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Abstract

We introduce a scalar elliptic equation defined on a boundary layer given by Π2 ×
[0, ztop], where Π2 is a two dimensional torus, with an eddy vertical eddy viscosity
of order zα, α ∈ [0, 1], an homogeneous boundary condition at z = 0, and a Robin
condition at z = ztop. We show the existence of weak solutions to this boundary
problem, distinguishing the cases 0 ≤ α < 1 and α = 1. Then we carry out several
numerical simulations, showing the ability of our model to accuratly reproduce profiles
close to those predicted by the Monin-Oboukhov theory, by calculating stabilizing
functions.

MCS Classification: 35Q30, 35D30, 76D03, 76D05.
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1 Introduction

This paper is devoted to study a scalar elliptic equation which parametrizes the mean
velocity of the air in the atmospheric Surface Boundary Layer (SBL), where the turbulent
stresses are balanced with the friction forces on the ground. This is part of the more
general framework of the turbulent boundary layers, initially developed by L. Prandtl
[20], then by T. von Kármán [26], who highlighted the role of logarithmic profiles relative
to the height in such layers (see also in [5, 14, 25]), called the log-law, which was validated
by several numerical simulations, for instance by using turbulence models such as the k−ε
model (see [19] and further references inside) and-or by stochastic models [18].
The Monin-Obukhov theory [15] states that under non-neutral conditions, the mean veloc-
ity profile differs slightly from the log-law, the difference being determined by stabilization
functions. This theory is used in much more general (SLB) regimes [17], and is the basis
of most atmospheric flow simulations near the ground, which raises the question of the
determination of the stabilization functions.
The starting point is the 1D differential equation that yields the log-law from a theoretical
point of view [5], namely

u?κ
d

dz

(
z
du

dz

)
= 0,
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together with appropriate boundary conditions, where u = u(z) denotes the mean hori-
zontal velocity component that is supposed to only depend on the height z > 0; in this
framework, u? is the friction velocity and κ the von Kármán constant. We wonder if a
similar simple multi dimensional PDE satisfied by u = u(xh, z), xh ∈ IRd (d = 1, 2), is
able to yield Monin-Oboukhov profiles type, which suggests to introduce the equation,

(1.1) − νh∆hu− ∂z(νturb(z)∂zu) = f,

where f is the Boussinesq force specified by a temperature supposed constant in this
paper, νturb = νturb(z) is an eddy viscosity and νh > 0 an horizontal viscosity coefficient.
According to standard assumptions and dimensional analysis [6, 11, 16], we should have

(1.2) νturb(z) = κu?z,

in the domain 0 < z < ztop, where ztop denotes the height of the (SLB). However, we know
that eddy viscosities that vanish at the boundary are source of serious mathematical issues
[1, 3, 4] and are oftenly studied by the mean of weighted Sobolev spaces [9]. Moreover, the
case given by (1.2) is critical as we will see later in this article, giving very weak solutions
with only H1/2 regularity, which does not allow to set a boundary condition at z = 0.
This is why in many models, νturb is taken to be constant in a viscous sublayer [0, z0]. The
same issue occurs in the case of the Smagorinsky’s model [24], where the eddy viscosity
denoted by νsmag is given by νsmag = κz2|∂zu| near the ground z = 0. This is why in
the Smagorinisky’s case, several authors have suggested to replace the physical νsmag by

νsmag = κz
2(1−α)
0 z2α|∂zu| for some 0 < α < 1 [3, 21, 22, 23], to obtain more regular solutions

and to be able to take into account appropriate boundary conditions. This suggests to
consider in our case general eddy viscosities of the form

(1.3) νturb(z) = κz1−α
0 u?z

α.

There is the question of the boundary conditions. It is natural to set u = 0 at the ground
z = 0. Following [10], we take a Navier friction condition at the top of the boundary layer
z = ztop (also named Robin law), which is a fairly transparent condition, easy to deal with
in a variational formulation. In order to be consistant with the numerical simulations,
we take periodic boundary conditions in the horizontal directions. Therefore, the PDE
problem we consider in this paper is the following1,

(1.4)


λu− νh∆hu− µ∂z(zα∂zu) = f in BL,

µzα
∂u

∂z
= CD(V (xh)− u(xh, ztop)) on Γtop,

u = 0 on Γb,

where

(1.5) BL = Π2 × [0, ztop], Γb = Π2 × {z = 0}, Γtop = Π2 × {z = ztop},

0 < α ≤ 1, for a given 2D torus denoted by Π2, where the term λu, λ ≥ 0, is a stabilizing
term, useful only in the case α = 1, µ > 0 and CD > 0 are given coefficients that will be
calibrated by numerical experiments.
In this paper we prove the existence of a weak solution to Problem (1.4) in an appropriate
weighted space for 0 ≤ α < 1, see Theorem 3.1 below. Then we prove the existence of a
weak solution u ∈ H1/2(BL) for λ > 0, in Theorem 4.1 which is the main result of this

1the acronym SBL has been replaced by BL for simplicity.

2



paper. In this result, we do not impose u = 0 at z = 0. It is based on a Neças lemma
type (also known as Lions Lemma), Lemma 4.1. In this case, the difficulty is due to the
mixed boundary condition and we cannot directly apply the results of [2, 7]. We had to
make many efforts to prove this essential result in this problem, based on the interpolation
theorem [13]. Finally we cary out several numerical simulations based on a Freefem++
code [8], which allows to evaluate the difference between the solution and the log-law.
In particular we observe that, despite the lack of theoretical regularity, the physical case
α = 1 remains the most accurate to parametrize the SBL, and we are able to calculate
numerically in several different regimes the stabilizing functions, given by formula (5.8)
below, which validates model (1.4) in terms of the Monin-Oboukhov theory.
The paper is organized as follows. In a first part we develop the modeling sketched in the
introduction, and we set the physical constants involved in the simulation. Then we study
the case 0 ≤ α < 1, by viscous regularization and proving that the natural weighted space
related to the problem is embedded in a standard Sobolev space W 1,γ(BL). Then we focus
on the case α = 1. A large part of the paper is devoted to the study of the function spaces
and Neças Lemma by the mean of Fourier series, which allows to prove that the natural
weighted space related to the problem is embedded in H1/2(BL). The last section of the
paper is devoted to the numerical results.

2 Modeling

This section is devoted to recall some basic elements of the theory of turbulent boundary
layers, and to fix the general framework of the model which one studies. The steady mean
fluid velocity in such boundary layer, denoted (BL), is denoted by

u = u(xh, z) = (uh, w)

instead of u for the simplicity, where

uh = (u, v), xh = (x, y) ∈ IR2, z ∈ ]0, ztop[,

ztop > 0 being the bottom of (BL). For instance, if (BL) models the surface boundary
layer, ztop ≈ 100 m. We also will need to consider the roughness length z0, which depends
on the nature of the ground, and varies from 0.0002 m in open sea, to 1 m for city centre
with high- and low-rise buildings.
Note that we are in a flat domain and the splitting of both variables and unknowns into
horizontal and vertical will be of particular use to identify the problem and give a clear
formulation.

2.1 assumptions, general equation and issues

Let ν > 0 denotes the kinematic viscosity of the fluid. It is commonly supposed that in
standard (statistical) steady BL it hold the following:

• the pressure is constant and the vertical part of the mean velocity vanishes, that is
w = 0 and, even if it means making a change of coordinates, we can assume v = 0;

• the mean velocity u = (u, 0, 0) depends only on the altitude, that is u = u(z);

• the eddy viscosity νturb depends on z and u? =
√
ν|∂zu(0)|, the so-called frictional

velocity, which is the tuning parameter of the system (see [5, 19]), which yields

(2.1) νturb = νturb(z) = CνC?u
?z,

3
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where Cν ≈ 15, C? ≈ 10 are non dimensional constants, that we have calibrated by
numerical simulations. Typical values of u? range from 2 to 10 ms−1.

• all terms in the fluid equation are negligible compared to the turbulent diffusion
term.

These assumptions lead to the following equation for the mean velocity u = (u, 0, 0),

(2.2) − d

dz

(
νturb(z)

du

dz

)
= 0,

which formula, once integrated between a given z0 and ztop with appropriate boundary
conditions, yields the well known log-law, uniform in xh, using the calibration constants
Cν and C?:

(2.3) u(z) =
C?u

?

Cν

(
log

(
z

z0

)
+ 1

)
z ∈ [z0, ztop].

Generally, for z ∈ [0, z0], called the viscous sub-layer, a linear profile is considered such
that u = u(z) is continuous over ]0, ztop[, and u(0) = 0, which means

(2.4) u(z) =
C?u?
Cν

z, z ∈ [0, z0].

Let uLog denotes the function defined over ]0, ztop[ by (2.3)-(2.4). When the stability of the
atmosphere is non-neutral and due to the effect of convection, which means that there is
a non zero source term in (2.2), stabilizing functions must added to uLog to get the right
velocity profile, according to the Monin-Obukhov theory [15], which means that

(2.5) u(z) = uLog(z) + Ψ(xh, z),

where the function Ψ(xh, z) is deduced from similarity arguments or from experimental
data. Examples of such stabilizing functions can be found in [17],

Remark 2.1. Normally in usual industrial models, Cν stands for the von Kármán con-
stant, the value of which being equal to 0.4, and C? = 1. However, due to the scales of
our simulations, we have to take other values of these constants to get numerical results
related to the physical data in the atmospheric SBL.

Our aim is to find a comprehensive PDE model, such that:

1. is defined over ]0, ztop[;

2. includes an eddy viscosity of the same form as that given by (2.1), where the profile
u = u(xh, 0) also depends on the horizontal variable;

3. is able to calculate stabilizing functions such as in (2.5) in various atmospheric
regimes.

Before embarking on nonlinear complicated 3D equations of fluid mechanics, we consider
as a first step the following elliptic toy-model in BL = IR2 × (0, ztop):

(2.6) λu− νh∆hu− ∂z(νturb(z)∂zu) = f,

for some λ > 0, νh > 0, ∆h = ∂2

∂x2
+ ∂2

∂y2
. The term λu in (2.6) stands for a numerical

artefact of an evolutionary term ∂tu, and serves as a system stabilizer, especially in the
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case α = 1. It can be taken equal to zero in the finite element simulation thanks to the
numerical dissipation, due to the discretization.

In physical applications, the source term f is the Boussinesq force, namely

(2.7) f = gβ(T0 − T ),

where T is the temperature of the fluid, T0 its value at the ground, g ≈ 10 ms−1 is the
gravity coefficient, β is the coefficient of thermal expansion, a typical value of which for
dry air is varies between 0.002 K−1 and 0.003 K−1.

2.2 Boundary conditions

The choice of the boundary conditions may be an issue, and there are many options.
We consider the case of a BL that flows over a rigid wall, which means that we take an
homogeneous boundary condition on the bottom Γb, u(xh, 0) = 0. Moreover, we consider
that this BL is coupled on top with a layer of fluid which exerts a frictional force on it.
Therefore, as in [10] one can can take a linear Navier-Boundary condition like

(2.8) Cνu
?ztop

du

dz
(xh, ztop) = CD(V (xh)− u(xh, ztop))

where CD > 0 is a frictional coefficient and V = V (xh) is the velocity of the top layer. In
the numerical simulations we have taken V (xh) = uLog(ztop)(1 + ε(xh)), where uLog is that
given by (2.3)-(2.4). The coefficient CD will be numerically optimized in fonction of u?,
ε(xh) is a small perturbation term.

Remark 2.2. According to the results of [10], we expect that for large values of CD, the
boundary condition (2.8) converges (in some sense) to the continuity condition u(xh) =
V (xh) at Γtop, which is well confirmed in this framework by the numerical simulations.

2.3 Alternatives and general framework

As we will see in the following, the eddy viscosity given by (2.1) yields variational (or
weak) solutions to Problem (2.6) that are in H1/2, and not much more. In particular
the homogeneous Dirichlet boundary condition at the bottom cannot be checked, which is
consistent with the log-law. This is why we ask the question wheher or not it is possible
to identify alternate eddy viscosities, close to (2.1) but giving more regularity to the
system, being not critical for the notion of trace, and so on. We wonder if that gives good
approximations of the usual BL profiles. In this way, it is natural to consider νturb of the
form

(2.9) νturb = νturb(z) = z1−α
0 Cνu

?zα, α ∈]0, 1],

the main feature of which is that it degenerates at the ground, but with a different velocity.
The parameter z0 has the dimensions of a length and it is needed to have a consistent
expression for the viscosity. We take as boundary conditions on the bottom and on the
top, we write the friction law (2.8) like a standard Robin condition in the form:

(2.10)

{
CDu+ µzα

∂u

∂z
(xh, ztop) = G(xh)

u(xh, 0) = 0,

for µ = z1−α
0 Cνu

? and where G = CDV .
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It remains to clarify the boundary conditions in the xh-axis. For practical numerical
simulations, we have to limit ourselves to a finite computational box [0, Lx]×[0, Ly]×]0, ztop[
for given scales Lx and Ly, which raises the question of the boundary conditions at the
entrance, exit and sides of the computational box, namely

Γin = {0} × [0, Ly]× [0, ztop], Γout = {Lx} × [0, Ly]× [0, ztop],
Γs,1 = [0, Lx]× {0}×]0, ztop[, Γs,2 × [0, Lx]× {Ly} × [0, ztop].

In [12] we have considered at Γin a fixed given field in H
1/2
00 (Γin) and nonlinear Neumann

transparent boundary conditions at Γ0 which yields serious technical issues, both theoret-
ically and numerically. In this paper, we opt for horizontal periodic boundary conditions,
which means that u must satisfy for all formal derivative operator Dn, n ≥ 0,

(2.11) Dnu(x+ Lx, y + Ly, z) = Dnu(x, y, z), ∀xh = (x, y) ∈ IR2, ∀z ∈ [0, ztop],

and imposing the invariance for translations implies working with the torus Π2 given by

(2.12) Π2 = ([0, Lx]× [0, Ly])/T2,

where T2 denotes the set of wave vectors given by:

(2.13) T2 =
2π

Lx
Z× 2π

Ly
Z

This setting is usual in practical numerical simulations for technical convenience but not
only since also it eliminates the problem of an infinite domain in the analytical studies.
For instance, it was used in [19] for simulating a boundary layer by a RANS turbulent
model.

3 The 0 < α < 1 case

Throughout this section, we assume that 0 < α < 1 and λ > 0 is fixed and we study the
problem in a simpler setting. In fact, in this case one can reduce the problem to another
one in a setting of unweighted Sobolev spaces for which both existence and interpretation
of the solution are standard. Later on we will see the possible treatment of the limiting
case.
We will use standard Lebesgue and Sobolev spaces and from now on

(3.1) BL = Π2 × [0, ztop], Γb = Π2 × {z = 0}, Γtop = Π2 × {z = ztop}.

We specify the function spaces we are working with, and then we prove the existence of a
solution by a viscous regularization. To start with, we observe that any strong solution to
Problem (1.4) satisfies the energy balance:

(3.2) λ

∫
BL

u2 + νh

∫
BL
|∇hu|2 + µ

∫
BL

zα(∂zu)2 + CD

∫
Γtop

|u|2 −
∫

Γtop

uG =

∫
BL

fu,

3.1 Function spaces

Let

• C∞0,b(BL) denotes the space of the functions u ∈ C∞(BL) such that there exists
δ = δ(u) ∈]0, 1[ such that the support of u is included in Π2 × [δ(u), 1],
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• C∞0,b(BL)′ denotes its topological dual,

• W 1,γ
0,b (BL) (γ > 1) denotes the closure of C∞0,b(BL) for the norm ‖∇hu‖0,γ+‖∂zu‖0,γ .

In particular,

(3.3) W 1,γ
0,b (BL) = {u ∈W 1,γ(BL), u = 0 on Γb}.

According to the energy balance (3.2), we are led to consider the natural weighted space
Vα defined as the closure of C∞0,b(BL) equipped with the norm

(3.4) ∀u ∈ C∞0,b(BL), ‖u‖Vα = (‖∇hu‖20,2 + ‖zα/2∂zu‖20,2)1/2,

where ‖ · ‖s,p stands for the usual W s,p norm.

Proposition 3.1. For all α ∈ [0, 1[ we have the embedding,

∀ γ ∈
]
1,

2

α+ 1

[
, Vα ⊂W 1,γ

0,b (BL),

and the following inequality holds ∀u ∈ Vα,

(3.5) ‖u‖0;1,γ ≤ C
(

2− γ
2− (1 + α)γ)

) 2
γ
−1

‖u‖Vα ,

for some constant C > 0.

Proof. Let γ > 0 and ρ > 0 that will be fixed later. Let u ∈ D0,b(BL). The Hölder
inequality yields:∫ 1

0
|∂zu|γdz =

∫ 1

0
zρ|∂zu|γ

1

zρ
dz

≤
(∫ 1

0
z2ρ/γ |∂zu|2dz

)γ/2(∫ 1

0

dz

z2ρ/2−γ

) 2−γ
2

,

with γ
2 + 2−γ

2 = 1. The second integral is well-defined if and only if 2ρ
2−γ < 1. Then,

choosing ρ such that 2ρ
γ = α yields the condition γ < 2

α+1 . Inequality (3.5) follows after
an elementary calculation and integration with respect to the dxh variables.

It follows from Proposition 3.1 and standard reasoning on Sobolev spaces, that functions
in Vα have a trace at z = 0 equal to zero, and also we have the following characterization

(3.6) Vα = {u ∈ C∞0,b(BL)′ s.t. ∇hu ∈ L2(BL), zα/2∂zu ∈ L2(BL), u = 0 on Γb}.

3.2 Weak formulation

Proposition 3.1 can be rephrased, to work in standard (unweighted) Sobolev spaces, as
follows

(3.7) Vα ⊂W
1,( 2

1+α)
−

0,b :=
⋂

1<γ< 2
1+α

W 1,γ
0,b (BL),
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which is put in duality with the set

(3.8) W
1,( 2

1−α)
+

0,b =
⋃

η> 2
1−α

W 1,η
0,b (BL).

Throughout the section, we assume that

f ∈ L2 (BL) ,(3.9)

G ∈ L2(Γtop).(3.10)

The following definition of a weak solution to Problem (1.4) is motivated by standard rules
about integration by parts, combined with the boundary conditions under consideration.

Definition 3.1. For α ∈ [0, 1[ we say that u ∈ Vα is a weak solution to Problem (1.4), if

∀v ∈W
1,( 2

1−α)
+

0 ,

(3.11) λ

∫
BL

u v + νh

∫
BL
∇hu · ∇hv + µ

∫
BL

zα∂zu ∂zv +

∫
Γtop

(CDu−G)v =

∫
BL

f v.

Remark 3.1. Note that all the terms in the integrals written in (3.11) are well-defined.
However, the solution u cannot be a priori taken as test function, which is an issue. As a
consequence, we are not able to prove the uniqueness of this solution, even if the problem
is linear.

Before all, we notice that combining the energy balance (3.2) and (3.5) with standard
calculus inequalities, yields for any 1 < γ < 2

1+α the following estimate in W 1,γ
0,b (BL),

satisfied by any given regular solution u to the variational problem (3.11):

(3.12) ‖u‖0;1,γ ≤
Cγ

inf{νh, µ}
(‖f‖0,2 + ‖G‖1− 1

γ
,γ;Γtop

),

where Cγ →∞ as γ → 2
1+α .

The aim of the rest of this section is proving the following existence result.

Theorem 3.1. Problem (1.4) admits a weak solution u ∈ Vα. Moreover, the solution
satisfies the energy inequality

(3.13) λ

∫
BL

u2 + νh

∫
BL
|∇hu|2 + µ

∫
BL

zα|∂zu|2 + CD

∫
Γtop

|u|2 −
∫

Γtop

uG ≤
∫
BL

fu

Remark 3.2. The existence of a solution still holds when λ = 0.

Remark 3.3. Assumption (3.10) about G is not optimal and could be weakened by taking
for instance G ∈ W−s,p(Γtop) for some s > 0, p > 1 depending on α, so that it is put in

duality with traces on Γtop of test functions in W
1,( 2

1−α)
+

0,b .
If we still get in this case the existence of a weak solution, we do not know whether the
energy inequality (3.13) still holds, or even if it makes sense because of the boundary term∫

Γtop
uG. It seems that there is an interesting theoretical issue at this point.

Remark 3.4. The result still holds if one takes the Navier law (2.8) for a given V ∈
L2(Γtop), α > 0.
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3.3 Viscous regularization and proof of the existence result

From now we set

(3.14) γ? =
2

1 + α
,

since this value is the critical one for the embedding of weighted Sobolev spaces.
As a technical tool to prove existence of weak solutions, we regularize Problem (1.4) by
adding a viscous term in the z-direction, which means that we consider the following
problem, for a given ε > 0:

(3.15)


λu− νh∆hu− µ∂z(zα∂zu)− ε ∂2

zzu = f,

CDu+ µzα
∂u

∂z
= G on Γtop,

u = 0 on Γb,

Definition 3.2. Let ε > 0. We say that uε ∈ W 1,2
0,b (BL) is a weak solution to Prob-

lem (3.15), if ∀v ∈W 1,2
0,b (BL),

(3.16)

λ

∫
BL

uεv + νh

∫
BL
∇huε · ∇hv + µ

∫
BL

zα∂zuε∂zv+

+ε

∫
BL

∂zuε∂zv + CD

∫
Γtop

uεv −
∫

Γtop

vG =

∫
BL

fv.

The existence and uniqueness of a weak solution to Problem (3.16) is straightforward by
the Lax-Milgram theorem. Moreover, as uε can be taken as test function, it satisfies the
following energy balance(equality):

(3.17)

λ

∫
BL

u2
ε︸ ︷︷ ︸

I1,ε

+ νh

∫
BL
|∇huε|2 +

∫
BL

(ε+ µzα)|∂zuε|2︸ ︷︷ ︸
I2,ε

+CD

∫
Γtop

|uε|2︸ ︷︷ ︸
I3,ε

−
∫

Γtop

uεG︸ ︷︷ ︸
I4,ε

=

∫
BL

f uε︸ ︷︷ ︸
I5,ε

.

From this, we are able to finish the proof of Theorem 3.1 by taking the limit in (3.16)
when ε→ 0.
We deduce from (3.17) and standard calculus inequalities that the family (uε)ε>0 is uni-
formly bounded in Vα, as well as in W 1,γ

0,b (BL) for any 1 < γ < γ? say

(3.18) ‖uε‖0;1,γ ≤ C(γ,G, f, νh, µ).

Arguing as in [5, Chapter 7], we can extract a (sub)sequence (uεn)n∈IN that weakly con-
verges to some u ∈ Vα, which is also weakly converging in W 1,γ

0,b (BL) for all 1 < γ < γ?,

and which is strongly converging in L2(BL).
Moreover, by the trace theorem and the Sobolev theorem, the sequence (εn) can be chosen
such that in addition (tr[uεn ])n∈IN strongly converges to tr[u] in L2(Γtop). Let 1 < γ < γ?

and take as test function

v ∈W 1,γ′

0,b (BL) ⊂W
1,( 2

1−α)
+

0,b ⊂W 1,2
0,b (BL),

in formulation (3.16). We have to take the limit in the various terms of (3.16), which we
do step by step, starting with the diffusion term.

9



Let w ∈ Vα, and let the linear form Ψv given by

〈Ψv, w〉 = νh

∫
BL
∇hw · ∇hv dx+ µ

∫
BL

zα∂zw ∂zv dx.

By the Hölder inequality we obtain

|〈Ψv, w〉| ≤ sup{νh, µzαtop}‖w‖0;1,γ‖v‖0;1,γ′ ,

therefore Ψv ∈W 1,γ
0,b (BL)′, which leads to

lim
n→∞

〈Ψv, uεn〉 = 〈Ψv, u〉 = νh

∫
BL
∇hu · ∇hv + µ

∫
BL

zα∂zu∂zv.

Moreover,∣∣∣∣εn ∫
BL

∂zuεn∂zv

∣∣∣∣ ≤ εn‖uεn‖0;1,γ‖v‖0;1,γ′ ≤ C(γ,G, f, νh, µ)εn‖v‖0;1,γ′ ,

giving

lim
n→∞

εn

∫
BL

∂zuεn∂zv = 0.

In addition, considering the properties of the sequence (uεn)n∈IN, we have

lim
n→∞

λ

∫
BL

uεnv = λ

∫
BL

uv, lim
n→∞

CD

∫
Γtop

uεnv = CD

∫
Γtop

uv.

Therefore u satisfies (3.11).

It remains to show that the energy inequality (3.13) holds. Starting from (3.17), we have
on one hand

lim
n→∞

I1,εn = λ

∫
BL
|u|2, lim

n→∞
I3,εn = CD

∫
Γtop

|u|2,

lim
n→∞

I4,εn =

∫
Γtop

uG, lim
n→∞

I5,εn =

∫
BL

f u,

and on the other hand by lower semi-continuity

νh

∫
BL
|∇hu|2 + µ

∫
BL

zα|∂zu|2 ≤ lim inf
n→∞

I2,εn ,

hence the energy balance (3.13), which concludes the proof.

Remark 3.5. The solution we exhibit is obtained by viscous regularization. We also can
think to directly get a solution by applying the Lax-Milgram theorem in the space Vα, which
requires a different approach that we have voluntarily skipped here. As already stressed in
Remark 3.1, we do not know if they are completely equivalent; we conjecture that this is
the case.

4 The case α = 1

We now consider the system:

(4.1)

{
λu− νh∆hu− µ∂z(z∂zu) = f in BL,

CDu+ µz
∂u

∂z
= G on Γtop.
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As we shall see, the best we can get is an estimate in an H1/2-like space near the bottom
Γb. Therefore, we are not able to define the trace of such functions at Γb. This is why
we do not impose any boundary condition there, contrary to what we did for the case
0 < α < 1. Neverthless, we still impose u|Γb = 0 in the numerical code, since the finite
element formulation yields additional numerical dissipation that sufficiently regularizes the
system.

In order to derive this H1/2 estimate, in the same spirit as in [1], we first need the following
version of Neças Lemma, the proof of which will be complete by the end of this section.

Lemma 4.1. Let v ∈ D′(Π2×]0, ztop[) such that v ∈ H−1(Π2×]0, ztop[) and also ∇v ∈
H−1(Π2×]0, ztop[). Then v ∈ L2(Π2×]0, ztop[) and one has:

(4.2) ‖v‖L2(Π2×]0,ztop[) ≤ ‖∇v‖H−1(Π2×]0,ztop[) + ‖v‖H−1(Π2×[0,ztop]).

The main consequence of Lemma 4.1 is the following.

Corollary 1. Let V1 denotes the space:

(4.3) V1 = {u ∈ C∞0,b(BL)′ s.t. u ∈ L2(BL), ∇hu ∈ L2(BL), z1/2∂zu ∈ L2(BL)},

Then

(4.4) V1 ⊂ H1/2(BL).

The space V1 is the space that naturally suits Problem (4.1) according to the energy
balance (3.2) that still holds when α = 1. It must be stressed that:

• showing that any solution of problem (4.1) is well-defined in V1 by using (3.2) requires
λ > 0;

• we have

(4.5) V1 ⊂ H1(Π2 × [δ, ztop])

for any δ > 0, which makes consistent the boundary condition at Γtop.

Definition 4.1. We say that u ∈ V1 is a very weak solution to (4.1) if for all v ∈ V1,

(4.6) λ

∫
BL

u v + νh

∫
BL
∇hu · ∇hv + µ

∫
BL

z∂zu ∂zv +

∫
Γtop

(CDu−G)v =

∫
BL

f v.

The main result of this section is the following.

Theorem 4.1. Let f ∈ L2 and G ∈ L2. Then, there exists a very weak solution u ∈ V1 ⊂
H1/2(BL) of problem (4.1), which satisfies

‖v‖V1 ≤ C(‖f‖2,BL + ‖G‖2,Γtop)

We argue by approximation by using Fourier series expansions which allows for some
explicit and direct computations. This is the reason why, before proving 4.1 and Theorem
4.1, we need to prove a bunch of convergence results about Fourier series in this context
of mixed boundary conditions, periodic in the xh-axis but not in the z-axis. This will be
the purpose of the next sections.
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4.1 Framework

We recall that Let T2 = 2π
Lx

Z × 2π
Ly

Z and let k = (kx, ky) ∈ T2 any wave vector. In the
following, we set

T2,n :=
{

k = (kx, ky) ∈ T2, |k| ≤ 2πn
√

1/L2
x + 1/L2

y

}
.

Let u ∈ L1(BL) and let ck = ck(u; z) denotes the “horizontal” Fourier’s coefficient at the
wave vector k, namely

ck(u; z) :=
1

ρ

∫
Π2

u(xh, z)e
−ik·xhdxh,

where ρ =
√
L2
x + L2

y. Let un its partial sum of the Fourier series defined by

(4.7) un(xh, z) :=
∑

k∈T2,n

ck(z)eik·xh .

A natural question is what assumptions are needed about u to prove the convergence of
the sequence (un)n∈IN toward u (in some given topology). Before tackling this question,
we consider the following spaces:

(4.8) H1
0 (BL) = {u ∈ H1(BL); u = 0 on Γb and on Γtop},

together with:

Dn(BL) = {u = u(xh, z) =
∑

k∈T2,n

ck(z)eik·xh , ck ∈ D(]0, ztop[)},(4.9)

Vn = {u = u(xh, z) =
∑

k∈T2,n

ck(z)eik·xh , ck ∈ H1
0 (]0, ztop[)},(4.10)

V −1
n = {v =

∑
k∈T2,n

ψk(z)eik·xh , ψk ∈ H−1(]0, ztop[)}.(4.11)

We will prove the following result

Lemma 4.2. Let u ∈ H1
0 (BL), un given by (4.7). Then, for all n, un ∈ Vn and (un)n∈IN

converges to u in H1
0 (BL).

We first notice that the following isometries hold:

(4.12) Dn(BL) ' D(]0, ztop[)
n, Vn ' H1

0 (]0, ztop[)
n, V −1

n ' H−1([0, ztop])
n.

Therefore, from the standard Neças inequality (see [7]), we easily get the following result.
Notice that the explicit computations allow us to prove that the right hand side bounds
the left hand side with multiplicative coefficient equal to one, independently of n ∈ IN.

Lemma 4.3. Let u ∈ D′n(BL) such that u,∇u ∈ V −1
n . Then u ∈ L2(BL) and one has

(4.13) ‖u‖0,2 ≤ ‖u‖1,−1 + ‖∇u‖1,−1

It remains to pass to the limit in (4.13) when n→∞ to prove Lemma 4.1. We first must
prove Lemma 4.2, which will be done step by step in the following subsections.
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4.2 L2 convergence

We prove in this section the following convergence result, which is well-known but we give
a self-contained treatment of all the results in this section.

Lemma 4.4. Let u ∈ H2(BL), un its Fourier’s series expansion as given by (4.7). Then
un → u in L2(BL) as n→∞.

Proof. Step 1. Estimate of the ck. Let k ∈ T2,n \ {0}. By Fubini’s Theorem and two
integration by parts, we get

(4.14)

ck(u; z) =
1

ρk2
x

∫
Π2

∂2u

∂x2
(xh, z)e

−ik·xhdxh, if kx 6= 0,

ck(u; z) = − 1

ρk2
y

∫
Π2

∂2u

∂y2
(xh, z)e

−ik·xhdxh, if ky 6= 0.

Consequently, we get

(4.15) |ck(u; z)| ≤ 1

ρ
inf

{
1

k2
x

,
1

k2
y

}∫
Π2

|∇hu(xh, z)|2 dxh ≤
C

ρ|k|2
‖∇hu(·, z)‖2L2(Π2).

Therefore, as u ∈ H1(BL), z → ck(u; z) ∈ L2([0, ztop] and is finite almost everywhere.

Step 2. Convergence. We deduce from classical results that for almost all z ∈ ]0, ztop[,

(4.16) un(·, z)→ u(·, z) in L2(Π2).

Put another way:

(4.17) εn(z) =

∫
Π2

|un(xh, z)− u(xh, z)|2dxh → 0 as n→∞.

Moreover, by the previous step,

(4.18) 0 ≤ εn ≤
∑
|k|≥λn

|ck(u; z)|2 ≤ C

ρ
‖∇hu‖2L2(Π2)

 ∑
|k|≥λn

1

|k|4

 = Rn‖∇hu‖2L2(Π2),

giving

(4.19) ‖u− un‖20,2 =

∫ ztop

0
εn(z)dz ≤ Rn‖∇hu‖20,2 → 0 as n→∞,

which concludes the proof.

4.3 Differentiability of the coefficient ck(u; z)

Lemma 4.5. Let u ∈ H1(BL) such that
∂u

∂z
∈ H1(BL). Then ck(u; ·) ∈ H1(]0, ztop[) and

one has for almost all z ∈ ]0, ztop[,

(4.20)
d

dz
ck(u; z) =

∫
Π2

∂u

∂z
(xh, z)e

−ik·xhdxh.
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Proof. Let us write

(4.21)
∂u

∂z
(xh, z) =

∂u

∂z
(xh, 0) +

∫ ztop

0

∂2u

∂z2
(xh, z

′)dz′.

By the trace theorem,

∂u

∂z
(xh, 0) ∈ H

1
2 (Γb) ↪→ L2(Γb) ' L2(Π2)

hence, ∀ z ∈]0, ztop[,∣∣∣∣∂u∂z (xh, z)

∣∣∣∣ ≤ ∣∣∣∣∂u∂z (xh, 0)

∣∣∣∣+

∫ ztop

0

∣∣∣∣∂2u

∂z2
(xh, z

′)

∣∣∣∣ dz′ ∈ L1(Π2).

Therefore, formula (4.23) is a classical consequence of the Lebesgue Theorem.

Lemma 4.6. Let u ∈ H1
0 (BL). Then ck(u; ·) ∈ H1

0 (]0, ztop[) and (4.23) holds a.e in
]0, ztop[.

Proof. Step 1. Approximations. Let ε > 0, and uε ∈ H1
0 (BL) ∩H2(BL) such that

(4.22) − ε∆uε + uε = u

According to standard results about the Helmholtz equation, we know that that uε → u
as ε→ 0, strongly in L2(BL), weakly in H1

0 (BL). Moreover, by Lemma 4.5, we also know
that

(4.23)
d

dz
ck(uε; z) =

∫
Π2

∂uε
∂z

(xh, z)e
−ik·xhdxh.

as well as ck(uε; z)→ ck(u; z) in L2(]0, ztop[).

Step 2. Derivative in the sense of the distributions. Let ϕ ∈ D(]0, ztop[). The starting
point is the identity

(4.24) −
∫ ztop

0

dϕ

dz
(z)ck(uε; z)dz =

∫ ztop

0

d

dz
ck(uε; z)ϕ(z)dz

From the results of step 1, we already know that

(4.25)

∫ ztop

0

dϕ

dz
(z)ck(uε; z)dz −−−→

ε→0

∫ ztop

0

dϕ

dz
(z)ck(u; z)dz.

We must pass to the limit in the r.h.s of (4.24). By (4.23), we have∫ ztop

0

d

dz
ck(uε; z)ϕ(z)dz =

∫
BL

∂uε
∂z

(xh, z)ϕ(z)e−ik·xhdxhdz.

Therefore, as uε → u weakly in H1
0 (BL),

(4.26)

∫
BL

∂uε
∂z

(xh, z)ϕ(z)e−ik·xhdxhdz −−−→
ε→0

∫
BL

∂u

∂z
(xh, z)ϕ(z)e−ik·xhdxhdz =∫ ztop

0
ϕ(z)

∫
Π2

∂u

∂z
(xh, z)e

−ik·xhdxhdz.

By combining (4.24), (4.25) and (4.26), we see that (4.23) holds in the sense of the distri-
bution, which concludes the proof because

z →
∫

Π2

∂u

∂z
(xh, z)e

i−k·xhdxh ∈ L2(]0, ztop[.
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By using the same argument, we also have the following, where we note Pnu = un.

Lemma 4.7. Let u ∈ L2(BL). Then Pnu converges to u in L2(BL) as n→∞.

Proof. Let u ∈ L2(BL) and uε ∈ H2(BL) given by (4.22). Then, we know from Lemma 4.4
that for any ε > 0 be fixed, Pnuε converges to uε in L2(BL). We write

Pnu− u = Pn(u− uε) + (Pnuε − uε) + (u− uε).

Then, since ||Pn|| ≤ 1, we get

||Pnu− u||0,2 ≤ 2||u− uε||0,2 + ||Pnuε − uε||0,2.

The rest of the proof is straightforward.

4.4 H1 Convergence

We are now able to prove Lemma 4.2, stating the convergence of the sequence (un)n∈IN to
u in H1(BL). We already know from Lemma 4.7 that un = Pnu −−−→

n→∞
u in L2(BL). Let

Fn = Fn(xh) denotes the Fejer kernel over Π2. Then, for a.e z ∈ ]0, ztop[, un is given by

(4.27) un(xh, z) =

∫
Π2

Fn(yh)u(xh + yh, z)dyh = Fn(·) ? u(·, z)(xh).

As the Lebesgue measure over BL is σ-finite, we deduce from the Lebesgue-Fubini theorem
that for a.e z ∈ ]0, ztop[, u(·, z) ∈ H1(Π2). Therefore, always a.e z ∈ ]0, ztop[,

(4.28) ∇hun(xh, z) = Fn(·) ?∇hu(·, z)(xh),

and by standard results,

(4.29) εn(z) =

∫
Π2

|∇hun(xh, z)−∇hu(xh, z)|2dxh −−−→
n→∞

0.

Moreover, by the Young inequality,

(4.30)
0 ≤ εn(z) ≤ (‖Fn‖Π2;0,1‖∇hu(·, z)‖Π2;0,2 + ‖∇hu(·, z)‖Π2;0,2)2

≤ 4‖∇hu(·, z)‖2Π2;0,2 ∈ L1(]0, ztop[).

Therefore, by the Lebesgue Theorem, we get

(4.31)

∫ ztop

0
εn(z) =

∫
BL
|un(xh, z)− u(xh, z)|2dxhdz −−−→

n→∞
0,

which, put in another way, yields ∇hun −−−→
n→∞

∇hu in L2(BL). Similarly, we deduce from

Lemma 4.6 that

(4.32)
∂un
∂z

(xh, z) = Fn(·) ? ∂u
∂z

(·, z)(xh),

and by an analysis similar to the previous one, we can conclude that

∂un
∂z
−−−→
n→∞

∂u

∂z
,

in L2(BL), which finishes the proof of Lemma 4.2.
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4.5 Interpolation spaces

As a consequence of Lemma 4.2 and Lemma 4.7, combined with the interpolation Theorem
proved by J.-L. Lions and E. Magenes [13], we have the following.

Lemma 4.8. Let s ∈ [0, 1], and

Hs(BL) = [L2(BL), H1(BL)]s = D(∇s).

Then u =
∑

k∈T2 ck(z)eik·xh ∈ Hs(BL) if and only if ∀k ∈ T2, ck ∈ Hs(]0, ztop[) and

||u||2s,2 =
∑
k∈T2

(
|k|2s

∫ ztop

0
|ck(z)|2dz + ||ck||2s,2

)
<∞.

We now need the definition of the space H
1/2
00 (BL) suited to our geometry, and its dual

space. Let ρ = ρ(z) be a C∞ non negative function on ]0, ztop[, and such that

lim
z→0

ρ(z)

z
= lim

z→ztop

ρ(z)

ztop − z
= 1.

Then in our case,

H
1/2
00 (BL) = {u ∈ H1/2(BL) s.t. ρ−1/2u ∈ L2(BL)},

equipped with the norm

‖u‖
H

1/2
00

= (‖u‖21/2,2 + ‖ρ−1/2u‖20,2)
1
2 .

According to Lemma 4.8, we have the following

Lemma 4.9. Let u =
∑

k∈T2 ck(z)eik·xh. Then, u ∈ H1/2
00 (BL) if and only if ∀k ∈ T2,

ck ∈ H
1/2
00 (]0, ztop[) and

||u||2
H

1/2
00

= ||u||21/2,2 +
∑
k∈T2

∫ ztop

0

|ck(z)|2

ρ(z)
dz <∞.

Now following [13], let us consider the linear operator Λ = ∇−1 : L2 → H−1, defined such
that

(4.33) ∀u, v ∈ L2, (u, v)2 = (Λu,Λv)−1,

with natural notations to denote the various scalar products. Then, the space [H−1, L2]1/2
is the domain of Λ1/2, and one has, according to the above,

(4.34) [H−1, L2]1/2 = (H
1/2
00 (BL))′.

In order to complete the interpolation tool box, let us consider W−1 as the closure of
C∞(BL) subjected to the norm

‖v‖W−1 = ‖∇v‖H−1(BL) + ‖v‖H−1(BL),

W 0 is the closure with respect to the norm

‖∇v‖L2(BL) + ‖v‖L2(BL).
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Note that W 0 ≈ H1(BL). The question is the characterization of the interpolation space
[W−1,W 0]1/2. From (4.33), we have

∀u, v ∈W 0, (u, v)2 + (∇u,∇v)2 = (Λu,Λv)−1 + (Λ∇u,Λ∇v)−1,

which allows to characterize the space [W−1,W 0]1/2 thanks to (4.34) by its norm given
by:

(4.35) ‖v‖[W−1,W 0]1/2
= ‖v‖

(H
1/2
00 (BL))′

+ ‖∇v‖
(H

1/2
00 (BL))′

.

4.6 Neças Lemma and consequences

We are now able to prove in this section Lemma 4.1, which we recall that it states the
following inequality,

(4.36) ‖v‖L2(BL) ≤ ‖∇v‖H−1(BL) + ‖v‖H−1(BL).

satisfied by any distribution v ∈ D′(BL) such that v,∇v ∈ H−1(BL), the dual of the
space H1

0 (BL) as defined by (4.8). Then, we will prove Corollary 1, namely

(4.37) V1 ⊂ H
1
2 (BL),

with continuous injection, where V1 is defined by (4.3), equipped with the norm

‖u‖V 1 = ‖u‖L2(BL) + ‖∇hu‖L2(BL) + ‖z1/2∂zu‖L2(BL).

In particular, being V1 a closed subspace of H1/2(BL) turns out to be an Hilbert spaces,
allowing to use all the machinery of complete vector spaces, which makes possible the
proof of Theorem 4.1.

Proof of Lemma (4.1). Let v ∈ D′(BL) such that v,∇v ∈ H−1, and vn,∇vn ∈ V −1
n be

given by
∀u ∈ VN , U ∈ V 3

N , 〈vn, u〉 = 〈v, u〉, 〈∇vn, U〉 = 〈∇v, U〉,

where V −1
n is defined by (4.11). We have, for all n ∈ IN,

‖∇vn‖H−1(BL) ≤ ‖∇v‖H−1(BL), ‖vn‖H−1(BL) ≤ ‖v‖H−1(BL),

and note that (by explicit computation) it easily follows that the constants on the right-
hand side are equal to 1, independently of n ∈ IN. Therefore, according to inequality (4.13),

(4.38) ‖vn‖L2(BL) ≤ ‖∇v‖H−1(BL) + ‖v‖H−1(BL).

Then, the sequence (vn)n∈IN is bounded in L2(BL), and we can extract a subsequence (still
denoted by (vn)n∈IN) that weakly converges to some ṽ, which is equal to v in H−1(BL),
therefore in L2(BL), which yields v ∈ L2(BL) and

‖v‖L2(BL) ≤ lim inf
n→∞

‖vn‖L2(BL) ≤ ‖∇v‖H−1(BL) + ‖v‖H−1(BL),

hence (4.36).
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Proof of (4.37). Note that a similar result was already obtained in [1], using a former
result of [2] combined with an interpolation argument. Going back to basics, we give here
a self-contained and combined proof, by using the Neças lemma and the interpolation
theory. Indeed, From Neças inequality (4.36), we deduce that the injection

Id : W−1 → L2

is continuous. Moreover, Id : W 0 → H1 is also continuous. Therefore, by the interpolation
theorem [13], also the restriction of the identity (denoted still by Id)

Id : [W−1,W 0]1/2 → [L2, H1]1/2 = H1/2,

is continuous. In particular, by (4.35), there exists C > 0, such that

(4.39) ∀ v ∈ [W−1,W 0]1/2, ‖v‖H1/2 ≤ C(‖v‖
(H

1/2
00 (BL))′

+ ‖∇v‖
(H

1/2
00 (BL))′

).

Conclusion of the proof. Thanks to (4.39), in order to prove (4.37), all we have to do from
now is proving that the following inclusion holds true

(4.40) V 1 ⊂ [W−1,W 0]1/2,

with continuous injection. In the case relevant for our problem, we have

‖z1/2ϕ‖L2 ≤ C‖ϕ‖
H

1/2
00

.

Let u ∈ V1, and ϕ ∈ H1/2
00 (BL). Then,∣∣∣∣∫

BL
∂zuϕdx

∣∣∣∣ =

∣∣∣∣∫
BL

√
z∂zu

ϕ√
z
dx

∣∣∣∣ ≤ ‖√z∂zu‖L2‖z−1/2ϕ‖L2 ≤ C‖
√
z∂zu‖L2‖ϕ‖

H
1/2
00

,

hence ∂zu ∈ (H
1/2
00 (BL))′, and

‖∂zu‖(H1/2
00 (BL))′

≤ C‖
√
z∂zu‖L2 .

In the same way, we have also

‖u‖
(H

1/2
00 (BL))′

≤ C√ztop‖u‖L2 , ‖∇hu‖(H1/2
00 (BL))′

≤ C√ztop‖∇hu‖L2 .

Combining all the previous inequalities yields

‖u‖[W−1,W 0]1/2
≤ C‖u‖V1 ,

hence (4.40), which concludes the proof.

The functional setting for the proof of Theorem 4.1 is more sophisticated than that used
in the non-limiting cases 0 ≤ α < 1. Despite the proof being a rather standard application
of the Lax-Milgram lemma, the choice of the underlying function spaces is obliged by
the nature of the problem and the fact that α = 1 implies that the function spaces do
not embed in any standard Sobolev space with trace at the boundary. For this point
cf. Proposition 3.1, which we recall is false for α = 1 and a counter-examples is easily built
by means of a double logarithmic function. This is why we resort to the space V1 and,
despite the abstract simplicity of the result, the interpretation of the notion of the solution
is of particular difficulty, since the solution satisfies a weak formulation which is not the
same as the strong one. As we will discuss later, the obtained solution has problem in
the interpretation of the value at z = 0, for which the functional setting is not proper.
Nevertheless, we cannot change it, since it is determined by the equations themselves, so
we have to extract the maximum of information possible from the solution.
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Proof of Theorem 4.1. We are now ready for the proof of the main result of the paper,
that is the proof of existence of weak solutions in the limiting case α = 1. In this case
once we have the adapted functional setting we can apply Lax-Milgram in the space V1

with the weak formulation defined by: ∀v ∈ V1,

(4.41) λ

∫
BL

uv+ νh

∫
BL
∇hu ·∇hv+µ

∫
BL

z ∂zu ∂zv+CD

∫
Γtop

uv−
∫

Γtop

v G =

∫
BL

fv,

and eventually observe that the proof can be made fully rigorous again by approximation
obtained adding −ε ∂2

zu to the equations.

Remark 4.1. Note that the trace of v ∈ V1 is not defined at z = 0, where the weight van-
ishes. On the other hand v|z=ztop is well defined in H1/2(Γtop) since the function v belongs
to W 1,2 in a neighborhood of the top part of the boundary. Hence, the integrals

∫
Γtop

v G

and
∫

Γtop
uv are properly defined.

Moreover, as is standard for these problems the function u ∈ V1 can be taken as test
function, proving the energy equality

λ‖u‖2 + νh‖∇hu‖2 + µ||
√
z∂zu‖2 + CD

∫
Γtop

|u|2 −
∫

Γtop

uG =

∫
BL

fu.

Moreover, this can be used also to shows uniqueness of the weak solution. The drawback
is the impossibility of controlling the trace.
The only missing point is to observe that we proved negative norm lemma for functions
vanishing at {z = 0}∪{z = ztop}, while now we have a friction law at the upper boundary.
This can be easily overcome by using the fact that the conditions are of Neumann (Navier)
type at the top. Hence, considering the space

(4.42) H1
0,τ (BL) = {u ∈ H1(BL); u = 0 on Γb and ∂zu = 0 on Γtop},

instead of H1
0 (BL) as in (4.8), we can easily convert to the case of a Dirichlet problem

in a doubled domain Π × (0, 2ztop), with a reflection along the line z = ztop. Then, the
proof remains the same as in the previous case. Note that since we have V1 functions for
which the trace is not well-defined, we cannot expect that our weak solution satisfies u = 0
at the bottom boundary. So in this case the weak and strong formulation are not giving
the same result and the same have been noted, in a slightly different setting, by Rappaz
and Rochat [22], for the von Kármán problem. They also noted as the trace evaluated
numerically is strongly depending on the mesh-size, as is expected, and that the value at
the boundary is not under control.

5 Numerical experiments

In this part, we aim to check if the model gives a good approximation of the Monin-
Obukhov law (2.3), depending on the values of α. We solve the problem (1.4) in two
dimensions, using the software Freefem++. We consider a rectangular box [0, L]× [0, ztop]
with ztop = 100, L = 1000 and we add periodic conditions on the left and right sides
{0} × [0, ztop] and {L} × [0, ztop].
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The other boundary conditions are Dirichlet at the bottom, and a linear Navier condition
at the top involving the roughness coefficient CD :

(5.1)


κu?ztop

du

dz
(x, ztop) = CD (V (x)− u(x, ztop)) , at z = ztop,

u(x, 0) = 0, at z = 0,

where

(5.2) V (x) = uLog(ztop)(1 + ε(x)),

and

(5.3) uLog(z) =


C?u

?

Cν
z, z ∈ [0, z0]

C?u
?

Cν

(
log

(
z

z0

)
+ 1

)
, z ∈ [z0, ztop]

The aim of this numerical study is to check if the numerical solution u of the problem
(1.4) approaches the known log-law, in a sense we will develop below
First we will explain in subsection 5.3 how to get vertical velocities from the Freefem++
resolution of the problem (1.4) and the tools to compare it with the log-law uLog.
Then, we will discuss the influence of the different parameters (α in Subsection 5.2), CD and
u? in the Subsection 5.3 and calculate the difference between the numerical solution and
uLog, which allow us in Subsection 5.4 to derive an analytical formula of the stabilization
function Ψ deduced from the numerical results by interpolation.
Finally, we will consider the influence on the x-axis of a small perturbations ε, as involved
in the wind at the top given by (5.2).

Remark 5.1. We use in the code the command u = 0 at z = 0, and we take λ = 0.
Contrary to what the analysis predicts, the case α = 1 works very well, even at high
resolutions. As Freefem is a finite element software, we think that the numerical simulation
involves a numerical dissipation which sufficiently regularizes the equation, even in the case
α = 1. However, we did not have studied yet this numerical aspect of the problem.

5.1 Settings of the analysis

5.1.1 Parameters

Different parameters will have influence on the simulation: some will be fixed, and some
will be specifically studied. The size of the box will always be in the following [0, L] ×
[0, ztop], where

L = 1000m and ztop = 100m.

• After several simulations to get velocities that can be measured in situ, it looks like that
the best values for the calibration constants C∗ and Cν were C∗ = 10 and Cν = 15, as
already mentionned in section 2.1. Examples of log profiles has been plot in figure 1 with
these values, u? = 10, ztop = 100, and respectively z0 = 1 and z0 = 10.

• The height of the viscous sublayer z0 in the follwoing simulations will be very small
compared to ztop, with a ratio smaller than 0.01. Besides, the viscous sublayer height z0

will taken equal to 0.1, which respects a ratio

z0

ztop
= 10−3 < 0.01.
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(a) z0 = 0.1 (b) z0 = 1 (c) z0 = 10

Figure 1: log-law

• The parameter λ is chosen equal to 0.

• The source f will be considered as constant: f = 5. According to formula (2.7), this
means that δT ≈ −23◦C for β = 2.10−3, for instance in the case where the ground is at
0◦C and the air is dry and and cold at a constant temperture equal to −23◦C, a situation
that can happen in the mountains.

• The perturbation ε which appears in the expression (5.2) of V will be taken equal to 0
in the next subsections, except in subsection 5.5 (see (5.9) below).

button? Is
this correct?• The velocity constant u∗ can be seen as a ”wind regime button” belonging to the speed

range [2m.s−1, 10m.s−1], which corresponds to what is generally measured for flows over
rough grounds. This is the main parameter of our simultions, the influence of which will
be studied in the subsection 5.3.

• Finally, the frictional coefficient CD will be chosen according to the u?. In the subsection
5.3 we will show that CD ' 106 is giving convincing results.

5.1.2 Errors

Let uk denotes the vertical velocities at xk = kL, given by, for every z ∈ [0, ztop]:

(5.4) uk(z) = u(xk, z),

where k ∈ {0, 1
10 ,

2
10 , . . . , 1}. These uk will be compared with the log profile uLog defined

by (5.3). To achieve these comparisons, we introduce the errors err at a point x

(5.5) err(x) =
1

N

N∑
i=1

|u(x, zi)− uLog(zi)|.

and the relative error rel at x

(5.6) rel(x) =
N∑
i=1

|u(x, zi)− uLog(zi)|
|u(x, zi)|

,

which will be more relevant than the error because of the importance of the velocities,
when u? > 7m.s−1 for instance.
Without the perturbation ε, the vertical velocities uk are very close each other, as we can
see in figure 2 and in the table 1. Even if the difference between the vertical profiles is

21



small, we consider the mean vertical velocity

(5.7) u(z) :=
1

p

p∑
k=1

u(xk, z),

and we will use it instead of the uk. To perform the simulations, p = 11 and xk will
belongs to {0, 100, 200, . . . , 1000}.

Figure 2: Velocity profiles for different horizontal values

u1 u2 u3 u4

err relerr err relerr err relerr err relerr

0.37 0.042 0.49 0.053 0.53 0.056 0.47 0.047

Table 1: Errors and relative errors between the vertical velocities uk and uLog. The pa-
rameters taken are CD = 106, α = 1, u? = 4, x1 = 200, x2 = 400, x3 = 600, x4 = 800.

5.2 Influence of alpha

We observe that the more α is getting close to 1, the better the model is, as we can see
in figure 3: this is correct in the sense that the difference between the calculated profile
and the log profile is smaller. The blue curves correspond here to the values u(z), where
z ∈ {1, 2, . . . , 100}.
As a result, the model is relevant only for α = 1. We will take α = 1 in the next
simulations.
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(a) α = 0.3 (b) α = 0.6

(c) α = 0.8 (d) α = 1

Figure 3: Vertical velocities

5.3 The three different regimes: influence of CD

We have calibrated the constant values to get wind velocities which are physically relevant
(in m.s−1). We have observed three different regimes for u∗ respectively equal to 4m.s−1,
7m.s−1 and 10m.s−1 corresponding to small wind, medium wind, and storm wind. We
consider for each case the errors and relative errors we get in function of the CD coefficients.
We can see in figure 4 that the vertical velocity u in blue is close to the log-law when CD is
big and far when CD is small. To quantify this, the errors and relative errors corresponding
in the table 2 show that the bigger CD is, the smallest the errors are.
Nevertheless, it is getting steady at some point as we can see in figure 5, where the errors
and the relative errors have been plot for u? = 4, u? = 7 and u? = 10. The value 106

seems to be the threshold value for the coefficient CD.

(a) CD = 100 (b) CD = 1000 (c) CD = 106

Figure 4: Influence of CD for u? = 10
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u? = 4 u? = 7 u? = 10

CD err relerr err relerr err relerr

102 7.58 0.73 19.59 1.59 32.21 2.42

103 1.79 0.13 5.50 0.24 10.34 0.32

104 0.63 0.061 1.68 0.083 2.85 0.094

105 0.50 0.054 1.23 0.067 1.90 0.071

106 0.48 0.053 1.18 0.066 1.81 0.069

109 0.48 0.053 1.18 0.065 1.79 0.069

Table 2: CD calibration for the different regimes

Figure 5: Errors and relative errors dependence on CD

5.4 Stabilization functions

From our numerical results, by an empirical method of extrapolation by successive ap-
proximations, we have found the following stabilization function

(5.8) Ψ(z) = 2u?(e(z0−z) − e−2z)− u?

200
z + 0.4u?.

so that, if u denotes the numerical result,

u+ ψ ≈ uLog

It gives for the different values of u? the curves shown in figure 6. The peak we can see
corresponds to the the height of the viscous sublayer z0.

u? CD err w/o stab err with stab relerr w/o stab relerr with stab

4 106 0.49 0.30 0.053 0.026

7 106 1.18 0.35 0.066 0.021

10 106 1.81 0.47 0.069 0.020

Table 3: Errors and relative errors between the stabilized/unstabilized velocities and the
log-law

We can compare the errors and relative errors between the raw velocity u and the log-law
uLog on the one hand, and between the stabilized velocity u + Ψ and uLog on the other
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Figure 6: Stabilization functions for different values of u?

(a) u? = 4 (b) u? = 7 (c) u? = 10

Figure 7: Velocity profile with and without stabilization compared with the log-law

hand, for the different regimes given by u?. We can see in the table 3 and in the figure
7 that the stabilization is a better approximation of the log-law, especially around the
viscous sublayer z0.

5.5 With horizontal perturbation

In this part we study the effect of a small oscillation in the horizontal direction, given by

(5.9) ε(x) = 0.01 sin(11
2πx

L
),

so that V (x) = uLog(ztop)(1 + ε(x)).
We keep the value CD = 106, α = 1, and we will compare the vertical velocities u we
get with the ones we had without this perturbation for the three different u?. We obtain
the table 4. This shows that even for a small perturbation, the error variation is quite
large compared to the values we have. When we add the stabilization function Ψ, we
can manage to keep the errors still small, even with the perturbation ε. This opens an
interesting stability problem à la ”Lyapounov”.

5.6 Conclusion and perspectives

We have shown numerically that the solution u of the problem (1.4) is a very good ap-
proximation for the known Monin-Obukhov log-law when α = 1 for adiabatic flows, with
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err relerr

u? w/o ε with ε with ε and Ψ w/o ε with ε with ε and Ψ

4 0.49 0.62 0.27 0.053 0.061 0.024

7 1.18 1.42 0.41 0.066 0.073 0.023

10 1.81 2.15 0.65 0.069 0.078 0.024

Table 4: Errors and relative errors between the velocities and the log-law

a large calibration constant CD, which amounts to imposing a dirichlet condition at Γtop.
This is valid for a large range of wind regimes. The numerical code seems to be a good
tool for calculating the stabilization function, which could be improved by using a formal
mathematical calculation tool, which we have not done yet.
The next step is to couple system (1.4) with the equation for the temperature T , where
the source term f is given by (2.7), which is a work under progress.
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užička. On the existence of

weak solutions for a family of unsteady rotational smagorinsky models. To appear in
Pure Appl. Funct. Anal., arXiv:2107.00236, 2023.

[4] L.C. Berselli and D. Breit. On the existence of weak solutions for the steady Baldwin-
Lomax model and generalizations. J. Math. Anal. Appl., 501(1):Paper No. 124633,
28, 2021.

[5] T. Chacón Rebollo and R. Lewandowski. Mathematical and numerical foundations of
turbulence models and applications. Modeling and Simulation in Science, Engineering
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