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ABSTRACT

Simulation-based inference has seen increasing interest in the past few years as a promising approach to modelling the non-linear
scales of galaxy clustering. The common approach, using the Gaussian process, is to train an emulator over the cosmological and
galaxy–halo connection parameters independently for every scale. We present a new Gaussian process model that allows the user
to extend the input parameter space dimensions and to use a non-diagonal noise covariance matrix. We use our new framework
to simultaneously emulate every scale of the non-linear clustering of galaxies in redshift space from the AbacusSummit N-body
simulations at redshift z = 0.2. The model includes nine cosmological parameters, five halo occupation distribution (HOD) parameters,
and one scale dimension. Accounting for the limited resolution of the simulations, we train our emulator on scales from 0.3 h−1 Mpc
to 60 h−1 Mpc and compare its performance with the standard approach of building one independent emulator for each scale. The
new model yields more accurate and precise constraints on cosmological parameters compared to the standard approach. As our new
model is able to interpolate over the scale space, we are also able to account for the Alcock-Paczynski distortion effect, leading to
more accurate constraints on the cosmological parameters.

Key words. galaxies: general – large-scale structure of Universe

1. Introduction

Galaxies are one of the best tracers of the underlying dark matter
distribution in our Universe as a function of time. Spectroscopic
galaxy surveys have become a powerful probe of the physi-
cal laws governing the formation of the large-scale structures
because they provide precise spatial information for millions
of galaxies over large volumes. Surveys such as the 2dFGRS
(Dawson et al. 2013), 6dFGS (Kobayashi et al. 2020), WiggleZ
(du Mas des Bourboux et al. 2020), VIPERS (Hadzhiyska et al.
2021), Sloan Digital Sky Survey (SDSS), BOSS, and eBOSS
(Garrison et al. 2021; Blanton et al. 2017; Dawson et al. 2016;
de Mattia et al. 2021) have proven (and continue) to be strong
tools for understanding the accelerated expansion of our Uni-
verse and for testing models of dark energy or modified theo-
ries of gravity (Yoo & Seljak 2015; Zhai et al. 2023; Jones et al.
2004; Howlett et al. 2015).

The analysis of spectroscopic galaxy surveys consists in
the measurement and modelling of two main physical fea-
tures present in the two-point function of the density field: the
baryon acoustic oscillations (BAOs) and the redshift space dis-
tortions (RSDs). While BAOs can be well modelled by lin-
ear theory, because they manifest as correlations at large lin-
ear scales (around 100 h−1 Mpc), RSDs are more challeng-
ing because there is valuable information on small, mildly
non-linear scales (below a few tens of h−1 Mpc), which are
therefore harder to model accurately. The latest measurements
of BAOs and RSDs from SDSS have put the tightest con-
straints on the growth history to date (Alam et al. 2017, 2021;
Saatci 2011; Huterer 2023; Bautista et al. 2021; Guzzo et al.
2014; DeRose et al. 2019; Taruya et al. 2010; Hou et al. 2023;
Pajer & Zaldarriaga 2013; Eisenstein et al. 2011). Ongoing and
future galaxy surveys such as Euclid (Maksimova et al. 2021;

Euclid Collaboration 2022) and the Dark Energy Spectroscopic
Instrument (DESI, DESI Collaboration 2016; Drinkwater et al.
2010) span deeper and wider fields of view and will measure
tens of millions of galaxies. Such samples of galaxies will signif-
icantly reduce statistical uncertainties in the two-point functions,
requiring higher precision clustering models to derive unbiased
cosmological constraints.

Standard perturbative theories attempt to model mildly
non-linear scales analytically (Villaescusa-Navarro et al. 2020;
Ross et al. 2015; Carlson et al. 2013; Weinberg et al. 2013).
Even more modern approaches (including loop corrections),
such as the effective field theory of large-scale structure
(EFToLSS, Peebles & Hauser 1974; Carrasco et al. 2014), try
to push the model validity to smaller scales, but ultimately
such perturbative approaches are limited as the density pertur-
bations on small scales become too large, especially at low
redshifts.

An alternative to perturbation theory is to build a simulation-
based model to extract information from the small-scale clus-
tering. A recent approach consists in running several N-body
simulations for different cosmological models, computing the
summary statistics for each, and using them to predict the clus-
tering for a new set of cosmological parameters. This process
is commonly referred to as emulation. Brute iterative solv-
ing of dynamical equations in N-body simulations provide the
high-fidelity description of the non-linear clustering of mat-
ter, although they are computationally expensive to produce. In
recent years, several suites of N-body simulations have been pro-
duced for this purpose (DESI Collaboration 2022; Wang et al.
2014; Moon et al. 2023). Several emulators have been developed
(Kobayashi et al. 2022) and some of these have been applied
to real data to extract cosmological parameters from real data
(Kwan et al. 2023; Chapman et al. 2022).
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Any statistics derived from the properties of dark-matter
tracers suffer from cosmic variance. This effect decreases
as the volume of the simulation increases, but ultimately
every measured observable comes with its error budget. An
emulator should therefore consider the uncertainty of the train-
ing set along with the uncertainty of the predictions. A pop-
ular emulation algorithm used in previous works for galaxy
clustering (Yuan et al. 2022b; Planck Collaboration VI 2020;
Landy & Szalay 1993) is the Gaussian process (GP). This
Bayesian machine learning method with physical interpretation
not only provides a prediction for the model but also an associ-
ated uncertainty. However, it is well known that GP models scale
poorly with the number of training points N as they require the
construction and inversion of an N×N matrix (N is the number of
training samples) many times during the training phase. Each of
these operations costs O(N2) memory and O(N3) time. As a con-
sequence, the dimension of the input space is often restricted to
the cosmology and galaxy-halo connection parameters. In par-
ticular, the standard approach of the previous works is to con-
struct an independent emulator for each separation or Fourier
mode, ignoring the well-known correlations between scales. In
the present work, we propose a new Gaussian process model,
allowing us to extend the input parameter space, and therefore to
interpolate or extrapolate over a wider range of parameters, such
as scales, redshift bins, selection effects, and so on. As a proof of
concept, we built an emulator for the two-point correlation func-
tion from a redshift z = 0.2 snapshot of the AbacusSummit
suite (Moon et al. 2023), and extended the input parameter space
to include the different separation scales. We implemented our
new framework on a Graphics Processing Unit (GPU) with the
Jax library.

This paper is organised as follows. In Sect. 2, we present the
AbacusSummit N-body simulations, the galaxy–halo connec-
tion, and the observable. In Sect. 3, we describe the GP frame-
work along with our new model. In Sect. 4, we validate our emu-
lator performance by comparison to a standard model. Finally, in
Sect. 5, we explore the constraining power of our model.

2. Emulating clustering from N-body simulations

In this section, we describe the suite of N-body simulations used
in this work. As these are dark-matter only, we use a halo occu-
pation distribution (HOD) to populate galaxies. We then discuss
the summary statistics we use to evaluate the performance of our
emulation technique.

2.1. The ABACUSSUMMIT suite of simulations

AbacusSummit (Moon et al. 2023) is a suite of N-body sim-
ulations run with the Abacus N-body code (Gil-Marín et al.
2020) on the Summit supercomputer of the Oak Ridge Lead-
ership Computing Facility. These simulations were designed to
match the requirement of the Dark Energy Spectroscopic Sur-
vey (DESI). AbacusSummit is composed of hundreds of peri-
odic cubic boxes evolved in comoving coordinates to different
epochs from redshift z = 8.0 to z = 0.1. The base simulations
consist of 69123 particles of mass 2×109 h−1M� in a 2 h−1Gpc)3

volume, yielding to a resolution of about 0.3 h−1 Mpc. The suite
provides halo catalogues formed by identifying groups of parti-
cles, built using the specialised spherical-overdensity-based halo
finder CompaSO (see Hou et al. 2021 for more details).

AbacusSummit spans several cosmological models sam-
pled around the best-fit ΛCDM model to Planck 2018
data (Colless et al. 2003) with nine different parameters

θΩ = {ωcdm, ωb, σ8, w0, wa, h, ns,Nur, αs}: the dark matter density
ωcdm, the baryon density ωb, the clustering amplitude σ8, the
dark energy equation of state w(a) = w0 + wa(1 − a), the Hubble
constant h, the spectral tilt ns, the density of massless relics Nur,
and the running of the spectral tilt αs. A flat curvature is assumed
for every cosmology.

Figure 1 shows the sampling over the nine-dimensional
space of 88 cosmologies (in blue) used to train the emulator,
and 6 cosmologies (in orange) used as a test set, all with the
base resolution. The test set includes the centre of the hypercube:
the Planck 2018 ΛCDM cosmology with 60 meV neutrinos, the
same cosmology with massless neutrinos, four secondary cos-
mologies with low ωcdm choice based on WMAP7, a wCDM
choice, a high Nur choice, and a low σ8 choice. The training
set provides a wider coverage of the parameter space. In the fol-
lowing, we use XΩ to refer to the 88 × 9 matrix containing the
cosmological parameters of the training set.

All simulations were run with the same initial condi-
tions, and so changes in the measured clustering are only
due to changes in cosmology. To test the cosmic variance,
AbacusSummit also provides another set of 25 realisations
with the same cosmology and different initial conditions and
an additional set of 1400 smaller (500 h−1 Mpc)3 boxes with the
same cosmology and mass resolution, but different phases. The
small boxes are used to compute sample covariance matrices of
our data vectors. All those simulations were run with the base
Planck 2018 cosmology. While snapshots are available for sev-
eral redshifts, we only use snapshots at redshift z = 0.2 through-
out this work1.

2.2. Halo occupation distribution model

We use the HOD framework (Zheng et al. 2007) to assign galax-
ies to dark-matter halos of the simulations. This framework
assumes that the number of galaxies N in a given dark mat-
ter halo follows a probabilistic distribution P(N|Ωh), where Ωh
can be a set of halo properties. In this work, we assume a stan-
dard vanilla HOD, where this distribution only depends on the
halo’s mass Ωh = M. Moreover, the occupation is decomposed
into the contribution of central and satellite galaxies 〈N(M)〉 =
〈Ncen(M)〉 + 〈Nsat(M)〉. The number of central galaxy occupa-
tion follows a Bernoulli distribution, while the satellite galaxy
occupation follows Poisson distribution. The mean of these dis-
tributions are defined as:

〈Ncen〉 =
1
2

erfc
(

log10(Mcut/M)
√

2σ

)
, (1)

〈Nsat〉 =

[
M − κMcut

M1

]α
〈Ncen〉, (2)

where erfc(x) is the complimentary error function, θhod =
{Mcut, σ, κ, M1, α} are the HOD parameters, Mcut is the minimum
mass to host a central galaxy, σ is the width of the cutoff profile
(i.e the steepness of the transition 0–1 in the number of central
galaxies), κMcut is the minimum mass to host a satellite galaxy,
M1 the typical mass to host one satellite galaxy, and α is the
power-law index of the satellite occupation.

We used the AbacusHOD implementation (Zhai et al.
2017), where for each halo, if a random number – drawn
from a normal distribution between 0 and 1 – is smaller than
〈Ncen〉, a central galaxy is assigned to the centre of mass of the

1 While a z = 0.1 snapshot exists for AbacusSummit, the smaller
boxes for covariance matrix estimations were not available.
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Fig. 1. Sampling over the nine-dimensional cosmological space around Planck 2018 ΛCDM. The 88 cosmologies used to train the emulator are
shown in blue, while the 6 cosmologies used as a test set are shown in orange. The dark matter density is denoted ωcdm, the baryon density ωb, the
clustering amplitude σ8, the dark energy equation of state w(a) = w0 +wa(1− a), the Hubble constant h, the spectral tilt ns, the density of massless
relics Nur, and the running of the spectral tilt αs (Moon et al. 2023).

halo with the same velocity. Satellite galaxies do not assume
a fixed distribution profile such as the Navarro-Frenk-White
profile (Neveux et al. 2020), but rather follow the distribution
of the dark matter particles. Specifically, each particle inside
a halo has the same probability of hosting a satellite galaxy
p = 〈Nsat〉/Np with Np being the number of particles in a
given halo. For every particle, a random number between 0
and 1 is drawn; if it is smaller than p, a galaxy is assigned to
its position with the same velocity. The Abacusutils pack-
age implements this halo occupation scheme and is publicly
available2.

To build our training set, we populated each of the 88 boxes
with 600 HODs selected using a latin hypercube sampling,
resulting in 52 800 different clustering measurements. For the
test set, we used a different set of 20 HODs to populate the
six test cosmologies. We chose the parameter ranges accord-
ing to the bright galaxy sample of the DESI one percent survey
(Rasmussen & Williams 2006). In the following, we use XHOD

2 https://github.com/abacusorg/abacusutils

to refer to the 600 × 5 matrix containing the HOD parameters
of the training set. We note that using the same HOD sampling
for every cosmology results in a grid-structured parameter space
XΩ⊗XHOD, where ⊗ is the Kronecker product. This peculiar data
structure is useful when building the emulator, which we demon-
strate in Sect. 3. Figure 2 illustrates the different forms that the
number of galaxies as a function of halo mass takes for the
wide range of HOD parametrisation that we use. The black lines
show the mean HOD configuration for 〈Ncen(M)〉, 〈Nsat(M)〉, and
〈Ntot(M)〉. Table 1 summarises the sampling range of every cos-
mological and HOD parameter.

2.3. Observable of interest: The correlation function

To capture the cosmological information in the small-scale clus-
tering of galaxies, we use the standard statistic referred to as
the two-point correlation function (2PCF) as an observable. The
2PCF is defined as ξ(r1 − r2) = 〈δg(r1)δg(r2)〉, where δg(r) is the
over-density of galaxies at position r. The 2PCF is measured in a
catalogue by counting the pairs of galaxies with the well-known
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Fig. 2. Different forms that take the total occupation of the galaxy for the
600 HOD parametrisation used. The black lines show the mean HOD
configuration for 〈Ncen(M)〉, 〈Nsat(M)〉, and 〈Ntot(M)〉.

Table 1. Cosmological and HOD parameter names and ranges sampled
to build the emulator training and testing sets.

Parameter Range

Cosmology ωcdm [0.103, 0.140]
ωb [0.0207, 0.0243 ]
σ8 [0.678, 0.938]
w0 [−1.271, −0.726]
wa [−0.628, 0.621]
h [0.575, 0.746]
ns [0.901, 1.025]
Nur [1.020, 3.046]
αs [−0.038, 0.038]

HOD α [0.30, 1.48]
κ [0.00, 0.99]

log10 M1 [13.6, 15.1]
log10 Mcut [12.5, 13.7]

log10 σ [−1, 0]

Notes. The cosmology bounds come from the smallest hypercube
around the AbacusSummit cosmology grid. The HOD bounds come
from the minimum and maximum in each parameter within the
600 HOD.

Landy-Szalay estimator (Laureijs et al. 2011):

ξ =
DD − DR − RD + RR

RR
, (3)

where DD, RR, DR, and RD are the normalised pair counts of
data–data, random–random, data–random, and random–data cat-
alogues. The random catalogue is used to define the window
function of the survey. Because each galaxy has its own pecu-
liar velocity on top of the Hubble flow, the measured positions
of galaxies along the line of sight (LoS) are modified by the so-
called redshift-space distortions (RSDs) as:

ds = d +
v‖

H(z)
(1 + z), (4)

where d and ds are the true and distorted radial position, v‖ is the
peculiar velocity along the LoS, and H(z) is the Hubble parame-

ter at that redshift. We note that, because we are using snapshots
of N-body instead of light cones, the redshift evolution is not
simulated and here z has the same value of 0.2 for all galaxies.

Because of RSD, the 2PCF loses its isotropy and no longer
only depends on the relative separation between the galaxy pairs
s = |s1 − s2|, but also on the triangles formed by each pair of
galaxies and the observer. The pair counts therefore have to be
binned in three dimensions (s, µ, θ), with µ the cosine of the
angle between the observer LoS (passing through the midpoint
between the galaxies) and the separation vector of the galaxy
pair, and θ the angle between the two individual lines of sight.
The wide-angle dependence is minor for distant surveys, and so
we can perform – with only a minor loss of information – the
projection according to Yuan et al. (2022a):

ξ(s, µ) =

∫
ξ(s, µ, θ)P(s, µ, θ)dθ∫

P(s, µ, θ)dθ
, (5)

where P(s, µ, θ) is a probability distribution proportional to the
number of pairs at a given triangle configuration and is survey
dependant. We note that the wider the distribution in θ, the more
this projection makes the observable survey dependant. This is
equivalent to binning the pair counts in (s, µ).

The 2PCF can then be decomposed into a series of Legendre
polynomials:

ξ(s, µ) =
∑

l

Pl(µ)ξl(s), (6)

with

ξl(s) =
2l + 1

2

∫
ξ(s, µ)Pl(µ)dµ. (7)

As this work is a proof of concept for our new emulation
strategy, we focus on the monopole ξ0 hereafter. The study of
all multipoles is left for future work. The most expensive part
of computing the estimator defined in Eq. (3) is the random–
random pair counting. As we have cubic boxes with periodic
boundary conditions, RR can be analytically computed with a
fixed LoS for every pair count, and we can make use of the nat-
ural estimator of Prada et al. (2023):

ξ =
DD
RR
− 1, (8)

greatly reducing computational time.
However, this methodology could bias the clustering as a

fixed LoS is equivalent to assuming θ = 0 for each pair of
galaxies, or that the observer is infinitely far away. This flat-sky
approximation should break down for low-z surveys and large
separation bins. We tested this hypothesis with the 25 Planck
2018 boxes using the median HOD.

Figure 3 shows the mean clustering with its standard devia-
tion computed using Eq. (8) with a fixed LoS in red, and using
Eq. (3) with a varying midpoint LoS in blue. In the latter case,
in order to get a realistic clustering, we place the observer at
the centre of the box, and cut a spherical full-sky footprint from
z = 0.15 to z = 0.25 in radial distance. The bottom panel shows
the residual using the cosmic variance of the varying LoS, which
is of course larger and more realistic. The shaded area corre-
sponds to a 1σ deviation. We see that, although the deviation
seems to increase as the separation s gets larger, the difference is
well within the cosmic variance. For the considered redshift and
separation bins, the Peebles estimator gives an unbiased descrip-
tion of the clustering.
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Fig. 4. Emulator training and test sets in blue and orange, respectively.
The clustering for every cosmology and HOD is measured using Eq. (8)
and by applying RSD along a fixed LoS, which we choose to be the z
axis of the box.

Figure 4 shows the clustering measured for every cosmol-
ogy and HOD using Eq. (8) and applying RSD along a fixed
LoS, which we choose to be the z axis of the box. A sample of
the training and test sets is shown in blue and orange, respec-
tively. We choose the separation range to be a logarithmic bin-
ning going from the resolution of the simulation 0.3 h−1 Mpc
to 60 h−1 Mpc where the flat-sky approximation is still holding.
Hereafter, we define Xs as the vector containing those separa-
tions (used in Sect. 3). To reduce shot noise, we populate five
times the halos using the same HOD model, only changing the
random seed, and we average their clustering.

Although AbacusSummit covers a large volume, the train-
ing and test cosmology boxes are run with the same initial phase,
and the measured clustering is still subject to cosmic variance.
To quantify the uncertainties on our measurements, we measure
the 2PCF on 1400 of the small Planck 2018 boxes using the
median HOD and rescaling the volume, and build the covariance
matrix Ccosmic. The corresponding correlation matrix is shown in
Fig. 5. We see that, while the scales below a few h−1 Mpc are
almost uncorrelated, the large-scale correlations should not be
neglected.
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Fig. 5. Correlation matrix of the 2PCF monopole computed from 1400
small box realisations of the Planck 2018 cosmology, and using the
median HOD. The covariance is rescaled to match the volume of the
base boxes.

3. Multi-scale Gaussian process model

In the following sections, we give a brief description of the
GP formalism. We also introduce our new model, which allows
every scale to be considered at the same time. For a more com-
plete discussion on the GP, see Reid & White (2011).

3.1. Standard GP regression model

Let D = {(xi, yi)|
n
i=1} be a training set composed of n pairs of d-

dimension input parameter vectors xi and scalar observations yi.
Let X be the n×d matrix concatenating every input vector and Y
an n column vector. We suppose that the observed values yi are
given by

yi = f (xi) + ε, (9)

where f is the true underlying mapping function we wish to learn
and ε is an additive noise following an independent identically
distributed Gaussian distribution with mean zero and variance
σ2

n:

ε ∼ N
(
0, σ2

nI
)
, (10)

where I is the identity matrix. We assume that the mapping func-
tion can be described as

f (x) = Φ(x)>w, (11)

where Φ(x) is a set of n f feature functions (e.g. polynomials
Φ(x) = (||x||, ||x||2, ||x||3, . . . , ||x||n f )) mapping the d-dimensional
input vector into an n f -dimensional feature space, and w is an n f -
dimension vector of unknown weight (and with unknown param-
eters). This model is a linear function of w for any set of feature
functions, and is therefore easier to handle analytically in the
training process for instance.

The likelihood of observing Y for a set of input parameters
X and weights w can then be written as following a Gaussian
distribution:

p (Y |X,w) ∼ N
(
Φ(X)>w, σ2

nI
)
. (12)
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Choosing a Gaussian prior with zero mean and covariance Σ for
the weights,

p (w) = N(0,Σ), (13)

and following Bayes’ theorem, we can write the posterior distri-
bution over the weights as

p (w|Y, X) =
p (Y |X,w) p (w)

p (Y |X)
, (14)

where p (Y |X) is the evidence or marginal likelihood.
Making n∗ predictions f∗ for a new set of input vectors X∗

(with X∗ an n∗ × d matrix) requires that we marginalise over
the weight distributions. The evidence is simply a normalisation
constant. Using the Gaussian properties of the prior and likeli-
hood, an analytical expression for the posterior distribution of
the prediction can be derived. This latter is expressed as:

p ( f∗|x∗, X,Y) =

∫
p ( f∗|x∗,w) p (w|X,Y) dw

∼ N
(
µ f ,Σ f

)
, (15)

where

µ f = Φ>∗ ΣΦ
(
Φ>ΣΦ + σ2

nI
)−1

Y, (16)

Σ f = Φ>∗ ΣΦ∗ − Φ>∗ ΣΦ
(
Φ>ΣΦ + σ2

nI
)−1

Φ>ΣΦ∗, (17)

and Φ = Φ(X) and Φ∗ = Φ(X∗). This posterior is a normal prob-
ability distribution over a function space. We note that making a
prediction at some new location of the input space is equivalent
to analytically performing a Bayesian inference. Thanks to the
linearity of the model and the Gaussian assumptions, the poste-
rior probability can be analytically computed.

Let us now define the kernel k(x, x′) = Φ(x)>ΣΦ(x′) (we
note that k(x, x′) returns a scalar). Doing so allows us to switch
from the weight-space view to the so-called function-space view.
The expressions for the mean and covariance of the model pos-
terior become:

µ f = K(X∗, X)
(
K(X, X) + σ2

nI
)−1

Y,

Σ f = K(X∗, X∗) − K(X∗, X)
(
K(X, X) + σ2

nI
)−1

K(X, X∗), (18)

where K(X, X∗) denotes the n × n∗ covariance matrix built by
evaluating the kernel k(x, x∗) for the different values of x and x′
(i.e. Kij = k(xi, x∗ j)).

Specifying a family of feature functions, and letting their
number n f go to infinity leads to a compact form of kernel. The
most popular in the literature (obtained using Gaussian feature
functions) is the squared exponential kernel,

kexp(r) = exp
(
−r2

2

)
, (19)

or the Matern kernel,

kM3/2 (r) =
(
1 +
√

3r
)

exp
(
−
√

3r,
)

kM5/2 (r) =

(
1 +
√

5r +
5
3

r2
)

exp
(
−
√

5r
)
. (20)

These are stationary kernels; that is, functions of the dis-
tance between two points in the input space, commonly defined
as r(x, x′) = (x − x′)>M(x − x′) with M = l−2I, where l is
a d-dimensional vector containing characteristic length-scales

across each dimension of the input space. A large value for
some component of l (compared to the input space variance)
describes a smoothly varying signal in the corresponding dimen-
sion, allowing a larger range on interpolation. In practice, every
kernel is also scaled by an additional hyperparameter σ2 to
account for the signal amplitude in the output space. We note
that the sum or product of different kernels also gives a valid
kernel. The training of the GP consists in choosing one or more
kernels and inferring the hyperparameters θ = {l, σ} from the
input parameter matrix X and their corresponding output obser-
vations Y . This is equivalent to a two-level hierarchical Bayesian
inference, where Eq. (14) is rewritten as

p (w|Y, X, θ) =
p (Y |X,w) p (w|θ)

p (Y |X, θ)
. (21)

Now, maximising the posterior probability for new predic-
tions requires that we maximise the evidence p (Y |X, θ). This
term now acts as a likelihood in the second level of the hierarchi-
cal Bayesian inference. The posterior over the hyperparameters
can then be expressed as

p (θ|Y, X) =
p (Y |X, θ) p(θ)

p (Y |X)
, (22)

where p (θ) is the hyper-prior and p (Y |X) is the hyper-evidence.
This second level inference is usually not analytically tractable
and requires algorithmic maximisation of the log-likelihood:

log
[
p(Y |X, θ)

]
= −

1
2

Y>
(
K(x, x) + σ2

nI
)−1

Y

−
1
2

log
∣∣∣K(x, x) + σ2

nI
∣∣∣ − n log(2π)

2
. (23)

The first term on the right-hand side of Eq. (23) describes
the goodness of the fit, while the second term is the complexity
penalty, which is independent of the observables Y , and allows
GP models to (partially) avoid overfitting. We recall the stan-
dard result for the gradient of the log-likelihood with respect to
a given hyperparameter θi:

∂ log p
∂θi

=
1
2

(
α>

∂Ky

∂θi
α − Tr

(
K−1

y

∂K>y
∂θi

))
, (24)

with Ky =
(
K + σ2

nI
)

and α = K−1
y Y .

Training a GP (learning the hyperparameters) requires that
we compute this likelihood and its gradient several times, which
involves obtaining the inverse and the determinant of the n × n
matrix Ky. For a training set larger than a few thousand samples,
these operations can become computationally prohibitive. For
example, considering our case described in Sect. 2, this matrix
would have n = nΩ×nHOD×ns = 88×600×30 ∼ 106, where nΩ,
nHOD, and ns are the number of sampled cosmologies, HODs,
and separations, respectively.

3.2. Multi-scale GP model

To overcome the issue of large matrix inversions for the stan-
dard GP, we can use a particular way of sampling the training
data input parameters. This is a process known as Kronecker GP
modelling, as is described below.

Let the input parameter matrix of the training set X be com-
posed of n samples of d dimensions. If this matrix can be decom-
posed as a Kronecker product, X = X1 ⊗ X2, where X1 and X2
have smaller dimensions (n1 × d1 and n2 × d2 respectively) with
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n = n1 × n2 and d = d1 + d2. This decomposition is only possible
if the training set is grid-sampled (e.g. the same HOD parame-
ters are repeated for each set of cosmological parameters), which
is suboptimal, but as a result the covariance kernel can be com-
puted as a Kronecker product of two lower-dimension matrices
K = K1 ⊗ K2.

This structure allows us to make use of the algebraic prop-
erties of Kronecker products. If K is positive definite, it can be
written as a principal component decomposition K = QΛQ>,
where Q = Q1 ⊗ Q2 and Λ = Λ1 ⊗ Λ2, with Ki = QiΛiQ>i ,
with every Λ matrix diagonal. Thus, every calculation can be
performed in subdimensional space. Such a model was imple-
mented in the Python library GPy3 but only for Kronecker
decompositions into two subspaces. Tamone et al. (2020) gives
a generalisation of this framework to k decompositions X =⊗k

i=1 Xi, but this latter is only valid for a diagonal uncorrelated
noise matrix N = σ2I.

In this work, we extended this framework to general corre-
lated noise covariance matrices of the form N =

⊗k
i=1 Ni. This

is important in cluster modelling because the noise covariance
matrices are generally far from being diagonal, as seen in Fig. 5.
The essential step is now to compute the inverse and the deter-
minant of (K + N) in Eq. (23). Assuming a Kronecker-structured
training set and performing the decompositions Ni = UiS iU>i ,
we can derive

(K + N)−1 =

 k⊗
i=1

Ki +

k⊗
i=1

Ni

−1

=

 k⊗
i=1

Ki +

k⊗
i=1

UiS iU>i

−1

=

 k⊗
i=1

Ki +

k⊗
i=1

Ui

k⊗
i=1

S i

k⊗
i=1

U>i

−1

=

k⊗
i=1

Ui

k⊗
i=1

S
− 1

2
i

 k⊗
i=1

K̃i +

k⊗
i=1

Ii

−1 k⊗
i=1

S
− 1

2
i

k⊗
i=1

U>i

=

k⊗
i=1

Ui

k⊗
i=1

S
− 1

2
i

k⊗
i=1

Qi

 k⊗
i=1

Λi +

k⊗
i=1

Ii

−1

k⊗
i=1

Q>i
k⊗

i=1

S
− 1

2
i

k⊗
i=1

U>i , (25)

where we use different properties of the Kronecker product, and

define the projected matrices K̃i = S −
1
2

i U>i KiUiS
− 1

2
i , which once

built can be decomposed as K̃i = QiΛiQ>i .
Now, building Λ =

⊗k
i=1 Λi is trivial as Λi are all diag-

onal matrices. Moreover,
⊗k

i=1 Ii = I, and therefore the
n × n diagonal matrix (Λ + I) is easily built and inverted.
Additionally,

∣∣∣∣⊗k
i=1 Ui

∣∣∣∣ = 1 and
∣∣∣∣⊗k

i=1 Qi

∣∣∣∣ = 1, and so
the determinant from Eq. (23) is simply the product of the
eigenvalue products

∣∣∣S −1/2
∣∣∣ |Λ + I|

∣∣∣S −1/2
∣∣∣. The goodness-of-fit

term is computed by iteratively using the Kronmvprod algo-
rithm (described in Tamone et al. 2020), which evaluates oper-
ations of the form α =

(⊗k
i=1 Ai

)
b, where b is a column

vector.
We also require the evaluation of log-likelihood gradients.

The first term of Eq. (24) can be easily computed as the hyper-

3 https://github.com/SheffieldML/GPy

parameters are specific to a particular subdimension d, and there-
fore to a kernel Kd; that is,

∂K
∂θi

=
∂Ki

∂θi
⊗

⊗
j,i

K j


∂N
∂θi

=
∂Ni

∂θi
⊗

⊗
j,i

N j

 , (26)

while the second term of Eq. (24) can be computed using the
cyclic properties of the trace operator:

Tr
(
K−1 ∂K>

∂θi

)
= diag

 k⊗
i=1

Λi +

k⊗
i=1

Ii


>

diag
(
H>

∂K>

∂θi
H

)

Tr
(
N−1 ∂N>

∂θi

)
= diag

 k⊗
i=1

Λi +

k⊗
i=1

Ii


>

diag
(
H>

∂N>

∂θi
H,

)
,

(27)

with H =
⊗k

i=1 Ui
⊗k

i=1 S −
1
2

i

⊗k
i=1 Qi. The last terms in the

above equations are given by

H>
∂K>

∂θi
H = H>i

∂K>i
∂θi

Hi ⊗

⊗
i, j

H>j
∂K>j
∂θi

H j


H>

∂N>

∂θi
H = H>i

∂N>i
∂θi

Hi ⊗

⊗
i, j

H>j
∂N>j
∂θi

H j

 . (28)

We provide an implementation of this model using the GPy
framework and based on Jax GPU parallelisation for algebra
operations, which is publicly available as the MKGpy4 package.

3.3. Application to galaxy clustering

To apply this model to our observable, we decompose the param-
eter space as a gridded structure X = XΩ⊗XHOD⊗Xs. Specifically,
as mentioned in Sect. 2.2, we measure the correlation function on
the same scales using the same HOD sampling for every cosmol-
ogy, allowing us to decompose the signal and noise covariances
as

K = KΩ ⊗ KHOD ⊗ Ks

N = NΩ ⊗ NHOD ⊗ Ns. (29)

We find that the optimal signal kernels (maximising the log-
likelihood) are simply two Matern3/2 kernels for cosmologi-
cal and HOD spaces and a squared exponential kernel for the
scale space. This choice of modelling leads to 16 signal hyper-
parameters θ = {lΩ, lHOD, ls, σ}, which include 9 lengthscales
for the cosmological parameters lΩ, 5 for the HOD parameters
lHOD, one for the separations ls, and one overall variance of the
signal σ. For the noise kernels, we chose Ns to be the fixed
covariance matrix of the 2PCF monopole computed from the
1400 small boxes (Fig. 5). For the cosmological and HOD noise
kernels, we chose diagonal heteroscedastic kernels of the form
N(x, x′) = σn(x)2δD(x − x′)I, allowing a different variance for
every HOD and cosmological configuration. We allow σn to be
fully parameterised vectors, leading to 88 noise hyperparameters
for each cosmology and 600 for each HOD. Those noise hyper-
parameters

(
σnΩ ,σnHOD

)
are fitted along with the signal hyperpa-

rameters θ.
4 https://github.com/TyannDB/mkgpy
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To avoid mathematical overflow and to simplify the hyper-
parameter learning, we normalise each dimension i of the input
and output training sets as follows:

X̃i
Ω =

Xi
Ω
−min(Xi

Ω
)

max(Xi
Ω

) −min(Xi
Ω

)

X̃i
HOD =

Xi
HOD −min(Xi

HOD)

max(Xi
HOD) −min(Xi

HOD)

X̃s =
log(Xs) − log(min(Xs))

log(max(Xs)) − log(min(Xs)),
(30)

where XΩ and XHOD are normalised to be distributed in the range
[0, 1]. Because we use stationary kernels k(x, x′) = k(|x − x′|),
we need to make sure that the variance of the signal is roughly
constant as a function of the input x, which is not the case along
the subspace Xs. For this input dimension, we use a logarithmic
transformation to flatten the signal before applying the normali-
sation. We also normalise the output training set Y to be normally
distributed around zero with a variance of one; because the 2PCF
spans a large range of magnitudes, we also apply a logarithmic
transformation before doing so:

Ỹ =
log(Y) −mean(log(Y))

std(log(Y))
. (31)

The covariance matrix used as Ns must also be projected in the
normalised space. To do so, we use the error propagation,

Ñs = JNsJ>, (32)

with J the mapping Jacobi matrix Ji j = ∂Ỹi
∂Y j

computed for the
mean of the 1400 small boxes. Once the emulator is trained,
every new input configuration Xtest should be normalised using
Eq. (30), and every model prediction µ f and its covariance Σ f
(Eq. (18)) should be transformed back into the real space using
Eqs. (31) and (32).

The hyperparameters are optimised using the Scipy
gradient-based algorithm Lbfgs with ten random initialisations
and selecting the best-fit hyperparameters yielding the highest
likelihood. To compare performances, we train both the standard
GP, where each separation is treated independently (as separate
emulators), and our new multi-scale GP. We employ the same
kernels, normalisation, and optimisation method.

4. Emulator performance

In this section, we compare the performances of two emulators:
first, the independent Gaussian process model (IGP), where each
scale s of the correlation function ξ(s) has its own independent
GP depending on cosmological and HOD parameters; and sec-
ond, our multi-scale Gaussian process model (MGP), which is
able to predict the full model for ξ(s) as well as an associated
non-diagonal model covariance.

4.1. Prediction accuracy

We computed predictions for the test set composed of 20 HOD ×
6 cosmologies (see Sect. 2 for details) using both IGP and MGP
models, and compared with their observed correlation function
monopoles. Figure 6 describes the IGP and MGP performances
using the full test set. The grey lines show the relative differ-
ence between the MGP emulator prediction and the expected
values from the test set as a percentage. The black dotted line

100 101

s [Mpc/h]
10 2

10 1

100

101

102

|em
u

tru
e

tru
e

|%

MGP
IGP
Cosmic variance

Fig. 6. Grey lines show the relative difference between the MGP emula-
tor prediction and the expected values for the full test set, as a percent-
age difference. The blue and green lines are the median of those devia-
tions for the MGP and IGP models, respectively. The black dotted line
corresponds to a 1% deviation. The red dotted line shows the median of
|σ/ξtrue| as a percentage. Here, σ2 is the cosmic variance computed for
the Planck 2018 cosmology and median HOD.

corresponds to a 1% deviation. The blue and green lines are the
median of those deviations for the MGP and IGP models, respec-
tively, reaching a subpercent precision for both models on most
of the scales. However, the correlation functions of our test set
are noisy, which is due to cosmic variance and shot noise, and so
we do not expect the difference ∆ ≡ ξemu−ξtrue to be smaller than
the estimated uncertainty of ξtrue . The red dashed line shows the
median of

∣∣∣∣ σ
ξtrue

∣∣∣∣ as a percentage, with σ being the diagonal of
Ccosmic . A difference smaller than this reference would indicate
overfitting of the particular initial phase of the simulations, while
larger differences would show that the prediction performance is
poor. Both MGP and IGP models seem to be slightly overfit-
ting the initial phase for the large scales, but follow the expected
accuracy on small scales. We note that for the very small scales,
the MGP is overfitting the test set to a lesser extent than the IGP.
We see that the relative error of the full sample in grey varies
around the cosmic variance expectation. We note that the dotted
red line corresponds to the cosmic variance of the central cos-
mology and HOD. The wide HOD scatter causes large variations
in the clustering amplitude and therefore in the cosmic variance.

4.2. Robustness to cosmic variance

Our models were trained on correlation functions from simula-
tions run with different cosmologies and HOD parameters, but
all starting from the same initial phase. Overfitting this partic-
ular phase could potentially bias our clustering predictions on
simulations with different initial phases. We tested this issue
with 25 phase realisations of AbacusSummit run with the same
Planck 2018 cosmology and the same set of HOD parameters.

Gaussian processes provide not only a prediction for a
model, but also an estimate of the model uncertainty, which
depends on the input parameters θ. This uncertainty is expressed
as a covariance matrix, denoted Cemu(θ). When performing infer-
ences on real data, this model covariance has to be added to the
measurement uncertainty for the considered scales Ccosmic as:

Ctot(θΩ, θhod) = Ccosmic + Cemu(θΩ, θhod). (33)

We deliberately dropped the dependency of Ccosmic on θ as it
is often considered fixed during inferences. Figure 7 shows the
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Fig. 7. Difference between the emulators prediction and the 25 real-
isations of Planck 2018 cosmology with the median HOD in blue
and green lines for the MGP and IGP, respectively. The red dashed
line describes the cosmic variance level. The total variances, including
the emulator variance predictions, are shown with the blue and green
shaded area.
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Fig. 8. Total correlation matrix of the MGP, including the model uncer-
tainty prediction Ctot = Ccosmic +Cemu(θΩ, θhod). The measurement uncer-
tainty Ccosmic was evaluated for the Planck 2018 cosmology with the
median HOD using the 1400 small boxes.

difference ∆ between the 25 measurements and predictions from
both the MGP (blue) and the IGP (green) emulators. The red
dashed line displays the cosmic variance level while blue and
green lines show the total variance (model + cosmic) according
to Eq. (33). We see that for intermediate scales, ∆ is larger than
the cosmic variance level, while using Ctot lowers the deviation
to less than 1σ. We also note that for this example the variance
of the MGP is larger than that of the IGP; however, Fig. 7 only
presents the diagonal elements of the covariance matrices.

Figure 8 shows the total (model + cosmic) correlation matrix
of the MGP. We note that compared to Ccosmic alone (Fig. 5),
the small scales are now significantly correlated. The predicted
covariance matrix of the IGP is diagonal by construction, and so
cannot account for such correlations, potentially affecting cos-
mological constraints. We investigate this issue in Sect. 5.

The clustering measurements for the 25 mocks are shown
in the top panel of Fig. 9 with the average shown with a red
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Fig. 9. Emulator performance on mocks with different phase. In the
upper panel the 25 realisations of Planck 2018 cosmology using the
median HOD are shown in grey. The average is shown in red dotted
line. The 25 residuals for both IGP (green) and MGP (blue) predictions
are shown in the bottom panel. L−1 is the Cholesky decomposition of
the inverse of Ctot. The grey shaded areas correspond to 1σ and 2σ
deviations.

dotted line. The bottom panel describes the 25 residuals for both
IGP (green) and MGP (blue) predictions, with ∆ = ξemu − ξtrue,
and L−1 being the Cholesky decomposition of the inverse of the
total covariance Ctot. This residual metric is useful as it takes
into account the correlations between scales. The shaded areas
correspond to 1σ and 2σ deviations. For most of the scales, both
MGP and IGP models are able to reproduce the clustering for the
different realisations within a 1σ deviation. For every scale, the
residuals are within a 2σ deviation. It seems that for both models
the predicted uncertainty Cemu solves the initial condition phase
problem. In the following section, we study the recovering of the
cosmological and HOD parameters.

5. Cosmology recovery and constraints

In this section, we describe the performances of our models
in recovering unbiased cosmological and HOD parameters. We
used the clustering measured on 25 realisations of the Planck
2018 cosmology using the same median HOD parameters.

5.1. Parameter inference using the emulator model

The parameter inferences are performed by running MCMC
chains with the library Emcee, using a flat prior corresponding
to Table 1 and a standard Gaussian log-likelihood defined as

logL(θ) ∝ −
1
2

(m(θ) − µ) C−1
tot (θ) (m(θ) − µ)> −

1
2

log|Ctot(θ)|,

(34)

where µ is the data vector, m(θ) is the model prediction for
a given set of parameters θ = (θΩ, θhod), and Ctot(θ) is the
total (model + cosmic ) covariance defined in Eq. (33). Com-
pared to a ‘normal’ cosmological inference, the terms C−1

tot (θ)
and log|Ctot(θ)| must be computed for every iteration because of
the emulator covariance dependence on the parameters. To do so
efficiently, we make use of the fast and stable Cholesky decom-
position.

For a given set of cosmological parameters, we can infer the
corresponding growth rate f . The uncertainty on the measured
growth rate is simply propagated as σ f =

∂ f
∂Ωi

CΩi j
∂ f
∂Ω j

, where
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Fig. 10. Posterior distribution of the cosmological and HOD parameters obtained after running MCMC inference on the average stack of the
25 correlation functions with Planck 2018 cosmology and the median HOD. The results obtained using the IGP model with and without the model
covariance prediction are shown in green and red, respectively, and those obtained using the MGP model with and without the model covariance
prediction are shown in blue and black, respectively. The true parameters are shown by the black dotted lines.

CΩi j is the covariance of the inferred cosmological parameters.
We use the Jacobi5 Python library to compute the gradient of
our model.

5.2. Cubic boxes: Average fit

We first tested the performance of both IGP and MGP mod-
els in recovering the parameters of interest when fitting a high-
precision measurement; that is, with an average stack of the
25 correlation function monopoles, corresponding to a volume

5 https://hdembinski.github.io/jacobi/

of 200 (h−1 Gpc)3. We used the likelihood defined in Eq. (34),
divided the sample covariance Ccosmic by 25, and ran two infer-
ences with and without using the emulator-predicted covariance
Cemu for each model.

Figure 10 shows the 68% and 95% confidence regions
obtained for the cosmological and HOD parameters. The true
values are shown by the dotted lines. We observe several inter-
esting features. First, neglecting the model covariance leads to
strongly biased results for the IGP with very sharp posterior dis-
tributions, while the MGP performs significantly better though
yielding multimodal posteriors. Second, using the model covari-
ance allows us to recover unbiased results for all cosmological
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Fig. 11. The 25 realisations of Planck 2018 cosmology with the median
HOD in grey. The average is shown with a red dotted line and the
MGP prediction is shown in blue. The 25 residuals for both IGP (green)
and MGP (blue) predictions are shown in the bottom panel. L−1 is the
Cholesky decomposition of the inverse of Ctot.

Table 2. Summary statistics for the fits of the 25 cubic mocks with
Planck 2018 cosmology and the median HOD.

IGP [×10−2] MGP [×10−2]
p 〈∆p〉 〈σp〉 std

(
p
)

〈∆p〉 〈σp〉 std
(
p
)

f 0.06 1.88 0.33 −0.14 1.80 0.20
ωm 0.05 0.50 0.14 −0.02 0.16 0.04
ωb −0.02 0.09 0.02 −0.01 0.06 0.02
σ8 −0.28 1.64 0.34 −0.05 0.36 0.04
w0 −1.61 10.96 2.79 0.21 4.85 0.43
wa 6.02 31.57 8.11 −0.22 19.04 2.57
h 0.15 2.33 0.45 0.08 0.65 0.12
ns 0.43 2.53 0.63 0.11 0.72 0.16
Nur −1.15 41.97 8.31 −5.65 46.56 8.02
αs 0.56 1.36 0.71 0.02 0.48 0.08
α 11.10 11.24 6.35 −0.38 19.03 4.19
κ −10.20 20.31 6.42 −6.70 27.70 4.27
log M1 −7.67 8.86 4.69 0.39 17.39 3.09
log Mcut 0.45 4.99 2.24 4.86 10.56 2.83
logσ −1.09 5.70 4.08 3.78 13.50 3.86

Notes. 〈∆p〉 is the bias, the difference between the true and best-fitted
value for any parameter p, 〈σp〉 is the average over the 25 realisations
of the (symmetrised) 1σ confidence level, and std (p) is the standard
deviation of the estimated parameter p over the 25 results. We note that
f is a derived parameter from the other cosmological parameters.

parameters within one sigma for both models. Third, while MGP
and IGP contours are consistent, the MGP model gives tighter
constraints on cosmological parameters, and the IGP model
gives tighter constraints on the HOD parameters. We also see
several local maxima in the posterior distributions, especially in
the green IGP contours. When sampling cosmological parame-
ters far from those used in the training process of the GPs, we
see larger model covariances while fitting the data points. This
can also be seen as the goodness-of-fit term being counterbal-
anced by the determinant in the likelihood. Ignoring the model
covariance can cause the fitter to converge towards a point that
– when considering the total covariance – is found to be only a
local maxima in the log likelihood.

Figure 11 compares the best fits of the MGP and IGP models
in blue and green, respectively. The bottom panel displays the
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Fig. 12. Reduced chi squared, best-fit growth rate, and corresponding
uncertainties resulting from the separate fits of the 25 cubic mocks with
Planck 2018 cosmology and the median HOD. Results using the MGP
and IGP models are shown in blue and green, respectively. The true
parameter values are shown with a red dotted line.

residuals, using the Cholesky decomposition matrix to account
for correlations between scales. The 1σ deviation limit is set by
the grey shaded area. For the MGP model, we get a reduced chi
squared of χ2

r = 5.6 and for the IGP we obtain χ2
r = 31. These

large χ2
r values are due to the large volume probed by the aver-

age of 25 simulations. These χ2
r values and the bottom panel of

Fig. 11 show that the data are much better adjusted by the MGP
model over all scales.

5.3. Cubic boxes: 25 individual fits

In order to obtain a statistically significant measurement of the
accuracy and potential biases of our models, we fit each of the 25
boxes separately, corresponding to a probed volume comparable
to current surveys. The cosmic covariance matrices were nor-
malised to account for this change in volume. Figure 12 shows
the reduced chi-squared χ2

r , the best-fit growth rate parameter f ,
and their estimated uncertainties σ f . The derived cosmological
parameters along with their inferred uncertainties are shown in
Fig. 13 and the same for the HOD parameters in Fig. 14. Table 2
reports some summary statistics from those results, where 〈∆p〉

is the difference between the true and best-fit value for param-
eter p; 〈σp〉 is the average over the 25 realisations of the
(symmetrised) 1σ confidence level; and std(p) is the standard
deviation of the estimated parameter p over the 25 fits. We note
that the bias in the growth-rate measurement is reduced with
our MGP model, and that both models give consistent results,
recovering the growth rate within 1σ. The reduced chi-squared
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Fig. 13. Best-fit cosmological parameters along with the corresponding uncertainties on the 25 cubic mocks with Planck 2018 cosmology and the
median HOD. Results using the MGP and IGP models are shown in blue and green, respectively. The true parameters values are shown by a red
dotted line.
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Fig. 14. Best-fit HOD parameters along with the corresponding uncertainties on the 25 cubic mocks with Planck 2018 cosmology and the median
HOD. Results using the MGP and IGP models are shown in blue and green, respectively. The true parameters values are shown by a red dotted
line.

distributions are similar, but with this sample the IGP model
gives a better fit, on average, with 〈χ2

r 〉 = 4.93, while we have
〈χ2

r 〉 = 7.36 for MGP for (30−14) = 16 degrees of freedom.
Although it is hard to draw conclusions because of the lim-
ited size of the sample, in both cases the mean estimated error
〈σ f 〉 does not exactly match the standard deviation of the best-fit
parameters std(p), but is conservatively larger. We also see that
our MGP model yields smaller dispersion and results in tighter
constraints on f .

Figure 13 showcases similar results for the cosmological
parameters. Both models are able to retrieve the right parameters
within 1σ, but the MGP returns smaller bias, smaller dispersion,
and tighter constraints for all parameters except the number of
ultrarelativistic species Nur, which is poorly constrained. In par-
ticular, the uncertainty on amplitude parameter σ8 is reduced by
a factor of greater than 4, while reducing the bias on the best-
fit value. For the HOD parameters illustrated in Fig. 14, we also
get unbiased measurements. Once again, the bias and the disper-
sion for the best-fit values are overall reduced with the MGP;
however, the IGP gets tighter constraints. It therefore seems that

using the correlation between scales helps to constrain the cos-
mology rather than the HOD parameters as the HOD signal is
mainly in the small scales where the cosmic covariance is almost
diagonal (see Fig. 5), while all scales are affected by cosmologi-
cal parameters.

5.4. Observational effects: Wide angle and AP

We validated the MGP model on cubic mocks similar to the sim-
ulations used to train the emulators and show that it performs
significantly better than the standard IGP. Now we wish to test
the constraining power and accuracy of the MGP model on more
realistic measurements.

For each of the 25 realisations, we placed the observer at
the centre of the box. As the snapshot describes the cluster-
ing at redshift z = 0.2, we select galaxies at redshifts 0.15 <
z < 0.25 from the observer, in order to avoid making large
changes to the observed clustering. We consider each survey
to cover the full sky. We used the Landy-Szalay estimator of
Eq. (3) to compute correlation functions. The measurement of
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z = 0.25. The true and AP-distorted clustering are shown in orange
and indigo, respectively. The bottom panel shows the residual using the
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Table 3. Summary statistics for the fits of the 25 mocks with spherical
full-sky footprint from z = 0.15 to z = 0.25, Planck 2018 cosmology,
and the median HOD, where the clustering was measured using cosmol-
ogy c177 of the AbacusSummit suite as fiducial cosmology resulting
in an isotropic dilatation parameter αv ≈ 1.02.

MGPαV [×10−2] MGP[×10−2]
accounting αV neglecting for αV

p 〈∆p〉 〈σp〉 std
(
p
)

〈∆p〉 〈σp〉 std
(
p
)

f −0.02 0.59 0.10 −0.20 0.75 0.15
ωm −0.00 0.10 0.02 −0.04 0.13 0.03
ωb −0.00 0.04 0.00 −0.00 0.05 0.01
σ8 −0.04 0.19 0.01 −0.04 0.23 0.02
w0 −0.13 2.93 0.28 −0.03 3.27 0.41
wa 0.56 11.77 0.80 0.34 12.68 1.67
h 0.02 0.42 0.08 0.15 0.52 0.09
ns 0.01 0.45 0.07 0.01 0.50 0.08
Nur −1.34 30.49 2.05 −2.94 31.75 5.01
αs 0.00 0.22 0.02 0.01 0.28 0.04
α 5.66 32.97 5.97 10.54 23.24 4.75
κ −1.57 26.37 1.23 0.04 22.84 4.53
log M1 −0.51 32.20 3.99 −1.27 30.42 8.47
log Mcut 5.06 11.15 2.09 8.95 11.12 2.87
logσ 6.96 15.94 2.92 4.74 13.97 2.56

Notes. 〈∆p〉 is the bias, the difference between the true and best-fit value
for any parameter p, 〈σp〉 is the average over the 25 realisations of the
(symmetrised) one sigma confidence level, and std (p) is the standard
deviation of the estimated parameter p over the 25 results. We note that
f is a derived parameter from the other cosmological parameters.

the 2PCF requires the choice of a specific fiducial cosmol-
ogy to convert redshifts into comoving distances. Differences
between the fiducial and the true cosmology lead to distor-
tions in the measured clustering, which is known as the Alcock-
Paczynski (AP) effect (Alcock & Paczynski 1979). This effect is
often neglected when building an emulator (Yuan et al. 2022b;
Planck Collaboration VI 2020) as it is small on very small
scales. Moreover, modelling the AP distortion requires either
one extra parameter in the training input space or a continuous
model over different scales for interpolation. By construction,
our MGP model is more adapted to building a continuous model
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Fig. 16. Reduced chi squared, best-fit growth rate, and corresponding
uncertainties resulting from the separate fits of the 25 mocks with spher-
ical full-sky footprint from z = 0.15 to z = 0.25, AP distortion, Planck
2018 cosmology, and the median HOD. Results using the MGP with and
without modelling AP distortions are shown in cyan and blue, respec-
tively. The true growth-rate value is shown by a red dotted line.

than the IGP, and such a model can be evaluated at any scale
within the training range.

If the choice of fiducial cosmology is not far from the true
cosmology, the AP effect can be modelled with two parameters,
which scale the radial and angular separations. However, as we
are only using the monopole of the 2PCF, we only have access to
isotropic information. We use the isotropic dilatation parameter
αV described by Navarro et al. (1997) to scale separations as

ξobs
0 (s) = ξmod

0 (αV s), (35)

where

αV =
DV (z)
Dfid

V (z)
, (36)

with the isotropic distance defined as a combination of the
Hubble distance (radial) DH(z) = c/H(z) and the comoving
angular distance DM(z) = (1 + z)DA(z):

DV (z) =
[
zDH(z)D2

M(z)
]1/3

. (37)

We picked cosmology c177 of the AbacusSummit suite
as a fiducial cosmology; it is different from the true one
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Fig. 17. Best-fit cosmological parameters along with the corresponding uncertainties on the 25 mocks with spherical full sky footprint from
z = 0.15 to z = 0.25, AP distortion, Planck 2018 cosmology, and the median HOD. Results using the MGP with and without modelling AP
distortions are shown in cyan and blue, respectively. The true parameter values are pointed by a red dotted line.
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Fig. 18. Best-fit HOD parameters along with the corresponding uncertainties on the 25 mocks with spherical full-sky footprint from z = 0.15 to
z = 0.25, AP distortion, Planck 2018 cosmology, and the median HOD. Results using the MGP with and without modelling AP distortions are
shown in cyan and blue, respectively. The true parameter values are shown by a red dotted line.

(Planck 2018), resulting in a 2% variation in the isotropic dilata-
tion parameter αv ≈ 1.02. We measure the clustering of the 25
realisations of our survey-like mocks using both the true and
c177 fiducial cosmologies. The average monopoles along with
the residual (using the cosmic variance of the survey-like mocks)
are shown in Fig. 15. Although the cosmic variance is larger for
the survey-like mocks compared to the cubic box measurements
– which is due to the reduced volume –, the AP distortions lead
to significant deviations for every scale, up to 10σ for scales of
a few h−1 Mpc.

To assess whether or not ignoring the AP distortions can lead
to biased cosmological constraints, we fit the 25 realisations of
the AP distorted clustering separately using the MGP model with
and without (setting αV = 1) accounting for the AP distortions.
We refer to the former as MGPαV . In both cases, we rescale the
sample covariance matrix with the corresponding spherical vol-
ume. We also compare the impact of ignoring the AP effect using
MGP and IGP in Appendix A.

Figure 16 displays the distribution of reduced chi-squared,
best-fit growth rate f , and their estimated uncertainties σ f . The

best-fit cosmological and HOD parameters with their uncertain-
ties are shown in Figs. 17 and 18, respectively. Table 3 shows
summary statistics as in Table 2, but now for the survey-like
mocks. With a significantly larger cosmic variance, the models
better fit the data, and therefore the reduced chi-squared dis-
tributions are less spread and more centred on one compared
to the cubic box fits. The data points are also better described
when accounting for AP distortions; the mean of the distribu-
tion is 〈χ2

r 〉 = 0.55 for MGPαV and 〈χ2
r 〉 = 2.43 for MGP for

(30−14) = 16 degrees of freedom. In both cases, we recover
the expected growth rate within 1σ, though ignoring the AP
effect increases the bias by a factor of ten and leads to larger
error bars, and also with best-fit values for f that are more scat-
tered. We also note that compared to the previous cubic box fits,
although the cosmic variance of the survey-like mocks is larger,
the growth rate is more constrained in both cases. We see similar
results in Fig. 17 for the cosmological parameters: when con-
sidering AP distortion in the modelling, we reduce the bias and
obtain tighter constraints. However, the dark energy parameters
w0 and wa appear as an exception, where although MGPαV gives
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tighter constraints, the bias is larger than when using MGP. How-
ever, as those parameters are weakly constrained, the difference
in the growth-rate measurement accuracy between the two mod-
els mainly comes from the ωm and h parameters. For the HOD
parameters showcased in Fig. 18, in both cases we have unbi-
ased results for every parameter. However, as HOD parameters
are mostly constrained at small scales, where the AP effect is
less important, the MGPαV model does not bring any substantial
improvement, and even gives looser constraints than the MGP
without AP modelling on average.

6. Conclusions

In this work, we review the standard methodology for training an
emulator model for galaxy clustering at non-linear scales from a
suite of dark matter simulations. We introduce a new Gaussian
process model that allows efficient extension of the input param-
eter space dimension and accounts for correlated noise.

As a proof of concept for our model, we emulated the red-
shift space 2PCF of galaxies over the input space X = XΩ ⊗

XHOD ⊗ Xs, allowing an additional interpolation over a continu-
ous range of scales, and making use of the well-known correla-
tions between them, both in the signal and the noise. We imple-
mented our multi-scale Gaussian process model (MGP) as well
as the standard approach, which consists in constructing inde-
pendent Gaussian processes (IGPs) for each separation. We used
88 cosmologies, 600 HODs, and 30 separation scales as a train-
ing set, all measured in the AbacusSummit suite of n-body sim-
ulations. The input parameter space of the resulting models is
composed of nine cosmological parameters, five HOD parame-
ters, and the set of separations of the 2PCF.

After validating the predictive accuracy of our trained model
on a test set with six cosmologies and 20 HODs, we ran infer-
ences using MCMC to check the robustness and constraining
power of our models. In a high-precision setting, where we
used the average 2PCF of 25 realisations, ignoring the predicted
uncertainties of our GP models can lead to biased results, espe-
cially with the IGP model. We also demonstrate that both models
are able to recover the expected HOD parameters. Marginalising
over such parameters, we are able to obtain unbiased cosmo-
logical constraints. Our MGP model returns more accurate and
precise constraints on the cosmological parameters than the IGP.

Moreover, we show that Alcock-Paczynski distortions can
become important compared to the cosmic variance at interme-
diate scales for the redshifts we are testing. Neglecting this effect
in an emulator model, as has been done in previous works, con-
tributes to loosening the constraints and increasing the bias on
the growth-rate measurement.

The parameter space of such emulator models could also
be extended to higher dimensions to be able to interpolate and
marginalise over systematic quantities, extended HOD mod-
els, selection effects, different redshift bins, and more. There
remain some drawbacks to using a training set with a large num-
ber of dimensions. First, building the training set is expensive.
Second, although a Kronecker GP model with a very large
number of training points can be trained relatively quickly, the
predictions of the model covariance can be slow. It is also impor-
tant to reiterated that for galaxies at lower redshift, building a
model requires more realistic simulations that reproduce redshift
evolution (light cone) to account for wild angle effects. Such a
model would also need to be validated on realistic mocks using
different galaxy–halo connections before application to real
measurements.

Our MGP model could be used in future works to emu-
late a larger set of galaxy clustering observables and their cross
correlations, such as: galaxy and peculiar velocity auto- and
cross-correlations, galaxy clustering, weak lensing, and so on.
Accurate models of these correlations are essential in the era
of high-precision measurements from surveys such as DESI
or Euclid.
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Appendix A: AP effect on IGP fits

We show in section 5.4 that ignoring the AP distortions can
lead to a loss of accuracy and precision, especially for the two
cosmological parameters of interest, f and σ8. Here, we com-
pare the impact of ignoring the AP distortions using the MGP
and IGP models. We note that as the IGP is not able to inter-
polate over scales, the AP effect is usually ignored in stan-
dard analysis (Yuan et al. 2022b; Planck Collaboration VI 2020;
Landy & Szalay 1993). While the AP effect could also be mod-
elled using the IGP, this would require that an extra approx-
imated interpolation be performed between the trained scales,
both for model and uncertainty estimates. We fit the 25 realisa-
tions of the AP distorted clustering separately using both models
without modelling the AP distortions. In both cases, we rescale
the sample covariance matrix with the corresponding spheri-
cal volume. The best-fit values for f and σ8 along with their
estimated uncertainties are described in figure 16. The best-fit
cosmological and HOD parameters with their uncertainties are
shown in figure A.1. Table A.1 shows summary statistics for all
cosmological and HOD parameters. We see that when ignoring
the AP distortions, although not the case for HOD parameters
(the very small scales remain unaffected by the AP effect), the
MGP model performs significantly better than the IGP for every
cosmological parameter. The IGP model in particular gives con-
straints on σ8 that are biased by more than 1σ.

Table A.1. Summary statistics for the fits of the 25 mocks with a spheri-
cal full-sky footprint from z = 0.15 to z = 0.25, Planck2018 cosmology,
and the median HOD.

(102×) IGP MGP
p 〈∆p〉 〈σp〉 std

(
p
)
〈∆p〉 〈σp〉 std

(
p
)

f -0.79 2.05 0.52 -0.20 0.75 0.15
ωm -0.18 0.74 0.19 -0.04 0.13 0.03
ωb -0.01 0.11 0.02 -0.00 0.05 0.01
σ8 2.25 1.97 0.70 -0.04 0.23 0.02
w0 -2.03 14.14 3.17 -0.03 3.27 0.41
wa 3.25 37.54 8.42 0.34 12.68 1.67
h 0.71 3.04 0.76 0.15 0.52 0.09
ns -0.01 3.2 0.72 0.01 0.50 0.08
Nur -2.46 57.32 13.49 -2.94 31.75 5.01
αs 0.40 1.84 0.86 0.01 0.28 0.04
α 6.02 15.82 5.15 10.54 23.24 4.75
κ -7.31 29.72 4.8 0.04 22.84 4.53
logM1 0.66 12.0 4.63 -1.27 30.42 8.47
logMcut 4.99 6.89 2.43 8.95 11.12 2.87
logσ 2.33 9.27 2.96 4.74 13.97 2.56

Notes. 〈∆p〉 is the bias, the difference between the true and best-fit value
for any parameter p, 〈σp〉 is the average over the 25 realisations of the
(symmetrised) one sigma confidence level, and std

(
p
)

is the standard
deviation of the estimated parameter p over the 25 results.
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Fig. A.1. Best-fit growth rate and corresponding uncertainties resulting
from the separate fits of the 25 mocks with spherical full-sky footprint
from z = 0.15 to z = 0.25, AP distortion, Planck2018 cosmology, and
the median HOD. Results using the MGP and IGP models are shown
in blue and green, respectively. The true parameter values are shown by
the red dotted line.
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