.4).

It remains to prove the equivalence between Problem (P#) and its variational formulation (FV#).
But we have shown in the last step that if U satisfies (FV#), then (SΘU)(·, s) = us[SΘG(·, s)].
Combining this result with the properties (3.17, 3.18) of SΘ thus leads to the first and second
equations in (P#), while the transmission condition (that is, the third equation in (P#)) follows
from (3.25) and from the transmission condition satisfied by us[SΘG(·, s)] in (Ps). ■

To conclude this section, we propose in Proposition 4.4 a rigorous formulation of the ansatz (1.8).
To begin, note that due to the uniform boundedness of (As)s and (ρs)s in L∞(R2), (us[ψ])s is
bounded uniformly with respect to s:

∃ c > 0, ∀ s ∈ R,
∥∥us[ψ]∥∥H1(R2)

≤ c ∥ψ∥H−1/2(σ), ∀ ψ ∈ H−1/2(σ). (4.7)
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By combining this property with the continuity of As and ρs in L∞(R2) with respect to s, one can
show that s 7→ us[ψ] is a continuous application. This is the object of the next proposition, whose
proof is similar to the proof of [2, Proposition 3.18].

Proposition 4.3. For ψ ∈ H−1/2(σ), s 7→ us[ψ] is continuous from R to H1(R2) and is 1–periodic.

The next proposition shows how the solution u of (P) can be retrieved from the solution U [G] of
the augmented problem (P#) for a well-chosen boundary data G (see Remark 4.5).

Proposition 4.4. Consider G ∈ H
−1/2
Θ# (Σ#) such that s 7→ SΘG(·, s) ∈ H−1/2(σ) is continuous at 0,

and that SΘG(·, 0) = g, where g ∈ H−1/2(σ) is the jump data in (P). Then setting U = U [G], the
map s 7→ (SΘU)(·, s) ∈ H1(R2) is continuous as well at 0, and

a. e. x = (x, z) ∈ R2, u(x) = E2
#U(x, θ1 z, θ2 z). (4.8)

Proof. Since ψ 7→ us[ψ] is continuous from H−1/2(σ) to H1(R2) uniformly with respect to s (ac-
cording to (4.7)) on one hand, and s 7→ us[ψ] is continuous (according to Proposition 4.3) on the
other hand, it follows that s 7→ us[SΘG(·, s)] is continuous at 0 as a product of continuous maps.
Consequently (4.4) becomes true for s = 0, and thus leads to (4.8). ■

Remark 4.5. If g ∈ L2(σ), a class of augmented data G ∈ H
−1/2
Θ# (Σ#) such that SΘG(·, 0) = g is

given by
a. e. (0, z1, z2) ∈ Σ#, G(0, z1, z2) := f(z2 − z1θ2/θ1) g(0, z1/θ1),

where f ∈ C 0(R) is such that f(s + 1) = f(s) and f(0) = 1 (e.g. f(s) = e2iπℓs, ℓ ∈ Z). In fact, it
can be seen that SΘG(0, z, 0) := E2

#G(0, θ1z, θ2z) = f(0)g(0, z) = g(0, z). If g ∈ H−1/2(σ), then the
above expression of G can be extended by duality.

4.2 Reduction to waveguide problems via the Floquet-Bloch transform

Now that we have shown that to solve the original problem (P), it is sufficient to study the aug-
mented strip problem (P#), we begin by taking advantage of the periodicity with respect to z1 by
applying a Floquet-Bloch transform. Using the properties of the 1D Floquet-Bloch transform (see
[28] or [30, Section 2.2]), we introduce in Section 4.2.1 the partial Floquet-Bloch transform with
respect to z1, and present its properties inH1

Θ#(Ω#) orHΘ#(div; Ω#). The transform is then applied
to the solution of (P#) in Section 4.2.2, leading to a family of half-guide problems denoted (P#2)
later on, and parameterized by the Floquet dual variable.

4.2.1. The partial Floquet-Bloch transform with respect to z1. We begin by introducing

∀ ν ∈ {∅,+,−}, Ων
#2 := {(x, z1, z2) ∈ Ων

# / z1 ∈ (0, 1)},

Σ#2 := {(x, z1, z2) ∈ Σ# / z1 ∈ (0, 1)},
(4.9)

where the subscript “#2” indicates the boundedness of the domains in the e1 and the e2–directions.
These domains are represented in Figure 12. Note that Ων

#2 and Σ#2 correspond respectively to the

26



domains Ω#2 := Ix × I1 × (0, 1) and Σ#2 := {0} × I1 × (0, 1) defined by (3.28) with

Ix := Rν , I1 := (0, 1), Q = Rν × (0, 1/θ1), and Î = {0} × (0, 1/θ1).

Therefore thanks to Section 3.5, we can use the spaces H1
Θ#2(Ω#2), HΘ#2(div; Ω#2) given by (3.31)

(see also Remark 3.14 for the meaning of these spaces) as well as the space H1/2
Θ#2(Σ#2) defined by

(3.32), its dual H−1/2
Θ#2 (Σ#2), and the trace and normal trace operators on Σ#2 .

x

z1
Ω−

#2

Ω+
#2

z2

Figure 12: The half-cylinders Ω+
#2 and Ω−

#2 defined in (4.9)

Let d ∈ {1, 2}. The Floquet-Bloch transform in the e1–direction is defined by

F : C∞
0 (Ω#)

d −→ [C∞(Ω# × R)]d

V 7−→ V̂ ,


V̂ (x, k) :=

1√
2π

∑
n∈Z

V (x + ne1) e−ik(z1+n),

∀ x = (x, z1, z2) ∈ Ω#, k ∈ R.

(4.10)

Note that x 7→ V̂ (x, k) is Ze1–periodic, and k 7→ eikz1 V̂ (x, k) is 2π–periodic. Therefore, V̂ can be
fully constructed from its knowledge on the cell Ω#2 × (−π, π). For this reason, the study of V̂ will
be restricted to Ω#2 × (−π, π).

The transform F extends to an isometry from [L2(Ω#)]
d to L2(−π, π; [L2(Ω#2)]d), with

∀ U ,V ∈ [L2(Ω#)]
d,

∫ π

−π

∫
Ω

#2

FU(x, k) · FV (x, k) dxdk =

∫
Ω#

U · V . (4.11)

Moreover, F is an isomorphism, with the inversion formula: for any Û ∈ L2(−π, π; [L2(Ω#2)]d),

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, (F−1Û)(x + ne1) =
1√
2π

∫ π

−π
Û(x, k) eik(z1+n) dk. (4.12)

In addition, for Φ ∈ C∞
0 (Σ#), we define Φ̂ := FΦ ∈ C∞

0 (Σ# × R) as in (4.10) by choosing x ∈ Σ#.
Then F extends to an isometry between L2(Σ#) and L2(−π, π;L2(Σ#2)).

What makes the Floquet-Bloch transform a valuable tool in the context of this paper is on one hand
the fact that it commutes with the multiplication by Ze1–periodic coefficients:

∀ µ ∈ L∞(Ω#) such that µ(·+ e1) = µ, ∀ V ∈ L2(Ω#), F(µV ) = µFV, (4.13)

and on the other hand its action on differential operators. More precisely, the next proposition gives
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the properties of F in H1
Θ#(Ω#), HΘ#(div; Ω#), and H1/2

Θ# (Σ#). Its proof is delayed to Appendix C.

Proposition 4.6.

(a). F is an isomorphism from H1
Θ#(Ω#) to L2(−π, π;H1

Θ#2(Ω#2)), and

∀ V ∈ H1
Θ#(Ω#), a. e. k ∈ (−π, π), F(tΘ∇V )(·, k) = tΘ (∇+ ike1)FV (·, k). (4.14)

(b). F is an isomorphism from HΘ#(div; Ω#) to L2(−π, π;HΘ#2(div; Ω#2)), and

∀ W ∈ HΘ#(div; Ω#), ∀ k ∈ (−π, π), F(t∇ΘW )(·, k) = t(∇+ ike1)ΘFW (·, k). (4.15)

(c). F is an isomorphism from H
1/2
Θ# (Σ#) to L2(−π, π;H1/2

Θ#2(Σ#2)).

We highlight the following consequence of Proposition 4.6 for future reference.

Corollary 4.7. For any U, V ∈ H1
Θ#(Ω#),∫ π

−π

∫
Ω

#2

tΘ (∇+ ike1)FU(x, k) · tΘ (∇+ ike1)FV (x, k) dxdk =

∫
Ω#

tΘ∇U · tΘ∇V . (4.16)

Finally, F extends by duality as an isomorphism from H
−1/2
Θ# (Σ#) to X ′ := [L2(−π, π;H1/2

Θ#2(Σ#2))]′:

∀ Ψ ∈ H
−1/2
Θ# (Σ#),

〈
FΨ, Φ̂

〉
X ′,X

:=
〈
Ψ, F−1Φ̂

〉
Σ#
, ∀ Φ̂ ∈ X .

Since H1/2
Θ#2(Σ#2) is a Hilbert space, Lemma 3.10 implies X ′ = L2(−π, π;H−1/2

Θ#2 (Σ#2)) and

∀ (Φ,Ψ) ∈ H
1/2
Θ# (Σ#)×H

−1/2
Θ# (Σ#),

〈
Ψ, Φ

〉
Σ#

=

∫ π

−π

〈
FΨ(·, k), FΦ(·, k)

〉
Σ

#2
dk. (4.17)

4.2.2. Application to the augmented strip problem. Thanks to the properties of the Floquet-
Bloch transform F given in Section 4.2.1, we deduce directly the following proposition.

Proposition 4.8. Let G ∈ H
−1/2
Θ# (Σ#2). Then the solution U [G] ∈ H1

Θ#(Ω#) of (P#) is given by

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, U [G](x+ne1) =
1√
2π

∫ π

−π
Ûk[Ĝk](x) e−ik(z1+n) dk, (4.18)

where Ĝk := FG(·, k) ∈ H
−1/2
Θ#2 (Σ#2) a. e. k ∈ (−π, π), and where Ûk[Ĝk] := FU [G](·, k) is the

unique solution of the well-posed waveguide problem: find Ûk ∈ H1
Θ(Ω#2) such that

− t(∇+ ike1)Θ Ap
tΘ (∇+ ike1) Ûk − ρp ω

2 Ûk = 0 in Ω+
#2 ∪ Ω−

#2 ,

Ûk ∈ H1
Θ#2(Ω#2), (Ap

tΘ (∇+ ike1) Ûk)|Ω±
#2

∈ HΘ#2(div; Ω±
#2),

J(ΘAp
tΘ (∇+ ike1) Ûk) · exKΣ

#2 = Ĝk,

(P#2)
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whose variational formulation is given by∣∣∣∣∣∣∣∣
Find Ûk ∈ H1

Θ#2(Ω#2) such that ∀ V ∈ H1
Θ#2(Ω#2),∫

Ω
#2

[
(Ap

tΘ (∇+ ike1) Ûk · tΘ (∇+ ike1)V − ρp ω
2 Ûk V

]
=
〈
Ĝk, V

〉
Σ

#2
.

(FV#2)

Proof. On one hand, Proposition 4.6 applied to (P#) shows that Ûk[Ĝk] := FU [G](·, k) satisfies
(P#2). On the other hand, Corollary 4.7 applied to the variational formulation (FV#) implies that
Ûk satisfies (FV#2). The equivalence between (P#2) and (FV#2) then follows from the equivalence
between the strip problem (P#) and its variational formulation (FV#) (Proposition 4.2). ■

Proposition 4.8 shows that U [G] can be reconstructed in the strip Ω# provided that one knows how
to solve the waveguide problem (P#2) for any k ∈ (−π, π). The solution of this waveguide problem
is the object of the next section.

4.3 Reducing the waveguide problem to the interface Σ#2

In this section, the Floquet variable k ∈ (−π, π) is fixed. We investigate the waveguide problem
(P#2) whose solution is denoted by Ûk[Ĝk]. To this end, we reformulate the problem as an equation
on Σ#2 involving DtN operators associated to half-guide problems defined in Ω±

#2 .

Given a boundary data Φ ∈ H
1/2
Θ#2(Σ#2), we consider the half-guide problem: find Û±

k ∈ H1
Θ(Ω#2)

such that 
− t(∇+ ike1)Θ A±

p
tΘ (∇+ ike1) Û±

k − ρ±p ω
2 Û±

k = 0 in Ω±
#2 ,

Û±
k ∈ H1

Θ#2(Ω±
#2), A±

p
tΘ (∇+ ike1) Û±

k ∈ HΘ#2(div; Ω±
#2),

Û±
k = Φ on Σ#2 .

(P±
#2)

Under Assumptions (1.1, 1.2), Lax-Milgram’s theorem combined with a lifting argument ensures
that (P±

#2) admits a unique solution

Û±
k [Φ] ∈ H1

Θ#2(Ω±
#2).

Let Λ̂±
k ∈ L (H

1/2
Θ#2(Σ#2), H

−1/2
Θ#2 (Σ#2)) be the DtN operator defined by

∀ Φ ∈ H
1/2
Θ#2(Σ#2), Λ̂±

k Φ :=
(
ΘAp

tΘ (∇+ ike1) Û±
k [Φ] · n

)
|Σ

#2 ,

or equivalently (thanks to the Green’s formula (3.33))

∀ Φ,Ψ ∈ H
1/2
Θ#2(Σ#2),

〈
Λ̂±
k Φ, Ψ

〉
Σ

#2
= A ±

k

(
Û±
k [Φ], Û±

k [Ψ]
)
,

where A ±
k (U, V ) :=

∫
Ω±

#2

[
(A±

p
tΘ (∇+ ike1)U · tΘ (∇+ ike1)V − ρ±p ω

2 U V
]
. (4.19)
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The above weak form allows to show the following result.

Proposition 4.9. The operators Λ̂+
k , Λ̂−

k , and Λ̂+
k +Λ̂−

k are coercive and thus invertible fromH
1/2
Θ#2(Σ#2)

to H−1/2
Θ#2 (Σ#2).

Proof. Let ν ∈ {+,−}. From (4.19), we have for any Φ ∈ H
1/2
Θ#2(Σ#2) the equality

Im

[〈Λ̂ν
k Φ, Φ

〉
Σ

#2

ω

]
= − Imω

∫
Ω#

[
1

|ω|2 Ap

∣∣ tΘ (∇+ ike1) Ûν
k [Φ]

∣∣2 + ρp |Ûν
k [Φ]|2

]
,

implying that Λ̂ν
k is coercive, due to absorption (Imω > 0) and to the continuity of the trace operator

on Σ#2 . The same holds for Λ̂+
k + Λ̂−

k by summing the above equality over ν ∈ {+,−}. ■

By linearity and by uniqueness of the solutions (P#2) and (P±
#2), the waveguide solution Ûk[Ĝk]

admits the expression

a. e. x ∈ Ω±
#2 , Ûk[Ĝk](x) =

{
Û+
k [Φk](x) if x ∈ Ω+

#2 ,

Û−
k [Φk](x) if x ∈ Ω−

#2 ,
(4.20)

where Φk := Ûk|Σ
#2 is given by the jump condition satisfied by Ûk (i.e. the last equation in (P#2)):

(Λ̂+
k + Λ̂−

k ) Φk = Ĝk in H
−1/2
Θ#2 (Σ#2). (4.21)

Note that this equation is well-posed since Λ̂+
k +Λ̂−

k is coercive according to Proposition 4.9. Figure
13 illustrates the link between Ûk[Ĝk] and Û±

k [Φk].

x

z1

Ω−
#2

Ω+
#2

Ûk[Ĝk]

z2 Û−
k [Φk]

Φk, solution of (4.21)

Û+
k [Φk]

Figure 13: Expression (4.20) of the waveguide solution Ûk with respect to Û±
k [Φk].

4.4 The DtN approach for the half-guide problems

Our objective is to solve the half-guide problems (P±
#2) defined in Ω+

#2 and Ω−
#2 and to compute the

DtN operators Λ̂+
k and Λ̂−

k . Since these problems are similar to each other, we will restrict ourselves
to the half-guide problem (P+

#2) set in Ω+
#2 and the computation of Λ̂+

k . Exploiting the periodicity
of A+

p and ρ+p in the ex–direction, we resort to the method developed in [12, 22] for the elliptic
Helmholtz equation − t∇Ap∇ U − ρω2 U = 0, and in [2] for the non-elliptic 2D case.
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We also introduce some additional notation:

C0
#2 := (0, 1)3 and Cn

#2 := C0
#2 + nex ∀ n ∈ N, so that Ω+

#2 =
⋃
n∈N

Cn
#2 . (4.22)

The interface between the cells Cn
#2 and Cn+1

#2 is denoted by Σn
#2 := Σ#2 + nex. These domains are

represented in Figure 14. By periodicity, one can identify each cell Cn
#2 with the periodicity cell C0

#2

denoted C#2 , and each interface Σn
#2 with the interface Σ0

#2 denoted Σ#2 .

x

z1

C0
#2 C1

#2 C2
#2 C3

#2

Σ0
#2 Σ1

#2 Σ2
#2 Σ3

#2 Σ4
#2

z2

Figure 14: The cells Cn
#2 and the interfaces Σn

#2 in (4.22)

Note that for any n ∈ N, Cn
#2 and Στ

#2 , τ ∈ {n, n+1}, correspond respectively to Ω#2 := Ix×I1×(0, 1)

and Στ
#2 := {τ} × I1 × (0, 1) defined by (3.28) with

Ix := (n, n+ 1), I1 := (0, 1),

Thus Section 3.5 enables to use the space H1
Θ#2(Cn

#2) given by (3.31) as well as H1/2
Θ#2(Σn

#2) which
is defined by (3.32), its dual H−1/2

Θ#2 (Σn
#2), and the trace and the normal trace applications on Σn

#2 .
In the sequel, we will systematically use the obvious identifications H1

Θ#2(Cn
#2) ≡ H1

Θ#2(C#2) and

H
±1/2
Θ#2 (Σn

#2) ≡ H
±1/2
Θ#2 (Σ#2), even when not mentioned.

4.4.1. Structure of the half-guide solution. Consider the operator Pk ∈ L (H
1/2
Θ#2(Σ#2)):

∀ Φ ∈ H
1/2
Θ#2(Σ#2), PkΦ := Û+

k [Φ]|Σ1
#2
, (4.23)

where the boundedness property stems from the well-posedness of (P+
#2) and from the continuity

of the trace map on Σ1
#2 from H1

Θ#2(Ω
+
#2) to H

1/2
Θ#2(Σ1

#2) ≡ H
1/2
Θ#2(Σ#2). The operator Pk is called

the propagation operator, because it determines how the half-guide solution propagates from one
interface to the other, as the next result shows.

Proposition 4.10. For any Φ ∈ H
1/2
Θ#2(Σ#2), the solution Û+

k [Φ] of Problem (P+
#2) satisfies

∀ n ∈ N, a. e. x ∈ Ω#2 , Û+
k [Φ](x + nex) = Û+

k [(Pk)
nΦ](x), (4.24)
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so that
∀ n ∈ N, Û+

k [Φ]|Σn
#2

= (Pk)
nΦ. (4.25)

Furthermore, Pk has a spectral radius denoted by ρ(Pk), which is strictly less than 1.

Proof. The proof is a direct adaptation of [22, Theorem 3.1]. To prove (4.24), we begin with
n = 1 and we define Ũ [Φ] := Û+

k [Φ](· + ex). Then one has Ũ [Φ]|Σ
#2 = PkΦ. Moreover, by using

the change of variables x 7→ x+ e1 in (P+
#2) and the periodicity of A+

p and ρ+p along ex, one obtains

that Ũ [Φ] satisfies the same problem as Û+
k [PkΦ]. Consequently, the uniqueness of (P+

#2) leads to
(4.24) for n = 1. The extension to n > 1 follows by induction.

To prove that ρ(Pk) < 1, we use the following estimate whose proof is very similar to (1.5):

∃ c, α > 0,
∥∥Û+

k [Φ] exp(α Imω |x|)
∥∥
H1

Θ#2(Ω
+

#2)
≤ c ∥Φ∥

H
1/2

Θ#2(Σ#2)
.

Since (Pk)
nΦ = Û+

k [Φ]|Σn
#2

from to (4.24), the continuity of the trace application on Σn
#2 leads to

∃ c′, α > 0, ∀ n ∈ N, ∥(Pk)
n∥ ≤ c′ e−α Imωn.

One then concludes using Gelfand’s formula ρ(Pk) = lim
n→+∞

∥(Pk)
n∥1/n. ■

Proposition 4.10 shows that the restrictions of Û+
k [Φ] to the interfaces Σn

#2 can be fully expressed
with respect to the propagation operator Pk. Therefore, knowing Pk, one can construct Û+

k [Φ] using
solutions of problems defined in one periodicity cell, as shown in the next section.

4.4.2. Local cell problems. Given a boundary data Φ ∈ H
1/2
Θ#2(Σ#2) and j ∈ {0, 1}, let us introduce

the local Dirichlet cell problems: Find Ej
k ∈ H1

Θ(C#2) such that − t(∇+ ike1)Θ Ap
tΘ (∇+ ike1)E

j
k − ρp ω

2Ej
k = 0 in C#2 ,

Ej
k ∈ H1

Θ#2(C#2), Ap
tΘ (∇+ ike1)E

j
k ∈ HΘ#2(div; C#2),

(4.26a)

combined with the Dirichlet boundary conditions (see Figure 15)
E0

k [Φ]|Σ0
#2

= Φ and E0
k [Φ]|Σ1

#2
= 0

E1
k [Φ]|Σ0

#2
= 0 and E1

k [Φ]|Σ1
#2

= Φ.
(4.26b)
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Φ

T 00
k Φ

0

T 01
k Φ

E0
k [Φ]

x
z1

z2

0

T 10
k Φ

Φ

T 11
k Φ

E1
k [Φ]

Figure 15: Dirichlet conditions satisfied by E0
k and E1

k , and the DtN operators T jℓ
k given by (4.28).

These problems are well-posed thanks to Lax-Milgram’s theorem combined with a lifting argument.
Moreover, using the structure of Û+

k [Φ] given by Proposition 4.10, it follows by linearity that

∀ n ∈ N, Û+
k [Φ](·+ nex)|C

#2 = E0
k [(Pk)

nΦ] + E1
k [(Pk)

n+1Φ]. (4.27)

Therefore, if Pk is known, Û+
k [Φ] can be constructed cell by cell using the solutions Ej

k[Φ] of the
local cell problems (4.26). On the other hand, these local cell problems are involved in the charac-
terization of Pk. This is the object of the next section.

4.4.3. Characterization of the propagation operator via a Riccati equation. The goal of this
section is to characterize Pk using the local DtN operators defined for any j, ℓ ∈ {0, 1} by

∀ Φ ∈ H
1/2
Θ#2(Σ#2), T jℓ

k Φ = (−1)ℓ+1
(
ΘAp

tΘ (∇+ ike1) E
j
k[Φ] · ex

)
|Σℓ

#2
∈ H

−1/2
Θ#2 (Σ#2), (4.28)

By applying the second item of Proposition 3.16 to C0
#2 and C1

#2 in the cell by cell expression (4.27)

of Û+
k , it follows that Ap

tΘ (∇+ ike1) Û+
k · ex is continuous accross the interface Σ1

#2 , that is,

∀ Φ ∈ H
1/2
Θ#2(Σ#2), (Ap

tΘ (∇+ ike1) Û+
k [Φ] · ex)|Σ1

#2
= (Ap

tΘ (∇+ ike1) Û+
k [PkΦ] · ex)|Σ0

#2
,

or equivalently, for any Φ ∈ H
1/2
Θ#2(Σ#2),

(
Ap

tΘ (∇+ ike1)E0
k [Φ] · ex

)
|Σ1

#2
+
(
Ap

tΘ (∇+ ike1)E1
k [PkΦ] · ex

)
|Σ1

#2

=
(
Ap

tΘ (∇+ ike1)E0
k [PkΦ] · ex

)
|Σ0

#2
+
(
Ap

tΘ (∇+ ike1)E1
k [(Pk)

2Φ] · ex
)
|Σ0

#2
. (4.29)

This leads to a Riccati equation, which characterizes uniquely Pk as stated by the next result.

Proposition 4.11. The propagation operator Pk defined by (4.23) is the unique solution of the problem∣∣∣∣∣∣
Find P ∈ L (H

1/2
Θ#2(Σ#2)) such that ρ(P ) < 1 and

T 10
k P 2 + (T 00

k + T 11
k ) P + T 01

k = 0.
(4.30)
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Proof. We only present the outline of the proof which is detailed in [22, Theorem 4.1]. The exis-
tence is directly deduced from (4.29). On the other hand, the uniqueness is achieved by considering
an operator P̃ which satisfies (4.30), and by showing that for any Φ ∈ H

1/2
Θ#2(Σ#2), the function de-

fined cell by cell by Ũ [Φ](· + nex)|C
#2 := E0

k [(P̃)nΦ] + E1
k [(P̃)n+1Φ] satisfies the same half-guide

problem (P+
#2) as Û+

k [Φ], so that both solutions coincide in the half-guide Ω+
#2 , and in particular on

the interface Σ1
#2: P̃ Φ = Pk Φ. ■

One important point to note from the practical point of view is that the Riccati equation (4.30) only
involves the local DtN operators T ℓj

k which are defined from the solutions of the local cell problems
(4.26). These problems are computable numerically since they are defined in C#2 .

Finally, we deduce from (4.27) the following expression:

Λ̂+
k = T 10

k Pk + T 00
k . (4.31)

5 Algorithm and discretization

The method developed in the previous sections can be summarized before discretization as follows:

1. For any k ∈ [−π, π),

(a). solve the local cell problems (4.26) and compute the local DtN operators T jℓ
k given by

(4.28);

(b). determine the propagation operator Pk by solving the Riccati equation (4.30);

(c). deduce the DtN operator Λ̂+
k using (4.31);

(d). adapt Steps 1.(a) – 1.(c) for the half-guide Ω−
#2 in order to compute the DtN operator Λ̂−

k

thanks to cell problems defined in (−1, 0)× (0, 1)2;

(e). find the solution Φk of the interface equation (4.21);

(f). reconstruct the solution Ûk[Ĝk] of the waveguide problem (FV#2) using (4.20) and the
cell by cell expression (4.27) of Û±

k [Φ];

2. apply the inverse Floquet-Bloch transform (4.18) to reconstruct the solution U [G] of the aug-
mented strip problem (P#);

3. deduce the solution u of the 2D transmission problem (P) using (4.8), namely u(x) = U(Θx).

Since this algorithm holds at a continuous level, it has to be discretized with respect to the space and
the Floquet variables. The next section describes the discretization procedure, with an emphasis on
Steps 1 and 2.

5.1 Discretization issues

5.1.1. Semi-discretization with respect to the Floquet variable. The solution U [G] of the aug-
mented strip problem (P#) is obtained using the inverse Floquet-Bloch transform (4.18). In this
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expression, the integrand involves Ûk[Ĝk] which, in general, can only be computed numerically
(modulo an approximation) for a finite number of values of k ∈ [−π, π) (using Step 1). Thus, the
integral with respect to k in (4.18) has to be evaluated using a quadrature rule.

To this end, we consider a regular mesh of [−π, π) consisting of Nk intervals of equal size ∆k, and
of Nk + 1 equispaced points (kj)0≤j≤Nk

, with Nk > 0 and ∆k := 2π/Nk. The integral in (4.18) is
evaluated using a trapezoidal rule using kj as quadrature points, leading to an approximate solution
U∆k[G] of the augmented transmission problem (FV#):

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, U∆k[G](x + ne1) =
∆k√
2π

Nk∑
j=0

Ûkj [Ĝkj ](x) e
ikj(z1+n).

The choice of the trapezoidal rule is motivated in Remark 5.1.

Remark 5.1. If Imω > 0 and g ∈ L2(σ) is compactly supported, then similarly to (1.4), the solution
U [G] of (P#) decays exponentially in the e1–direction. This implies thanks to Paley-Wiener-type the-
orems (see e.g. [30, Theorem 2.2.2]) that the map k 7→ Ûk[Ĝk] := FU [G] (·, k) ∈ H1

Θ#2(Ω#2) is real
analytic.

Moreover, from the properties of the Floquet-Bloch transform, it is clear that k 7→ eik(z1+n)Ûk[Ĝk](x)
is 2π–periodic, a. e. x ∈ Ω#2 , ∀ n ∈ Z. This formal observation justifies the use of the trapezoidal rule,
which is known to converge exponentially for smooth periodic integrands (see for instance [36]).

One way to obtain a precise error estimate is to show that the function U∆k[G] obtained using the
trapezoidal rule can be reinterpreted as the solution of a boundary value problem defined in a domain
which is bounded in the e1–direction. This approach has been studied in detail in [7] for a different
problem, but it can be extended to (P#), thus leading to a quadrature error of the form

∃ α > 0,
∥∥U [G]− U∆k[G]

∥∥
H1

Θ(Ω#)
= O(e−α ImωNk).

5.1.2. Discretization with respect to the space variable: a first approach. We fix k ∈ [−π, π),
and consider the discretization of Step 1. The discretization is a direct adaptation of the procedure
described extensively in [10, 14, 22]. For this reason, we do not intend to go into details. We begin
with a tetrahedral mesh of C#2 := (0, 1)3 with step h > 0. This mesh is assumed to be periodic, in
the sense that the mesh nodes on the boundary x = 0 (resp. zj = 0) can be identified to those on
x = 1 (resp. zj = 1) in a trivial manner. Then, using the classical H1–conforming Lagrange finite
element space of order d > 0 which we call Vh(C#2), an internal approximation of H1

Θ#2(C#2) and

of H1/2
Θ#2(Σ

j
#2) is provided by the respective subspaces

Vh,#2(C#2) :=
{
V ∈ Vh(C#2) / Vh|zj=0 = Vh|zj=1 ∀ j ∈ {1, 2}

}
,

Vh,#2(Σj
#2) :=

{
V |

Σj

#2
/ Vh ∈ Vh(C#2)

}
, ∀ j ∈ {0, 1}.

The periodicity of the mesh allows the identification Vh,#2(Σ0
#2) ≡ Vh,#2(Σ1

#2) ≡ Vh,#2(Σ#2), simi-
larly to the continuous case. In what follows, let Nh := dimVh,#2(Σ#2).
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For any Φh ∈ Vh,#2(Σj
#2), we solve the finite elements formulation of the local cell problems (4.26)

with solutions Ej
k,h[Φh] ∈ Vh,#2(C#2), j ∈ {0, 1}, and deduce the finite-dimensional DtN operators

T jℓ
k,h ∈ L (Vh,#2(Σj

#2)) using the discrete analog of the weak formulation of (4.28). Note that these
discrete DtN operators can be represented as Nh ×Nh matrices.

To approximate the propagation operator Pk, it is natural to introduce the solution Pk,h of the con-
strained Riccati equation (4.30) where T jℓ

k is replaced by T jℓ
k,h. As described in [22], one can solve

the discrete Riccati equation using either (1) a spectral approach which consists in characterizing
Pk,h by means of its eigenpairs which satisfy a quadratic eigenvalue problem, or (2) a modified
Newton method, that is, a standard Newton method with an additional projection step in order to
take the spectral radius constraint into account.

From the approximate operator Pk,h, the discrete analog of (4.31) allows to define an approximate
DtN operator Λ̂+

k,h ∈ L (Vh,#2(Σj
#2)) which can be represented as aNh×Nh matrix. We compute Λ̂−

k,h

similarly and write the discrete version of the interface equation (4.21) as a Nh ×Nh linear system.
The corresponding solution Φk,h ∈ Vh,#2(Σj

#2) is then used to deduce an approximation Ûk,h[Ĝk] of
the waveguide solution of (FV#2) thanks to (4.20) and the cell by cell expression (4.27).

Remark 5.2. (a). For k ∈ [−π, π) fixed, an error analysis can be performed for the approximation of
the waveguide solution Ûk[Ĝk], assuming that the Riccati equation is solved exactly. To do so, the idea
is to show as in [10, Section 2.3.1] that the discrete solution Ûk,h[Ĝk] satisfies a discrete half-guide
problem on an infinite mesh of Ω#2 . This observation then allows to use Céa’s lemma and to derive
classical finite element estimates. In particular, for Lagrange finite elements of order 1, assuming that
Ap and ρp are smooth enough, one shows that∥∥Ûk[Ĝk]− Ûk,h[Ĝk]

∥∥
L2(Ω

#2)
= O(h2) and

∥∥Ûk[Ĝk]− Ûk,h[Ĝk]
∥∥
H1

Θ(Ω#2)
= O(h).

(b). For Configuration (A ), we recall that (A+
p , ρ

+
p ) are independent of z2. This property can be used

to solve the local cell problems more efficiently. In fact, by expanding Ej
k[Φ] in a Fourier series with

respect to z2:

a. e. x ∈ C#2 , Ej
k[Φ](x) =

∑
n∈Z

Êj
k,n(x, z1) e

2iπnz2 , Êj
k,n(x, z1) :=

∫ 1

0
Ej

k[Φ](x, z1, t) e
−2iπnt dt,

we note that the 3D local cell problem satisfied by Ej
k[Φ] reduces to a countable family (indexed by

n ∈ Z) of decoupled 2D problems satisfied by the Fourier coefficients Êj
k,n. The same remark holds for

the local cell problems defined on (−1, 0)× (0, 1)2, since (A−
p , ρ

−
p ) are independent of z1.

From the discrete solution Ûk,h[Ĝk], we compute an approximate solution Uh[G] of the strip problem
using Section 5.1.1, with h := (h,∆k). Finally, for Step 3, an approximate solution uh of the 2–
dimensional problem (P) is given by uh(x) := E2

#Uh(Θx), ∀ x ∈ R2, in the spirit of (4.8).
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5.2 A quasi–2D idea to solve the local cell problems

In this section, we focus on the step 1.(a) of the solution algorithm, that is, the computation of the
local cell solutions Ej

k and the local DtN operators T jℓ
k . Although the local cell problems (4.26) can

be solved directly using 3–dimensional finite elements as in Section 5.1.2, it is worth recalling that
the differential operator −ρ−1

p
t∇Θ Ap

tΘ∇ is strongly linked to the family of operators −ρ−1
s

t∇As∇
(s ∈ R) by means of the chain rule (1.9). It is in particular this “fibered” link that leads to the
expression (4.4) recalled below:

a. e. (x, z, s) ∈ R2 × (0, 1), Ũ(x, θ1z, θ2z + s) = us(x, z), (5.1)

where U = U [G] and us = us[gs] (with gs(0, z) := G̃(0, θ1z, θ2z + s)) are the respective solutions of
(P#) and (Ps), and where Ũ := E2

#U and G̃ := E2
#G are respectively the periodic extensions of U

and G in the e2–direction.

Up to now, in the context of the lifting approach, the relation (5.1) has been useful in practice to
compute us[gs] (in particular for s = 0) from U [G]. The so-called quasi 2–dimensional (or quasi-2D)
approach developed in this section relies on the converse: in the spirit of (5.1), our goal is to reduce
the solution of the local cell problems to that of a family of 2–dimensional decoupled cell problems.

The principle of the quasi-2D method is very similar to the quasi-1D method previously developed
in [2, Section 5.2] for the Helmholtz equation with quasiperiodic coefficients. In this paper, the
quasi-1D approach is used for a cell problem with Dirichlet boundary conditions on two edges (as
shown in Figure 16 right). However, the extension to our 3D problems is more delicate, due to
the periodicity conditions with respect to both z1 and z2. To illustrate this difficulty, it is useful to
consider the quasi-1D approach for a 2D cell problem with periodic conditions on all boundaries.
This is the object of the next section.

5.2.1. Illustration of the method in a 2D case. The goal in this section is first to highlight the
difficulty of the fibered approach in the case of a particular 2D cell problem with periodic conditions,
and then to propose an alternative which will be extended to the 3D case. Throughout this section,
the subscript “2D” is used to emphasize that we are dealing with a 2D case. The generic point is
denoted by z = (z1, z2) ∈ R2, and {e1 = (1, 0), e2 = (0, 1)} denotes the canonical basis of R2.

The difficulty of the quasi-1D approach
We consider the problem defined in C := {z = (z1, z2) ∈ (0, 1)2}: Find E2D such that −Dθ (µ2DDθ E2D)− ρ2D ω

2E2D = f2D in C,

E2D|zj=0 = E2D|zj=1 and (µ2DDθ E2D)|zj=0 = (µ2DDθ E2D)|zj=1 ∀ j ∈ {1, 2},
(5.2)

where µ2D, ρ2D, f2D ∈ C 0(R2) are Z2–periodic, and with θ := (θ1, θ2) andDθ := θ·∇ = θ1 ∂z1+θ2 ∂z2 .
Let Ẽ2D denote the periodic extension of E2D in the e2–direction. Using the chain rule and the fact
that E2D is Ze2–periodic, one shows that the 1D function es : z 7→ Ẽ2D(zθ + se2) ∈ H1(0, 1/θ1) is
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well-defined for any s ∈ R, and satisfies

− d

dz

(
µ2D,s

des
dz

)
− ρ2D,s ω

2 es = f2D,s in (0, 1/θ1), (5.3)

with µ2D,s(z) := µ2D(zθ + se2), ρ2D,s(z) := ρ2D(zθ + se2), and f2D,s(z) := f2D(zθ + se2). Note also
that es+1 = es, so that the study of (es)s can be restricted to s ∈ [0, 1].

By inverting the change of variables (s, z) 7→ zθ + se2, we obtain

a. e. z = (z1, z2) ∈ C, E2D(z) = ez2−z1 δ(z1/θ1) with δ := θ2/θ1. (5.4)

The quasi-1D approach would consist in computing E2D from es using the above expression. In
practice, this requires the functions es to satisfy 1D problems (indexed by s ∈ [0, 1]) which are
decoupled from one another. However, because E2D is also periodic with respect to z1, we deduce
from (5.4) that:

∀ s ∈ R, es(0) = es−δ(1/θ1), (5.5)

as shown in Figure 16 (left). Equation (5.5) makes it impossible to compute the es independently
from one another. The alternative we propose is to relax the coupling (5.5) by first replacing the
periodicity conditions with respect to z1 by Dirichlet conditions for instance, and then by imposing
the periodicity afterwards. This is explored in the next paragraph.

per per
per

per

•es−δ(1/θ1)•es(0)

es−δ

es

Dirichlet Dirichlet
per

per

•fs(0) = 1

•fs(1/θ1) = 1
fs

z1

z2

Figure 16: Left: Since E2D is periodic with respect to both z1 and z2, the 1D traces es and es−δ are
coupled by sharing a common boundary value (5.5). Right: Since F2D satisfies Dirichlet conditions
on z1 ∈ {0, 1}, each trace fs satisfies independently a 1D problem with Dirichlet conditions.

Auxiliary local cell problems
To overcome the difficulty induced by the periodic coupling, one can reformulate E2D in terms of the
solutions of auxiliary local Dirichlet cell problems for which the quasi-1D method can be applied.
For this purpose, we introduce an auxiliary unknown φ ∈ L2(0, 1), namely

φ := E2D|z1=0 = E2D|z1=1. (5.6)
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With this choice, by introducing the well-posed cell problems: Find F2D ≡ F2D[φ] such that
−Dθ (µ2DDθ F2D)− ρ2D ω

2 F2D = 0 in C,

F2D|z2=0 = F2D|z2=1 and (µ2DDθ F2D)|z2=0 = (µ2DDθ F2D)|z2=1,

F2D|z1=0 = φ and F2D|z1=1 = φ

and: Find G2D ≡ G2D[f2D] such that
−Dθ (µ2DDθ G2D)− ρ2D ω

2 G2D = f2D in C,

G2D|z2=0 = G2D|z2=1 and (µ2DDθ G2D)|z2=0 = (µ2DDθ G2D)|z2=1,

G2D|z1=0 = 0 and G2D|z1=1 = 0,

we obtain by linearity that
E2D = F2D[φ] + G2D[f2D]. (5.7)

The important difference between the problems satisfied by F2D, G2D, and the one satisfied by E2D is
that the periodicity conditions on {z1 = 0} and {z1 = 1} have been replaced by Dirichlet boundary
conditions. Hence, F2D and G2D can be solved using the quasi-1D approach described in [2], as we
will show later, in Proposition 5.3.

The auxiliary unknown φ

We now explain how to characterize the unknown φ. By imposing the periodicity of µ2DDθ E2D with
respect to z1 in (5.7), we deduce that

(Ξ0
2D + Ξ1

2D)φ = −(Υ0
2D +Υ1

2D) f2D, (5.8)

where the auxiliary local DtN operators Ξj
2D and the right-hand sides Υj

2D f , j ∈ {0, 1} are given by Ξj
2D φ := (−1)j+1 (µ2DDθ F2D[φ])|z1=j ,

Υj
2D f := (−1)j+1 (µ2DDθ G2D[f ])|z1=j .

Conversely, it can be shown using the presence of absorption that Ξ0
2D + Ξ1

2D is invertible, so that
(5.8) admits a unique solution.

The fibered structure of the auxiliary local cell problems
In order to emphasize the fibered structure of F2D,G2D, consider the well-posed 1D problems given
for any s ∈ R by: Find fs ∈ H1(0, 1/θ1) such that − d

dz

(
µ2D,s

dfs
dz

)
− ρ2D,s ω

2 fs = 0 in (0, 1/θ1),

fs(0) = fs(1/θ1) = 1,
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and: Find gs = gs[f2D,s] ∈ H1(0, 1/θ1) such that − d

dz

(
µ2D,s

dgs
dz

)
− ρ2D,s ω

2 gs = f2D,s in (0, 1/θ1),

gs(0) = gs(1/θ1) = 0.

Note that fs+1 = fs and gs+1 = gs. The advantage of resorting to the auxiliary solutions F2D,G2D
lies in the following result, which highlight their fibered or so-called quasi-1D structure.

Proposition 5.3 ([2, Proposition 5.1]). For any (φ, f2D) ∈ L2(0, 1)× L2(C), we have

a. e. (z, s) ∈ (0, 1/θ1)×(0, 1), F̃2D(θ1z, θ2z+s) = φ(s) fs(z) and G̃2D(θ1z, θ2z+s) = gs(z), (5.9)

with F2D = F2D[φ], G2D = G2D[f2D], gs = gs[f2D,s], and where F̃2D (resp. G̃2D) denotes the periodic
extension of F2D (resp. G2D) in the e2–direction.

Proposition 5.3 allows to compute F2D[φ] (resp. G2D[f2D]) from the 1D functions fs (resp. gs[f2D,s]),
s ∈ [0, 1]. The difference with es is that fs and gs[f2D,s] satisfy 1D problems which can be solved
independently from one another in practice, and hence in parallel (see Figure 16 right). Note also
that the operators Ξj

2D,Υ
j
2D can be computed using fs and gs[f2D,s]. We refer to [2, Proposition 5.2],

where a similar situation is presented.

Algorithm for the quasi-1D method
The approach presented above to compute the solution E2D of (5.2) can be summarized as follows:

• Compute the solutions F2D,G2D of the auxiliary cell problems using the solutions fs,gs of the
1D problems indexed by s ∈ [0, 1], and which can be solved in parallel;

• Construct Ξj
2D,Υ

j
2D, and deduce the auxiliary unknown φ by solving (5.8).

The discretization of the first item is described in [2, Section 5.2.2]. The difference with the quasi-
1D method in [2] is the second item above, which involves a dense 1D system.

5.2.2. Extension to the 3D local cell problems. In what follows, the Floquet variable k ∈ (−π, π)
is fixed, and is omitted in some of the notations. We now extend the idea developed in the previous
section to the case of the 3D local cell problems (4.26) which are recalled under the formal form:

− t(∇+ ike1)Θ Ap
tΘ (∇+ ike1)E

j
k − ρp ω

2Ej
k = 0 in C#2 ,

Ej
k is 1–periodic with respect to z1 and z2,

E0
k [Φ]|Σ0

#2
= Φ and E0

k [Φ]|Σ1
#2

= 0,

E1
k [Φ]|Σ0

#2
= 0 and E1

k [Φ]|Σ1
#2

= Φ,

(5.10)

where Φ is a fixed data, which plays the role of the source term f2D in the previous section. By anal-
ogy with the previous section, we want to take advantage of the quasi-2D nature of these problems,
to deduce Ej

k from the solution of 2D cell problems set in (Θ R2 + s e2) ∩ C#2 . However, because of
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the periodicity conditions with respect to z1 and z2, the traces of Ej
k on Θ R2 + s e2 satisfy a cou-

pling relation which prevent them from being computed independently from one another. For this
reason, we introduce auxiliary Dirichlet cell problems that have the desired fibered structure. The
link between Ej

k and the solutions of these auxiliary problems is related to an auxiliary unknown,
namely the trace of Ej

k on the interface {z1 = 1}, which satisfies an equation similar to (5.8).

The auxiliary local cell problems
Consider E0

k for simplicity. We introduce a Dirichlet-to-Dirichlet operator defined by

∀ Φ ∈ H
1/2
Θ#2(Σ#2), R0Φ := E0

k [Φ]|z1=0 (= E0
k [Φ]|z1=1 by periodicity). (5.11)

Then for any Φ,Ψ, using the respective solutions F [Ψ] and G0[Φ] of the well-posed Dirichet cell
problems: 

− t(∇+ ike1)Θ Ap
tΘ (∇+ ike1)F − ρp ω

2 F = 0 in C#2 ,

F = F [Ψ] is 1–periodic with respect to z2,

F [Ψ]|x=0 = 0 and F [Ψ]|x=1 = 0,

F [Ψ]|z1=0 = Ψ and F [Ψ]|z1=1 = Ψ,

(5.12)

and 

− t(∇+ ike1)Θ Ap
tΘ (∇+ ike1)G0 − ρp ω

2 G0 = 0 in C#2 ,

G0 = G0[Φ] is 1–periodic with respect to z2,

G0[Φ]|x=0 = Φ and G0[Φ]|x=1 = 0,

G0[Φ]|z1=0 = 0 and G0[Φ]|z1=1 = 0,

(5.13)

it follows by linearity that
E0

k [Φ] = F [R0Φ] + G0[Φ]. (5.14)

Remark 5.4. For a fixed Φ, R0Φ plays the same role as the auxiliary unknown φ defined by (5.6).

Φ
R0Φ

0R0Φ

E0
k [Φ]

0 Ψ

0Ψ

F [Ψ]

Φ 0

00

G0[Φ]

x
z1

z2

Figure 17: Dirichlet conditions satisfied by E0
k [Φ], F [Ψ], and G0[Φ] (R0Φ is an unknown).

Characterization of the Dirichlet-to-Dirichlet operator R0

Before highlighting the advantage of introducing F and G0, let us derive an equation to characterize
R0. The periodicity of E0

k in z1 leads to the following equality(
ΘAp

tΘ (∇+ ike1)E0
k [Φ]

)
· e1|z1=0 =

(
ΘAp

tΘ (∇+ ike1)E0
k [Φ]

)
· e1|z1=1.
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which reformulates as

∀ Φ ∈ H
1/2
Θ#2(Σ#2), (Ξ0 + Ξ1)R0Φ = −(Υ00 +Υ01) Φ, (5.15)

with Ξℓ and Υ0ℓ, ℓ ∈ {0, 1}, being the local auxiliary DtN operators defined by

∀ Φ,Ψ,

 ΞℓΨ := (−1)ℓ+1
(
ΘAp

tΘ (∇+ ike1)F [Ψ]
)
· e1|z1=ℓ,

Υ0ℓΦ := (−1)ℓ+1
(
ΘAp

tΘ (∇+ ike1)G0[Φ]
)
· e1|z1=ℓ.

(5.16)

Conversely, it can be shown using the presence of absorption that Ξ0+Ξ1 is invertible, so that (5.15)
is well-posed.

The above arguments extend naturally to E1
k , to which we can associate R1, G1, and Υ1ℓ by adapting

respectively (5.11), (5.13), and (5.16). Then one has

∀ Φ ∈ H
1/2
Θ#2(Σ#2), E1

k [Φ] = F [R1Φ] + G1[Φ], where (Ξ0 + Ξ1)R1 = −(Υ10 +Υ11). (5.17)

From R0 and R1, one can also deduce the local DtN operators T jℓ
k defined by (4.28). More precisely,

it follows by linearity that
∀ j, ℓ ∈ {0, 1}, T jℓ

k = Υ̃jℓ + Ξ̃ℓRj , (5.18)

where Ξ̃ℓ and Υ̃jℓ are given by

∀ Φ,Ψ,

 Ξ̃ℓΨ := (−1)ℓ+1
(
ΘAp

tΘ (∇+ ike1)F [Ψ]
)
· ex|x=ℓ,

Υ̃jℓΦ := (−1)ℓ+1
(
ΘAp

tΘ (∇+ ike1)Gj [Φ]
)
· e1|x=ℓ.

(5.19)

It is worth noting that the operators Ξℓ, Ξ̃ℓ, Υjℓ, Υ̃jℓ can all be obtained by computing F and Gj ,
which satisfy cell problems with Dirichlet conditions on both the boundaries {x = k} and {z1 = j}.
We now highlight the structure of F and Gj .

The fibered structure of the auxiliary cell problems
Given s ∈ R, using the definition (4.3) of (As, ρs), let us introduce the 2D cell problems defined in
Q := {x = (x, z) ∈ (0, 1)× (0, 1/θ1)} as

− t(∇+ iθ1kez)As (∇+ iθ1kez) fs − ρs ω
2 fs = 0 in Q,

fs|x=0 = 0 and fs|x=1 = 0

fs[ψ]|z=0 = ψ and fs[ψ]|z=1/θ1 = ψ,

(5.20)
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and for j ∈ {0, 1},
− t(∇+ iθ1kez)As (∇+ iθ1kez)g

j
s − ρs ω

2 gj
s = 0 in Q,

gj
s[φ]|x=k = δj,k φ

gj
s[φ]|z=0 = 0 and gj

s[φ]|z=1/θ1 = 0.

(5.21)

We also introduce for ℓ ∈ {0, 1}, Γℓ
#2 := (0, 1)× {ℓ} × (0, 1) and the edges (see Figure 18)

ÎXℓ := {ℓ} × (0, 1/θ1), and ÎZℓ := (0, 1)× {ℓ/θ1}.

Then, the link between the solution F (resp Gj) of (5.12) (resp (5.13) for j = 0) and fs (resp gj
s) is

given by the next result, which mirrors Proposition 5.3.

Proposition 5.5. Let j ∈ {0, 1} and Ψ ∈ L2(Γj
#2), such that ψs := SΘΨ(·, s) ∈ H1/2(ÎZj ) for almost

any s ∈ R. Then one has

a. e. (x, z, s) ∈ Q× (0, 1), E2
#F (x, θ1 z, θ2 z + s) = fs(x, z), (5.22)

where F = F [Ψ] and fs = fs[ψs] are the respective solutions of (5.12) and (5.20). Similarly, for any
Φ ∈ H

1/2
Θ#2(Σ

j
#2) with φs := SΘΦ(·, s) for almost any s ∈ R, one has

a. e. (x, z, s) ∈ Q× (0, 1), E2
#Gj(x, θ1 z, θ2 z + s) = gj

s(x, z), (5.23)

where Gj = Gj [Φ] and gj
s = gj

s[φs] are the respective solutions of (5.13) and (5.21).

x

z1

z2

Σ0
#2

Γ1
#2

Γ0
#2

Σ1
#2

x

z1

z2

ÎX0

z

Q

ÎX1

ÎZ0

ÎZ1

Figure 18: Left: The cell C#2 with its faces Σℓ
#2 ,Γℓ

#2 . Right: Q and its edges ÎXℓ , Î
Z
ℓ , ℓ ∈ {0, 1}.

Proposition 5.5 shows that computing (F,Gj) reduces to finding (fs,g
j
s) for any s ∈ (0, 1). The

advantage in solving the problems satisfied by (fs,g
j
s) is that they are 2-dimensional, and can be

solved independently from one another (with respect to s), and therefore in parallel.
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Finally, let tℓs, t̃
ℓ
s, and υjℓ, υ̃jℓ, j, ℓ ∈ {0, 1} be the auxiliary edge DtN operators defined by

tℓsψ := (−1)ℓ+1
(
As (∇+ iθ1kez) fs[ψ]

)
· ez|ÎZℓ ,

t̃ℓsψ := (−1)ℓ+1
(
As (∇+ iθ1kez) fs[ψ]

)
· ex|ÎXℓ ,

υjℓs φ := (−1)ℓ+1
(
As (∇+ iθ1kez)g

j
s[φ]

)
· ez|ÎZℓ ,

υ̃jℓs φ := (−1)ℓ+1
(
As (∇+ iθ1kez)g

j
s[φ]

)
· ez|ÎXℓ .

(5.24)

Then the DtN operators Ξℓ, Ξ̃ℓ, Υjℓ, Υ̃jℓ can be derived from the edge DtN operators tℓs, t̃
ℓ
s, and υjℓ,

υ̃jℓ, as highlighted in the next result, which follows directly from the weak forms of these operators
and from the duality property (3.25) which can also be extended to the faces Γℓ

#2 .

Proposition 5.6. For ℓ ∈ {0, 1}, let (Φℓ,Ψℓ) ∈ L2(Σℓ
#2)× L2(Γℓ

#2) be such that for almost any s ∈ R,

φℓ
s := SΘΦ

ℓ(·, s) ∈ H1/2(ÎXℓ ) and ψℓ
s := SΘΨ(·, s) ∈ H1/2(ÎZℓ ). Then for any j, ℓ ∈ {0, 1},

〈
ΞℓΨj , Ψℓ

〉
Γℓ

#2
=

1

θ1

∫ 1

0

〈
tℓs ψ

j
s, ψ

ℓ
s

〉
ÎZℓ
ds,

〈
Ξ̃ℓΨj , Φℓ

〉
Σℓ

#2
=

1

θ1

∫ 1

0

〈
t̃ℓs ψ

j
s, φ

ℓ
s

〉
ÎXℓ
ds,

〈
ΥjℓΦj , Ψℓ

〉
Γℓ

#2
=

1

θ1

∫ 1

0

〈
υjℓs φj

s, ψ
ℓ
s

〉
ÎZℓ
ds,

〈
Υ̃jℓΦj , Φℓ

〉
Σℓ

#2
=

1

θ1

∫ 1

0

〈
υ̃jℓs φj

s, φ
ℓ
s

〉
ÎXℓ
ds.

(5.25)

The algorithm for the quasi-2D method
Let us summarize the quasi-2D method in the following algorithm.

• solve the 2D local cell problems (5.20, 5.21) and compute the auxiliary edge DtN operators
tℓs, t̃

ℓ
s, and υjℓ, υ̃jℓ given by (5.24) for any s ∈ [0, 1];

• Compute the auxiliary DtN operators Ξj , Ξ̃ℓ, Υjℓ, Υ̃jℓ using (5.25);

• Determine the DtD operator Rj , j ∈ {0, 1}, by solving the linear equation (5.15);

• Deduce Ej
k, and compute the local DtN operators T jℓ

k using their expression (5.18) with re-
spect to Rj and Ξj , Ξ̃ℓ, Υjℓ, Υ̃jℓ.

We do not describe the discretization of this algorithm, since it is an extension of the quasi-1D
method. We simply note that once the DtN operators T jℓ

k have been approximated, they can be used
to derive the propagation operator Pk (using the Riccati equation (4.30)), and the DtN operator Λ̂+

k

(using (4.31)).

6 Numerical results

This section provides a series of numerical results with the goal to validate the method in various
situations. For the sole sake of simplicity, simulations are performed with the tensor A = I2. Unless
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otherwise specified, the jump data g is a cut-off function, and the augmented data G is constant
with respect to z2: ∀ z ∈ R, g(0, z) := 100ϕ(2z), with ϕ(z) := exp

(
1− 1/(1− z2)

)
1[−1,1](z),

∀ z1 ∈ R, G(0, z1, z2) := g(0, z1/θ1).

(6.1)

Simulations are carried out using Lagrange finite elements of order 1 on a regular triangular mesh,
and we use the quasi-2D method to solve the local cell problems.

6.1 Validation in the homogeneous setting

In the first example, we consider the case where ρ is piecewise constant:

∀ x ∈ R2, ρ+(x) := 1 and ρ−(x) := 2.

This coefficient falls within the scope of both Configurations (A ) and (B) with any periodicity
parameter. For Configuration (A ), we choose p+z := 1 and p−z :=

√
2 to be the periods on both sides

of the interface. For Configuration (B), we choose p+ := (
√
2, 1) as the periodicity vector in R2

+.
The jump data g and its extension G are given by (6.1).

The reference solution uref used in this context is obtained by applying the partial Fourier transform
with respect to z, and by solving analytically a family of transmission problems defined on R and
parameterized by the Fourier dual variable. In fact, it can be computed that

a. e. (x, z) ∈ R2
±, uref (x, z) =

1

2π

∫
R

ĝζ

r+ζ + r−ζ
e∓r±ζ x+iζ z dζ, with ĝζ :=

∫
R
g(z) e−iζ z dz,

and where r±ζ are defined for any ζ ∈ R by (r±ζ )
2 = ζ2 − ρ± ω2, Re r±ζ ≥ 0.

The solutions that follow from applying the lifting approach to Configurations (A ) and (B) are
compared in Figure 19 to uref. We first choose ω = 8 + 0.25 i and a mesh step h = 0.025, which
corresponds approximately to 31 points per wavelength in R2

+ and 22 points per wavelength in R2
−.

The number of Floquet points is set to Nk = 64. The visual similarity between the results validates
qualitatively the method in the homogeneous setting.
Next, we fix ω = 1 + 0.25 i, Nk = 64 and we restrict ourselves to Configuration (A ). Figure 20
(right) shows the relative errors

ε
(0)
h :=

∥uh − uref∥L2(Ω0)

∥uref∥L2(Ω0)
and ε

(1)
h :=

∥∇(uh − uref)∥[L2(Ω0)]2

∥∇uref∥[L2(Ω0)]2
, Ω0 := (−1, 1)2, (6.2)

which decay as the mesh step h tends to 0. As expected for order 1 Lagrange finite elements, ε(0)h

tends to 0 as h2, whereas ε(1)h tends to 0 as h2 (instead of the expected O(h) decay). We believe that
this superconvergence phenomenon is caused by our use of a regular mesh, and by the fact that A±

and ρ± are constant.
In the next sections, numerical experiments are performed with a variable coefficient ρ. Using the
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Figure 19: Approximate solution uh (real part) computed for Configurations (A ) and (B), and
compared to a reference solution uref, for ω = 8 + 0.25i. We use order 1 Lagrange finite elements
with h = 0.025 and Nk = 64.
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Figure 20: ω = 1 + 0.25i and Nk = 64 are fixed. Left: real part of uh − uref for h = 0.025. Right:

relative errors ε(0)h and ε(1)h (see (6.2)) with respect to the mesh step h, for Configuration (A ).

cut-off function ϕ ∈ C∞
0 (R) defined in (6.1), we start from the Z2–periodic functions defined in one

periodicity cell by

∀ ◦
x = (

◦
x,

◦
z) ∈ (0, 1)2,

◦
ρ−( ◦

x) := 0.5 + ϕ(4
◦
x)ϕ(4

◦
z) and ◦

ρ+(
◦
x) := 0.5 + ϕ(2.5| ◦x|).

Then, for Configuration (A ), we use

∀ x = (x, z) ∈ R2, ρ±(x) := ◦
ρ±(x, z/p±z ), (6.3)
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which is p±z –periodic with respect to z. For Configuration (B), we set

∀ x = (x, z) ∈ R2, ρ−(x) = 1 and ρ+(x) :=
◦
ρ(x− (p+x /p

+
z )z, z/p

+
z ), (6.4)

so that ρ+ is Zex + Zp+–periodic with p+ = (p+x , p
+
z ). These coefficients are shown in Figure 21.
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−4 −2 0 2 4
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−2

0

2

4

ρ, Configuration (B)

0.6

1

1.4

Figure 21: The coefficient ρ defined for Configuration (A ) by (6.3), with p+z = p−z = 1, and for
Configuration (B) by (6.4), with p+ = ez.

6.2 Qualitative validation in the rational setting

We consider a coefficient ρ which is 1–periodic in the direction of the interface (see Figures 22
and 23 left). In this case, as done in [11], one can directly apply a Floquet-Bloch transform in the
direction of the interface, leading to a family of 2D transmission problems defined in R × (0, 1) and
parameterized by the Floquet dual variable. Each of the waveguide problems can then be reduced
to an interface equation featuring 2D DtN operators, which we obtain by computing the solution of
half-guide problems defined in R± × (0, 1). Solving these half-guide problems involves 2D local cell
problems and a propagation operator, similarly to Section 4.4. We use this approach to construct a
reference solution uref, to which we compare the solution u obtained using the lifting approach. We
fix ω = 8 + 0.25i.

For Configuration (A ), we define ρ using (6.3), with p+z = p−z = 1. Figure 22 shows the solution
uh computed numerically using the lifting approach for a mesh step h = 0.025 and Nk = 64. As
expected, this solution is close to the reference solution uref.
For Configuration (B), we define ρ using (6.4), with p+ = (1, 1). Figure 23 shows the solution
uh computed numerically using the lifting approach for a mesh step h = 0.025 and Nk = 64. As
expected, this solution is close to the reference solution uref.
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Figure 22: Approximate solution uh (real part) computed for Configuration (A ) in the rational case
(p+z = p−z = 1). Here, ω = 8 + 0.25i, h = 0.025, and Nk = 64.
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−2 0 2

Figure 23: Approximate solution uh (real part) computed for Configuration (B) in the rational case
(p+ = (1, 1)). Here, ω = 8+0.25i, h = 0.025, andNk = 64. The periodicity cells used to compute uref
and uh are the square (0, 1)2 (in dashed line) and the parallelogram {y1p+ + y2ex, y1, y2 ∈ (0, 1)}
(in solid line) respectively.

6.3 Qualitative validation and results in the irrational setting

This section is devoted to the case where ρ is not periodic in the direction of the interface. For
Configuration (A ), we use the definition (6.3) with (p+z , p

−
z ) = (1,

√
2), and for Configuration (B),

we use the definition (6.4) with p+ = (cosα, sinα), α = 3π/5. The corresponding coefficient ρ is
represented in Figure 24.
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Figure 24: The coefficient ρ for Configurations (A ) and (B).

Invariance with respect to the period We only consider Configuration (A ) for simplicity. As the
coefficient ρ± is p±z –periodic with respect to z, it is also ℓ± p±z with respect to z for any ℓ± ∈ Z∗.
Choosing ℓ± p±z to be the period along the interface will leave the 2D solution u of (P) unchanged
since (A, ρ) remain the same, whereas the 3D solution U [G] of (P#) will be modified, due to the
different expressions of the augmented coefficients (Ap, ρp), the cut matrix Θ, and the augmented
jump data G. To see if the approximate solution uh has the same invariances as u with respect to
the periods, we compute uh and the 3D approximate solution Uh in Figure 25 for (p+z , p

−
z ) = (1,

√
2)

(middle column) and (p+z , p
−
z ) = (3, 2

√
2) (left column), with ω = 8+0.25 i, h = 0.025, andNk = 64.

For both values of the periods, the trace of uh on the interface σ = {x = 0} is shown in Figure 26.
One sees that Uh changes with respect to (p+z , p

−
z ), whereas uh remains approximately the same.

Invariance with respect to augmented jump data We still consider Configuration (A ) for sim-
plicity. Now, let us look at the invariance of the solution uh with respect to the augmented jump
data G. Since the data g used for our experiments is smooth, we recall that the assumptions on
the augmented jump data reduce to G satisfying G(0, θ1 z, θ2 z) = g(0, z) and G(·+ e2) = G. These
requirements are satisfied by the following functions (see Remark 4.5):

G1(0, z1, z2) := g(0, z1/θ1) and G2(0, z1, z2) := exp
(
2iπ (z2 − z1θ2/θ1)

)
g(0, z1/θ1).

Figure 25 (middle and right columns) and Figure 26 show the solution uh and the augmented
solution Uh obtained for G1 and G2, with p+z = 1, p−z =

√
2, h = 0.025, Nk = 64, and ω = 8+ 0.25 i.

As expected, Uh depends on the choice of the augmented data and changes accordingly, whereas
uh is visually invariant.

Dependence with respect to the frequency We finish by solving (P) for different values of ω.
As expected for the Helmholtz equation, the solution, represented in Figure 27, oscillates more as
Reω increases, and decays less at infinity as Imω decreases.
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Figure 25: The 2D solution uh (first row, real part) and the augmented 3D solution Uh (second row,
real part), for Configuration (A ) (with the coefficient ρ represented in Figure 24), and for different
values of the periods along the interface and the augmented jump data. We use ω = 8 + 0.25i,
h = 0.025, and Nk = 64.
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Figure 26: Top: trace of the approximate solution uh on the interface σ = {x = 0} for Configuration
(A ), with the cases (a), (b), and (c) outlined in Figure 25. Bottom: differences between the traces.
ω = 8 + 0.25i, h = 0.025, and Nk = 64 are fixed.

7 Extensions and perspectives

In this section, we explore potential extensions and perspectives arising from the present work.
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Figure 27: The approximate solution uh (real part) in the irrational setting for Configuration (A )
(p+z = 1, p−z =

√
2) and Configuration (B) (p+ = (cosα, sinα), α = 3π/5). The discretization

parameters h = 0.025 and Nk = 64 are fixed, and different values of ω are considered.

Direct extension to a source term
The approach developed in this paper could be extended to the classical Helmholtz equation

− t∇A∇u0 − ρω2 u0 = f, in R2,

where the source term f ∈ L2(R2) has a compact support in the ex–direction. In particular, using
the fact that A(x) = Ap(Θx) and ρ(x) = ρp(Θx), one may seek u0 under the form u0(x) = U0(Θx),
where U0 satisfies

− t∇ΘAp
tΘ∇U0 − ρp ω

2 U0 = F, in R3,

with F ∈ L2
loc(R

3) being compactly supported in the ex–direction, and satisfying F (Θx) = f(x) for
almost any x ∈ R2. Similarly to the procedure summarized in Section 1.2 and developed throughout
the paper, the augmented equation satisfied by U0 may be solved by

• choosing an augmented source term F such that F (·+e2) = F , so that U0(·+e2) = U0 satisfies
a strip problem;
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• applying a partial Floquet-Bloch transform with respect to z1, to obtain a family of waveguide
problems defined in the cylinder R × (0, 1)2;

• using the DtN method developed in [10, 12, 13, 22]. The main difference with the present
paper is that the interface equation (4.21) is now replaced by an interior problem defined in
Ix × (0, 1)2, where Ix ∈ R is any interval containing the support of F in the ex–direction.

Short-term perspective on junctions of general periodic half-spaces
The common point between Configuration (A ) and Configuration (B) is that they can be lifted into
3D structures, as emphasized in Section 2.2. For the more general setting represented in Figure 1,
the lifting process can still be used, but generally leads to a 5D augmented structure. The treatment
of this general case will be presented in a future paper.

Spectral properties of the propagation operator
The structure of the solution of the half-guide problem (P±

#2), as highlighted in Section 4.4.1, is
described by the propagation operator Pk. Hence, studying the spectral properties of Pk is crucial for
the analysis and the numerical computation of the half-guide solution. For the elliptic Helmholtz
operator ρ−1

p
t∇Ap∇, Pk is compact [15, 22]. On the other hand, for the directional Helmholtz

operator ρ−1
p

t∇θ Ap
tθ∇ (where Ap is a scalar coefficient and θ = (θ1, θ2, θ3) ∈ R3), Pk has been

shown in [2] to be a weighted translation operator, whose spectrum is a circle, under the linear
independence condition ∀ k ∈ Z3, k·θ = 0 ⇔ k = 0. For the Helmholtz operator ρ−1

p
t∇Θ Ap

tΘ∇
studied in the present paper, we expect the properties of Pk to stand in between the properties
observed in the elliptic and directional cases. This is an ongoing work.

The case without absorption
In the case where there is no absorption, the application of the method in this paper raises several
challenges. First, some waves guided by the interface may exist (depending on the coefficients), so
that the physical solution may propagate along the interface without attenuation. The use of the
Floquet-Bloch transform along the 3D lifted interface is then not possible. If the solution is L2 along
the interface (in the absence of these interface guided modes), the Floquet-Bloch transform can be
applied and the numerical method can be formally extended (although one has to add conditions
to select the outgoing waves, see [14, 15]). A corresponding formal approach has already been
used for the rational case [11]. However, even in the rational case, the rigorous justification of the
numerical method is still a difficult challenge. Namely, it is necessary to define the physical solution
using the limiting absorption principle, which is, as explained in Remark 1.1, an open question for
junctions of periodic halfspaces.

A Alternative versions of Configurations (A ) and (B)

We have assumed for simplicity (A, ρ) to be Zex–periodic. We prove that this assumption can be
made without any loss of generality. More precisely, the result of this appendix is the following.
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Proposition A.1. Let v ∈ H1(R2) denote the solution of − t∇B(x)∇v(x)− ϱ(x)ω2 v(x) = 0 for x ∈ R2
+ ∪ R2

−,

JB∇v · exKσ = g,
(A.1)

with functions B and ϱ whose restrictions B± and ϱ±p to R2
± are Zq±1 + Zq±2 –periodic for some vectors

q±1 , q
±
2 ∈ R2 that are non-collinear as shown in Figure 28a. Then there exist (i) vectors p± ∈ R2, (ii) a

tensor A (resp. a coefficient ρ) whose restriction to R2
± coincides with a Zex + Zp±–periodic function

(see Figure 28b), and (iii) a diffeomorphism T : R2 7→ R2, such that u : x 7→ v(T−1(x)) ∈ H1(R2)

satisfies (P) with the aforementioned functions A and ρ.

Remark A.2. Proposition A.1 covers both Configuration (A ) (by choosing q±2 = p±z ez) and Config-
uration (B) (by choosing B and ϱ to be constant in R2

−, and q+2 = p+). The proposition shows that
upon using the diffeomorphism T, one can assume q±1 = ex without any loss of generality.

Proof of Proposition A.1. We assume that q±1 = (q±1,x, q
±
1,z) satisfies q±1,x ̸= 0. This assumption can

be made without any loss of generality: in fact, since q±1 and q±2 are non-collinear, at least one of
them is not collinear with ez. We will introduce a change of variables thanks to the matrices T±
which satisfy

T±q
±
1 = ex and T±ez = ez.

These matrices are well-defined if and only if q±1,x ̸= 0. Now consider the mapping T and its Jacobian
matrix JT defined by

∀ x = (x, z) ∈ R2, T(x) :=

{
T+x if x > 0

T−x if x < 0
and JT(x) =

{
T+ if x > 0

T− if x < 0.

The mapping T is a diffeomorphism, in particular because its Jacobian matrix JT is continuous at
the interface σ due to the equality T+ez = T−ez = ez. Therefore, the function u defined by

u(x) := v
(
T−1(x)

)
(A.2)

belongs to H1(R2). Furthermore, u satisfies the volume equation in Problem (P) with

∀ x ∈ R2, A(x) := JT(x) B
(
T−1(x)

) tJT(x) and ρ(x) := ϱ
(
T−1(x)

)
. (A.3)

In order to obtain the jump condition, note that for x ∈ R2
+ ∪ R2

− and x̃ = T−1(x),

A(x)∇u(x) · ex = [JT(x) B(T−1(x)) tJT(x)∇u(x)] · ex from (A.3)

= [JT(x) B(T−1(x)) ∇v(T−1(x))] · ex from (A.2) and the chain rule

= [B(T−1(x)) ∇v(T−1(x))] · [tJT(x) ex] = B(T−1(x)) ∇v(T−1(x)) · ex, (A.4)

where we used the fact that tJT(x) ex = ex Consequently, since T−1ez = ez, we get that u satisfies

JA∇u · exKσ = J[B∇v] ◦ T−1 · exKσ = g ◦ T−1 = g,
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which is the jump condition in (P). Finally, one easily checks that the restrictions of A and ρ on R2
±

coincide with Zex + Zp±–periodic functions, where p± := T±q
±
2 . ■

(a) The general junction between periodic half-spaces

q+1

q+2

q−1

q−2

x

z

(b) Configuration of Zex–periodic half-spaces, covering Configurations (A ) and (B)

ex

p+

ex

p−

x

z

Figure 28: Junction of arbitrary periodic half-spaces

B Anisotropic Sobolev spaces

B.1 Proof of Proposition 3.2: properties of the shear map SΘ

To prove Proposition 3.2, we rely on the following easy but useful lemma, which links the integral
of V on Ω# and of E2

#V on Ω#,θ for V ∈ [L1(Ω#)]
d. We refer to [2, Lemma 3.12] for its proof.

Lemma B.1. For any V ∈ [L1(Ω#)]
d, we have∫

Ω#

V =

∫
Ω#,θ

E2
#V , (B.1)

where E2
#V ∈ L1

loc(Ω)
d is defined by (3.11).

Proof of Proposition 3.2. The mapping Tθ : (x, s) ∈ Q × (0, 1) 7→ Θx + se2 ∈ Ω#,θ is a C 1–
diffeomorphism with a non-vanishing Jacobian θ1 ̸= 0. Therefore, the associated change of variables
leads to

∀ U ,V ∈ [C∞
0,#(Ω#)]

d,
1

θ1

∫ 1

0

∫
Q

SΘU(x, s) · SΘV (x, s) dxds =

∫
Ω#,θ

(E2
#U) · (E2

#V ).
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We then use the identity (E2
#U) · (E2

#V ) = E2
# (U · V ), and we apply Lemma B.1 to U · V , to

deduce (3.14) for U ,V ∈ [C∞
0,#(Ω#)]

d. Finally, the density of [C∞
0,#(Ω#)]

d in [L2(Ω#)]
d leads to

(3.14). Moreover, by choosing U = V in (3.14), it follows that SΘ is bounded from [L2(Ω#)]
d to

L2(0, 1; [L2(Q)]d).

The bijectivity of SΘ results directly from the inverse of Tθ, which leads to the expression (3.15) of
S −1

Θ . The continuity of S −1
Θ is then implied by (3.14). ■

B.2 Proof of Proposition 3.3: Action of the shear map SΘ on differential operators

Proof of Proposition 3.3. We only prove (3.17) since the proof of (3.18) is very similar. The proof
is merely a weak adaptation of the chain rule. Let V ∈ H1

Θ#(Ω#). To obtain the expression of tΘ∇V

in the sense of distributions, consider a test function W ∈ [C∞
0 (Ω#)]

2 and define WΘ := SΘW ∈
[C∞

0 (Q× (0, 1))]2. Then E2
#W ∈ [C∞(Ω#)]

2 since W ∈ [C∞
0 (Ω#)]

2 and one easily computes using
the chain rule that

∀ (x, s) ∈ Q× (0, 1), SΘ (
t∇ΘW )(x, s) = t∇xWΘ(x, s). (B.2)

Let also VΘ := SΘV . Using derivation in the sense of distributions with V ∈ L2(Ω#) leads to:

〈 tΘ∇V, W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

= −
∫

Ω#

V (x) t∇ΘW (x) dx

= − 1

θ1

∫ 1

0

∫
Q

SΘV (x, s) SΘ (
t∇ΘW )(x, s) dxds from (3.14)

= − 1

θ1

∫ 1

0

∫
Q
VΘ(x, s)

t∇xWΘ(x, s) dxds from (B.2). (B.3)

But the definition of H1
Θ#(Ω#) implies that VΘ(·, s) ∈ H1(Q), a. e. s ∈ (0, 1). Thus in (B.3), we can

apply the usual Green formula to VΘ(·, s) and WΘ(·, s) ∈ [C∞
0 (Q)]2 (with no boundary term since

WΘ(·, s) is compactly supported) to obtain

〈 tΘ∇V, W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

=

∫ 1

0

∫
Q
∇xVΘ(x, s) ·WΘ(x, s) dxds

=
1

θ1

∫
Ω#

S −1
Θ ∇xVΘ(x) ·W (x) dx from (3.14)

=
〈
S −1

Θ ∇xVΘ, W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

. (B.4)

The identity (B.4) being true for any W ∈ [C∞
0 (Ω#)]

2 implies that tΘ∇V = S −1
Θ ∇xVΘ in the sense

of distributions. But thanks to the bijectivity of SΘ and to the fact that ∇xVΘ ∈ L2(0, 1; [L2(Q)]2),
it follows that S −1

Θ ∇xVΘ ∈ [L2(Ω#)]
2. Therefore, tΘ∇V also belongs to [L2(Ω#)]

2, and one has

a. e. x ∈ Ω#,
tΘ∇V (x) = S −1

Θ ∇xVΘ(x). (B.5)

Consequently, V ∈ H1
Θ#(Ω#) and (3.17) follows by applying the transform SΘ to (B.5). ■
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B.3 Proof of Proposition 3.5: density of smooth functions in H1
Θ#(Ω#), HΘ#(div;Ω#)

Proof of Proposition 3.5. We prove the first item, since the proof of the second one is very
similar. For V ∈ H1

Θ#(Ω#), we construct a sequence of smooth functions that converges to SΘV ∈
L2(0, 1;H1(Q)). For almost any x ∈ Q, let ζn(x, ·) denote the n–th partial Fourier sum of SΘV (x, ·):

a. e. (x, s) ∈ Q× (0, 1), ζn(x, s) :=

n∑
ℓ=−n

V̂
(ℓ)

Θ (x) e2iπjs, V̂
(ℓ)

Θ (x) :=

∫ 1

0
SΘV (x, t) e−2iπℓt dt.

It can be checked easily that ζ(x, ·) ∈ C∞([0, 1]) is 1–periodic, and that ζ(·, s) ∈ H1(Q) (as a finite
linear combination of V̂ (j)

Θ ∈ H1(Q)). Moreover, using dominated convergence theorem, one shows
that ζn → SΘV in L2(0, 1;H1(Q)), n→ +∞.

Now, consider a sequence of functions V̂ (ℓ,m)
Θ ∈ C∞

0 (Q) converging to V̂ (ℓ)
Θ in H1(Q), and define

∀ (x, s) ∈ Q× (0, 1), ζn,m(x, s) :=
n∑

ℓ=−n

V̂
(ℓ,m)

Θ (x) e2iπℓs.

For any (m,n) ∈ N2, ζn,m ∈ C∞(Q× (0, 1)) is 1–periodic with respect to s. Moreover, from the
above, we deduce by the triangle inequality that ζn,n → SΘV in L2(0, 1;H1(Q)), n → +∞. As a
consequence, S −1

Θ ζn,n ∈ C∞
0,#(Ω#) → V in H1

Θ#(Ω#), n→ +∞. ■

C Proof of Proposition 4.6: properties of the Floquet-Bloch transform

We prove the properties of the Floquet-Bloch transform stated in Proposition 4.6 by adapting the
ideas of the isotropic case [30].

Proof. Item (a), Step 1– We first show that F is bounded from H1
Θ#(Ω#) to L2(−π, π;H1

Θ#2(Ω#2)),
and that (4.14) holds. First, one computes directly that

∀ ζ ∈ C∞
0,#(Ω#), a. e. k ∈ (−π, π),

 Fζ(·, k) ∈ C∞
0,#2(Ω#2),

F(tΘ∇ζ)(·, k) = tΘ (∇+ ike1)Fζ(·, k).

This implies from the Parseval-like formula (4.11) (with U = V = ζ, tΘ∇ζ) that F is continuous
from C∞

0,#(Ω#) to L2(−π, π;C∞
0,#2(Ω#2)) (which are equipped respectively with the H1

Θ(Ω#)–norm
and the L2(−π, π;H1

Θ(Ω#2))–norm). By density (Proposition 3.5), F extends to a continuous map
from H1

Θ#(Ω#) to L2(−π, π;H1
Θ#2(Ω#2)), which satisfies (4.14).

Item (a), Step 2– It remains to show that F−1 (see (4.12)) is bounded from L2(−π, π;H1
Θ#2(Ω#2))

to H1
Θ#(Ω#). To do so, it is sufficient to prove that

∀ V̂ ∈ L2(−π, π;H1
Θ#2(Ω#2)), tΘ∇F−1V̂ = F−1[tΘ (∇+ ike1) V̂ ]. (C.1)

For isotropic Sobolev spaces (Θ = I3), the classical way to prove (C.1) is by using the jump rule,
which involves traces on the faces z1 ∈ {0, 1}. But since we have not defined these traces in this
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paper, we shall resort to the Green’s formula (3.33), obtained by density. Given W ∈ C∞
0 (Ω#),

using derivation in the sense of distributions with F−1V̂ ∈ L2(Ω#) gives

〈 tΘ∇F−1V̂ ,W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

=

∫
Ω#

F−1V̂ (x) t∇ΘW (x) dx

=

∫ π

−π

∫
Ω

#2

V̂ (x, k)F t∇ΘW (x, k) dx dk from (4.11)

=

∫ π

−π

∫
Ω

#2

V̂ (x, k) t(∇+ ike1)ΘFW (x, k) dxdk, (C.2)

where the last equality is obtained from direct computations. Since V̂ (·, k) ∈ H1
Θ#2(Ω#2) and W is

smooth, we can apply Green’s formula (3.33) to (C.2), to deduce that

〈 tΘ∇F−1V̂ ,W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

=

∫ π

−π

∫
Ω

#2

tΘ (∇+ ike1)V̂ (x, k)FW (x, k) dxdk

=

∫
Ω#

F−1[tΘ (∇+ ike1)V̂ ](x)W (x) dx from (4.11)

=
〈
F−1[tΘ (∇+ ike1)V̂ ],W

〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

.

The above implies (C.1) in the sense of distributions. But since F−1[tΘ (∇+ ike1)V̂ ] ∈ L2(Ω#), we
deduce that tΘ∇F−1V̂ ∈ L2(Ω#), so that (C.1) holds.

Item (b)– The proof is very similar to the one of Item (a), and therefore is omitted.

Item (c)– For the sake of clarity in this part, we highlight the distinction between the volume Floquet-
Bloch transform Fv for functions in Ω# and the surface Floquet-Bloch transform Fs for functions on
Σ#. In addition, let γ0,# (resp. γ0,#2) denote the trace operator on Σ# (resp. Σ#2). We begin by
proving that the Floquet-Bloch transform commutes with the trace operator in the following sense:

∀ V ∈ H1
Θ#(Ω#), Fs (γ0,#V ) = γ0,#2 (FvV ). (C.3)

Note that (C.3) is straightforward for smooth functions V ∈ C∞
0,#(Ω#). It extends to V ∈ H1

Θ#(Ω#)

using (i) the density of C∞
0,#(Ω#) in H1

Θ#(Ω#) (Proposition 3.5), (ii) the continuity of γ0,# and γ0,#2

(Proposition 3.8), (iii) the continuity of Fv from H1
Θ#(Ω#) to L2(−π, π;H1

Θ#2(Ω#2)) (proved in Item
(a)), and finally (iv) the continuity of Fs from L2(Σ#) to L2(−π, π;L2(Σ#2)).

Now we can show Item (c), namely that the surface Floquet-Bloch transform Fs is an isomor-
phism from H

1/2
Θ# (Σ#) to L2(−π, π;H1/2

Θ#2(Σ#2)). Since γ0,# and γ0,#2 are surjective, there exist two
bounded operators R# ∈ L (H

1/2
Θ# (Σ#), H

1
Θ#(Ω#)) and R#2 ∈ L (H

1/2
Θ#2(Σ#2), H1

Θ#2(Ω#2)) such that
γ0,# R# = I and γ0,#2 R#2 = I. Thus (C.3) leads to

Fs = γ0,#2 Fv R# and [Fs]
−1 = γ0,# [Fv]

−1R#2 .

Using Item (a) then allows to conclude. ■
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