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Abstract: Since its original publication in 1978, Lozi’s chaotic map has been thoroughly explored
and continues to be. Hundreds of publications have analyzed its particular structure and applied
its properties in many fields (e.g., improvement of physical devices, electrical components such as
memristors, cryptography, optimization, evolutionary algorithms, synchronization, control, secure
communications, AI with swarm intelligence, chimeras, solitary states, etc.) through algorithms
such as the COLM algorithm (Chaotic Optimization algorithm based on Lozi Map), Particle Swarm
Optimization (PSO), and Differential Evolution (DE). In this article, we present a survey based on
dozens of articles on the use of this map in algorithms aimed at real applications or applications
exploring new directions of dynamical systems such as chimeras and solitary states.

Keywords: Lozi map; fractional Lozi map; chaotic attractor; applications; control of chaos; mem-
ristor; particle swarm optimization (PSO); differential evolution (DE); self-organizing migrating
algorithm (SOMA); chimera; synchronization; fuzzy synchronization; solitary states; cryptography;
chaotic benchmark

1. Introduction

Among the most popular discrete chaotic attractors (Belykh map, Lorenz map, Hénon
map, etc.), Lozi’s chaotic map has been thoroughly explored since its publication in 1978,
and continues to be today. Hundreds of publications have analyzed its particular structure
and applied its properties in many fields, including cryptography, electronic devices such
as memristors, optimization, synchronization, secure communications, AI with swarm
intelligence, chimeras, solitary states, and more.

Zeraoulia [1] wrote a collection of results published between 1997 to 2013, including
700 references. However, new results in theory and applications are continually being
published in many different journals and books, and I am frequently asked about them.
This is why I have decided to gather all the new results on applications of this map in
the current survey in order to render them easily accessible. All these results are the
responsibility of their original authors, not mine.

In Section 2, we recall the origin of this map, its initial definition and classical chaotic
properties in the dissipative case, and its dynamics features, including fixed points, in-
variant manifolds, basin of attraction, etc. I briefly mention a number of new results on
advanced properties concerning other statistical, hyperbolic, ergodic, and topological prop-
erties (e.g., bifurcation, symbolic dynamics and the kneading sequence, topological entropy,
Hausdorff dimension). The chaotic properties in the conservative case are evoked as well.
The most recent definitions of the fractional, variable fractional, and complex fractional
Lozi map are described. However, the aim of this study is to highlight the applications of
this map, not the theoretical results; thus, the presentation of the latter has been reduced to
a minimum in order to keep this article to a reasonable length. Interested readers can refer
to [2] for an overview of the generalizations of this map.

In Section 3, the use of the Lozi map in electrical devices, memristors, and computers
is developed. Section 4 describes the numerous applications of this map in the domain of
optimization. Particle Swarm Optimization (PSO), Differential Evolution (DE), and the Self-
Organizing Migrating Algorithm (SOMA) are among of the many new algorithms using the
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Lozi map as a core function. Non-evolutionnary optimization algorithms are described as
well, including the Improved Lozi map-based Chaotic Optimization Algorithm (ILCOA).

Applications in control theory are analyzed in Section 5, while applications in cryptog-
raphy are addressed in Section 6. The coupling of several copies of this map in networks
and their synchronization allows for the existence of new theoretical objects (e.g., chimeras,
solitary states, and cellular neural networks), as is shown in Section 7. Finally, miscella-
neous applications, such as the use of the Lozi map as a benchmark in several studies in the
domains of economics and in education, are considered in Section 8, and a brief conclusion
is presented in Section 9.

2. The Lozi Chaotic Map
2.1. Origin

On 15 June 1977, 46 years ago, I discovered this piecewise linear chaotic map of the
plane. I remember that the idea came to me around 11 am during the defense of the Ph.D.
thesis of one of my colleagues in the department of mathematics of the University of Nice
(France) [1] (p. xxv).

A week before, I had attended the International Conference on Mathematical Prob-
lems in Theoretical Physics in Roma. During the inaugural talk on 6 June, David Ruelle
conjectured that, for the Hénon chaotic map, the theoretical entropy should be equal to the
characteristic exponent [3]. As explained in [4], this is how I learned of the first example
of a chaotic and strange attractor in the plane: the Hénon attractor (see Figure 1). Surpris-
ingly, I had never before met Michel Hénon, who worked a few kilometers from the math
department of the university at the Nice Observatory.

Figure 1. Hénon map for the parameter value a = 1.2, b = 0.42, initial value x0 = 0, y0 = 0.

Hénon used an IBM-7040 computer to numerically simulate the Lorenz map [5]. He
found it difficult to highlight its inner nature due to the very high dissipativity of this
map, for which the rate of volume contraction is provided by the Lie derivative of the
Lorenz equations. Solving such equations for the parameters chosen by Lorenz provides
V(t) = V(0)e

−41
3 . Hence, volumes are reduced by a factor 106 after one time unit. Hénon,

who was a specialist in the motion of planets, had good experience with Poincaré’s map,
which inspired him the way to build the metaphoric model in [6]:{

xn+1 = 1− ax2
n + yn,

yn+1 = bxn.
(1)
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This model can be represented by the iterates of any initial point (x0, y0)
T belonging

to the basin of attraction using the mapHa,b : R2 −→ R2

Ha,b

(
x
y

)
=

(
1− ax2 + y,
bx.

)
. (2)

The contracting properties of this map are only determined by the parameter b. When
b = 0.3, the contraction in one iteration is mild enough that the sheaves of the attractors are
distinguishable on a graphic. Finally, Hénon observed the astonishing fractal structure of
the attractor on the image drawn by the computer, which amazed the research community.

At that time, I was a young researcher trying to understand bifurcation theory in
the field of numerical analysis [7]. This area was not very well known in France. I was
working on the discretization of nonlinear problems using the finite element method, in
which nonlinear functions are approximated by piecewise linear functions.

During the Roma conference, I tried without success to apply the spirit of the method
of finite elements to the Hénon attractor. Back in Nice after this conference, I eventually
decided, using paper and pencil, to change the square function of the Hénon attractor,
which is U shaped, into the absolute value function, which has a V shape, implying a
folding property (the folding property is important for horseshoes, a main ingredient of
chaos, as highlighted by Stephen Smale [8]).

I was owner of a small desktop computer (an HP 9820) linked to an HP 9862 plotter.
Immediately after the defense I tested this change of function and found a similar attractor
of the Hénon attractor, with straight lines instead of curves for the map [9] (see Figure 2).

La,b

(
x
y

)
=

(
1− a|x|+ y,
bx.

)
(3)

Figure 2. Original Lozi map in dimension 2 for the parameter value a = 1.62, b = 0.56, initial value
x0 = 0, y0 = 0.

2.2. Classic Chaotic Properties of the Dissipative Map (|b| < 1)

The Lozi map is called “dissipative” when |b| < 1, which means that the image of
any subset ∆ by f has a measure which is less than the measure of ∆ : measure( f (∆)) <
measure(∆).

2.2.1. Domain of Existence of Strange Attractor

In 1979, during the International Conference on Nonlinear Dynamics , patronized by the
New York Academy of Sciences from 17–21 December, Michal Misiurewicz, in a plenary
talk, presented a rigorous proof that for a set of parameters M this map has a strange
attractor, coining on this occasion the name “Lozi map” [10]. This happened only two years
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after my discovery of this new chaotic attractor, and only one year after its publication [9].
This set in the plane of parameters (a, b) is defined by

M =

{
(a, b)

∣∣∣∣b > 0, a
√

2 < b + 2, b <
a2 − 1
2a + 1

, 2a + b < 4
}

(4)

(see Figure 3).

Figure 3. The set M of the plane of parameters in which the Lozi map has a strange attractor,
following the first proof of Misiurewicz (4). Pink lines: b = 0 and b = 1, blue line: b = a-1, green line:
b = 4-2a, brown line: b = a

√
2-2, red curve: b = a2−1

2a+1 .

Later, Misiurewicz and Stimac [11] slightly enlarged this set of parameterM (defined
only for b > 0, and asM+ in Figure 4) in the upper edge of the triangle by removing the
condition b < a2−1

2a+1 .

M+ =
{
(a, b)

∣∣∣b > 0, a
√

2 < b + 2, 2a + b < 4
}

(5)

The case b < 0 was studied by Cao and Liu [12], and recently by Kucharski [13],
who found a quasi-symmetric set of parametersM− (Figure 4). However, the right-hand
boundary ofM− is not completely symmetric to the right-hand boundary ofM+.

M− =

{
(a, b)

∣∣∣∣∣−1 < b < 0, a
√

2 > b + 2, b >
−8a + 3a2 +

√
−16a3 + 9a4

8

}
(6)

2.2.2. Fixed Points, Invariant Manifolds, and Basin of Attraction

It is straightforward to explicitly compute the fixed points and periodic orbits of any
order of La,b (3) due to the piecewise linearity of the absolute value.

When 1− a < b < a + 1 (for a > 0, the regionsM− andM+ are both in the cone
defined by theses inequalities), there exist two fixed points:

P+ =

(
1

a + 1− b
,

b
a + 1− b

)
, P− =

(
1

1− a− b
,

b
1− a− b

)
.

P+ belongs to the quadrant {x ≥ 0, y ≥ 0} and P− to the quadrant {x < 0, y < 0}.
For a > |b|+ 1, that is, in the domain of the parameter space where both P+ and

P− coexist, it is easy to compute the local stability of these points by evaluating the
corresponding eigenvalues of the Jacobian matrix of La,b. It can be shown that both points
are saddles.
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Figure 4. The sets M+ and M− for the plane of parameters where the Lozi map has a strange
attractor in the second proof of Misiurewicz and Stimac (5) and the proof of Kucharski (6). Blue
lines: b = a-1 and b = 1-a, red lines: b = a

√
2-2 and b = 2-a

√
2, cyan line: b = 4-2a, dark green line:

b = −8a+3a2+
√
−16a3+9a4

8 .

Moreoever, Misiurewicz [10] showed that the chaotic attractor of this map belongs to
the unstable invariant manifold of P+. More exactly, the chaotic (and strange) attractor S̃
can be constructed from the successive forward iterations of a trapping triangular region T,

S̃ =
∞⋂

n=0
Ln(T),

with T being the triangle with vertices at the points I, L(I), and L2(I), where I is the point
given by the intersection of the unstable manifold of the fixed point P+ with the horizontal
axis

I =

(
2 + a +

√
a2 + 4b

2(1 + a− b)
, 0

)
.

The basin of attraction of the attractor is modeled by parts of the stable manifold of the
fixed point P−, as shown by Baptista et al. [14]. They considered the point X intersection
of this stable manifold with the vertical axis. Straightforward computation provides

X =

(
0,

b(2− a +
√

a2 + 4b
(a−

√
a2 + 4b)(a + b− 1)

)
.

They considered certain point U belonging on the horizontal axis as well, first defined
by Ishii [15], for which the expression is

U =

(
b(2− a +

√
a2 + 4b(a(1 + b) + (1− b)

√
a2 + 4b)

(1− a− b)(a−
√

a2 + 4b)(a−
√

a2 + 4b)(2b(b− 1) + a2(1 + 2b) + a(1− 2b)
√

a2 + 4b)
, 0

)
.

Baptista et al. showed that the basin of attraction is bounded by a polygonal line
entirely characterized by the points U and X along with their successive preimages.

2.3. Advanced Dynamical Properties of the Dissipative Map (|b| < 1)

An open region B in the parameter space for which the Lozi map exhibits periodic
points of least period n was rigorously determined for all n > 13 by Boroński, Kucharski
and Ou [16] as follows:

Pstr = {(a, b)| b > 0, b < lstr(a) when a < a0, and b < ltan(a) when a > a0 } (7)
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and
P3(a, b) =

{
(a, b)| 0 ≤ b ≤ 1 , a > lhyp(b), and a > l3(b)

}
(8)

where a0 = 2
7

(
2 + 3

√
2
)
≈ 1.78, lstr(a) = −2+

√
2a, ltan(a) = 1

8

(
8a− 3a2 −

√
9a4 − 16a3

)
,

lhyp(b) = b + 1, and l3(b) = 1
2

[
1− b +

√
(1− b)2 + 4(1− b + b2)

]
.

Theorem 1 ([16]). For all (a, b) ∈ B = Pstr ∩ P3 the Lozi map La,b has a periodic point of least
period n for n = 1, 2, 3 and all n > 13.

A survey of all the papers describing the other dynamical or statistical properties of
the Lozi map cannot be provided in this article because they are too numerous. Readers
may refer to [1] for a compendium of results published between 1997 to 2013. Below, only a
selection of particular and more recent results are pointed out.

Several new results on bifurcations have been recently published since 2013. Botella-
Soler et al. [17] showed that this map presents what they call bisecting bifurcations, that
is, those which are mediated by an infinite set of neutrally stable periodic orbits (see
Figures 5 and 6).

Figure 5. Bifurcation diagram for b = 0.1. Notice that the bisecting bifurcations take place at a = 1± b.

Figure 6. Bifurcation diagram for a = 1.5. Notice that the bisecting bifurcations take place at
b = ±(a− 1).

Sushko et al. [18] investigated the bifurcation structure of the parameter plane in the
vicinity of the curve related to a center bifurcation of the fixed point. A distinguishing
property of the Lozi map is that it is conservative (see Section 2.4) at the parameter value
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corresponding to this bifurcation. As a result, the bifurcation structure close to the center
bifurcation curve is quite complicated. In particular, an attracting fixed point (focus) can
coexist with various attracting cycles as well as with chaotic attractors, and the number
of coexisting attractors increases as the parameter point approaches the center bifurcation
curve. Their study contributed to the border collision bifurcation theory as well, as the Lozi
map is a particular case of the 2D border collision normal form (2D-BCNF).

The following 2D-BCNF family of difference equations (x, y) −→ h(x, y) was pre-
sented by Glendinning and Simpson [19] as a canonical example:

h(x, y) =


FL

[
x
y

]
+

[
µ
0

]
, x ≤ 0,

FR

[
x
y

]
+

[
µ
0

]
, x ≥ 0,

(9)

where the parameter µ controls the border-collision bifurcation and with

FL =

[
πL 1
−νL 0

]
, FR =

[
πR 1
−νR 0

]
.

In their paper, they restricted their attention to the parameter values πR ∈ R, πL > 0,
νL > 0, νR > 0, µ = 1, for which f is invertible and orientation-preserving.

The role of µ is to control the border-collision bifurcation. In view of a linear rescaling,
it is only necessary to consider it for the values {−1, 0, 1} (here, it is 1). The condition
πL > 0 is needed for the definition of the induced map. If πL = −πR and νL = νL, then the
2D BCNF reduces to the Lozi map.

In addition bifurcation studies, Collet and Levy [20] considered ergodic properties of
the Lozi map, which they considered as an intermediate stage between the Axiom A dy-
namical systems and more complicated systems such as the Hénon map. They constructed
its Bowen–Ruelle measure and derived several of its properties, which are similar to those
of an axiom A system.

A proof of the existence of Sinai–Bowen–Ruelle measures (SBR measures) for this map
was provided by Rychlik [21], who additionally proveed that the number of SBR measures
is finite.

The geometric structure of the chaotic attractor was explored by Cao and Liu [22],
who proved the following:

Proposition 1. If the parameters (a, b) satisfy the Misiurewicz conditions (4), then the strange
attractor Λa,b possesses the following properties:

- The union of the transversal homoclinic points and weak transversal homoclinic points is dense
in Λa,b

- All periodic points are hyperbolic
- The set of periodic points forms a dense set in Λa,b
- Any two hyperbolic points forms a transversal heteroclinic cycle or a weak transversal hetero-

clinic cycle

Other statistical, hyperbolic, ergodic, and topological properties of the Lozi attractor
can be found in Afraimovich et al. [23].

The symbolic dynamics of this map have been extensively studied. In 1991, Zheng [24]
described details of this dynamics. To this end, they assigned two families of symbolic
sequences for two groups of lines in the phase plane, allowing the order of symbolic
sequences to be defined, and derived the ordering rules. Misiurewicz and Stimac [11],
in a more detailed study, proved that the set of kneading sequences they introduced
determines its symbolic dynamics. They defined two other equivalent approaches as well.
The important works of Ishii [15,25], Sand [26], and de Carvalho and Hall [27] in this field
of research can be mentioned here as well.
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In [15], Ishii constructed a kneading theory à la Milnor-Thurston and showed that
topological properties of the dynamics of the Lozi map are determined by its pruning front
and primary pruned region only. This allowed a solution to the first tangency problem
for the Lozi family to be found. In addition, the boundary of the set of all horseshoes in
the parameter space was shown to be algebraic. In [25], the partial monotonicity of the
topological entropy and of bifurcations near horseshoes was proved as an application of
this result. Upper and lower bounds for the Hausdorff dimension of the Lozi attractor were
provided in terms of parameters. In [27], recent results on pruning theory were provided,
concentrated on prunings of the horseshoe. The monotonicity of the Lozi family when the
Jacobian determinant is close to zero was proved in [26]. The main ingredients of the proof
therein are the “pruning pair method” and a detailed analysis of the parameter dependence
of the kneading invariant of the tent-map family.

Wormell [28] defined a new property of chaotic attractors, namely, conditional mixing,
and conjectured:

Conjecture 1. For generic Lozi parameters (a, b) and almost all Lebesgue x0 ∈ R, the Lozi map
has conditional mixing with respect to level curves x = x0, that is, the measures ρ(·|x0).

Strong and direct numerical evidence has been presented in favor of this conjecture.
To obtain such a result rigorously, novel algorithms were developed in [28] that quantify
the associated numerical error.

Borinski and Stimac [29] showed that Hénon-like and Lozi-like maps (see [2] for a
definition of such maps) on their strange attractors are conjugate to natural extensions of
maps on metric trees with dense set of branch points. In consequence, these trees very well
approximate the topology of the attractors, and the maps on them give good models of
the dynamics.

To conclude this section, I refer to the general survey of Anischenko et al. [30], which
analyzed many aspects of the properties and use of the Lozi map in several of the contexts
developed in this article.

2.4. Chaotic Properties of the Conservative Map (|b| = 1)

In the conservative case (called the area-preserving case) measure( f (∆)) = measure(∆),
there is no attractor.

In addition to the analysis of Sushko et al. [18] (see Section 2.3), this conservative map
has been studied by Lopesino et al. in [31], who proved that when a > 4, a chaotic saddle
exists in the square

Sq =
{
(x, y) ∈ R2| |x| ≤ R, |y| ≤ R

}
with

R = R(a) =
a

4(a− 2)
. (10)

The conservative case was studied by Li et al. [32], who highlighted that it can generate
initial values-related coexisting infinite orbits. Its moving orbits are extremely dependent
on its initial values, and present periodic, quasi-periodic, and chaotic orbits with different
types and topologies. That means that the emergence of extreme multistability appears in
the area-preserving Lozi map.

As an example, several such orbits are plotted in Figure 7. Li et al. noted that the
coexistence of double or multiple attractors has been found in the Hénon map, the M-
dimensional nonlinear hyperchaotic model [33], and multistage DC/DC switching convert-
ers [34]. Two types of simple 2D hyperchaotic maps with sine trigonometric nonlinearity
and constant controllers were shown to generate initially boosted infinite attractors along a
phase line [35,36]. Recently, a simple two-dimensional Sine map was presented to obtain
infinitely many initially boosted attractors along a phase plane [37]. However, the authors
emphasized that all these newly presented discrete maps only exhibit coexisting attractors
with different positions. It can be remarked that coexisting infinite attractors with different
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topologies and different positions in the discrete maps, such as those in the area-preserving
Lozi Map, have rarely been reported.

Figure 7. Quasi-periodic and chaotic orbits of the area-preserving map (3) in the plane (x, y) when
a = 1.1 and b = −1. Initial values: green (most extended chaotic orbit): x0 = 2.1, y0 = 2.0; red (four-
ellipse quasiperiodic orbit inside the green orbit): x0 = 2.5, y0 = 1.0; blue (32-ellipse quasiperiodic
orbit outside the green orbit): x0 = 0.87, y0 = 4.36; magenta (chaotic orbit ): x0 = 0.78, y0 = 5.05;
red (nine-ellipse quasiperiodic orbit inside the magenta chaotic orbit): x0 = 1.2, y0 = 6.5; light blue
(nine-ellipse quasiperiodic orbit inside the nine red ellipses): x0 = 2.0, y0 = 6.0.

Li and Gu [38] studied the hierarchical structure of a chaotic sea and the existence
condition and delimitation method of island chains for this map. They found the cause of
the formation of two types of island chains associated with the elliptic period. The type of
island chain depends on the rotation number of the linear matrix that defines the composite
mapping (corresponding period).

2.5. Fractional Lozi Map

During the last four decades, the Lozi map has been generalized in many ways (for
a survey, see [2]). Only its generalizations in the recent paradigm of fractional mappings
are reported here, as this is a natural extension of the theory of fractal ordinary differential
equations; in this context, the fractional Lozi map is used for electrical devices called
memristors (see Section 3.3.2).

2.5.1. Classic Fractional Lozi Map

The first published example of fractional map used a constant fractional order ν.
Using the Caputo-like delta difference

c∆ν
a X(t) = ∆−(n−ν)

a ∆nX(t),
= 1

Γ(n−ν) ∑
t−(n−ν)
s=a (t− s− 1)(n−ν−s)∆nX(t),

Khennaoui et al. [39] defined the fractal Lozi map as follows:{ c∆ν
a x(t) = α|x(t− 1 + ν)|+ y(t− 1 + ν) + 1− x(t− 1 + ν),

c∆ν
ay(t) = βx(t− 1 + ν)− y(t− 1 + ν),

(11)

for 0 < ν ≤ 1 and t ∈ Na+1−ν = {a + 1− ν, a + 2− ν, . . .}. In this example the fractional
order of the two fractional differences is identical. This system is commonly referred to as a
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commensurate system. The following equivalent discrete integral equation of such a map
can be obtained: x(t) = x(a) + 1

Γ(ν) ∑t−ν
s=a+1(t− s− 1)(ν−1)[−α|x(t− 1 + ν)|+ y(t− 1 + ν) + 1− x(t− 1 + ν)],

y(t) = y(a) + 1
Γ(ν) ∑t−ν

s=a−ν(t− s− 1)(ν−1)[βx(t− 1 + ν)− y(t− 1 + ν)],
(12)

where (t−s−1)(ν−1)

Γ(ν) is the discrete kernel function

(t− s− 1)(ν−1)

Γ(ν)
=

Γ(t− s)
Γ(ν)Γ(t− s− ν + 1)

and a = 0 yields the numerical formula x(n) = x(0) + 1
Γ(ν) ∑n

j=1
Γ(n−j+ν)
Γ(n−j+1) [−α|x(j− 1)|+ y(j− 1) + 1− x(j− 1)],

y(n) = y(0) + 1
Γ(ν) ∑n

j=1
Γ(n−j+ν)
Γ(n−j+1) [βx(j− 1)− y(j− 1)].

(13)

Extended numerical simulations of this fractional map have shown that the value of
the fractional order ν modifies the general shape of the bifurcation diagram (compared
to the non-fractional map) as well as the length of the chaotic interval. If ν = 0.98, the
bifurcation diagram appears similar the corresponding integer diagram, with the exception
of a small widening in the interval where chaos is observed. For smaller values of ν, when
0 ≤ α ≤ 0.5 the orbit no longer goes to a fixed point, unlike the non-fractional map. In
fact, as n increases it can be observed that the trajectory becomes unbounded. A major
difference between the bifurcation diagram of the integer and fractional maps concerns the
interval over which chaos is observed, which becomes slightly smaller as ν decreases.

Ibrahim and Baleanu [40] used linear interpolation of quadratic and absolute value
functions to define and study a combined Hénon–Lozi fractional map.

2.5.2. Variable Fractional Lozi Map

Several authors, including Al-Saidi et al. [41], have extended the definition of a
fractional map to the case where the order of derivation is variable. To this end, they
considered the function ζ(ν) instead of ν in Section 2.5.1:

c∆ζ(ν)
a X(t) = ∆−(n−ζ(ν))

a ∆nX(t),
= 1

Γ(n−ζ(ν)) ∑
t−(n−ζ(ν))
s=a (t− s− 1)(n−ζ(ν)−s)∆nX(t)

Hence, the variable fractional Lozi map (VFLM) is defined as{
c∆ζ(ν)

a x(t) = α|x(t− 1 + ζ(ν))|+ y(t− 1 + ζ(ν)) + 1− x(t− 1 + ζ(ν)),
c∆ζ(ν)

a y(t) = βx(t− 1 + ζ(ν))− y(t− 1 + ζ(ν)),
(14)

and for numerical values, when a = 0 we obtain x(n) = x(0) + 1
Γ(ζ(ν)) ∑n

j=1
Γ(n−j+ζ(ν))

Γ(n−j+1) [−α|x(j− 1)|+ y(j− 1) + 1− x(j− 1)],

y(n) = y(0) + 1
Γ(ζ(ν)) ∑n

j=1
Γ(n−j+ζ(ν))

Γ(n−j+1) [βx(j− 1)− y(j− 1)].
(15)

Al-Saidi et al. studied the partial dynamics of such VFLMs. Additionally, they looked
into the prerequisites that the variable fractional dynamic systems must meet in order to be
stable and asymptotically stable. To obtain stable and asymptotically stable zero solutions,
they imposed several essential requirements on the VFLM. To stabilize the system, they
suggested combining these maps with control rules.
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2.5.3. Complex Fractional Map

Other authors, such as Joshi et al. [42], have considered the definition of a frac-
tional map (13) for the case where the order of derivation ν is a complex number with
0 < Re(ν) < 1. They used L1 to denote the model defined by (13) and L2 to denote the one
defined by

x(n) = x(0) +
1

Γ(ν)

n

∑
j=1

Γ(n− j + ν)

Γ(n− j + 1)
[−α|x(j− 1)|+ x(j− 1) + 1− bx(j− 2)]. (16)

To systematically investigate the impact of complex order on fractional maps, they set
ν = ν0eirπ/2 with 0 < ν0 < 1, which reduces to the real fractional order for r = 0. They
studied the bifurcation diagram numerically, comparing it to the bifurcation diagram of the
Hénon map.

In the case of the Hénon map, they did not observe chaos for r 6= 0, indicating that
the chaotic attractor is destroyed when complex order was introduced. They checked
their results using a number of different initial conditions, finding that the bifurcation
diagram does not change, which highlights that multistability is not very pronounced for
the fractional order.

They found, however, that the situation is different for the Lozi map. In this case, the
chaos does not disappear. They computed the bifurcation diagrams of the Lozi map for
ν0 = 0.8 and r = 0, 0.01, 0.1, 0.5 for model L1.

The range of variable values indicates that there are parameter zones that are chaotic,
or at least periodic with a very large period. They performed other tests as well, such as
finding the largest Lyapunov exponent for models L1 and L2 to confirm the presence of
chaos (the divergence of trajectories is exponential in the L1 formulation, and the calculation
of the Lyapunov exponent is justified). They found that the largest exponents are 0.264 for
model L1 and 0.326 for model L2 for the parameters mentioned above. These results confirm
that the Lozi map shows chaos for the difference equation of the complex fractional order.

Moreover, they noted that extremely strange bifurcations are observed in model L1,
showing bifurcation diagrams for ν = 0.4 + 0.3i and ν = 0.4 + 0.5i (see Figure 7a,b of [42])
which clearly indicate the possibility of very large periods and a rich bifurcation structure
that is not generally seen in integer-order systems.

In addition, they noted that the system has memory; the complex fractional ordered Lozi
map shows multistability, and the asymptotic attractor depends on the initial conditions.

Finally, they studied control (see Section 5.2.1) and synchronization (see Section 7.1.6)
for this map.

3. The Use of the Lozi Map in Electrical Devices, Memristors, and Computers

The first paradigm change in the study of the Lozi map came in 1987, nine years after
the initial publication. Instead of focusing on the theoretical study of its mathematical
properties or on finding generalizations, electrical engineers used it to build new devices.
Subsequently and continuing up to the present day, this map has been continuously
involved in the field of electronics, electrical devices, multiple access communications,
memristors, and computer software.

3.1. Chaos from Switched-Capacitor Circuits

Prior to 1990, computers were not as efficient as they are today, and many experi-
menters used analog electrical systems to explore the behavior of chaotic maps. In 1987,
Rodriguez-Vasquez et al. [43] presented a special-purpose analog computer made of
switched capacitor circuits for analyzing chaos and bifurcation phenomena in nonlinear
discrete dynamical systems modeled by discrete maps. They published results for four
maps: the logistic map, a piece-wise linear map

xn+1 = V − (|xn| − 0.4)[1 + sgn(|xn| − 0.4)], (17)
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where x ∈ [−4, 4] for 0 ≤ V ≤ 4, the Hénon map (2), and the Lozi map (3) in the form{
xn+1 = 3− 1.8|xn|+ yn,
yn+1 = 0.25xn.

(18)

For (18), they built a rather complicated circuit realization (see Figure 25 of [43])
and compared the attractor measured from this circuit with the corresponding numerical
simulation, finding good agreement between them. Even if this example is not, strictly
speaking, an application of the Lozi map for electrical purposes, it constitutes one of the first
examples of solid realization. The same year, Matsumoto [44] considered a generalization
of this map (similar to, though less general, than the one studied by Glendinning and
Simpson [19]) and built an electric circuit to study its attractors.

3.2. Multiple Access Communication Based on Control of Special Chaotic Trajectories

In 2000, Dmitriev et al. [45] discussed the principle of multiple access in satellite
communication systems or cellular telephony based on the fine structure of chaotic attrac-
tors and using control of special chaotic trajectories. They demonstrated the experimental
verification of the proposed approach for asynchronous packet data transmission. In their
approach, they considered that a chaotic attractor can be treated as a number of countable
sets of special trajectories consisting of unstable periodic orbits (UPO) and transitions
between these orbits. The instability of the periodic orbits and transient trajectories be-
tween them gives rise to irregular chaotic behavior. They used the set of the unstable
“skeleton” periodic trajectories, constituting the structure of the strange attractor (or a part
of this set), as a “reservoir” of potential codes for multi-user communication systems. They
observed that the multitude of codes from a certain “reservoir” for communications is
practically infinite, i.e., the number of users that can be provided with individual code sets
is unlimited.

The initial information carrier (in the absence of the transmitted message) is the chaotic
oscillations produced by the dynamic system. The “user” codes are the fragments of the
entire complex motion; thus, each user’s “own” code does not disturb the system behavior,
and alternating the “owned” code for a certain user and others’ orbits does not change the
structure of the total signal in the channel. The signal in the channel is the “information
for everybody”, containing pieces of chaotic trajectory, “owned” unstable cycles (orbits)
and codes belonging to “others”. This means that the proposed method for the transmitted
message formation additionally has the useful property of confidentiality. As both the
position and duration of the code packages in the channel can be arbitrary, a sequential
asynchronous stream of cycle-codes is realized.

As an example of the realization of their method, they considered twenty period-
16 (UPO) of the Lozi map (3) for a = 1.7 and b = 0.5. They displayed the switching
between them in the Figure 2 of [45] and showed from this diagram that the forming of
all successive cycles (repeating ten times) is practically instantaneous. Improving on their
initial method, they remarked that unstable periodic orbits can be utilized for encoding the
entire transmitted information as well as to attribute it to this or that group of users, i.e.,
playing the role of “chaotic markers”. The idea of using the system of unstable periodic
orbits as markers was applied to the problem of asynchronous packet transmission of data
from several users through a single common communication channel.

They concluded that the generation and control of UPO may be realized in the rela-
tively high-frequency bands provided by modern digital methods.

They later carried out a similar study with the Lozi map (3) for a = 1.4 and b = 0.3 in [46].

3.3. Memristors

In 1971, L.O. Chua predicted the existence of a missing fourth passive circuit element
in addition to the three classical ones (resistors, inductors, and capacitor) [47]. He called
these new elements ‘memristors’, referring to a resistor with memory. Memristors are
characterized by a nonlinear constitutive relationship between the charge q and flux ϕ.
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A physical device was not reported until 2008, when a physical model of a two-terminal hp
device behaving as a memristor was announced [48]. This sparked intense research interest,
with thousands of papers being published to date. A generalized version of Ohm’s law for
theorizing about such devices was published ten years ago [49].

3.3.1. Memristor-Based Lozi Map with Hidden Hyperchaos

Nowadays, the discrete memristor model is a well known research hotspot. Many
researchers have devoted themselves to the analysis of chaotic phenomena in discrete
memristors. Recently, hidden attractors have been discovered in discrete memristor-based
maps [50]. Wang et al. [51] included a discrete-time memristor to create a memristive
Lozi map. This new 3D memristor-based Lozi map was established by coupling a discrete
memristor to the original 2D Lozi map (3):

xn+1 = 1− a|xn|+ yn,
yn+1 = bxn + kynsin(zn),
zn+1 = yn + zn,

(19)

where k is the real-valued control parameter coupling gain between the discrete-time
memristor and the Lozi map.

Because there are no fixed points and hyperchaos can emerge, the memristor-based
Lozi map is a hidden hyperchaotic map.

For certain specific control parameters, the 3D memristor-based Lozi map can show
heterogeneous and homogeneous hidden multistability. It should be noted that heteroge-
neous hidden multistability implies the coexisting behavior of multiple hidden attractors
of different stability types, while homogeneous hidden multistability indicates the coex-
isting behavior of multiple hidden attractors of the same stability type that only differ in
dynamic intervals. In addition to the coexistence of these heterogeneous hidden attractors,
the memristor-based Lozi map is very likely to produce the coexistence of homogeneous
hidden hyperchaotic attractors, i.e., homogeneous hidden multistability. Therefore, the
homogeneous hidden hyperchaotic attractors from the 3D memristor-based Lozi map can
be robustly controlled by the memristor’s initial conditions.

Additionally, Wang et al. implemented this memristor in a digital circuit based on a
high-performance microcontroller. They physically obtained an image of the hyperchaotic
hidden attractors using a digital oscilloscope. Eventually, a digital platform was exploited
and its experimental phase portraits were obtained to confirm the numerical portraits.

3.3.2. 3D Fractional Memristor-Based Lozi Map

Another method to obtain a memristor-based Lozi map is to consider the fractional
counterpart of this map (see Section 2.5). Khennaoui et al. [52] used the Caputo-like delta
difference to obtain the fractional map corresponding to (19):

∆α1 xn = 1− a|xn|+ yn − xn,
∆α2 yn = bxn + kynsin(zn)− yn,
∆α3 zn = yn,

(20)

in which ∆αi (i = 1, 2, 3) stands for the Grunwald–Letnikov difference operator.
Obviously, when α1 = α2 = α3 = 1, the fractional map (20) corresponds to the

first-order map (19).
This map exhibits hidden dynamic evolutions and multistability. The description

of the fractional discrete memristor-based Lozi map was investigated according to its
Lyapunov exponents, phase portraits, and bifurcation diagrams, demonstrating several
kind of coexisting multiple hidden attractor behaviours that can be generated by the
proposed model.
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Using the classical discretization scheme, the iterative equation of the fractional order
memristor-based Lozi map with no equilibrium point (20) is provided by

xn+1 = 1− a|xn|+ yn + (α1 − 1)xn −∑n
p1=1 βp1 xn−p1 ,

yn+1 = bxn + kynsin(zn) + (α2 − 1)yn −∑n
p2=1 βp2 yn−p2 ,

zn+1 = yn + α3zn −∑n
p3=1 βp3 zn−p3 ,

(21)

where βp1 , βp2 , and βp3 are the binomial coefficients:

βpj=0 = −α1, βpj =

(
1−

1 + αj

p + 1

)
βpj−1 , j = 1, 2, 3. (22)

It can be shown that the value of βp decreases when the number of iterations p
increases, regardless of the value of the fractional order. Thus, the easiest way to numerically
implement the iteration Formula (21) is to use a finite truncation of the memory length M
to approximate the fractional discrete memristor map (20). The short memory model M is
provided by 

xn+1 = 1− a|xn|+ yn + (α1 − 1)xn −∑M
p1=1 βp1 xn−p1 ,

yn+1 = bxn + kynsin(zn) + (α2 − 1)yn −∑M
p2=1 βp2 yn−p2 ,

zn+1 = yn + α3zn −∑M
p3=1 βp3 zn−p3 .

(23)

The authors used a hardware platform based on a microcontroller (Arduino Uno
board) to realize such a fractional memristive Lozi map for which the initial conditions
can be changed easily. They showed that this map exhibits the initial condition-dependent
dynamical phenomena of multistability and confirmed this through numerical simulations.

3.4. Chaotic Interleaver for Turbo Codes

In [53], Sahnoune and Berkani presented a new method to design a deterministic inter-
leaver with random-like behavior based on the Lozi map. The interleaver is a fundamental
part of turbo code design and plays a critical role in the performance of turbo coding. The
basic role of the interleaver is to construct a random code and spread out burst errors. The
interleaver provides “scrambled” information data to the second component encoder for
constructing random codes, and decorrelates the inputs to the two component decoders;
hence, the convergence of the iterative decoding algorithm improves.

An interleaver is a vector π, where π(n) is the position in the information sequence that
is interleaved to position n. Most proposed deterministic interleavers are linear interleavers
with a designed index function provided by

π(n) = kn + u modN, 0 ≤ n ≤ N, (24)

where k and n are fixed integers and k is prime relative to N.
The chaotic interleaver based on the Lozi map (with a = 1.7 and b = 0.5) is defined

as follows:

• Step 1: the integer sequence {n}N
n=1 ∈ Z is mapped to a real number sequence

{x(n)}N
n=1 ∈ R using (3).

• Step 2: {x(n)}N
n=1 is mapped to another integer sequence {s(n)}N

n=1 ∈ Z by designing
s(n) as the position of index of x(n) in the sort ascending of {x(n)}N

n=1.

• Step 3: the chaotic interleaver indexes are provided by π
(
{s(n)}N

n=1

)
= {n}N

n=1.

Sahnoune and Berkani concluded that, compared with a random interleaver and
dithered Golden interleaver, a chaotic interleaver has low latency, low complexity of
implementation, and improves the security of the encoded data.
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Urrea et al. [54] compared the performances of a chaotic interleaver with short block
lengths to a new chaotic interleaver based on the Duffing map, which showed slightly
better performance.

4. Applications in Optimization

Most engineering problems can be defined as optimization problems, e.g., finding an
optimal trajectory for a robot arm, the optimal thickness of steel in pressure vessels, the
optimal set of parameters for controllers, optimal relations or fuzzy sets in fuzzy models,
etc. Solutions to such problems are usually difficult to find, and their parameters usually
include variables of different types, such as floating point or integer variables.

Applications of the Lozi map in the now-flourishing field of optimization took longer
to appear than applications in electrical devices. The main reason for this is due to a
paradigm shift in optimization algorithms; instead of using deterministic algorithms such
as gradient or steepest descent methods, which are not efficient in high-dimensional
problem optimization involving hundred or thousand of variables, heuristic algorithms
based on an imitation of Darwin’s theory of the evolution of species were introduced a few
decades ago. Such algorithms require easy access to random or chaotic numbers. This is
why interest has only recently focused on chaotic attractors.

Thirty years after the publication of the Lozi map, Araujo and Coelho used it as a core
function for Particle Swarm Optimization (PSO) algorithms [55]. Their article was accepted
on October 2007. Optimization algorithms based on chaos theory are methodologies
for searching optimal solutions that differ from any of the existing traditional stochastic
optimization techniques. Due to the wandering of chaos, it can carry out overall searches
in the solution space at higher velocities compared to stochastic ergodic searches, which
rely on probability-based computation. This remark appeared in the pioneering work
of Caponetto et al. [56], who, four years before Araujo and Coelho, found that chaotic
sequences improved the performance of evolutionary algorithms.

In fact, there are many kinds of genetic and evolutionary algorithms used for opti-
mization; see [57] for a survey. In addition to PSO, Differential Evolution (DE) is a main
branch of research into metaheuristic algorithms, and a few researchers have used the Lozi
map [58]. Among the less conventional approaches for enhancing the performance of meta-
heuristics is the incorporation of chaos as a source of stochasticity. As a key operation in
metaheuristics, stochasticity is typically used for three basic operators: selection, crossover,
and mutation. It is possible to implement chaotic dynamics in any of these.

It should be noted that three years before Araujo and Coelho’s landmark publication,
Zelinka et al. proposed a slightly different algorithm called SOMA (Self-Organizing Migrat-
ing Algorithm) using chaotic attractors, which can be classified among the metaheuristic
algorithms [59].

Finally, the Lozi map is widely used in non-evolutionary chaotic optimization al-
gorithms (see Section 4.5) such as the Improved Lozi map-based Chaotic Optimization
Algorithm (ILCOA).

In this section, we explain how this chaotic map is used in these algorithms.

4.1. Particle Swarm Optimization (PSO)

Particle Swarm Optimization is a population-based evolutionary algorithm inspired
by simulations of social behaviour instead of the survival of the fittest individual. PSO
is randomly initialized with a population of individuals, which correspond to potential
solutions. Unlike the most evolutionary algorithms, each particle in PSO is associated
with a randomized velocity that “flows” through the problem space. In PSO, a uniform
probability distribution is used to generate random numbers. However, the use of other
probability distributions may provide improved fine-tuning or even allow the algorithm to
escape from local optima, such as the distributions presented in [60]. In the meantime, the
use of chaotic sequences has been proposed to generate random numbers for updating the
velocity equation.
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4.1.1. Thermal Vacuum System

In [55], the PSO approach was intertwined with Lozi map chaotic sequences to
obtain a Takagi–Sugeno (TS) fuzzy model for representing dynamical behaviors. This
proposed chaotic PSO (CPSO) approach was employed to optimize the premises in the
IF–THEN rules of the TS fuzzy model, and were utilized in an experimental application,
specifically, a thermal vacuum system employed for space environmental emulation and
satellite qualification.

The essential idea of this model is to compute a global nonlinear model by partitioning
the input space into fuzzy areas and approximating each area through a linear model.

The TS models consist of linguistic IF–THEN rules that can be represented by the
following general form:{

R(j) : IF (z1 is Aj
1) AND · · · AND (zm is Am

j ),

THEN yj = bj
0 + bj

1xj
1 + bj

qj x
j
qj .

(25)

The IF statements define the premise part, while the THEN functions constitute the
subsequent part of the fuzzy system; here, Aj

i represents the labels of the fuzzy sets and
z = [z1, z2, . . . , zm]

T with i = 1, . . . , m is the input vector of premise p.
PSO is an optimization tool based on a population in which the position of each

member particle is a potential solution to an analyzed problem. Each particle is associated
with a randomized velocity that moves throughout the problem space. The coordinates of
each particle are tracked in the problem space, and are associated with the best solution
(fitness) achieved thus far. This value is called pbest. Another ‘best’ value that is tracked
by the global version of the particle swarm optimizer is the overall best value. Its location,
called gbest, can be obtained by any particle in the population. The past best position and
the entire best overall position of the group are employed to minimize (maximize) the
solution. At each time step, the PSO algorithm changes the velocity (acceleration) of each
particle moving toward its pbest and gbest locations. Acceleration is weighted by random
terms, with separate random numbers being generated for acceleration toward the pbest
and gbest locations (see Figure 8).
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Figure 8. Geometric core of Particle Swarm Optimization (PSO) algorithm.

Araujo and Coelho defined the following three CPSO approaches based on the Lozi
map, considering that the velocity equation of each particle is updated at each step t by

vi(t + 1) = K
[
vi(t) + c1udi(t)(pi(t)− xi(t)) + c2udi(t)(pg(t)− xi(t))

]
. (26)
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Approach 1 (CPSO1): the parameter udi(t) is modified to

vi(t + 1) = K
[
vi(t) + c1Yi(t)(pi(t)− xi(t)) + c2udi(t)(pg(t)− xi(t))

]
. (27)

Approach 2 (CPSO2): the parameter udi(t) is modified to

vi(t + 1) = K
[
vi(t) + c1udi(t)(pi(t)− xi(t)) + c2Yi(t)(pg(t)− xi(t))

]
. (28)

Approach 3 (CPSO3): the parameter udi(t) is modified to

vi(t + 1) = K
[
vi(t) + c1Yi(t)(pi(t)− xi(t)) + c2Y

′
i(t)(pg(t)− xi(t))

]
, (29)

where Yi(t) are obtained from the chaotic attractor (3) with the parameter values a = 1.7
and b = 0.5 by scaling the variable y ∈ [−0.6418, 0.6716] within 0 and 1 at each iteration,
as follows:

Yi(t) =
yi(t)− σ

δ− σ
, (30)

with [σ, δ] = (−0.6418, 0.6716). The Y
′
i(t) are obtained in the same way as Yi(t), though

with different initial values in (3). The constriction coefficient K is usually set to K = 0.729.
After their launch and during their operational life, satellites are exposed to diffi-

cult physical conditions due to sunshine, albedo, earth radiation, and earthshine infrared
in alternative shadow/eclipse conditions. In order to reproduce these challenging envi-
ronmental conditions that satellites experience during their operational life as closely as
possible, it is possible to use thermal vacuum chambers that consist of a chamber, a ‘shroud’
(set of pipes) which heats or cools off the environment, and auxiliary equipment. In the
thermal vacuum system used by the Brazilian National Institute for Space Research (INPE),
the original controller was designed to control the temperature on the shroud [61].

The three proposed approaches shown here have been tested thoroughly. The authors
succeeded in eliciting a TS fuzzy model for this nonlinear and time-delay application, with
the best algorithm obtained using COSP3.

4.1.2. Pid Controller Using PSO

A few years after the initial use of chaotic attractor properties in PSO by Araujo and
Coelho, a team led by Ivan Zelinka from the Technical University of Ostrava (VSB-TU,
Faculty of Electrical Engineering and Computer Sciences) extensively explored a quasi-
similar method in a series of articles. They used a slightly different velocity equation,
shown in Equation (26), introducing an inertia weight modification to the PSO strategy
based on two control parameters, wstart and wend:

vi(t + 1) = w · vi(t) + c1 · Rand · (pBest− xi(t)) + c2 · Rand · (gBest− xi(t)) (31)

with (32)

w = wstart −
(wstart − wend) · t

n
(32)

where t stands for the current generation number and n for the total number of generations.
Within the Chaos PSO algorithm, the basic inbuilt computer random generator was

replaced by a chaotic generator (in this case, using the Lozi map).
First, Pluhacek et al. [62] considered a Partial Integral Derivative (PID) controller for

a Direct Current (DC) motor system in order to obtain optimal settings. A DC motor is
any of a class of rotary electrical motors that converts direct current electrical energy into
mechanical energy. Proportional Integral Derivative (PID) control is the most common
control algorithm used by industry, and has been universally accepted in industrial control.

The popularity of PID controllers can be attributed to their robust performance in a
wide range of operating conditions and their functional simplicity, which allows engineers
to operate them in a simple and straightforward manner.
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All PID controllers contain three unique basic coefficients, namely, proportional,
integral, and derivative, which are varied to achieve optimal response (see [63] for a
detailed description). A simplified form in the Laplace domain is provided by

G(s) = K
(

1 +
1

sTi
+ sTd

)
, (33)

where K is the controller gain, Ti is the adjustable integral time parameter, and Td is the
rate time. For suitable analytical calculations, the following form is often chosen:

G(s) = kp +
ki
s
+ kds, (34)

where the parameters are related to the standard form (33) through kp = K, ki = K/Ti, and
kd = K/Td.

The transfer function for the DC motor considered in [62] is provided by

G(s) =
0.9

0.00105s3 + 0.2104s2 + 0.8913s
. (35)

The optimization process involving the PSO algorithm was applied to minimize errors
of the output transfer function, which can indicate the quality of regulation of the controller.
Four criteria were considered:

- The integral of the time multiplied by absolute error (ITAE):

IITAE =
∫ T

0
t|e(t)|dt, (36)

where e(t) is the control error (see [63]).
- The integral of the absolute magnitude of the error (IAE):

IIAE =
∫ T

0
|e(t)| dt. (37)

- The integral of the square of the error (ISE):

IISE =
∫ T

0
(e(t))2 dt. (38)

- The mean of the square of the error (MSE):

IMSE =
1
n

n

∑
i=1

(e(t))2. (39)

The presented data and graphical simulation results of [62] lend weight to the argu-
ment that the implementation of a chaotic Lozi map into the PSO algorithm as a random
number generator can significantly improve its performance over other non-heuristic
and heuristic methods when solving the problem of optimal PID controller design for
DC motor systems.

In [64], the same authors addressed a fourth-order system provided by

G(s) =
1

s4 + 6s3 + 11s2 + 6s
. (40)

For statistical reasons, in both articles the optimization for each criterion was repeated
thirty times. The results for the fourth-order system showed the same improvement of the
Lozi map-based PSO method versus other non-heuristic and heuristic methods.
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4.1.3. Assessment of Enhanced PSO Algorithm with Lozi Chaotic Map

In order to better evaluate the improvement conferred by the use of chaos in PSO
algorithms, Pluhacek et al. [65], investigated the effect of tuning the control parameters
a and b of (3) (recall that in all three above examples the parameter values were fixed to
a = 1.7 and b = 0.5). Three different benchmark functions from the IEEE’s CEC 2013
benchmark suite [66] were selected for the tuning experiments. The controlling parameters
of the Lozi map were set as follows:

a : 1.3− 1.7, step 0.05
b : 0.1− 0.6, step 0.05

The benchmark functions were evaluated for dimension = 10, population size = 40,
number of iterations = 2500, wstart = 0.9, and wend = 0.4 according to the demands in [66].
The PSO algorithm with an adequately set Chaotic Pseudo-Random Number Generator
(CPRNG) was run 100 times, and the mean results for each function and Lozi map setting
were analyzed. The presented results support the claim that different settings of the
chaotic map lead to significantly different CPRNG attributes, and have a great effect on the
subsequent performance of the chaotic PSO algorithm. It seems that the most promising
values for the parameter are a ∈ [1.4–1.5] and b ∈ [0.35–0.45].

In [67,68], the authors compared the classical version of PSO with inertia weight
(labelled PSO weight), PSO with Lozi map (PSO Lozi) with the sole classical value of the
parameters a = 1.7, b = 0.5, and Differential Evolution (DE) with the “DE/Rand/1/Bin”
strategy (see the next Section), for which they used four different benchmark functions in
different dimensions:

- The first De Jong function:

f (x) =
dim

∑
i=1

x2
i (41)

- The second De Jong function:

f (x) =
dim−1

∑
i=1

100
(

x2
i − xi+1

)2
+ (1− xi)

2 (42)

- The Rastrigin function:

f (x) = 10dim
dim

∑
i=1

x2
i − 10cos(2πxi) (43)

- The Schwefel function:

f (x) =
dim

∑
i=1
−xisin(

√
|xi|) (44)

The basic PSO control parameters were set based on previous experiments and the
literature, as follows: population size 30, iterations/generations 10 * the dimension, and
dimensions of 2, 5, 10, 20, and 40.

For statistical reasons, optimization for each dimension value was repeated thirty times.
The numerical results with the first De Jong function highlighted that implementation

of the chaotic number generator improved the performance of the PSO algorithm. The
results were better or comparable with those of differential evolution. In the case of higher
dimensions (20 and 40), DE provided better results, and the differences between the results
of PSO Weight and PSO Lozi were less significant.

- For the second De Jong function, PSO Lozi obtained the best results in almost all tests
performed with this benchmark function. The performance of both PSO algorithms
was better than that of DE.
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- In the case of Rastrigin’s benchmark function, there was no significant improvement
in PSO performance; however, both PSO algorithms were significantly worse than DE
for dim = 40.

- The results for Schwefel’s function showed an increasing difference between the
median values for PSO Weight and PSO Lozi, together with increasing dimension
in favour of the PSO enhanced with the Lozi map. As in the previous case, both
algorithms were surpassed by DE.

Pluhacek et al. deepened their previous analysis in [69], enlarging the tested popula-
tion size from 30 to 50, 75, 100, 150, 200, 300, and 400. For smaller population sizes, they
found similar results for the first and second De Jong functions as well as for the Rastrigin
and Schwefel functions (for an example, see the case dim = 40 for the Second De Jong
function in Table 1).

Table 1. Results for the second De Jong function for dim = 40.

Result for dim = 40 PSO Weight PSO Lozi DE

The worst result 1.03 ×100 1.33× 100 1.34× 102

The best result 7.93× 10−2 2.25 ×10-2 5.02× 101

Median 3.74× 10−1 2.19 ×10-1 7.77× 101

However, they found that increasing the size of the population led to significantly
improved performance of both PSO algorithms with inertia weight (Table 2).

Table 2. Mean value for thirty runs with Schwefel’s function, dim = 20, and generations = 200.

Pop. number 30 50 75 100 150 200 300 400

PSO Weight −3697.6 −3873.6 −4141.0 −4255.8 −4329.6 −4866.4 −5316.4 −5377.7
PSO Lozi −4340.1 −4560.4 −5032.8 −5241.8 −5802.0 −5998.1 −6174.6 −6225.6
DE −6100.9 −5737.7 −5649.1 −5500.0 −5635.6 −5651.5 −5673.3 −5651.23

From this investigation, they concluded that the population size has very significant
influence on both algorithms. With increasing population size, DE was outperformed by
PSO even though both algorithms performed the same amount of CF evaluations.

Widening the scope of their investigations, in [70] Zelinka’s team explored two other
chaotic maps: first, the dissipative standard map [71]{

xn+1 = xn+1 + yn+1 (mod 2π),
yn+1 = byn + ksinxn (mod 2π),

(45)

with b = 0.6 and k = 8.8, and second, the Arnold’s Cat map [72]{
xn+1 = xn + yn (mod 1),
yn+1 = xn + kyn (mod 1),

(46)

with k = 0.1. They compared these to the Lozi map with a = 1.7 and b = 0.5 using the
same test function (41)–(44).

After a very extensive sequence of tests, they concluded that, first, the number genera-
tor based on the Arnold’s Cat chaotic map does not seem to have any significant effect on
the behavior or performance of the PSO algorithm with linear decreasing inertia weight.

Second, the Lozi map used as the number generator seemed to have a significant posi-
tive effect on the speed of convergence of the algorithm. This may support the idea of using
this modification in real-time optimization tasks on low-dimensional problems, especially
because the risk of premature convergence and stagnation in higher dimensions seems to
be a significant drawback of the PSO Lozi version. Finally, the PSO with the dissipative
standard map seemed able to avoid premature convergence much better than any other
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version in this study. However, a drawback was its very slow speed of convergence; in
other terms, a higher number of generations were needed to find the optimal value, or at
least a satisfactory solution.

Finally, based on these conclusions, in [73] they found a new way to improve PSO
based on the dissipative standard map and Lozi map by using them sequentially.

4.2. Differential Evolution (DE)

Meta-heuristic optimization methods have seen incredible advancements over the two
last decades. More efficient computational algorithms have enabled solving of complex
problems. One of these modern meta-heuristics is Differential Evolution (DE), an evolu-
tionary computation method which has become widely used in engineering optimization
due to its simple structure, ease of use, fast convergence speed, versatility, and robustness.

The main difference between genetic algorithms and DE is that in genetic algorithms
mutation is the result of small perturbations to the genes of an individual (potential solution)
while in DE mutation is the result of arithmetical combinations of individuals.

4.2.1. Overspeed Protection System of a Gas Turbine

In [58], dos Santos Coehlo considered the reliability–redundancy optimization problem
of an overspeed protection system for a gas turbine. The fundamental idea behind DE
is a scheme whereby it generates the trial parameter vectors. A DE population is subject
to mutation, crossover, and selection operators. At each time step, DE mutates vectors
by adding weighted random vector differentials to these operators. If the cost of the trial
vector is better than that of the target, the target vector is replaced by trial vector in the
next generation.

Among the many different strategies possible for DE, dos Santos Coehlo implemented
the “DE/rand/1/bin” strategy, meaning that the target vector was randomly selected and
only one difference vector was used. The bin acronym indicates that recombination was
controlled by a binomial decision rule. Their strategy consisted of seven steps [58]

Step 1: Choice of the control parameters
Step 2: Initialization of population with M individuals
Step 3: Evaluation of individuals
Step 4: Mutation operation (or differential operation)
Step 5: Recombination operation
Step 6: Selection operation
Step 7: Verification of the stopping criterion

The mutation operation in Step 4 is an operation that adds a vector differential to a
population vector of individuals according to

zi(t + 1) = xi,ri (t) + fm(t)
[
xi,r2(t)− xi,r3(t)

]
, (47)

where i = 1, 2, . . . , M is the individual’s index of population; t is the generation (time),
xi(t) =

[
xi1(t), xi2(t), . . . , xin(t)

]T stands for the i− th individual of a population of real-

valued N-dimensional vectors, zi(t) =
[
zi1(t), zi2(t), . . . , zin(t)

]T stands for the i− th indi-
vidual of a mutant vector, and r1, r2, and r3 are mutually different integers that are different
from the running index i, which is randomly selected with a uniform distribution from the
set {1, 2, . . . , i− 1, i + 1, . . . N}. The mutation factor fm(t) > 0 is a real parameter which
controls the amplification of the difference between two individuals with indexes r2 and r3.

It is well known that DE is particularly sensitive to its control parameters, particularly
the mutation factor fm(t). In this context, due to the ergodic and dynamic properties of the
Lozi map variables, dos Santos Coehlo introduced Lozi map-based DE (LDE), which can be
useful in mutation factor design for escaping from local optima in optimization problems.
The LDE approach was employed to increase the diversity of individuals’ population
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and prevent the premature convergence. The LDE approach is a modification of (47)
provided by

zi(t + 1) = xi,ri (t) + L(t)
[
xi,r2(t)− xi,r3(t)

]
, (48)

where L(t) is the Lozi map (3) normalized following (30) in the range [0.1, 0.9].
In each case study, fifty independent runs were carried out for each of the optimiza-

tion methods involving fifty different initial trial solutions for each optimization method.
Moreover, the DE and LDE approaches were adopted using 2250 cost function evaluations
in each run. Both the DE and the LDE optimization methods were successfully applied to
estimate the parameters of the overspeed protection system of a gas turbine in a reliability–
redundancy optimization problem including discrete and continuous variables. Among
seven variants of each of these methods, three DE variants and LDE five variants succeeded
in finding the best solution for the tested methods. The author concluded that the LDE
strategies have potential to be further applied in constrained optimization problems.

4.2.2. Chemical Reactor Optimization

Senkerik et al. used Differential Evolution in the optimization task of the batch reactor
geometry [74]. The novelty of this approach is that Lozi map was not only used as a
chaotic pseudo-random number generator to drive the mutation process as in [58], it was
used for the crossover process in DE. The obtained results were compared with original
reactor geometry and process parameters adjustment. The statistical analysis of the results
provided by chaos-driven DE was compared with canonical DE strategy.

The authors used a simplified mathematical model of the reactor consisting of two
physical inputs: one for chemical substances Chemical FK (Filter Cake), with parameters
temperature TFK, mass flow rate ṁFK, and specific heat cFK, and one for the cooling medium
of the temperature TVP, mass flow rate ṁV , and specific heat cV . The reactor had one output,
with the cooling medium flowing through the jacket inner space of the reactor (with the
volume related to the mass mVR) and flowing out through the second output, with the
following parameters: mass flow rate mV , temperature TV , and specific heat cV .

There was an initial batch inside the reactor, with the mass parameter mP introduced
at the beginning of the process. The chemical FK was then added to this initial batch,
resulting in a reaction mixture inside the reactor with the following parameters: total mass
m, temperature T, and specific heat cR. In addition, the partially unreacted portions of the
chemical FK were described by the concentration parameter aFK.

This “batch” technique allowed for partial control of the temperature of the reaction
mixture through controlled feeding of the input chemical FK. In general, this reaction is
highly exothermic; thus, the most important parameter is the temperature of the reac-
tion mixture. This temperature must not exceed 100 ◦C because of safety and product
quality requirements. The original design of the reactor was based on standard chemical–
technological methods as part of a proposal involving the physical dimensions of the
reactor and the parameters of the chemical substances. In the paper, these values were
called the original parameters. The main objective of the optimization was to achieve the
processing of large amounts of the chemical FK in a very short time. A system of four
balance equations (49) was used to describe the reactor process, while another Equation (50)
defined the term k:

ṁFK = m′[t],
ṁFK = m[t]a′FK[t] + km[t]aFK[t],
ṁFKcFKTFK + ∆Hrkm[t]aFK[t] = KS(T[t]− TV [t]) + m[t]cRT′[t],
ṁVcV TVP + KS(T[t]− TV [t]) = ṁVcV TV [t] + mVRcV [t]T′V [t],

(49)

k = Ae−
E

RT[t] . (50)
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Similar to dos Santos Coehlo [58], Senkerik et al. implemented the “DE/rand/1/bin”
strategy; for the mutation operation, they used

uj,i,G+1 = xj,r1,G + F ·
(
xj,r2,G − xj,r3,G

)
(51)

to minimize the cost function (CF)

fcost =
t1

∑
t=0
|w− T[t]|+

t1

∑
t=0

aFK[t] + pen.1 + pen.2 (52)

with two penalizations:

pen.1 =

{
0, Max(T[τ]) ≤ 323.15,
50, 000 else,

(53)

for τ ∈ (t2, t3) and

pen.2 =

{
0, Max(T[τ]) ≤ 373.15,
50, 000 else,

(54)

for τ ∈ (0, t3). The time intervals were set as follows: t1 = 15,000 s, t1 = 20,000 s,
t1 = 25,000 s.

The first penalization helps to find solutions in which the temperature of reaction
mixture quickly cools down to its initial state, which shortens the process duration.

The second corresponds to the critical temperature. The best optimization results are
shown in Tables 3 and 4. Their analysis showed that the temperature of the reaction mixture
did not exceed the critical value. The maximum temperature was 373.11 K (99.95 ◦C). The
required temperature w used in the cost function was 370.0 K (96.85 ◦C).

Senkerik et al. concluded that “based on statistical analysis, it is possible to claim that
embedding the chaotic dynamics in the form of a chaotic pseudo-random number generator
into differential evolution algorithm significantly improves the performance of DE.’’

Table 3. Statistical results of all 100 runs of Chaos DE and Canonical DE.

DE Version Avg. CF Median CF Std. Dev. Max CF Min CF

Canonical DE 21,259.0 21,234.1 94.1 21,588.2 21,089.2
Chaos DE Lozi 21,107.6 21,107.4 25.4 21,160.7 21,059.0

Table 4. Average CF values for generation Nos. 50, 100, 150 and 200 from all 100 runs of Chaos DE
and Canonical DE.

Generation No.: 50 100 150 200

Avg. CF for Canonical DE 25,320.1 22,719.9 21,619.8 21,259.0
Avg. CF for Chaos DE Lozi 24,707.1 21,992.1 21,265.2 21,107.6

4.2.3. Evolutionary Chaos Control Optimization

An original study introduced by Zelinka’s team sought to utilize hidden chaotic
dynamics in pseudo-random sequences generated via chaotic map to help the differential
evolution algorithm search for the best controller settings for the same chaotic system.
In [75–77], they considered (55) with the standard parameter values of a = 1.7 and b = 0.5,
and tried to stabilize desired Unstable Periodic Orbits (UPO) using the chaos-driven DE for
tuning the parameters of the Extended Delay Feedback (ETDAS) control method proposed
by Pyragas [78].

La,b

(
X
Y

)
=

(
1− a|X|+ Y,
bX.

)
(55)
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This control method takes the form
xn+1 = 1− a|Xn|+ bYn + Fn,
Fn = K[(1− R)Sn−m − xn],
Sn = xn + RSn−m,

(56)

where K and R are adjustable constants which have to be evolutionary tuned, F is the per-
turbation, S is provided by a delay equation utilizing the previous states of the system, and
m is the period of the m-periodic orbit to be stabilized. The perturbation Fn in Equation (56)
may have an arbitrarily large value, which can cause divergence of the system outside
the output interval of the Lozi map system [−1.4, 1.4]. Therefore, Fn should have a value
between [−Fmax, Fmax].

The suitable Fmax value was obtained from the evolutionary optimization process.
In these articles, two cost function designs, CFSIMPLE and CFUNI , were utilized and

compared. The goal of the first basic CFSIMPLE, which can be used only for the stabilization
of p-1 orbit, was to minimize the area created by the difference between the required state
and the real system output on the whole simulation interval [0, τi]:

CFSIMPLE =
τi

∑
t=0
|TSt − ASt|, (57)

where TSt is the target state and ASt the actual state.
Nevertheless, this simple approach has one prominent disadvantage, which is the

inclusion of the initial chaotic transient behavior of the not-yet-stabilized system in the
cost function value. To avoid this disadvantage, a universal cost function suppressing the
initial chaotic transient behavior was introduced to ensure the stabilization of either the
p-1 orbit (stable state) or the higher periodic orbit while retaining the possibility of adding
penalization rules:

CFUNIVERSAL = pen1 +
τ2

∑
t=τ1

|TSt − ASt|, (58)

where τ1 is the first minimal value of the difference between TS and AS and τ2 indicates
the end of the optimization interval (τ1 + τs), with pen1 = 0 if τi − τ2 ≥ τs and pen1 =
10 ∗ (τi − τ2) if τi − τ2 < τs (i.e., late stabilization).

After hundreds of numerical tests, the researchers on Zelinka’s team concluded that
embedding the chaotic dynamics into the differential evolution algorithm in the form of
a chaotic pseudo-random number generator may help to improve their performance and
robustness. In this way, optimal solutions were obtained securing very fast and precise
stabilization for a convenient cost function surface in the CFSIMPLE case and a very chaotic
and nonlinear cost function surface in the CFUNIVERSAL case.

4.2.4. Comparison of PSO with DE

Having presented the PSO and DE optimization methods, it is natural to compare them.
In [79], Senkerik et al. compared the swarm-based PSO technique to Differential

Evolution on the task described above involving optimal evolutionary tuning of controller
parameters for the stabilization of a Lozi discrete chaotic system. The novelty of this
approach was that the most utilized examples of evolutionary/swarm based algorithms
were compared directly on the highly nonlinear and complex multimodal optimization
and simulation task. The simulations and comparisons were performed for three different
required final behaviors of the chaotic system which were simulated in the following form:

• Case study 1: p-1 UPO, Lozi map as controlled system with CFSIMPLE (57)
• Case study 2: p-2 UPO with the same control
• Case study 3: higher order p-4 UPO with the same control
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Within their research, a total of fifty simulations for each experiments was performed
in the Wolfram Mathematica environment. All experiments used different initializations, i.e.,
a different initial population was generated in each run of DE/PSO.

The parameter settings for DE were population size = 25, F = 0.5, Cr = 0.9, number of
generations = 300, and CF Evaluations (CFE) = 7500.

For PSO, they were population size = 25, c1 = c2 = 2.0, number of iterations = 300,
and CF Evaluations (CFE) = 7500.

All simulations were successful and provided new optimal settings for the ETDAS control
method, securing the fast stabilization of the chaotic system at the required behaviors, which
were p-1 UPO (stable state), p-2 UPO (oscillation between two values), and p-4 UPO.

These results allowed the authors to compare DE and PSO in each case.

• Case Study 1: from the statistical point of view, the performance of both heuristics
was similar. Nevertheless, DE converged towards the optimal solution in only twenty
generations, and all fifty runs provided identical results. The convergence for PSO
was much slower. Therefore, DE is more suitable for online control of nonlinear
chaotic dynamics.

• Case Study 2: as in Case Study 1, the structure asnd simulation outputs showed similar
features, with an even larger difference in favor of the DE algorithm.

• Case Study 3: dealing with the most complex and highly nonlinear dynamics, this case
showed several interesting features. The classical geometrical (vector crossover)-based
evolutionary algorithm was stacked in many suboptimal solutions, with only a small
chance of leaving this area of the solution space. The PSO (swarm-based) algorithm
was statistically better in the searching process, with a lower standard deviation and
range of CF. Even when DE found a lower final CF value, PSO seemed to be a better
and more robust choice for optimization in extremely nonlinear solution spaces due
to its better natural exploration ability.

Senkerik et al. in [76] continued this comparison, using both CFSIMPLE and CFUNIVERSAL:

• Case Study 4: p-1 UPO, Lozi map as controlled system with CFUNIVERSAL (58)
• Case Study 5: p-2 UPO with the same control
• Case Study 6: higher order p-4 UPO with the same control

The authors found that CFUNIVERSAL led to faster and more precise stabilization of
the chaotic system.

4.2.5. Optimal Tuning of Speed Control for a Brushless DC Motor

As a last example involving the DE algorithm, we consider the work of Rodríguez-
Molina et al. [80], who assessed the efficiency of the controller performance in a Brushless
Direct current (BLDC) motor in an uncertain environment. The performance of the BLDC
depends highly on the adaptability of the controller gains. The authors proposed a chaotic
adaptive tuning strategy for controller gains (CATSCG) for speed regulation of BLDC
motors. The CATSCG includes two sequential dynamic optimization stages based on
identification and predictive processes, with a novel chaotic online differential evolution
(CODE) used to provide the controller gain at each predefined time interval.

The CATSCG consisted of a two-stage tuning strategy; the dynamics associated with
the future behavior of the BLDC motor are estimated in the first stage using the experience
gained from the past optimization process. These dynamics are used in the second stage
to find the controller gains that directly impact the closed-loop system responses through
the novel Chaotic Online Differential Evolution (CODE) approach. Furthermore, CODE
includes the Lozi chaotic initial populations in the differential evolution algorithm to
enhance the diversity of candidate solutions in the dynamic environment, which further
improves the quality of the controller gains under the effects of uncertainties.

The proposed chaotic online differential evolution (CODE) is an optimizer based on
the DE/rand/1/bin variant of differential evolution (see Section 4.2.1). It incorporates
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a chaotic initialization and an elitist adaptation mechanism to improve the exploitative
capacity and speed convergence of the original algorithm.

In the case of CODE, the random numbers utilized in the population initialization are
generated by a Lozi chaotic map with a = 1.7 and b = 0.5. This is intended to increase the
initial diversity of solutions at the beginning of each CODE run. Concerning the initial
condition of the Lozi discrete dynamics adopted in the adaptive tuning proposal, it is
established randomly at the very first instant of the control strategy execution (i.e., when
t = 0). After that, the Lozi map dynamics evolve one step forward each time a new chaotic
random number is required (i.e., when it is required to generate a new random variable
while generating each individual from the initial population of CODE).

Rodríguez-Molina et al.highlighted that among the tested optimizers (online dif-
ferential evolution (ODE), online genetic algorithm (OGA), and online particle swarm
optimization (OPSO)) in the adaptive controller tuning, the statistical results evidence that
the use of CODE suitably balances the search capacities of exploration and exploitation of
the algorithm such that the proposed CATSCG maintains the minimum possible motor
velocity error under the effects of disturbances, uncertainties, noise, and reference velocity
changes. They attributed the outstanding performance of CATSCG to the use of the chaotic
initialization based on the Lozi map.

4.3. Self-Organizing Migrating Algorithm (SOMA)

In 2004, Zelinka introduced SOMA (Self-Organizing Migrating Algorithm) [59], a new
class of stochastic optimization algorithms. Evolutionary algorithms work on populations
of candidate solutions that are evolved in generations (i.e., two parents create one new
individual, called the offspring) in which only the best-suited (or fittest) individuals are
likely to survive. Instead, SOMA which can works on a population of individuals, is based
on the self-organizing behavior of groups of individuals in a “social environment”, e.g., a
herd of animals looking for food.

4.3.1. SOMA Philosophy

A group of animals such as wolves or other predators makes for a good example. If
they are looking for food, they usually cooperate and compete such that if one member
of the group is successful (has found food or shelter) then the other animals of the group
change their trajectories towards the most successful member. If a member of this group is
more successful than the previous best one (it has found more food, etc.), then again all
members change their trajectories towards the new successful member. This is repeated
until all members meet around one food source. This principle from the real world is of
course strongly simplified; nonetheless, it can be said that it is the competitive–cooperative
behavior of intelligent agents that allows SOMA to carry out very successful searches.

SOMA can be classified as an evolutionary algorithm, despite the fact that no new
generations of individuals are created during the search based on philosophy of this al-
gorithm. Only the positions of the individuals in the search space are changed during a
generation, which is called a “migration loop”. Individuals are generated by random ac-
cording to what is called the “specimen of the individual” principle. However, it is possible
to classify SOMA as an evolutionary algorithm, as the final result after one migration loop
is equivalent to the result from one generation derived by the classic EA algorithms.

Recently, Zelinka et al. used SOMA [81] for the design of quantum computing circuits
for future quantum computers.

One key point in SOMA is the possibility of avoiding premature convergence by
means of a so-called PRTVector (or Perturbation Vector), which limits the movement of
particles to certain dimensions. Pluhacek et al. [82], considering that there is no conceptual
barrier between DE, PSO, and SOMA, found that it is possible to noticeably improve
the performance of a PSO algorithm driven by a Lozi chaotic map by implementing the
PRTVector mechanism from the SOMA algorithm.
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Through several examples of objective function, such as the Sphere function, Rosen-
brock’s function

f (x) =
D−1

∑
i=1

∣∣∣100(x2
i − x2

i+1)
2 − (1− xi)

2
∣∣∣, (59)

noise function, Rastrigin´s function (43), Schwefel’s function (44), Ackley’s function,

f (x) = −20exp

−0.2

√√√√ 1
D

D

∑
i=1

x2
i

− exp

(
1
D

D

∑
i=1

x2
i cos2πx1

)
+ 20 + e, (60)

etc., they highlighted that it is possible to find better solutions even faster than with the
original design of PSO driven by Lozi map.

4.3.2. Performance Comparison of PID Controller Using DE and SOMA Versus PSO

The comparison of PSO performance with DE (see Section 4.2.4) was extended to
SOMA by Davendra et al. [63] for the problem of a PID controller (see Section 4.1.2) using
three transfer functions:

• A third-order system

G(s) =
0.1

s(3s + 1)(0.8s + 1)
, (61)

• A fourth-order system comparable with the Ball and Hoop system (40),
• A third-order system for an electric DC Motor (35).

For all these problems, four unique optimization specifications (IAE (37), ISE (38),
ITAE (36), and MSE (39)) were utilized. The obtained values were then used to calculate
the following three performance indices:

• Rise time: the time it takes for the process output to achieve the new desired value.
One-third of the dominant process time constant is typical.

• Settling time: the time it takes for the process output to die to between, say, ±5% of
the setpoint.

• Peak overshoot: the magnitude by which the controlled “variable swings” past the
setpoint ±5%–10% overshoot is normally acceptable for most loops.

The Lozi map was selected as the chaotic map of choice due to its superior perfor-
mance in previous research [83], in which additional comparisons for PID controllers using
DE and PSO with the Lozi map can be found. The results obtained by chaos-driven DE and
SOMA were compared with the values obtained using the Ziegler–Nichols method [84]
and other published heuristics. For all the attempted problems, DE and SOMA performed
better than the Ziegler–Nichols method. In the ball and hoop system (40), DE and SOMA
performed better than the Genetic Algorithm (GA), while in the electric DC motor problem
(35) they obtained better overshoot and settling times compared to other heuristics (GA,
PSO, Continuous Cycling [85], and Evolutionary Programming [86]). The authors found
that DE and SOMA both achieved consistently better results.

4.4. Other Genetic and Evolutionary Algorithms

In addition to PSO, DE, and SOMA there are a large number of other genetic and
evolutionary optimization algorithms [57]. Among these, many use the Lozi map as a
chaotic pseudo-random number generator. In this section, we describe several of these (for
the tribes optimization approach, see Section 7.1.5).

4.4.1. Ant Lion Approach

The Ant Lion Optimizer (ALO) is a nature-inspired stochastic metaheuristic algorithm
that mimics the hunting behavior of ant lions in nature. It uses the steps of hunting prey
(such as a random walk of ants), building traps, entrapment of ants, catching prey, and
rebuilding traps. This algorithm was proposed by Mirjalili [87] and adapted by Coelho
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et al. [88], who based it on the Lozi Map within the scope of Multiobjective Transformer
Design Optimization.

Ant lions, or doodlebugs, belong to the Myrmeleontidae family and Neuroptera order
(net-winged insects). The lifecycle of antlions includes two main phases: larvae and adult.
A natural total lifespan can be up to three years, which mostly occurs in larvae (only
3–5 weeks for adulthood). Antlions undergo metamorphosis in a cocoon to become adults.
They mostly hunt as larvae, with the adulthood period used for reproduction [87]. Their
name originates from their unique hunting behaviour and favourite prey. An antlion larva
digs a cone-shaped pit in sand by moving along a circular path and throwing out sand
with its massive jaws. After digging the trap, the larva hides underneath the bottom of the
cone and waits for insects (preferably ants) to become trapped in the pit. When the ant
lion realizes that prey is in the trap, it tries to catch it. However, insects are usually not
caught immediately, and try to escape the trap. In this case, the ant lion intelligently throws
sand towards to edge of the pit in order to slide the prey to the bottom of the pit. When
prey is caught in the ant lion’s jaws, the prey is pulled under the soil and consumed. After
consuming the prey, the ant lions throws the remains outside the pit and repairs the pit for
the next hunt.

The ant lion algorithm mimics the interaction between ant lions and ants in the trap.
To model this interactions, ants are required to move over the search space and ant lions are
expected to hunt them and become fitter using their traps. Because ants move stochastically
in nature when searching for food, in the original ALO algorithm a random walk is chosen
to model the ants’ movement. The steps of the ALO for single-objective optimization
problems are briefly described in the following pseudo-code [88]:

• 1: Define the objective function and population size (NP)
• 2: Generate the populations of ant lions and ants
• 3: Evaluate the fitness of the ant lions
• 4: Initialize the generation counter t = 1
• 5: For t < maximum o f iterations:
• 6: For each ant from 1 to NP:
• 7: Perform a random walk around a random ant lion,
• 8: Perform a random walk around the elite individual (best ant lion),
• 9: Update the position and check the search boundaries.
• 10: Evaluate the fitness of the ants
• 11: End for,
• 12: Update ant lion positions based on the ants
• 13: Update the elite individual and keep it in the population
• 14: Update the generation counter t = t + 1
• 15: End while,
• 16: Return the fittest (elite) ant lion.

On the other hand, multi-objective optimization refers to the optimization of more than
one objective; these are generally in conflict with each other, resulting in no single solution
to the problem. For this kind of optimization problems, the aim becomes to find good
“trade-off” solutions that represent the best possible compromises among the objectives.
The tradeoff between obtaining a well-converged and well-distributed set of Pareto-optimal
solutions is an important issue in multi-objective optimization.

The MOALO is a classical multi-objective variant that uses the crowding distance [89]
and the dominance concept for selecting the elite (best ant lion) and a tournament mech-
anism to select the ant lions to perform the random walk. One of the main pillars of
optimization meta-heuristics, such as ALO, is their reliance on randomness or stochasticity,
which is used to spark a path towards a desired goal. The current norm is the use of
pseudo-random number generators. Unlike the MOALO, the proposed L-MOALO em-
ploys a mechanism with a chaotic dynamical behavior based on the Lozi map (similar to
(30)) instead of pseudo-random number generators to enhance exploration during the ants’
movement.
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The results of [88] obtained from simulations have shown that the MOALO and L-
MOALO algorithms can be successfully applied to a Transformer Design Optimization
(TDO) problem with two competing objectives, both providing a set of different solutions
that present a trade-off between the objective costs.

4.4.2. Computational Intelligence Algorithm

Martinez-Vargas et al. [90] proposed a leader–follower optimization algorithm based
on the combination of five different Population-based Algorithms (PAs) to tackle the high-
dimensional optimization problem known as the Base Station (BS) deactivation problem in
telephony. The general idea is to find the minimal set of active BSs in a 6G cellular network
to maintain service for at least 99% of mobile users (MUs) who are reassigned due to BSs
being shut down. Computational Intelligence (CI) is the key enabler for future 6G systems
to autonomously manage their elements and build an intelligent wireless environment. The
five follower PAs are: binary particle swarm optimization (BPSO), chaotic BPSO (BPSOC),
a Genetic Algorithm (GA) with a steady-state population model (AGE), a GA with a
generational model (AGG), and a binary artificial bee colony.

Each follower algorithm searches for its best solution (that is, the best local solution)
in its set of candidate solutions during some number of iterations. Meanwhile, the leader
algorithm checks whether the followers’ status is waiting or working. If the follower
algorithms have the waiting status, the leader algorithm asks for the best local solution they
have found thus far. Then, the leader gathers those best local solutions and chooses the
best one among them as the best global solution. Consequently, the leader sets its status to
working and sends the best global solution to the followers. When the followers receive the
best global solution, they search for the worst candidate solution in their group of candidate
solutions. The best global solution takes the place of the worst candidate solution (elitism).
After the number of iterations is met, the leader resolves the problem, that is, it finds the
lowest number of active BSs and reassigns those MUs whose BSs have been deactivated.

Among the follower algorithms, BPSOC has a unique mechanism to move through the
search space. This mechanism uses chaos sequences to improve diversity and prevent pre-
mature convergence to a local optimum. To this end, BPSOC uses a Lozi map embedded in

vid = ω ∗ vid + c1 ∗ v ∗ chaos() ∗ (gbest − xid) + c2 ∗ chaos() ∗ (pbest − xid), (62)

on the chaos() function.
The BPSO and BPSOC algorithms have exploitation bias. The diversity trend through-

out iterations in these two followers is acute. This means that the convergence velocity
towards pbest and gbest is fast. Furthermore, diversity is slightly greater in BPSOC because
of the Lozi map effect (this is a unique mechanism in BPSOC).

In conclusion, Martinez-Vargas et al. found that the leader–follower optimization
algorithm can find solutions even in challenging scenarios, and that BPSO and BPSOC find
better solutions by performing deeper exploitation.

4.4.3. Mixed Fruit Fly Optimization

The Fruit Fly Optimization Algorithm (FOA) is a meta-heuristic technique proposed
by Pan [91] that is inspired by the behavior of fruit flies. It simulates the foraging behavior
of fruit flies. In comparison with other swarm intelligence-based algorithms, FOA has a
sample framework with few parameters, and is easily understood and implemented. It
has been improved as the Mixed Fruit Fly Optimization Algorithm LGM-FOA (Logistic
Mapping-FOA) on the basis of the logistic map of Mitic et al. [92]; however, the algorithm
shows an ideal state with respect to convergence precision and stability in the optimization
process, as there are three discontinuous points from the logistic map. To solve this problem,
Luo et al. [93] proposed a new mixed fruit fly algorithm that uses the Lozi map instead
of the logistic map to conduct a global search for the optimal parameter values. It uses
the value as the center to perform tiny fluctuations in order to obtain a final optimal value
of quadratic optimization, thereby improving the initial value selection method of LGM-
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FOA. In support of the simulation between vector machine regression forecasting and the
original Fruit Fly Algorithm, Particle Swarm Optimization (PSO), and LGM-FOA, this
result testifies that the convergence accuracy of this new mixed fruit fly algorithm has
obvious advantages.

4.4.4. Hybrid Chaos Immune Algorithm

Liu et al. [94], seeking to improve the performance of the immune algorithm, inte-
grated chaos optimization into the immune clone selection algorithm. After decoding, a
portion of the antibodies are mapped onto the Lozi system, then every optical value is
collected at each iteration. Those values are added into the new antibody group to improve
the antibody–antigen fitness value. Comparative results indicate that the optimization
method of the hybrid chaos immune algorithm with self-adaptive parameter adjustment
has many advantages, such as better self-adaptive capacity, higher computation efficiency,
and better design accuracy.

4.5. Non-Evolutionary Chaotic Optimization Algorithms

In addition to evolutionary chaotic optimization algorithms, the Lozi map has been
used as the core of more classical optimization algorithms.

4.5.1. Chaotic Optimization Algorithms

The tuning of PID controller (see Sections 4.1.2 and 4.3.2) was addressed by Coelho [95]
using a non-evolutionary chaotic optimization approach based on the Lozi map. He
considered an automatic regulator voltage (AVR) system.

The problem of the dynamic stability of power systems has challenged power system
engineers for decades. In a synchronous generator, the electromechanical coupling between
the rotor and the rest of the system causes it to behave in a manner similar to a spring mass
damper system, which exhibits oscillatory behavior around the equilibrium state following
any disturbance, such as a sudden change in load, change in transmission line parameters,
or fluctuations in the turbine output. Synchronous generator excitation control is one of the
most important measures to enhance power system stability and to guarantee the quality
of electrical power.

The transfer function of such a system is provided by

G(s) =
0.07s + 7

0.0004s4 + 0.0454s3 + 0555sr + 1.51s + 8
. (63)

The proposed chaotic optimization algorithm (CAO) (called the Chaotic Optimization
Method based on Lozi map (COLM) by Coelho) is described as follows.

The Lozi map for this CAO is defined by
y1(k) = 1− a|y1(k− 1)|+ y(k− 1),
y(k) = by1(k− 1),
z(k) = y(k)−α

β−α ,
(64)

where k is the iteration number. Similar to (30), the values of y are normalized in the range
[0, 1] to each decision variable in the n-dimensional space of the optimization problem.
Thus, we have y1 ∈ [−0.6418, 0.6716] and [α, β] = [−0.6418, 0.6716] for a = 1.7 and b = 0.5.
Many unconstrained optimization problems with continuous variables can be formulated
as the following functional optimization problem.

Find X to minimize f (X), X = [x1, x2, . . . , xn], where f is the objective function and X
is the decision solution vector consisting of n variables. Here, xi bounded by lower limits
(Li) and upper limits (Ui). The COLM can be illustrated as follows.

Step 1: Initialization of variables and initial conditions. Set k = 1, y1(0), y(0) and
set the

initial best objective function f̄ .
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Step 2: Algorithm for chaotic global search.
Begin
While k ≤ Mg do

xi(k) = Li + zi(k)× (Ui − Li)
If f (X(k)) < f̄ Then

X̄ = X(k)
f̄ = f (X(k))

End if
k = k + 1

End while
End

Step 3: Algorithm for chaotic local search.
Begin
While k ≤ (Mg + ML) do

for i = 1 to n
If r < 0.5 then (where r is a uniformly distributed random variable with
range [0, 1])

xi(k) = x̄i + λzi(k)× |Ui − X̄i|
Else

xi(k) = x̄i − λzi(k)× |X̄i − L1|
End if

End for
If f (X(k)) < f̄ then

X̄ = X(k)
f̄ = f (X(k))

End if
k = k + 1

End while
End

Here, Mg and ML are the maximum number of iterations of the chaotic global and
local searches, respectively, while Mg + ML is the stopping criterion in iterations. The step
size in chaotic local search is λ. The best objective function is f̄ , and X̄ is the best solution
from the current run of the chaotic search.

A suitable value for the step size usually provides a balance between global and local
exploration abilities, and consequently a reduction in the number of iterations required to
locate the optimum solution. In [95], the tested values of step size in COLM were described
as follows:

• COLM(1): the step size λ equals 0.01
• COLM(2): the step size λ equals 0.05
• COLM(3): the step size λ equals 0.10
• COLM(4): the step size λ linearly decreases from 0.10 to 0.01
• COLM(5): the step size λ linearly increases from 0.01 to 0.10

In each case study, fifty independent runs were carried out for each of the COLM
methods involving fifty different initial trial conditions y1(0), y(0).

From the case studies and comparison of the results through the five tested COLM
approaches, it has been shown that the step size parameter λ is essential to obtaining a
good convergence profile. In this context, the λ parameter regulates the trade-off between
the global and local exploration abilities of the chaotic local search.

Shayeghi et al. [96,97], using the COA introduced by Coelho, proposed a multi-
objective design for multi-machine Power System Stabilizers (PSSs). The PSS parameter
tuning problem was converted to an optimization problem which was solved by COLM
using the COLM(4) strategy. The authors suggested that COLM, which has the features
of easy implementation, short execution time, and robust mechanisms of escaping from
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the local optimum, is a promising tool for engineering applications. The chaotic sequences
increase its convergence rate and improve the precision of the results.

The effectiveness of the proposed method was tested on a multi-machine power
system for a wide range of loading conditions and disturbances. Eigenvalues analysis
provided the satisfactory damping level for the system modes, especially the low frequency
modes, for systems with the proposed COA-based tuned PSSs, especially according to the
time domain-based multi-objective function. Time domain simulations showed that the
oscillations of the synchronous machines can be quickly and effectively damped for power
systems over a wide range of loading conditions using the proposed PSSs.

The same authors used this algorithm for an output feedback damping controller
design of a static synchronous compensator (STATCOM) [98].

The same algorithm was used by Jalilvand et al. [99] to design a Unified Power Flow
Controller (UPFC) based on damping controllers using COA. Their eigenvalues analysis
and simulation results showed that it has good performance for damping low-frequency
oscillations and can improve transient stability under different operating conditions.

The COLM algorithm was later improved by Hamaizia and Lozi [100] by locally aver-
aging the global search, then performing a few steps of chaotic local search around every
point obtained by the chaotic series. In another study, Bououden and Abdelouahab [101]
used transformations to modify the density of the Lozi map and combined Lozi and logistic
maps during global and local search [102].

4.5.2. Improved Lozi Map-Based Chaotic Optimization Algorithm (ILCOA)

The COLM algorithm (called the Lozi Chaotic Optimization Algorithm (LCOA)) was
improved by Alizadeh et al. in [103]. ILCOA was employed to solve a single-machine
Power System Stabilizer (PSS) design problem, and its promising features in comparison
with LCOA were highlighted.

In ILCOA, the chaotic variable interval is partitioned into three areas, namely,
A1 = [0, C1], A2 = [C1, C2] and A3 = [C2, 1], in which 0 < C1 < 0.5 and 0.5 < C2 < 1 are
adjustable parameters.

During the chaotic global search, each time a value of the chaotic variable zi is gen-
erated from the Lozi map and its validity is evaluated. If the chaotic variable zi belongs
to A1 or A3, it must be regenerated; otherwise, it is reserved and used for calculating the
objective function and checking its optimum, as it certainly belongs to the area A2.

The lower (Li) and upper (Ui) limits of the solution variables have been reformed as
well. Thus, in the chaotic global search subroutine of ILCOA, Ui and Li are replaced by
Unew

i and Lnew
i , respectively, where

Unew
i =

1− C1

C2 − C1
Ui +

1− C2

C2 − C1
Li, (65)

Lnew
i =

−C1

C2 − C1
Ui +

C2

C2 − C1
Li, (66)

znew
i =

1
C2 − C1

× (zi − C1). (67)

and where, similar to the chaotic global search subroutine, C1 ≤ zi ≤ C2; therefore,
0 ≤ znew

i ≤ 1.
There is another parameter in the chaotic local search subroutine, namely, the step size

λ, which is an important parameter in the convergence behavior of optimization methods.
It adjusts small ergodic ranges around X̄. The selection of the step size λ has a direct
effect on the process of generating a new trial solution. Balance between the global and
local exploration abilities is provided by an appropriate value of λ. In [103], the authors
introduced a new selection strategy for step size λ, namely, the semi-exponential step size
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(SESS), which focuses more on smaller values of λ and contributes to better exploitation for
refining the results: λ = λmax − λmax−λmid

iter1
max

× iteration, 1 ≤ iteration ≤ iter1
max

λ =
[
λmax − λmax−λmid

iter1
max

]
× e

(iter1
max−iteration)

k , iter1
max ≤ iteration ≤ iter2

max

(68)

where λmax is the initial step size, λmid is the step size of the linear section ending, iter2
max is

the total number of searching generations in the local search subroutine, and (iter2
max = ML)

represents the generations in which the step size is linearly reduced. Different ending
values of λ can be achieved by adjusting k.

The results of the tests to solve a single-machine PSS design problem were promis-
ing, and showed that the ILCOA has features such as higher stability, better ability to
escape from local minima, more robustness to search space size, and finer performance in
comparison to LCOA, especially in high-dimensional problems with large search spaces.

In [104], Pourmousa et al. used ILCOA to evaluate the performance of photovoltaic
panels. This evaluation inevitably involves having the exact model of solar cells. Different
approaches to solar cell modeling have been proposed in the literature, and can generally
be classified as either traditional or intelligent methods. To obtain an accurate model
of such highly nonlinear systems, however, is a challenging task that continues to defy
researchers. The authors suggested that the remarkable local and global search abilities of
ILCOA grant it a distinct edge over other optimization methods, allowing it to sift through
the entire search space for the global optimum. The efficacy of the proposed approach
was highlighted by comparing its performance to those of three other algorithms: the
Bird Mating Optimizer (BMO) [105], Improved Chaotic Whale Optimization Algorithm
(ICWOA) [106], and LCOA in terms of Root Mean Square Error (RMSE), Relative Error,
Mean Absolute Error (MAE), Normalized MAE, and Mean Bias Error.

The results showed that ILCOA performs better than the other algorithms and has
higher convergence speed and stability. Moreover, it was able to reach a smaller value of
the objective function compared with LCOA.

ILCOA was tested by Ebrahimi et al. [107] along with other algorithms to identify
the parameter of the two chaotic Chen and Lorenz attractors as well as a permanent
magnet synchronous motor system. Their simulation results ascertained the very good
performance and high speed of this algorithm in identifying these systems in comparison
with other algorithms.

5. Applications in Control Theory

Controlling chaos via different control schemes has received great interest after it was
first introduced in 1990 by Ott, Grebogi, and Yorke [108]. The Lozi map is often used in this
domain and in control theory-based chaos.

5.1. Observers

Observers are a primary tool used in control theory. Consider the problem of esti-
mating the current state xk of a discrete-time nonlinear dynamical system described by a
system of first-order difference equations:{

xk+1 = f (xk),
yk+1 = h(xk),

(69)

where, from past observations, ys and s ≤ k, where k ∈ {0, 1, 2, . . .}.
The vector fields f : Rn −→ Rn and h : Rn −→ Rp are continuous with p ≤ n. The

variable x ∈ Rn stands for the state of the system, while the variable y ∈ Rp represents the
measurement output.
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An observer is a system driven by observations

x̂k+1 = f̂ (x̂k, yk) (70)

such that the error x̃k = xk − x̂k goes to zero as k −→ ∞.
In [109], Xiao provided a direct method for constructing a change of coordinates for

the design of nonlinear discrete-time observers along with an explicit expression of this
change of coordinates. He used the Lozi (3) and Hénon (2) maps to perform simulations
for chaotic systems to illustrate the method.

Instead, Voortman et al. [110] designed a data rate-constrained observer for a dy-
namical system which functions in both discrete time and continuous time. The system
is connected to a remote location by a communication channel that can transmit limited
amounts of data per unit of time. The objective of the observer is to provide estimates
of the state at the remote location through messages that are sent via the channel. The
observer is designed such that it is robust to losses in the communication channel. It was
tested through simulations for the Lozi map and the Lorenz system. As the Lozi map is not
differentiable, a smoothed version was used:

Φα

(
x
y

)
=

(
1− a fα(x) + by,
x,

)
, (71)

where

fα(x) =

{
|x|, i f |x| ≥ α,
x2

2α + x
2α , i f |x| < α,

(72)

with α << 1.
By combining results from several other papers, the authors provided an analytical

bound on the channel rate that depends on the Lyapunov dimension rather than the upper
box dimension. These analytical bounds were computed for the smoothed Lozi map and
the Lorenz system. Under the following Assumption 1, they proved Theorem 2 below.

Assumption 1. a, b, α > 0, 1− a < b < 1 , α < (a + 1− b)−1

Theorem 2 ([110]). Let Assumption 5 hold and let S0 be a compact invariant set of the smoothed
Lozi map (71). Then, the associated dynamical system is observable on the set S0 via any communi-
cation channel with capacity

c <

[
2log2

(√
a2+4b−a

2

)
− log2b

][
log2

(√
a2+4b−a

2

)]
log2

(√
a2+4b−a

2

) .

In addition, they computed the Lyapunov dimension for the smoothed Lozi map.
Simulations of the observer on both systems proved that the theoretical rate is closely
related to the actual rate required to implement the observer.

5.2. Control of Chaos

In this section, we consider three aspects of the control of chaos: stabilization, adaptive
and predictive control methods, and the identification of chaotic systems.

5.2.1. Stabilization of Chaos

Orbits of a dynamical system originating near an unstable fixed point remain unstable
throughout the evolution of the system. To obtain regular motion from such initial point,
the method used by Saha and Kumra [111] is to modify the value of the parameters a and b.
As an example, they considered the case of a = 1.6 and b = 0.5 for which there exists an
unstable fixed point P∗ = (0.47619, 0.238095). Taking the initial point P = (0.5, 0.3) near P∗,
they performed search using their previously defined method of asymptotic stability [112]
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for the new parameter values, for which the solution is periodic with the same initial point.
This method is based on the computation of the Lyapunov exponents. They found that
a = 1.52381 and b = 0.57619.

Gokce et al. [113] investigated the stability and tracking performance of discrete-time
chaotic systems in the presence of external disturbance and noise. They developed a
neural network control scheme on the basis of a novel adaptive learning rate to stabilize the
chaotic motion of discrete-time chaotic systems to a fixed point as well as to track the desired
reference trajectory. The effectiveness of the proposed method was investigated through
simulation studies on the Lozi map and a performance comparison was made with the
backstepping control strategy. The backstepping method based on the Lyapunov stability
is a recursive procedure that breaks the full system into a sequence of small subsystems.
Simulation studies demonstrated that the proposed method can successfully stabilize the
chaotic trajectory of the system to the fixed point and track the desired reference trajectory.
It has been shown that the proposed method is less sensitive to noise and disturbance and
has a more robust property than the backstepping control scheme if the neural network is
trained properly with accurate training parameters.

Joshi et al. [42] studied the control of a complex fractional-ordered Lozi map (see
Section 2.5.2). They used the Pyragas method [78], which is a feedback method that can be
attempted without any detailed knowledge of the dynamical system under consideration.
There are two ways in which delay can be introduced in the system, are formulated
as follows:

x(n) = γx(j− 2) + x(0) +
1

Γ(ν)

n

∑
j=1

Γ(n− j + ν)

Γ(n− j + 1)
[−α|x(j− 1)| − x(j− 1) + 1 + bx(j− 2)], (73)

and

x(n) = x(0) +
1

Γ(ν)

n

∑
j=1

Γ(n− j + ν)

Γ(n− j + 1)
[−α|x(j− 1)| − x(j− 1) + 1 + bx(j− 2) + γx(j− 3)], (74)

where γ is the strength of the delay. For their numerical simulations, they set γ = 0.33 for
both (73) and (74).

They found that in both cases there is a reduction in the range over which chaos is
observed. Period 2 is stabilized instead.

In Case 1 (73), Period 2 has an even more stable range, and the stability range of Period
1 is reduced, whereas for Case 2 (74) the range of Period 1 is significantly increased and that
of Period 2 spans over a smaller range of parameters. Thus, chaos control can be achieved
using the Pyragas method even in complex-order fractional maps.

5.2.2. Adaptive and Predictive Control

In [114], Chen and Dong presented interesting analysis and simulations on the control
of chaotic dynamic systems using conventional feedback control strategies. The trajectories
of the chaotic Lozi system are controlled to its equilibrium points using conventional
feedback controls. The proposed controlled Lozi map is{

xk+1 = 1− a|xk|+ yk,
yk+1 = bxk − Kvk.

(75)

For this system, Chen and Dong proved the following.

Proposition 2 ([114]). A necessary and sufficient condition for the local controllability of the
chaotic Lozi system (3) to its equilibrium point (x∗, y∗) =

(
1

a−(b−1) , b
a−(b−1)

)
is vk −→ 0, as

k −→ ∞, where uk = −Kvk is the feedback controller applied to the system shown in (75) and vk is
the executive control input in the feedback uk = −Kvk.
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Computer simulations have been performed for a = 1.8, b = −1, K = −0.195; a = 1.8,
b = 0.4, K = 1.205; a = 1.8, b = 0.997, K = 1.802; and a = 1.8, b = 1.0, K = 1.805.

Improving this method, Gonzalez [115] considered the Lozi map and showed that
the trajectories can be driven to the fixed point as well as to other fixed reference points
(x∗, bx∗). The controlled the Lozi map defined as{

xk+1 = 1− a|xk|+ yk + uk,
yk+1 = bxk.

(76)

The following two control algorithms were proposed.

• Case 1: the value of a is unknown and the value of b is precisely known. In this case,
the chosen control law is

uk = ãk|xk| − bxk−1 − 1 + x∗,

with

ãk+1 = ãk +
α|xk|

γ + x2
k
(xk+1 − (−ã|xk|+ bxk−1 + 1 + uk))

and α > 0, γ ≥ 0.
With ak = ãk − a, the closed loop system emerges:{

xk+1 = ak|xk|+ x∗,

ak+1 = ak −
α|xk |2
γ+x2

k
ak.

• Case 2: both values of a and b are known approximately. In this second case, the
chosen control law is

uk = ãk|xk| − 1 + x∗, (77)

where the parameter estimator is provided by

ãk+1 = ãk +
α|xk|

γ + x2
k
(xk+1 − (−ã|xk|+ 1 + uk)) (78)

and α > 0, γ ≥ 0.
With ak = ãk − a and zk = xk−1, the closed loop systems emerges:

xk+1 = ak|xk|+ bzk + x∗,
zk+1 = xk−1,

ak+1 = ak −
α|xk |2
γ+x2

k
(ãk|xk|+ bzk).

(79)

In this case, there is now the law b. It was proved that for every real a and −1 <
b < 1/2, b 6= 0 there exist α and β such that the fixed point is asymptotically stable
for (79). This means that by applying the adaptive strategy (77) and (78) to the control
system (76) and taking (x1(0), x2(0), ã0) in the neighborhood of (x∗, qx∗, a − sgn(x∗)b),
we obtain (x1(k), x2(k)) −→ (x∗, qx∗) as k −→ +∞; at the same time, we obtain a better
approximation to the values of a and b.

These two proposed control laws can be applied when 0 < b < 1, a > b + 1, and
2a + b < 4, that is, for the regions in the parameter space where chaos can occur (see
Figure 3). It has been shown that when using these control laws (x, y) converges towards
(x∗, bx∗).

In [116], Park et al. investigated the possibility of controlling discrete-time chaotic
dynamical systems through a generalized predictive control (GPC) method which does
not require a precise mathematical model of the chaotic dynamics. GPC methods may be
considered as a kind of adaptive control strategy. By combining the ARMAX (AutoRe-
gressive Moving Average model with eXogenous noise input) modeling with the GPC
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technique, they developed a strategy for adaptive control of uncertain discrete-time chaotic
systems. They investigated both the control performance and the system’s sensitivity
to initial conditions, and compared them with that of the conventional reference model
adaptive control by means of numerical simulations on Lozi (for a = 1.8 and b = 0.4) and
Hénon maps. Simulation results showed that this new controller yields faster settling time
and more robust tracking performance.

For the same value of parameters of the Lozi map, Feng and Chen [117] have presented
a new adaptive control algorithm. The basic idea behind their proposed approach is to
represent the chaotic system as a Takagi–Sugeno fuzzy model (see Section 4.1.1), design a
local linear adaptive controller in each local region, and then reassemble a global adaptive
controller over the entire domain in such a way that the stability of the closed-loop adaptive
control system is guaranteed.

5.2.3. Identification of Chaotic Systems

In [118,119], Chen et al. studied a feed-forward artificial neural network in a Wiener-
type cascade dynamic model in which a three-layer feed-forward artificial neural network is
employed as the nonlinear static subsystem and a simple linear plant is used as the dynamic
subsystem. They presented theoretical results showing that various chaotic systems can be
well identified by these two basic structures by training the neural network and choosing
an appropriate linear subsystem. They demonstrated the approximation capability of the
proposed system through simulations, where it was used to identify (synchronize) the
chaotic continuous-time Duffing oscillator and the discrete-time Hénon and Lozi systems.

6. Cryptography

Cryptography is the primary means of protecting communications in the cyber-centric
world in which humankind lives today. Modern technologies involve fast communication
links between potentially billions of devices via complex networks (satellites, mobile
phones, the internet, etc.). The primary concern posed by these complex and tangled
networks is their protection against passive and active attacks that could compromise
public safety and privacy. Cryptography has been around for over two thousand years,
with the famous Caesar code being used by Emperor Julius Caesar. Today, the properties of
chaotic attractors are recognized as the basis of many different methods of cryptography.

6.1. Theoretical Algorithms

The literature includes two articles in which the Lozi map is at the center of theoretical
cryptographic algorithms. In the first considered article, Sira-Ramirez et al. [120] proposed
the use of nonlinear exact chaotic system state reconstructors for the fast and efficient
decoding of multiple discrete-time chaotic encrypted digital messages. After a general
description of their method, in order to test the effectiveness of the exact reconstructor
scheme in an actual message decoding problem, they applied it using the Lozi map. They
considered transmission in a noise-free environment such as the internet.

They transmitted to a remote computer containing a reconstructor digital computer
program, a message consisting of a digitized file of Van Gogh’s self portrait. The encoding
of the messages was carried out using the states z and w of the following unobservable but
constructible Lozi system: 

xk+1 = zk,
zk+1 = −a|zk|+ bxk + 1,
wk+1 = xkzk,
yk = xk.

(80)
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The exact reconstructor of system (80) for the non measured variable zk may be
obtained trivially, as x is a one-step delay of z. This was readily derived to be

xk = yk,
zk = −a|yk|+ byk−1 + 1,
wk+1 = yk−1(−a|yk−1|+ byk−2 + 1).

(81)

The image and text files were chaotically encoded in a byte-by-byte fashion after a
simple normalization of the carrier chaotic states by an appropriate constant factor. Thus,
they defined

Ik = K1zk + ik, Tk = K2wk + tk, ik = Ik − K1ẑk, tk = Tk − K2ŵk,

where ik and tk represent the kth byte of the image file, Ik and Tk are the corresponding
kth bit of the chaotic encrypted image, and the factors K1 and K2 are suitable normalizing
parameters, both taken as equal to 1000. The reconstructed states ẑ and ŵ exactly coincide
with the original states z and w.

The encryption and decryption programs were written in the C programming language
and compiled with Borland C++ version 1.01. The size of the digital image file was
approximately 120 KB. The process of encryption was completed in approximately two
seconds, as was the decoding process.

In the second article, Aliwi and Ajeena [121] used an unconventional generalization of
(3) based on the chaotic cosine map recently published in [122].

The Cosine Chaotic Map (CCM) is a chaotification method that enhances the chaotic
complexity of existing chaotic maps. This method performs the cosine function alongside
a chaotic map that cascades in the system under consideration. Thus, the results provide
a new chaotic map having a wide chaotic range within the closed interval [−1,+1]. The-
oretically, the CCM has properties based on the properties of the underlying seed maps.
In the case of the Lozi map, Aliwi and Ajeena considered (3), changing 1 to 3 in the first
component

f
(

x
y

)
=

(
3− a|x|+ y,
bx,

)
(82)

with a = −1.8 and b = 0.25. Then, they inserted (82) in CCM:

f
(

x
y

)
=

 cos
(

2(k+3−a|x|+y)
)

,

cos
(

2(k+bx)
)

,

 (83)

where k ∈ [10, 24].
Starting with any initial point (x0, y0) belonging to the basin of attraction of the Lozi

map, the iterates randomly fulfill the square [−1,+1]2 (see Figure 9).
Based on a Knapsack problem approach, a fuzzy chaos-based cryptography method

for a chaotic cosine map was proposed in which the system works by designing the
Takagi–Sugeno (TS) fuzzy model (see Section 4.1.1) on a chaotic map as a seed map in the
cosine map. The basic idea of this method is to apply the chaotification method in order
to use a cosine chaotic map approach on the outputs of the TS fuzzy model to compute a
real super-increasing sequence applied in the Knapsack equation. Aliwi and Ajeena [121]
explicitly described this method, which is too long to be included here. The algorithmic
performance of the method was derived as well. In addition, numerical simulations were
presented to demonstrate the effectiveness of the proposed method.
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Figure 9. Image on the (x, y)-plane of 300,000 iterates of the cosine Lozi chaotic map (83) for initial
values x0 = 0.1 and y0 = 0.3 and parameter values a = −1.8, b = 0.25, and k = 12.0.

6.2. Algorithms for Images
6.2.1. Image Encryption Algorithms

Several algorithms for image encryption based on the Lozi map have been developed.
An optical color image encryption scheme based on a fingerprint key and three-step

phase-shifting digital holography was proposed by Su et al. [123]. In this scheme, the
fingerprint directly serves as a secret key. The random phase masks generated from the
fingerprint using a secure hash algorithm (SHA-256) and the chaotic Lozi map are used as
interim variables. With the help of the fingerprint-based random phase masks located in
the linear canonical transform domain and the three-step phase-shifting digital holography,
the primary color image that is hidden in a grey-scale carrier image can be encrypted into
three noise-like holograms. In addition, the parameters of the chaotic Lozi map and linear
canonical transform can provide additional security to the proposed encryption scheme.

The generation process of the fingerprint-based random phase masks mainly com-
prises the following steps [123]:

• Step 1: Calculate the hash value of the fingerprint using the SHA-256; a 256-bit
hash value expressed as a hexadecimal number array can be obtained as follows:
H = [h1, h2, . . . , h64].

• Step 2: Use elements of the array H to generate the initial values of the chaotic Lozi
map in the following way:{

x = x0 + hexa2dec(H(hi : hi+7))× 10−16,
y = y0 + hexa2dec(H(hi : hi+7))× 10−16,

(84)

where i, j = 1, 2, . . . 57; x0, y0, and x, y denote the common and generated initial values
of the chaotic Lozi map, respectively; and hexa2dec(x) is used to convert hexadecimal
number x to a decimal number.

• Step 3: Suppose that the size of fingerprint-based random phase mask to be generated
is M × N pixels. First, construct the chaotic Lozi map with initial values x and y,
then iterate M×N

2 times to obtain two random sequences X =
{

x1, x2, . . . , x M×N
2

}
and

Y =
{

y1, y2, . . . , y M×N
2

}
.
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• Step 4: Combine sequence X with sequence Y to form a new random sequence Z

where Z =
{

x1, x2, . . . , x M×N
2

; y1, y2, . . . , y M×N
2

}
.

• Step 5: Reshape the random sequence Z to form a two-dimensional random matrix
RM with size M× N, where RM = reshape(Z, M, N).

• Step 6: The fingerprint-based random phase mask FRPM can be generated in the
following way: FRPM = exp(i · π · RM).

It is worth noting that a series of fingerprint-based random phase masks can be
generated using different elements of the array H to generate the initial values of the
chaotic Lozi map from Equation (84) and repetition of steps 3–6.

We do not describe the other parts of the algorithm that are not linked to the Lozi
map here.

This algorithm was tested numerically with common initial values of x0 = 0.34 and
y0 = 0.0 and the common control parameters a = 1.75 and b = 0.33. Numerical simulation
results showed that the proposed encryption scheme has a high security level and can resist
statistical attacks, data loss attacks, and noise attacks.

The same team from Hebei University developed a similar algorithm based on diffrac-
tive imaging and the Lozi map in [124].

6.2.2. Image Authentication Algorithm

Suresh et al. [125] proposed a new approach to authenticate images using a combina-
tion of different chaotic maps along with a newly developed kind of chaotic neural network.
This authentication code is carried by the transmitted image itself at near-lossless image
content quality, and does not require any extra memory requirement. The initial parameter
sensitivity and aperiodicity of chaotic maps and its integration with other chaotic maps
and a chaos-based neural network were utilized to create uncertainty in the predictability
of authentication code in association with image pixels.

The proposed scheme for an image authentication scheme uses the Lozi map corre-
sponding to (3) under the form{

Sn+1 = 1− P|Sn|+ yn,
yn+1 = QSn,

(85)

where n is the iteration number and the logistic map

Xn+1 = νXn(1− Xn). (86)

is as follows [125]:

• Step 1: Generate the random initial condition under the defined range for the Lozi and
logistic maps.

• Step 2: Generate more samples based on the number of image pixels using the Lozi map and
logistic map (say, Li and Di).

• Step 3: Remove the LSB value from all pixels Pri and normalize the pixels (say, Pi).
• Step 4: From the initial starting sample of the Lozi chaotic sequence, start adding samples with

normalized pixels, i.e., Si = Pi + Li.
• Step 5: Keep the range of Si within [0, 1] by subtracting any values greater than 1 (say, Si).
• Step 6: From the initial starting sample of the logistic chaotic sequence, start adding samples

with Sni, Zi = Sni + Di.
• Step 7: Keep the range of Zi within [0, 1] by subtracting any values more than 1 (say, Zi).
• Step 8: Take each value of Zi as an input to the ANN, which has weights trained using the

Lozi map and generate the corresponding output (say, ANi).
• Step 9: Evaluate the mean value of ANi (say, m) and apply thresholding with ANi ≥ m to

generate the authentication code (say, Ai).
• Step 10: With Prim add the authentication code Ai to obtain the image with authentication code.
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For the Lozi map, the values of y are normalized in the range [0, 1] to each decision
variable in the n-dimensional space of the optimization problem. This transformation is
provided by

Zk =
yk − λmin

λmax − λmin
(87)

where y ∈ [−0.6418, 0.6716], [λmax, λmin] equals [0.6418,−0.6716], P = 1.7, and Q = 0.5
(this is similar to the normalization used by Araujo and Coelho in (30)). For the logistic
map, ν is defined with uniform randomness in the range of [3.65, 3.95].

Various experiments were carried out with initial conditions defined randomly in the
range of [0, 0.5]. Extracting the right authentication code is only possible with the correct
information about the initialization of both chaotic maps and neural network weights. It is
impossible to extract this information from image pixels.

The proposed schemes completely destroy the relationship among pixels in the gener-
ation of authentication code. Experimental results show that this scheme has efficient in
authentication and localization and does minimal damage to the original image; further-
more, it can be applied to both grayscale and color images.

6.2.3. Hardware-Implemented Cryptographic Algorithms

In addition to the previous algorithms, others have been directly implemented on
hardware circuits, as we show in the three following examples.

In [126], Cicek implemented the Lozi, Tinkerbell, and Barnsley Fern two-dimensional
discrete chaotic maps on a microcontroller. Then, he implemented a microcontroller-based
random number generator (RNG) using these three different maps.

For RNG design, the outputs of the x and y state variables of the chaotic maps are first
multiplied by 1000 to magnify the variables. Second, the output of these magnified variables
is converted to a 32-bit single floating-point binary number, as in Figure 7 of [126]. After that,
the first 24 bits (0, 1, 2, 3, . . . , 23) of the 32 bits of this floating-point binary number are used
for the preprocessing algorithm, which is shown schematically in Figures 8 and 9 of [126].

In the first case, the EXOR operation is performed mutually from the zeroth bit of
the x state variable of Lozi map and the twenty-third bit of the x state variable of the
Tinkerbell map (0 −→ 23, 1 −→ 22, 2 −→ 21, . . .). The result obtained here is applied to
EXOR processing with the zeroth bit of x from the Barnsley map. The other bits are applied
to the same processing in order. In this way, the first 24-bit RNG output is obtained.

Then, a similar algorithm is applied for the second 24-bit RNG output. The subsequent
48-bit sequences are obtained from the chaotic map output values after every 95 iteration
calculations. In this way, different random values are obtained simultaneously.

The implemented RNG design was run on the microcontroller and the obtained
random numbers were tested for validity using the NIST SP800-22 test package.

Merah et al. [127] proposed a stream cipher based on chaotic synchronization of the
Lozi map. Their technique consists of feeding back the ciphertext to the cryptosystem and
incorporating it on the driver signal for synchronization.

The driver system (corresponding to (3)) is provided by{
xn+1 = 1− a|xn|+ yn,
yn+1 = bxn,

(88)

whereas the response system is provided by{
x′n+1 = 1 + y′n − αs(xn),
y′n+1 = βx′n,

(89)

The driver signal s(xn) = |xn| is used to drive the response system. Note that e1 =
xn+1 − x′n+1 and e2 = yn+1 − y′n+1 are the synchronization errors. By assigning different
initial conditions to the driver and response systems, e1 and e2 vanish after some number
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of iterations. Therefore, the coupled systems synchronize and the difference between the
outputs of the master and slave systems tends to zero.

The authors took the driver signal |xn|, which has 64 bits of length, then divided it
into two parts, the first containing the lower bits m and the second containing the upper
bits d, where d + m = 64 bits. For encryption purposes, the m lower bits are XORed with
those of the plaintext, the resulting ciphertext (which has m bits of length) is concatenated
with the d upper bits of |xn|, and a new sample is made which is 64 bits in length (d upper
bits of the previous and m lower bits of the ciphertext). The new |xn| is then fed back to
chaotic system and sent to the receiver at the same time for synchronization and to bear
the ciphertext.

On the receiver side, the response system synchronizes with the driver one, then the
plaintext is recovered by XORing the m lower bits of the driver signal with m lower bits of
the signal generated from the response of the chaotic system.

Simulation results showed that the proposed stream cipher has good confusion/diffusion
properties and provides a strong key.

Xiao et al. [128] developed a time–frequency domain encryption technique based on
multi-chaotics for physical layer security and a chaotic map (CM) for peak-to-average-
power ratio (PAPR) reduction. They experimentally demonstrated its feasibility in an
Orthogonal Frequency Division Multiplexing (OFDM)–Passive Optical Network (PON)
system. The proposed scheme is based on the Lozi and logistic maps and can generate
chaotic sequences to scramble the subcarrier in both the time and frequency domains to
enhance physical layer security. In the experiment, an 8.9 GB/s encrypted OFDM signal
was securely transmitted over 100 km of standard single-mode fiber.

The Lozi map was used to generate phase rotation sequences for frequency domain
encryption and the logistic map to generate index sequences for time-domain interleaving.
The combination of these two maps can enhance the key space and the security of an
OFDM-PON system.

In frequency domain encryption, the chaotic sequences are generated by a Lozi
map (88) with a = 1.7, b = 0.5. To generate phase rotation sequences for the frequency
domain, {xi} and {yi} are postprocessed to be {Rxi} and {Iyi}, as described by{

Rxi = sign(mod( f ix(xi × 1014) · 256)− 128),
Iyi = sign(mod( f ix(yi × 1014) · 256)− 128),

(90)

where the function fix(x) returns the nearest integer rounded to zero. Then, the following
phase rotation sequence {pi} is obtained:

pi = Rxi + jIyi , 1 ≤ i ≤ N. (91)

Here, N is the number of OFDM subcarriers. After constellation mapping, the input
sequence becomes a matrix of X = [X0, X1, . . . Xn−1]

T , where Xk represents the correspond-
ing subcarrier data. In a transmitter, the input sequence X is expanded to K identical
sequences. According to the different initial conditions of the Lozi map, different phase
rotation sequences {pn} are obtained. After calculating the PAPR values of the encrypted
OFDM signal, the minimum PAPR signal is transmitted, then chaotic time domain in-
terleaving is performed. Additionally, the logistic map is used to generate a permuted
index sequence.

The experimental results showed that the proposed method can effectively prevent
illegal users from eavesdropping. Moreover, the proposed scheme has low complexity, low
cost, and is easy to implement.

7. Networks

During the past decades there has been growing interest in examining networks within
the recent theory of complexity, which makes it possible to model complex systems encoun-
tered in real-life situations. In this section, we examine networks of chaotic attractors.
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7.1. Synchronization

Based on the definition of chaos, two trajectories of a chaotic system starting from
two close but different initial conditions become exponentially separated in time because
their evolution strongly depends on the initial conditions. Pecora and Carroll [129] demon-
strated that coupled (even different) chaotic systems with different initial values can be
synchronized; subsequently, there has been increasing interest in the study of chaos syn-
chronization and its applications in various fields, including physics, biology, chemistry,
mathematics, and engineering.

Several different methods are used to synchronize chaotic attractors. Synchronization
can involve either two attractors or several in complex networks, as we discuss in the cases
of chimera, solitary states, and cellular neural networks.

7.1.1. Observer-Based Synchronization

In addition to the observers described in Section 5.1, Zhang et al. [130] proposed a
switching observer-based synchronization scheme for piecewise linear discrete chaotic
systems such as skew tent maps and Lozi maps based on piecewise quadratic Lyapunov
functions. In this scheme, the observer switches according to the output of the drive system.

For piecewise linear chaotic systems of the form{
x(t + 1) = Al x(t) + αl f or x(t) ∈ Rl ,
y(t) = Cx(t),

(92)

the observer is defined as follows:{
x̂(t + 1) = Al x̂(t) + αl + Kl(y(t)− ŷ(t)) f or x(t) ∈ Rl ,
ŷ(t) = Cx̂(t),

(93)

where x̂(t) ∈ Rn is the observer state, {Rl}l∈L ⊆ Rn denotes a partition of the state space of
the chaotic system into a number of closed polyhedral subspaces, y(t) ∈ Rm and ŷ(t) ∈ Rm

are the outputs of the chaotic system and observer, respectively, and Kl ∈ Rn×m is a
switching gain matrix that is yet to be determined.

For synchronization, y(t) = Cx(t) is the synchronization signal to be sent to the
receiver (observer) and the observer switches the dynamics according to the state of chaotic
systems. However, it is well known that not all of the state variables are measurable in
practice. Thus, Zhang et al. divided the space of the output y(t) into several polyhedral
cells {Sl}, l ∈ L ⊆ Rm to meet the following two requirements:

(1) The number of cells of the space of the output y(t) is exactly equal to that of the state
of the chaotic drive system.

(2) The observer is guaranteed to acquire the information about which cell in the state of
chaotic system is from the synchronization signal y(t); in other words, the output y(t)
is in cell Sl if and only if x(t) is in cell Rl .

To prove the synchronization property, Zhang et al. defined the synchronization
error as e(t) = x(t) − x̂(t). Combining (92) and (93), they obtained to the following
error dynamics:

e(t + 1) = (Al − KlC)e(t) = Fle(t) f or y ∈ Sl . (94)

Then, they obtained the following switching feedback stabilization result for the
synchronization error dynamics (94).

Theorem 3 ([130]). The synchronization error dynamics (94) are asymptotically stable with the
switching feedback gain Kl , l ∈ L if there exists a set of positive matrices Pl , l ∈ L such that the
following linear matrix inequalities are satisfied:

(Al − KlC)T Pl(Al − KlC)− Pl < 0, l ∈ L (95)
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(Aj − KjC)T Pj(Aj − KjC)− Pj < 0, l, j ∈ Ω ∩ L (96)

where Ω is the set that represents all possible transitions from one region to another, that is,{
Ω = l, j|y(t) ∈ Sj, y(t− 1) ∈ Sl , j 6= l

}
. (97)

They used the values a = 1.7 and b = 0.5 with initial conditions x1 = −0.2, x2 = 0.2
for the Lozi map to illustrate the synchronization of two maps.

7.1.2. Dead-Beat Synchronization

“Dead-beat” synchronization, first introduced by De Angeli et al. [131], corresponds
to the situation in which the error between the drive and response systems converges to
zero in finite steps.

Grassi [132] studied the propagation of projective synchronization in a series connec-
tion of N chaotic discrete-time drive systems and N response systems. By exploiting an
observer-based approach, he demonstrated that dead-beat projective synchronization (i.e.,
exact synchronization in finite time for any scaling factor) is achieved between the nth
drive and nth response systems. In particular, he showed that projective synchronization
starts from the innermost (Nth) drive–response system pair and propagates toward the
outermost (first) drive–response system pair. He illustrated the propagation of different
types of chaos synchronization in a series connection consisting of three chaotic attractors:
the Gingerbread man map, the Lozi map and the generalized Hénon map.

The Gingerbread man map [133] (a conservative version of the Lozi map) is defined as[
x1,1(k + 1)
x1,2(k + 1)

]
=

[
0 − 1
1 0

][
x1,1(k)
x1,2(k)

]
+

[
1
0

]
|x1,1(k)|+

[
1
0

]
+

[
0
1

]
ε1 ϕ1(k). (98)

The Hénon map is generalized as follows: x2,1(k + 1)
x2,2(k + 1)
x2,3(k + 1)

 =

 0 0 − 0.1
1 0 0
0 1 0


 x2,1(k)

x2,2(k)
x2,3(k)

+

 1
0
0

(x2,2(k))
2 +

 1.76
0
0

+

 −1
0
1

ε1 ϕ2(k). (99)

and the Lozi map for a = 1.4 and b = 0.3 is[
x3,1(k + 1)
x3,2(k + 1)

]
=

[
0 1

0.3 0

][
x3,1(k)
x3,2(k)

]
+

[
−1.4

0

]
|x3,1(k)|+

[
1
0

]
+

[
−1.4

0

]
ε3 ϕ3(k), (100)

where ϕ1 is an arbitrary perturbation

ϕ2(k) = |x1,1(k)|+ [0 − 1][x1,1(k) x1,2(k)]
T + ε1 ϕ1(k)

and
ϕ3(k) = (x2,2(k))

2 + [0 0 1][x2,1(k) x2,2(k) x2,3(k)]
T + ε2 ϕ2(k).

Synchronization was obtained after few iterations.
In [134], Lian et al. analyzed various scalar coupling signals with several classical

chaotic attractors (Logistic, Hénon, Lozi, etc.) to show that the connected systems achieve
dead-beat synchronization.

7.1.3. Impulsive Synchronization

In the case of two coupled attractors, Zheng, Nian, and Liu [135] presented a theorem
on impulsive synchronization using synchronization impulses with varying impulse inter-
vals. As an example and application of the theorem, they derived sufficient conditions for
the synchronization of two chaotic Lozi maps via impulse control.
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Letting wT
n = (xn, yn), they rewrote (88) in the following matrix form:

wn+1 = Awn + Φ(wn), (101)

where

A =

(
0 b
1 0

)
, Φ(wn) =

(
1− a|xn|
0

)
.

In the impulsive synchronization configuration, the master system is provided by
(101) and the slave system is provided by the following impulsive equation:{

ŵn+1 = Aŵn + Φ(ŵn), n 6= ni,
∆ŵni = ŵn+

i
− ŵn−i

= −Ben−i
= −Ben, n = ni, i = 1, 2, . . . (102)

where B is a 2× 2 synchronization matrix and en = wn − ŵn = (xn − x̂n, yn − ŷn) is the
synchronization error.

They proved the following theorem to guarantee that the impulsive synchronization
of the Lozi maps is asymptotically stable.

Theorem 4 ([135]). Let d be the largest eigenvalue of (I + BT)(I + B), where B is a 2 × 2
synchronization matrix and I denotes the 2× 2 identity matrix. We assume that the impulse are
equidistant from each other and are separated by an integer ∆ if there exists an r > 1 such that

0 ≤ ln(1 + a) ≤ − 1
2∆

ln(rd); (103)

Then, the impulsive synchronization of the two Lozi maps provided in (102) is asymptotically stable.

In addition, they carried out a number of numerical simulations to illustrate this theorem.
Zhang and Jiang [136] generalized the impulsive synchronization method and illus-

trated it using Hénon and Lozi maps.

7.1.4. Fuzzy Synchronization

Another kind of synchronization involves using a fuzzy model-based adaptive ap-
proach to synchronize two different discrete-time chaotic systems. In [137], Vasegh and
Majd considered a Takagi–Sugeno (TS) fuzzy model (see Section 4.1.1) employed to rep-
resent a chaotic drive and response system. As the parameters of the drive system are
assumed to be unknown, an adaptive law was derived to estimate its unknown parame-
ters. They proposed a control law to stabilize the error dynamics. This design procedure
was illustrated using the two examples of the Lozi and Hénon maps to demonstrate the
effectiveness of the proposed methodology.

They defined the Lozi fuzzy model as

y(k + 1) = −A|y(k)|+ By(k− 1) + C + Du(k) (104)

and chose two membership functions

µ1y(k) =
sign(y(k))

d
, µ2y(k) = 1− sign(y(k))

d
, (105)

where d is a large enough constant to cover the range of the output. This model can be
expressed as follows:

• Rule 1: If y(k) is µ1, then y(k + 1) = a11y(k) + a12y(k− 1) + b1u(k) + c1ξ(k)
• Rule 2: If y(k) is µ2, then y(k + 1) = a21y(k) + a22y(k− 1) + b2u(k) + c2ξ(k)

with the following parameters: a11 = −Ad, a21 = 0, a12 = a22 = B, b1 = b2 = D,
c1 = c2 = C, and ξ(k) = 1.
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For two different chaotic systems where one is used as the drive system and the other
as the response system, the task of synchronization is to force the trajectory of the response
system to become identical to that of the drive system, where the response system receives
the driving signals from the drive system. Vasegh and Majd looked into this problem for
uncertain chaotic systems and proved several theorems. As an illustrative example, they
considered the Hénon fuzzy map as a drive system with the numerical values

y(k + 1) = −y(k)2 + 0.3y(k− 1) + 1.4, (106)

which was modeled using fuzzy rules similar to the above rules used for the Lozi map,
with the membership functions

µ1y(k) = 0.5
(

1− y(k)
d

)
, µ2y(k) = 0.5

(
1 +

y(k)
d

)
, (107)

and parameters a11 = −a12 = Ad, a12 = a22 = B, b1 = b2 = D, c1 = c2 = C, and ξ(k) = 1.
The Lozi fuzzy map was used as the response system with the following fixed

parameter values:
x(k + 1) = −1.8|x(k)|+ 0.4x(k− 1) + 1. (108)

The simulation results showed the effectiveness of the proposed method.

7.1.5. Chaotic Synchronization

Dmitriev et al. [138] considered a synchronization scheme for two-dimensional
maps that is based on transmission of information about the state of drive system by
unidirectional coupling.

In the proposed scheme (see Figure 3 of [138]), the signal xn produced by iteration of
the Lozi map is transformed by a two-level quantizer (threshold device) into a symbolic
sequence Xn = sign(xn), i.e., into −1 if xn < 0 and into +1 if xn ≥ 0. Then, this binary
signal is sent through the channel, where it is corrupted by noise (zn = Xn + wn). The
quantizer transforms it back to the binary signal X̂n = sign(zn). The±1 values of the binary
sequence correspond to the symbols L and R of the symbolic sequence. This symbolic
sequence is used in the reconstruction block to restore the chaotic sequence. Thus, in the
absence of noise, the chaotic sequence reconstructed with a high precision is fed to the
input of the response system (or an estimate of this chaotic sequence if there is noise).

The reconstruction algorithm provided by Dmitriev et al. is defined as follows.
For a given symbolic sequence X1, . . . , Xn, . . . , Xn+k, . . . , XN , where Xk ∈ {−1, 1}: N

is the number of elements in the sequence, it is possible to evaluate |xn| at the first step for
all elements other than the first and the last (i.e., for n = 2, . . . , N − 1) in the following way:

x1
n = Xn

∣∣∣x1
n

∣∣∣ = Xn

∣∣∣∣α− 1
α
− 1

α
Xn+1 +

β

α
Xn−1

∣∣∣∣. (109)

The elements of the symbolic sequence are used at this stage as an initial approximation
for the estimate. At the ith step of the procedure, the estimates obtained at the previous
(i− 1)th step are used:

xi
n = Xn

∣∣∣xi
n

∣∣∣ = Xn

∣∣∣∣α− 1
α
− 1

α
xi−1

n+1 +
β

α
xi−1

n−1

∣∣∣∣, (110)

where n = 2, . . . , N− 1. The process is complete when the difference between the estimates
of xi in the ith and i + 1th iterations is less then some small ε.

It has been shown that in order to achieve synchronization of both hyperbolic and
non-hyperbolic maps it is sufficient to transmit information contained in the chaotic se-
quence and then utilize this information to reconstruct the chaotic sequence. The precision
of reconstruction depends on the length of the sequence and the number of elements
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of the symbolic sequence that are directly used to reconstruct the chaotic sample. The
reconstructed sequence of samples ensures high-quality synchronization of drive and
response systems.

It has been shown that the necessary amount of information that must be delivered to
the response system is determined by the rate of information production by the dynamical
system. When this threshold is increased, however, arbitrarily precise synchronization can
be achieved. The only price to pay for this is increased complexity of the reconstruction
algorithm and delay of the reconstructed signal. This is contrary to the common belief that
the synchronization error necessarily monotonically increases with the noise.

Another method based on evolutionary optimization, called the Tribes optimization
approach, was used by Coelho and Bernert [139] for synchronization of two identical
discrete chaotic systems subject to different initial conditions. The Tribes algorithm, first
introduced by Clerc [140], is an adaptive and robust parameter searching technique. More-
over, Tribes is a parameter-free particle swarm system paradigm in which the population
is divided in subpopulations that each maintaining their own order and structure. The
Tribes algorithm is inspired by the social behavior of bird flocking, and is an adaptive
optimization procedure that does not require sociometric or swarm size parameter tuning.

Coelho and Bernert evaluated the classical Tribes, MTribes (a modified Tribes opti-
mization algorithm based on truncated chaotic Zaslavskii map), and PSO approaches (see
Section 4.1.2) to tune PID controller gains in a synchronization application of two Lozi
systems with different initial conditions.

The principles of Tribes are [139]:

(i) The swarm is divided in tribes, and each particle belongs to a single tribe
(ii) Initially, the swarm is composed of only one particle
(iii) Particles are added or removed according to tribes’ behaviors
(iv) Displacement strategies are adapted according to the performance of the particles

“Good” tribes may benefit from removal of their weakest member, as they already
possess good problem solutions and may be able to afford to reduce their population; “bad”
tribes, on the other hand, may benefit from the addition of a new member, as this increases
the possibility of improvement. New particles are randomly generated.

MTribes uses a truncated chaotic Zaslavskii map{
wn = mod[wn−1 + v + azn] (1),
zn = cos(2πwn−1) + e−rzn−1,

(111)

where n is the sample and mod is the modulus after division by 1. The Zaslavskii map
shows a strange attractor with the largest Lyapunov exponent for v = 400, r = 3, and
a = 12.6695. In this case, the values of zn ∈ [−1.0512, 1.0512]. The choice of the chaotic
Zaslavskii map in the MTribes design is justified theoretically by its unpredictability, i.e.,
by its spread-spectrum characteristic and large Lyapunov exponent.

Simulation results based on synchronization of two Lozi systems (with a = 1.7 and
b = 0.5) with different initial value conditions have demonstrated the effectiveness and
efficiency of the proposed MTribes method.

7.1.6. Synchronization of Complex Fractional Lozi Maps
Joshi et al. [42] studied the synchronization of complex fractional-ordered Lozi maps

(see Section 2.5.3). They defined a system of two symmetrically coupled maps
f (n) = 1− a|x(n)|+ bx(n− 1),
g(n) = 1− a|y(n)|+ by(n− 1),
x(n) = x(0) + 1

Γ(ν) ∑n
j=1

Γ(n−j+ν)
Γ(n−j+1) [(1− ε) f (j− 1) + εg(j− 1)− x(j− 1)],

y(n) = y(0) + 1
Γ(ν) ∑n

j=1
Γ(n−j+ν)
Γ(n−j+1) [(1− ε)g(j− 1) + ε f (j− 1)− y(j− 1)].

(112)

For this, they found numerically that there is a significant range over which synchro-
nized chaos is observed with positive coupling for r = 0.01, where ν = ν0eirπ/2 with
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0 < ν0 < 1 (see Section 2.5.3). In addition, they found a significant range over which
Re(x(t)− y(t)) −→ 0 (with the imaginary part going to zero as well). They demonstrated
synchronization in a detailed manner for a = 1.4 and noted that synchronization is ob-
served for stronger coupling. Even for weaker couplings, certain correlations are seen.
They expressed Re(y(t)) as a function of Re(x(t)) after discarding transients for ε = 0.05
and ε = 0.02.

Furthermore, they observed many other relationships between the variables x and y
which we do not report due to the limited extent of this survey.

7.1.7. Synchronization of Globally Coupled Maps

Roy and Acharyya [141] considered a network of Lozi maps periodically synchronized
by the periodic variation of one of the parameters. Interestingly, it was observed that, due
to the variation of the parameter with time, the transition from a desynchronized state to a
synchronized state occurs at lower values of the global coupling strength.

The system transition to the synchronized state in globally coupled Lozi maps under
parametric excitation can provide a better way to achieve the synchronized state in the case
of various natural and well known examples of synchronizing systems.

The global coupling in the Lozi maps (3){
xt+1 = 1− a(t)|xt|+ yt ≡ f (xt, yt),
yt+1 = bxt,

(113)

is introduced by the term εht, and is described by the equation{
xi

t+1 = (1− ε) f (xi
t, yi

t) + εht
yi

t+1 = bxi
t,

(114)

where

ht =
1
N

N

∑
j=1

f (xj
t, yj

t). (115)

Here, the parameter ε represents the strength of the global coupling of the maps, xi
t

and yi
t are the values of the state variables at the ith lattice point i = (1, 2, . . . , N) at discrete

time t, and the parameter ε represents the strength of the global coupling of the maps.
Synchronization in this system of equations at iterate n arises when

(xi
n, yi

n) = (xj
n, yj

n), ∀(i, j). Note that synchronization of the x variable implies synchroniza-
tion of the y variable.

Note that in a previous work Cano and Cosenza studied the behavior of a large
number (N = 1000) of globally coupled Lozi maps when the parameter a of the Lozi maps
remains constant over time [142]. They observed four desynchronized states, chimeras (see
Section 7.2), clusters, and synchronized states in increasing order of the coupling strength ε.
Although the parameters a and b of the map were chosen such that the individual mapping
was in the chaotic range, depending on the strength of the global coupling parameter ε the
behavior of the equilibrium state will be one of four states.

Roy and Acharyya, instead, were only interested in observing how the synchroniza-
tion of globally coupled Lozi maps changes when time dependence of the parameter
is introduced.

Time dependence of the parameter a(t) is introduced by considering periodically
kicked a(t) of time period T, i.e., a(t) varies with time as follows:

a(t) = a2 always except at times, t = T, 2T, 3T, 4T, . . . , etc. when a takes the value a2.
Therefore, the periodically kicked a(t) of time period (T) follows:

• a(t) = a2 at every t = nT
• a(t) = a1 otherwise

where n ∈ Z+, T ∈ Z+.
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The values of a1 and a2 were chosen such that the map was in the chaotic region for a1
and in the fixed point region for a2. Thus, the parameter a of the Lozi map was forced to
change its value from a1 = 1.4 to a2 = 1.0 after a regular interval of time.

They found that the transition from a desynchronized to a synchronized state changes
as the value of ε crosses εc from below, and that this change occurs at lower values of
coupling strength (εc) compared to the case of time-independent a. They observed that the
value of εc increases as the time period (T) of the periodically kicked a(t) increases and
approaches the value that corresponds to the value of constant a1 = 1.4.

7.2. Chimeras

In addition to the general synchronization presented above, the Lozi map can be used
to construct networks of chaotic attractors, either alone or with the Hénon map, which
present unusual behaviors such as chimera and solitary states.

In networks of chaotic attractors, chimeras consist of the coexistence of one or more
clusters and a subset of desynchronized elements. In 2020, Parastesh et al. wrote a survey
on chimeras [143]. In this section, we include more recent results.

It is important to note that chimeras are not easy to find. In 2015 and 2016,
Semenova et al. [144,145] studied the following network of Lozi maps:{

xi
n+1 = f (xi

n, yi
n) +

σ
2P ∑

j=i+P
j=i−P

[
f (xj

n, yj
n)− f (xi

n, yi
n)
]
, i = 1, 2, . . . , N,

yi
n+1 = bxi

n,
(116)

with
f (xn, yn) = 1− a|xn|+ yn, (117)

where N is the number of elements in the ensemble of coupled equations. The nonlocal
coupling is characterized by the coupling strength σ, number of neighbours 2P (P neighbors
on the either side of the ith element), and coupling range r = P/N.

They hypothesized that chimeric states can be obtained only in networks of chaotic
non-hyperbolic systems, and are not found in networks of hyperbolic systems such as (116).
This hypothesis was supported by their numerical simulations.

However, they revisited this hypothesis later and found it to be wrong due to insuffi-
cient previous simulations (see Section 7.3.1).

As mentioned above, in 2017 Cano and Cosenza [142] considered the autonomous
system of globally coupled Lozi maps described by Equations (113) and (114), with a(t)
remaining constant a: {

xi
n+1 = (1− ε) f (xi

n, yi
n) + εhn,

yi
n+1 = bxi

n,
(118)

with f defined by (117) and

hn =
1
N

N

∑
j=1

f (xi
n, yi

n). (119)

In addition to synchronization, they observed the following collective states in this
globally coupled system:

(i) Clustering: a dynamical cluster is defined as a subset of elements that are synchronized
among themselves. In a clustered state, the elements in the system segregate into K
distinct subsets that evolve in time, i.e., xi

n = xj
n = Xν

n, ∀(i, j) in the υth cluster with
ν = 1, . . . , K.

(ii) A chimeric state consists of the coexistence of one or more clusters and a subset of
desynchronized elements.

(iii) A desynchronized or incoherent state occurs when xi
n 6= xj

n, ∀(i, j).
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They considered the system of nonlocally coupled Lozi maps described by{
xi

n+1 = (1− ε) f (xi
n, yi

n) + εhi
n,

yi
n+1 = bxi

n,
(120)

with

hi
n =

1
2k

j=i+k

∑
j=i−k

[
f (xi

n, yi
n)− f (xj

n, yj
n)
]
, (121)

where the elements i = 1, . . . , N are located on a ring with periodic boundary conditions, ε
is the coupling parameter, k is the number of neighbors coupled on either side of site i, and
hi

n is the local field acting on element i.
The presence of chimeric states in globally coupled networks of identical oscillators at

first seemed counterintuitive because of the perfect symmetry of such a system. However,
such networks are among the simplest extended systems that can exhibit chimeric behavior.
Cano and Cosenza identified that the presence of global interactions can indeed allow
for the emergence of chimera states in networks of coupled elements possessing chaotic
hyperbolic attractors (such as Lozi maps) in cases where such states do not form with
local interactions.

Both chimeras and clusters can be interpreted as manifestations of the multistability of
the resulting drive–response dynamics at the local level in systems with global interactions.
The above-mentioned results suggest that chimeric states, as with other collective behaviors,
arise from the interplay between the local dynamics and the network topology, and that
either ingredient can prevent or induce its occurrence.

Other example of chimeric states have been exhibited by Anishchenko et al. [146], who
numerically explored the dynamics of two coupled one-dimensional ensembles, namely, an
ensemble of Hénon maps and an ensemble of Lozi maps. Both networks were considered
under conditions of nonlocal coupling. The ensemble of Lozi maps was characterized by a
hyperbolic attractor of the individual elements, while the ensemble of Hénon maps was
characterized by a non-hyperbolic attractor. They revealed the features involved in realizing
chimeric states in the coupled system, which were caused by the mutual influence of two
ensembles with fundamentally different dynamics without coupling (see Section 7.3.2 for a
presentation of these results).

7.3. Solitary States

In addition to chimeric states, solitary states exemplify another important type of
partial synchronization patterns. They are defined as network states for which a single
element or several elements behave differently compared with the majority of units, which
can either demonstrate coherent dynamics or be fully synchronized.

7.3.1. Existence of Solitary States

Semenova et al. [147], revisiting their previous work , studied (116).
They showed that the ensemble of nonlocally coupled Lozi maps demonstrates the

solitary state for specific values of the coupling parameters. Coupling changes the prop-
erties of partial elements and leads to the bistability, though the Lozi map does not have
this property in its uncoupled form. The emergence of solitary states is accompanied by a
second attracting set arising for the ensemble element.

Using a ring network of nonlocally coupled Lozi maps as an example,
Rybalova and Strelkova [148] explored the robustness of solitary states against heterogene-
ity in the parameters of the local dynamics or coupling strength. They found that if these
network parameters are continuously modulated by noise, then solitary states are sup-
pressed as the noise intensity increases. However, these states may persist in the case of
static randomly distributed system parameters for a wide range of the distribution width.
Domains of solitary state existence were constructed in the parameter plane of coupling
strength and noise intensity using a cross-correlation coefficient.
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They numerically studied the spatiotemporal dynamics of a one-dimensional ensemble
(a ring network) of nonlocally coupled discrete-time systems. This network is described by
the following system of equations, a generalization of (116):{

xn+1
i = F(xn

i , yn
i ) +

σn
i

2R ∑
j=i+P
j=i−P

[
F(xn

j , yn
j )− F(xn

i , yn
i ))
]
,

yn+1
i = G(xn

i , yn
i ),

(122)

where xn
i , yn

i are dynamical variables, i = 1, 2, . . . , N denotes the element number,
N = 1000 is the total number of elements in the ensemble, and n is the discrete time. The
local dynamics of every element i in the ring (122) are described by the two-dimensional
Lozi map {

F(xn
i , yn

i ) = 1− αn
i

∣∣xn
i

∣∣+ yn
i ,

G(xn
i , yn

i ) = βxn
i ,

(123)

where αn
i > 0 and β > 0 are the control parameters. The Lozi map demonstrates a

quasihyperbolic chaotic attractor which follows directly from a border-collision bifurcation
developed from a stable four-periodic orbit [10,12] and exists within the parameter range
α ∈ [1.3, 1.8]. In their simulations, Rybalova and Strelkova fixed β = 0.3 for all the
network elements.

The heterogeneities in the parameters αn
i and σn

i were realized using two independent
noise sources with a uniform distribution and a standard normal (Gaussian) distribution,
while noise-modulated parameters were determined by the following expressions:

αn
i = α0 + Dαξn

i , (124)

σn
i = σ0 + Dαξn

i , (125)

where α0 = 1.4 is the mean value of the local dynamics parameter, σ0 is the mean value
of the coupling strength, which was varied in the numerical experiments, ξn

i is a noise
generator with a uniform distribution in the interval [−1, 1], and D is the noise intensity
(i.e., the width of the interval within which random source values are distributed).

Calculations were performed for fifty different realizations of the initial conditions x0
i

and y0
i randomly distributed in the interval [−0.5, 0.5]. For each set of initial conditions,

different uniform noise realizations were used for parameter modulation or to realize an
inhomogeneous distribution of the system parameters. This allowed satisfactory statistical
data to be obtained.

They considered many different situations, including noise-modulated local dynamics
parameters, noise-modulated coupling strengths, the case of randomly distributed local
dynamics parameters, the case of randomly distributed coupling strengths, and localized
inhomogeneity of the network parameters.

Their findings provide insights into the influence of noise-modulated parameters
on the existence and robustness of solitary states, and show the possibilities of con-
trolling them (either by suppression or inducement and persistence) by introducing
parameter inhomogeneities.

7.3.2. Solitary State Chimeras

Solitary states can additionally be found in the unexpected form of solitary state
chimeras (SSC).

Rybalova et al. [149] showed that this chimeric state can appear in a two-layer network
of nonlocally coupled nonlinear chaotic maps. One of the coupled networks represents
a ring of nonlocally coupled Lozi maps that individually shows a special spatiotemporal
pattern, called the solitary state, when there is no coupling between the subnetworks. The
authors analyzed the bifurcation mechanism of the solitary state appearance in the network
of coupled Lozi maps, showing that this particular state is responsible for the formation of
the solitary state chimera in the two-layer network.
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They first considered the single-layer network (116) with N = 1000. Their numerical
studies showed that the solitary state’s emergence is related to the structural changes in
the chaotic attractor of the individual elements in this ensemble. In turn, these changes are
caused by the impact of the 2P nodes which the solitary state oscillator is coupled with. It
can be argued that the solitary state regime is related to the formation of a new attractor
in the phase space, which the network oscillators can reach (or not) depending on their
initial conditions.

Their numerical simulations revealed the mechanism of solitary state appearance in
a ring of nonlocally coupled Lozi maps (116). It was shown that the nonlocal coupling
induces the bistability mode in the individual nodes, at which two chaotic attractors
with different basins of attraction co-exist in the phase space of this network. The first
attractor corresponds to the Lozi attractor in the individual element without coupling. The
second attractor emerges only in the presence of nonlocal coupling; thus, it promotes the
appearance of solitary states. Randomly chosen initial conditions provide the possibility of
the initial states of a group of oscillators belonging to the basin of attraction of the second
attractor; in this way, solitary state regimes can be realized.

Next, they considered a complex system consisting of three coupled rings of nonlocally
coupled chaotic maps. This multilayer network is described by the following equations:

xi
n+1 = f (xi

n, yi
n) +

σ1
2P ∑

j=i+P
j=i−P

[
f (xj

n, yj
n)− f (xi

n, yi
n)
]
+ γ1Fi

n,

yi
n+1 = bxi

n,

ui
n+1 = f (ui

n, vi
n) +

σ2
2R ∑

j=i+R
j=i−R

[
f (uj

n, vj
n)− f (ui

n, vi
n)
]
+ γ2Gi

n,

vi
n+1 = bxi

n,

zi
n+1 = f (zi

n, si
n) +

σ3
2T ∑

j=i+T
j=i−T

[
f (zj

n, sj
n)− f (zi

n, si
n)
]
+ γ3Hi

n,

si
n+1 = bxi

n,

(126)

The first system of equations in (126) specifies a ring network of nonlocally coupled
Hénon maps

f (xn, yn) = 1− ax2
n + yn, (127)

with a = 1.4, b = 0.3, σ1 = 0.72, and P = 320. The second pair of equations corresponds to
the ring of nonlocally coupled Lozi maps (with f defined by (117)) and was analyzed for
a = 1.4, b = 0.3, σ2 = 0.206, and R = 180. The third pair of equations determines the ring
of nonlocally coupled Hénon maps with a = 1.4, b = 0.3, σ1 = 0.295, and T = 320.

The first two rings are coupled inertially via the coupling functions Fi
n = −Gi

n =
ui

n − xi
n with the coupling coefficients γ1 and γ2. The third ring node is connected unidirec-

tionally to the first ring units by the coupling term γ3Hi
n, where

Hi
n = f (xi

n, yi
n)− f (zi

n, si
n), (128)

defines the diffusive coupling with coupling coefficient γ3. The coupling parameters
σ1,2,3 and P, R, T have the same meaning as in the description of system (116). The initial
conditions were chosen to be randomly distributed in the interval [−0.5, 0] for all the
variables of the network (126).

Using numerical simulations, the authors demonstrated that a network of two sym-
metrically coupled ensembles of Hénon and Lozi maps can show a novel type of chimeric
state, namely, a solitary state chimera (SSC), when the coupling between them is weak. This
special structure emerges in the case of a Lozi ensemble that exhibits a developed regime of
solitary states. The SSC is fairly stable, and is observed within a finite range of parameter
variation. If the two-layer network of nonlocally coupled Hénon and Lozi maps in the
solitary state chimera is unidirectionally coupled to the third ring of nonlocally coupled
Hénon maps, then the effect of external synchronization can be observed in a finite range
of the coupling coefficient γ3.
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These results were preceded by studies by Buckh et al. [150] (from the same group of re-
searchers around Vadim Anishchenko at Saratov University) and by Anishenko et al. [146].
These studies investigated a complex system with only two coupled rings of nonlocally
coupled chaotic maps (one ring of coupled Hénon maps and one ring of coupled Lozi
maps) presenting SSCs. These SSCs are characterized by the coexistence of an incoherence
cluster with uncorrelated chaotic oscillations of the cluster elements and a coherence cluster
with synchronous chaotic oscillations. Additionally, these authors constructed the region of
synchronization for a selected spatiotemporal structure in the plane of coupling parameters
of the network under study; their results provide corroboration of the fact that the effect of
synchronization is realized in double-layer systems.

In [151], Rybalova et al. further studied the model of three coupled rings from [149]
by permuting the rings of attractors. They studied a Hénon–Lozi–Hénon system and a
Lozi–Hénon–Lozi system, concluding that complete synchronization does not occur in
the Hénon–Lozi–Hénon network. Instead, complete synchronization takes place in the
Lozi–Hénon–Lozi network for almost the whole range of the intralayer coupling σ2, starting
with its very small value when the elements in the relay layer are almost desynchronized.

7.3.3. Noise Induced and Controlled Chimera

In [152], Rybalova et al. studied (116) in more detail, establishing that the SSC regime
can be induced by multiplicative noise

σ = σ0(1 +
√

2Dξ i), (129)

introduced into the nonlocal coupling coefficient of this network, where ξ i is a random
process distributed uniformly in the interval [−1, 1] and D is the noise intensity.

In this case, bistability emerges in the phase space of each individual oscillator. Be-
cause the initial conditions are set randomly for all the ensemble elements, the appearance
of solitary states and SSCs becomes possible. However, their detailed studies showed that
bistability can be caused by both the noise perturbation and by the signals from P neigh-
boring oscillators on each individual oscillator of the ensemble (the second term in (116)).

More importantly, they established that the structure of the basins of attraction essen-
tially depends on how far the ensemble oscillator in the solitary state regime is located from
the phase chimera. The basin of attraction of the attractor corresponding to the solitary state
regime gradually narrows as the distance between this oscillator and the phase chimera
grows. Moreover, when an amplitude chimera exists in the considered network, the rid-
dling effect takes place, which increases the probability of switching the phase trajectories
into the solitary state and the SSC. The fact that the basins of attraction for the SSC decrease
with the distance from the SSC cluster explains the existence of a finite incoherence cluster
in space.

Instead of multiplicative noise, Rybalova et al. [153] numerically studied the spa-
tiotemporal dynamics of ring networks of coupled discrete-time systems in the presence
of additive noise. They explored the robustness of chimeric states with respect to noise
perturbations for two ensembles in which the individual elements are described by either
logistic maps or Hénon maps in the chaotic regime. The influence of noise on the behavior
of solitary states was investigated for a ring of nonlocally coupled Lozi maps{

xi
n+1 = f (xi

n, yi
n) +

σ
2P ∑

j=i+P
j=i−P

[
f (xj

n, yj
n)− f (xi

n, yi
n)
]
+ Dξ i

n, i = 1, 2, . . . , N,

yi
n+1 = bxi

n,
(130)

where ξ i
n is a random process distributed uniformly in the interval [−1, 1] and D is the

noise intensity.
Numerical simulations were performed for a set of different noise realizations and

random initial conditions to provide reliable statistical data. The type of dynamics of the
considered networks was quantified using a cross-correlation coefficient. They found that
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there is a finite and sufficiently wide region with respect to the coupling strength and the
noise intensity in which the probability of observing chimeras and solitary states is high.

7.4. Cellular Neural Networks

In 1988, L.O. Chua introduced the concept of Cellular Neural Networks [154]. Similar
to other neural networks, these are large-scale nonlinear analog circuits that process signals
in real time.

Similar to cellular automata, they are made up of a massive aggregation of regularly-
spaced circuit clones (called cells) which communicate directly which each other only
through their nearest neighbors. Each cell consists of a linear capacitor, a nonlinear voltage-
controlled current source, and a few resistive linear circuit elements.

Such neural networks are uniquely suited for high-speed parallel signal processing.
Applications of cellular neural networks in areas such as image processing and pattern
recognition have been demonstrated [155].

In [156], Chang and Juang considered the following generalized version of the Lozi
map which arises in the study of the complexity of a set of bounded stable stationary
solutions of one-dimensional cellular neural networks:

T(x, y) = (y, F(y)− bx), (131)

with

F (y) =

 a1y + a0 − a1 + c1 i f y ≥ 1,
a0y + c1 i f |y| ≤ 1,
a−1y + a−1 − a0 + c1 i f y ≤ −1.

. (132)

Here, a0 < 0, a1, a1 > 1, b > 0, and c1 ∈ R is a biased term.

They first proved a theorem which states that a semi-conjugate condition for T implies
the existence of a Smale horseshoe. Second, the theorem was applied to show the spatial
chaos of one-dimensional cellular neural networks.

In [157], they studied this map in more detail and provided results on its entropy in
the context of cellular neural networks.

8. Miscellaneous

As a complement to the principal applications of the Lozi chaotic map, a few other
miscellaneous applications can be mentioned.

8.1. The Use of the Lozi Map as a Benchmark

In certain cases, the Lozi map has been used as a benchmark to test numerical methods,
for example, in [158], in which the goal of Skrynnyke et al. was to demonstrate the
effectiveness of the cycle search averaged predictive control method on certain dynamical
systems widely referred to in technical reference sources. Their article demonstrated
the efficiency of the large-length cycle searching method based on the stabilization of
unstable and a priori unknown periodic orbits of these systems using several well-known
examples of discrete-time nonlinear systems. Research in this area has mainly focused on
Lozi systems.

As an example, they computed two different cycles of period 1001 and one cycle of
period 1111 for a = 1.7 and b = 0.5.

They suggested that the proposed algorithm with the phenomenological rule of the
choice of control parameter makes it possible to hope for the possibility of finding a large
number of giga- and even tera-cycles.

In [159], Shang et al. proposed a Multi-Dimensional Scaling (MDS) method based on
the Complexity-Invariant Distance (CID) and Generalized Complexity-Invariant Distance
(GCID) to analyze and classify complex time series such as traffic signals and financial
stock indexes.
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Shang et al. adopted a new method for measuring dissimilarity called the CID along
with an advanced version called the GCID. Both methods were applied in MDS for the
classification of time series, including artificial and real-world time series. First, in order to
test the efficiency of the MDS method based on CID and GCID, they used three types of
artificial time series: the α map model, the 2D Hénon map model, and the Lozi map model
(with a = 0.95 and b = 0.12 for the first pair of parameters and a = 1.0, b = 0.14 for the
second), which they used to observe the spatial distributions created by the MDS with the
CID and GCID and examine their plausibility by calculating the stress. Additionally, three
more sets of artificial time series were created with longer data length to demonstrate that
their method is not likely to be affected by data length.

Jacob et al. [160] proposed a novel measure of degree heterogeneity for unweighted
and undirected complex networks which requires only the degree distribution of the
network for its computation. They showed that the proposed measure can be applied to all
types of network topology with ease and that it increases with the diversity of the node
degrees in the network.

As a specific application, they showed that the proposed measure can be used to
compare the heterogeneity of recurrence networks constructed from time series of sev-
eral low-dimensional chaotic attractors, thereby providing a single index to compare the
structural complexity of chaotic attractors.

They compared the Lorenz, Rössler, and Duffing continuous attractors and the Hénon,
Lozi, and Cat maps.

Their results indicated that the Lorenz attractor is the most structurally complex
among the continuous systems, while in the case of two-dimensional discrete systems the
Lozi attractor is the most diverse in terms of probability density variations.

In [161], Amigo and Kennel showed that the topological permutation entropy rate
(h∗top( f )) for expansive maps equals the conventional topological entropy rate (htop( f ))
from symbolic dynamics. After providing rigorous theoretical proofs of this equality, they
sought to check it numerically. This task was found to be quite difficult; they stated that
“Estimation of topological entropies from naive numerical simulation of long orbits is
notoriously difficult. Metric entropy by itself can be quite tricky and difficult, requiring
very long data sets for increasing L (the number of the joints distributions of a finite-state
stochastic process), but topological entropy is worse yet, because it weights each pattern
equally. This means that patterns which are exceptionally infrequent on the natural measure
of the attractor can still have a significant influence on the result. Attempting to estimate
the same quantities using empirical occurrences of order patterns is even more difficult,
requiring more data than would a good, low-alphabet generating partition for ordinary
symbolic dynamics.”

As such, they found that the Lozi map is the only known map that satisfies all of the
following criteria: a continuous system in more than one dimension, with a natural chaotic
attractor, and with a topological entropy that can be found by independent rigorous means,
for which there exist parameter values with reasonably low entropies.

In particular, they observed that a = 6/5 and b = −2/15 yield a low-entropy chaotic
attractor (roughly 0.3 bits/iteration) and that the topological entropy for these parameters
can be bounded rigorously via computer-assisted analytical computations. After defining
clever strategies to compute (h∗top(La,b)) and (htop(La,b)) for these values, their numerical
simulations conformed to the proven theorems.

Meckler [162] proposed an algorithm to allow automatic calculation of D2, the correla-
tion dimension of reconstructed attractor of Electroencephalogram (EEG), and processing
of large accumulations of experimental data. This algorithm was adopted for EEG signals
specifically. The algorithm was tested on the Tent, Lozi, and Hénon maps and on the
Rössler and Lorenz attractors.

Yan and Duan [163], working in the domain of Intelligent Transportation Systems (ITS),
proposed a novel co-evolutionary Artificial Bee Colony (ABC) algorithm improved by the
Differential Evolution (DE) optimization algorithm combined with a traffic flow prediction
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model trained by an Extreme Learning Machine (ELM) neural network. Accurate and
rapid short-term traffic flow prediction is important to the performance of many advanced
applications of Intelligent Transportation Systems (ITS). Forecasting results can help road
users to find better travel routes, reduce traffic congestion, and improve the capacity of
existing road networks.

The proposed algorithm inherited the better generalization performance and lower
training time consumption of the standard ELM, achieved a more balanced search strategy
with the optimized weights and biases to overcome the random initialization deficiency
of the typical ELM, and successfully obtained higher prediction accuracy compared to
state-of-the-art methods.

To verify the efficiency of the proposed algorithm, the authors applied it to Lozi and
Tent chaotic time series simulations, and measured traffic flow time series experiments; their
simulation and experimental results demonstrated that the proposed model has superior
performance and competitive computational efficiency.

8.2. Economy

Tang et al. [164] carried out an analysis of Parrondo’s game with different chaotic
switching strategies. The performance on Parrondo’s game was compared with random
and periodic switching strategies. The main idea of Parrondo’s paradox, first presented in
1996, is that two individually losing games can be combined to win via deterministic or
non-deterministic mixing of the games [165]. In [164], a fair way to compare random and
chaotic Parrondo’s games was generalized. The logistic, tent, sinusoidal, and Gaussian 1D
maps were considered together with the Hénon and Lozi maps.

To play a chaotic Parrondo’s game where one of these chaotic generator is chosen,
consider a sequence generated from an initial value. Then, every nth iterate of such a
sequence determines whether Game A or Game B is played. Of course, the outcomes of
Parrondo’s game is affected by the different switching strategies applied and the chosen
initial value. The relative proportions of Games A and B should be equal for all switching
strategies in a fair comparison.

In conclusion, the authors found that a chaotic Parondo’s game can provide a higher
rate of winning compared to random switching strategies.

This result recalls the remark made by Caponetto et al. in [56] (see Section 4) that
chaotic sequences can improve the performance of evolutionary algorithms compared to
random sequences.

8.3. Education

Surprisingly, chaotic attractors can be involved in new education methods, as demon-
strated by the following example. Al-Hilli [166] studied the use of software and technology
to solve mathematics problems in order to speed up the learning process. She investigated
a case study in which the dynamic properties that lead to transformations into chaos were
studied, including the point of resistance and the points of proximity. She focused on
studying the Lozi map (3), highlighting simple properties such as the sensitive dependence
on initial conditions. She discussed solving this problem by applying Matlab software to
vary the initial points and parameter values and display the resulting graphs. Due to the
simple definition of this map, it can be easily understood by students with even a low level
of mathematics.

The subjects of study were 88 primary school teachers in Baghdad who were studying
in the second semester. A questionnaire developed by the researcher was used to collect
the required information. It contained 24 closed-ended questions in the domain of the five
studied variables, including attitude change, reasoning, and creativity (with five questions
each) and fixation (with four questions).

The results showed that the use of information and communication technology is
effective in changing students’ attitudes towards mathematics. Thus, it was shown that the
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students learning and teaching efficacy can be increased by about 20% percent for the solved
case study in Matlab software compared to conventional teaching and learning systems.

9. Conclusions

This article is a review of applications of the two-dimensional piece-wise linear chaotic
Lozi map developed over the four last decades. These applications concern many areas
(cryptography, electronic devices, memristors, optimization, synchronization, secure com-
munications, AI with swarm intelligence, chimeras, solitary states, and more). As new
applications have been regularly discovered at an accelerated pace over the last decade,
there was a need to render them more easily accessible, which is the goal of this survey.

The Lozi map was initially discovered in the limited context of chaotic dynamical
systems as they existed in the 1970s, when it was used as a toy model to rigorously prove the
existence of a strange (and chaotic) attractor for plane mapping, which seemed inaccessible
for the Hénon map. When I first began to study this model in June 1977, (without, of
course all of the modern mathematical tools developed since then), I was convinced that
a few weeks would be enough to explain the structure of such an attractor, as it was
basically composed of line segments. However, the task turned out to be more difficult
than I expected, mainly because unlike Michal Misiurewicz, I did not limit the range of the
parameter values for the study. Following Misiurewicz’s work, hundreds of papers were
published on countless aspects of this chaotic attractor.

Today, if we go back to the late 1970s, life was very different from now in many ways.
There were no personal computers (Michel Hénon used one of the only two computers at
the University of Nice, an IBM 7040, to plot the figure of his original paper), no internet,
and no mobile phones. Communications between researchers took place through slow
post office mail and air travel was very expensive, limiting in-person contact between
researchers. Technological advancements over the past fifty years have been spectacular in
all aspects of life. It took almost my entire professional life as a mathematician to see the
results I expected to be published in a few weeks.

However, amazingly, I was able to see the great unity of mathematics over these
decades. For example, since 1975, when I was a young associate professor, I have been dis-
appointed for years in the search for a classical global optimization algorithm able to avoid
pseudo-minima. It is funny to notice how the map I introduced for a completely different
purpose is now commonly used to solve this problem through a metaheuristic algorithms.

Thus, it is difficult to predict what the next areas of application of this map will
be in the future. Perhaps in the field of biological and medical sciences, where research
using chaos seems promising? Perhaps more advances are coming in control theory and
cryptography? It can be observed that the Lozi map belongs to the class of chaotic and
hyperchaotic systems which possess Input-to-State Stability (ISS)-like features. These
systems are now involved in this field (see [167]).

With new applications being regularly discovered at an accelerated pace over the past
decade, there is no reason to think that this phenomenon will stop.
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