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Feasibility Study of Upper Limb
Control Method Based on
EMG-Angle Relation
The paper describes the method of predicting the angular position of the human upper
limb using EMG signals. A neural network with fuzzy logic was used for this purpose.
The main goal of the work, namely to demonstrate that a neural network with fuzzy logic
is a useful tool for predicting motion based on EMG signals, has been completed. Two
EMG signals from those muscles of the human arm that show the greatest activity during
the load lifting are used. When determining the driving torques, the differences between
the intended and the actual angular position are taken into account, and a simplified
dynamics model was used for the calculations. In order to validate the method, the actual
and predicted angles are compared and the differences between the moments determined
on the basis of anticipated angular positions and the moments provided by the OpenSim
simulator using real angular positions are examined.

Keywords: Hand prosthesis, thumb position, motion transmission, lateral and opposite
grasp.

1 Introduction
The electromyography (EMG) technique senses the electrical

activity which is the response to a nerve’s stimulation of the mus-
cle. The force developed by the muscle to some extent correlates
with EMG activation of the muscle however the activation patterns
of individual muscles vary with a lot of factors - i.e. the speed,
the load or the tiredness. The coordinated activity of antagonistic
muscles produces the movement. Most commonly EMG activity
is assessed with surface electrodes, but it should be noted that it
can only consider the muscle fibers, which are in close proximity
to the skin. The fundamental advantage of EMG sensing is such
that it allows to anticipate the motion before it is realized there-
fore the EMG signals are commonly used to control prostheses,
or exoskeletons. The difficulty is that the motion of each joint is
achieved by coordinated work of a lot of muscle groups and not
each of them can be accessed by sensors. Moreover the muscles can
actively only contract. Therefore the EMG based control methods
must apply the artificial intelligence methods to derive the relation
between the EMG and the intended movement. Some amount of
research is devoted to the estimation of angular positions based on
EMG activity. Au and Kirsch [1] had developed a time-delayed
artificial neural network that uses EMG signals from six groups
of elbow and shoulder muscles to predict the three movements
of the shoulder (horizontal flexion-extension, abduction-adduction
and internal-external rotation), as well as elbow flexion-extension.
Wang and Buchanan [2] devised an artificial network for quan-
tifying muscle activity using EMG signals. The state of the art
indicates that a lot of researchers are working on the methods de-
livering the EMG-forces or EMG-driving torques relation. Among
the numerous works it can be mentioned the following articles.
Koike and Kawato [3] reconstructed human arm movement in a
horizontal plane and estimated dynamic joint torques from sEMG
signals using a neural network model. Su et al. [4] exploited
a nonlinear regression model technique to define the relation be-
tween sEMG signals and the interaction forces. In more recent
approached the general mapping between the EMG activity and
motion patterns is studied by Hahn et al [5]. Many researchers
are focusing on decoding EMG signals using artificial intelligence
methods for pattern recognition-based control schemes. This in-
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cludes EMG classification using artificial neural networks or other
machine learning approaches [6], [7]. In works using fuzzy logic
approaches, the focus is also on the classification of muscle activity
[8]. Despite numerous studies on the relationship between sEMG
signals and the motion features of the human limbs, as well as
the works on motion generation methods, There is still some gap
in incorporating identified EMG-motions relations to the efficient
control systems. Moreover majority of the research focuses on the
lower limbs, with less attention devoted to the upper limbs [9], [10].
One of the actual trends is to use the fuzzy logic neural networks
in exoskeletons control taking into account the root mean square
(RMS) feature of EMG signals [11,12]. A new approach using the
the artificial neural network with fuzzy logic is presented, here the
neural network with fuzzy rules is used to reconstruct the upper
limb motion based on the EMG signals. Additionally the control
concept using the feedback information is provided and tested nu-
merically on a two-link arm modeling the upper limb. The fuzzy
Logic neural network was used to deliver the mapping between the
EMG signals and the planned angular positions. The simplified
dynamic model was used next to produce the actuating torques ba-
sis one difference between the actual joint positions and planned
joint positions. With low amount of numerical calculations, the
method is convenient for a real-time application. The proposed
strategy was verified in two ways – using motion data provided by
the VICON motion capture system, and by dynamic simulations
using the Opensim package. The paper is structured as follows:
Sec. 2 gives the problem statement and control concept, Sec. 3
outlines the biomechanics of the upper limb, section 4 presents the
used dataset, Sec. 6 summarizes obtained results comparing both
– angular trajectories and torques. Discussion and conclusions are
given in Sec. 7.

2 Statement of the problem
Despite of a lot of works most of existing EMG based control

methods are based solely on signals classification methods that at-
tribute EMG features to a discrete set of movements. An effective
means of estimating the continuous movements of multiple joints
is still lacking [13], regardless of some interesting proposals such
as [6]. Often are used artificial neural networks or other machine
learning approaches [7], [6] including the fuzzy logic but the fo-
cus is still on the classification [8]. Even if muscular activity is



delivered by surface sensors and from limited amount of muscles
it still contains ’hidden’ information about the movement. Thus,
as the literature confirms, it is possible to forecast based on EMG
signals the intended motion and/or force in a smooth continuous
way. The above observation was the motivation for this work. A
new approach using an artificial neural network with fuzzy logic to
reconstruct the movement of the upper limb based on EMG signals
is presented. In addition, the concept of limb motion control using
feedback information is presented and tested on a simple example.
The elaborated method is planned to be used with a simple ex-
oskeleton of the upper limb. The device is currently at the prelim-
inary design stage and is intended for children with neuromuscular
diseases. These children can no longer walk and fully manipulate
the upper limbs, their mobility is limited to the wheelchair. There-
fore, such an exoskeleton will increase their mobility, and thus their
living conditions.

3 The outline of the method and assumptions
The proposed control method consists of following stages (ac-

tually realized only in simulation):

design stage: design a fuzzy logic artificial network delivering
the intended angular positions basis on processed set EMG
signals (data set used for learning),

application stage: apply the processed EMG signals to the de-
signed neural network (data set used for testing) and obtain
the intended angular positions,

application stage: compare the actual angular position (using the
recorded data set) evaluate the required angular increment,

application stage: evaluate required control torques using the
simplified dynamics model.

The block diagram of the proposed control concept is shown in
Fig. 1. Verification of the method was made by: comparing of

Fig. 1 The concept of control system. Thick lines are in-
dicating the part which uses the data evaluated using pre-
sented methods.

predicted angular trajectories with the real ones; comparing the
calculated torques with the torques obtained using dynamic simu-
lation performed with OpenSim, which is a professional software
with high precision human body models. To animate the motion
in OpenSim the real motion trajectories are applied. Following the
need of developed exoskeleton and simplifying the studies two de-
gree of freedom (𝐷𝑜𝐹) model of a human arm was used (Fig. 2).
Moreover the mapping between EMG and the angular position was
made using two EMG signals as it will be described later.

The simplified model of the upper limb consists of two parts
the upper arm (arm) and the forearm with two joints, shoulder
and elbow, with one 𝐷𝑜𝐹 each (Fig 2a). In fact, the shoulder
is a complex joint performing omnidirectional motion, while the
elbow is a hinge joint as it bends and straightens like a hinge.
Another displacement is also possible in the region where the ra-
dius meets the humerus, what allows turning the hand palm up

Fig. 2 Simplified kinematic model of the upper limb (a): S
– shoulder joint, E – elbow joint, l1 – length of upper arm, l2
– length of forearm, view of the limb with indicated muscles
group taken into account is this study (b), the main muscle
groups of the upper limb (c).

and down. However applied simplification was sufficient for this
work. The reference frame is attached to the center of the shoulder
(S). Parameters l1 and l2 are the lengths of the upper arm and the
forearm, respectively, 𝜃1 and 𝜃2 represent the rotation angles of
the shoulder and the elbow joints around the 𝑥-axis producing the
flexion/extension motion in the sagittal plane. The general form of
dynamic model is expressed as follows:

D(𝜃)𝜃 + C(𝜃, �̇�) + G(𝜃) = DΓ𝚪 + J⊤F (1)

where 𝜃 (2×1) = (𝜃1, 𝜃2)⊤, �̇�, and 𝜃 – are the vector of the angular
positions, velocities, and accelerations, 𝚪(2 × 1) – is the actuating
torques vector, D(𝜃) (2×2) is the inertia matrix, C(𝜃, �̇�) (2×1) is the
vector of centrifugal and Coriolis forces, G(𝜃) (2 × 1) is a gravity
force vector, J⊤ (2 × 2) is transposed Jacobian matrix and F is the
force vector (2 × 1) due to the load hold by the hand. The main
muscles involved during the shoulder flexion are the Pectoralis
major and the Anterior Deltoid, and during the extension – the
Latissimus dorsi, and the Posterior deltoid 1. The elbow flexion is
achieved by Triceps brachii and Anconeus while the extension by
Brachialis, Biceps brachii (Fig 2c).

4 Dataset and parameters
The dataset used in this work is provided by the Warsaw Chil-

dren Memorial Hospital. It covers 12 sub-sets. The data are
recorded for healthy male adult person 33 years old, 1.83m tall,
weighting 90kG. Analyzing the motion dynamics the upper limb
parameters are taken from the anthropomorphic data [14–16] tak-
ing into account the gender, weight and the height of the tested
person. The actor performed the flexion/extension motion of the
elbow holding different loads in the hand (0, 1, 2, and 5kG). The
trials are arranged in three cases of four trials each, depending on
the position of the person. In the first case, the person stands in
the force platform. In the second cases, the person stands on two
platforms, while in the third case, the person is seated. Movement
in the elbow joint covered the full range of motion, that is, from
the upright position (the limb ’hangs’ along the trunk) to the po-
sition where the elbow joint is maximally bent. In this scenario,
the movement of the shoulder joint is limited to a small extent
required for the correct positioning of the hand. The dataset in-
cludes the EMG data recorded using 16 electrodes attached to the
main muscles of the upper limb, the angular positions of the body
joints acquired by the motion capture systems, the force moments
(torques) in the joints and the forces. All data are collected us-
ing the VICON system, the surface electrodes are attached to the
body according to the common standard. The recording rate for

1https://teachmeanatomy.info/
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EMG signals is 100Hz. The raw EMG signals are amplified to the
range of 0 − 5V and processed using Butterworth filter and then
processed. All pre-processing including joint torques evaluation is
made using the VICON software. Taking into account that the main
aim is to deliver the proof of concept only two EMG signals are
used. The most active muscles, relevant for recorded human activ-
ity where chosen, namely the Deltoid and Biceps Brachii (Fig. 2b).
The Deltoid is a strong muscle that the contribution is crucial for
a lot of athletic and every day activities (as carrying, swimming,
loads handling). Biceps contributes to flexion and supination (out-
ward rotation) of the forearm. It supports and stabilizes the deeper
(and stronger) Brachialis muscle during lifting and lowering the
forearm. Such limitation allowed to reduce the amount of needed
fuzzy logic rules but created the foundation for EMG-angular po-
sition mapping. The features extracted from EMG signals are the
RMS and the maximum fractal length (MFL), obtained using a
software package, developed with Matlab by T. Jingwei et al [17].
The feature RMS characterizes the signal power:

𝑅𝑀𝑆 =

⌜⃓⎷
1
𝑁

𝑁∑︂
𝑖=1

𝑥2
𝑖
, 𝑀𝐹𝐿 = log10

⎛⎜⎝
⌜⃓⎷

𝑁−1∑︂
𝑖=1

(𝑥𝑖+1 − 𝑥𝑖)2
⎞⎟⎠ (2)

where 𝑥𝑖 is the signal value at 𝑖 − th sample and 𝑁 is the number
of samples in a data segment. Root mean square (RMS) represents
the square root of the average power of the EMG signal for a
given period of time The maximum fractal length (MFL) represents
the density of action potential, or in the other words, the muscle
contraction strength [18], application of a logarithmic scale reduces
sensitivity to the noises.

5 Fuzzy Neural Network (NN)
The RMS and the MFL of the EMG are used as inputs for the

fuzzy NN to predict the angular trajectories. The first quantity
characterizes the amplitude of the EMG signal, while the second
one is proportional to the strength of muscle contraction. The
fuzzy NN combines fuzzy logic and NN technique. While fuzzy
logic deals with the imprecision and the uncertainty of the data,
the NN offers an adaptability. The fuzzy NN is governed with
the following IF-THEN rules [19]: – if 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then
𝑓 = 𝐶1, – if 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then 𝑓 = 𝐶2. The IF-THEN rules
define the state of the output depending on the state of the inputs,
following such principle: IF the input variables are in a certain
state, THEN the output will have the specific state. Available in
Matlab Mandani type [20] of fuzzy NN is applied. The fuzzy NN
consists of five layers. The fuzzification layer takes the input val-
ues and determines the membership functions belonging to them.
The inference layer generates the firing strengths for the rules with
product method. In the implication and the aggregation layers, the
computed firing strengths are normalized and aggregated respec-
tively. The defuzzification layer gives the output. For the elbow
three fuzzy sets are used: low, medium, and high (Fig. 3a). Each
set represents the intensity of the muscle activation. When the
input belongs to the low fuzzy set, the muscle is resting, when
it belongs to the medium, the muscle is powering the motion in
moderate way, and when it belongs to the high, the contraction
of the muscle is very intense. To increase the accuracy of the re-
sults for both types of input, the medium fuzzy set is divided into
two subsets: medium low (medL) and medium high (medH). The
Gaussian functions are used to define the membership (comparing
to standard linear function), these functions increase the prediction
sensitivity and allow to obtain smoother results. All applied func-
tions have almost the same width. Similar fuzzy logic is applied
for the output (Fig. 3b). The relationships between the inputs and
the output are defined through the following IF-THEN rules:

1. If (RMS is low) and (MFL is low) then (angle is low)

2. If (RMS is medL) and (MFL is medL) then (angle is medL)

Fig. 3 The elbow: Membership functions– input (a), mem-
bership functions – output (b).

3. If (RMS is medL) and (MFL is low) then (angle is medL)

4. If (RMS is medH) and (MFL is medL) then (angle is medH)

5. If (RMS is medH) and (MFL is medH) then (angle is medH)

6. If (RMS is medH) and (MFL is high) then (angle is high)

7. If (RMS is high) and (MFL is high) then (angle is high)

The fuzzy NN of the shoulder is more complicated in implemen-
tation as the movements recorded in the given dataset are limited in
range however the logic of the membership functions is the same
as for the elbow (Figs. 4a and 4b). For the RMS we noticed that
merging the medium and the high sets into one set gives better
results. To characterize the output status depending on the inputs,
the following IF-THEN rules are formulated:

1. If (RMS is low) and (MFL is low) then (angle is low)

2. If (RMS is low) and (MFL is med) then (angle is low)

3. If (RMS is low) and (MFL is high) then (angle is med)

4. If (RMS is high) and (MFL is low) then (angle is med)

5. If (RMS is high) and (MFL is med) then (angle is high)

6. If (RMS is high) and (MFL is high) then (angle is high)

Fig. 4 The shoulder: membership functions – input (a),
membership functions – output (b).

Journal of Computational and Nonlinear Dynamics PREPRINT FOR REVIEW / 3



6 Validation of the method

Testing the control concept The accuracy of the angular predic-
tion and of the evaluation of the torques is investigated first. The
evaluation of the torques requires the calculation of the term on the
right side of Eq. (1). The predicted angular velocities and accel-
erations are obtained by discretization using Euler’s method with
the sampling frequency 100Hz. To overcome the effect of noise,
the output of the fuzzy NN and the predicted angular velocities are
filtered with function smoothdata function of Matlab ®. Predicted
angles are compared with the registered angles corresponding to
the recorded EMG signals. Having in mind that the EMG signals
indicate the intended movement before it is effectively performed,
it is obvious that the angular trajectories delivered by fuzzy NN
are ahead of the real trajectories. Therefore for the purpose of
validation, it is necessary to apply the time shift. Fig. 5 shows that
the angular trajectories obtained from fuzzy NN and the real ones,
good similarity is seen especially for the trajectories of the elbow
joint. The difference between the shifted output from the fuzzy NN,

Fig. 5 Real and predicted trajectories for shoulder and el-
bow.

and the real angle delivered by the motion capture system is also
studied. As the presented material has the character of feasibility
studies we will be not going to the details by discussing particular
differences. The results are validated using the Bland & Altman
method [21] and considering the differences between generated and
real angles. Fig. 6 the difference between real and inferred angle as
a function of their mean is illustrated. Additionally the mean value
of the these differences and confidence intervals (range of agree-
ment) are given. The 95% confidence interval is firstly applied. As
it can be seen for both joints some values are outside 95% range
(marked by dotted red line). Next the 99% and 99.9% ranges are
tested. The green lines mark the 99.9% range for shoulder and
99% range for elbow. All data lay within these ranges, therefore
it can be concluded that with 99.9% confidence the angular error
is within the range −15.1◦; 13.6◦ for the shoulder and with 99%
confidence the error is within 13.2◦; 11.7◦ range for the elbow.
In the case of shoulder the 95% range is significantly exceeded
for the shoulder position being near to the resting position (the
average is around zero). In the case of elbow it happens for the
larger angles ranging 80◦; 90◦). These results show that there is
room for improvement. Additionally the real torques (from the
data set) and torques calculated using the simplified model Eq. (1)
and intended angular positions are compared. Results are shown
in Fig. 7a. Similarly as for angular trajectories, the real torques
are slightly ahead of the inferred torques and there are some with
smaller discrepancies for the elbow joint.

6.1 Validation of simplified dynamic model using Open-
Sim. As described above the results obtained for the shoulder,
which is a complex joint with flexibility’s and sliding of the bones,
demonstrate bigger discrepancy. Therefore, it is found to be use-
ful to compare the torques delivered by simplified model (1) and
detailed dynamical model. OpenSim simulator [22] is used for
this purpose. The angular trajectories delivered by the fuzzy NN

Fig. 6 Results of Bland-Altman method, shoulder and el-
bow data.

Fig. 7 Comparison of the torques: torques computed using
the simplified model of dynamics and torques provided by
the dataset (a), torques obtained using OpenSim software
and the torque calculated using simplified dynamical model
and the angles delivered by fuzzy NN (b).

are applied. The OpenSim model called Arm262 with two 𝐷𝑜𝐹

(flexion/extension of the shoulder and flexion/extension of the el-
bow) and with three main muscle groups (Biceps, Triceps, and
Brachialis) is used. After scaling the physical parameters of the
model according to the subject characteristic, the motion is simu-
lated using Arm26 nodule. Results are presented in Fig. 7b. The
torque curves obtained by both methods show good a similarity
however these obtained using OpenSim have more fluctuations
comparing to the results obtained using simple two-link model
represented by (1). It is caused by the fact that the OpenSim arm
model is much more complicated. However in some time intervals,
especially during the flexion, the two trajectories overlap perfectly.
The results confirm the correctness of simplified model.

7 Discussion and conclusions
Based on the comparisons with the true dataset and using the

results provided by the OpenSim software, proposed method of
intended motion estimation and motion control using fuzzy logic
NN and simplified dynamical model is concluded as being feasi-
ble. Applied dynamic model can be farther enriched with more
𝐷𝑜𝐹 and compliant elements for 3D movements. In farther stud-
ies it would also be advisable to include data recorded for several

2https://github.com/opensim-org/opensim-models/blob/master/Models/Arm26/
arm26.osim
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persons. It is also interesting to answer if there are any significant
differences between the data recorded for adults and the data for
children. Moreover, it is necessary to study situation when a per-
son performs movements while dynamically interacting with the
environment, which causes a variable load on the motion appara-
tus. It is necessary to answer the question of how such interaction
influences the estimation of intended movements. In this case, the
feedback loop of the control system should contain a corrective
element, that would make the person wearing the assisting device,
correctly accomplish the intended task. In presented work the pre-
diction accuracy is enough to get the proper shape and range of
motion. Taking into account that only two EMG signals are used
there is large room for improvements. The developed fuzzy NN
should be farther enhanced considering more EMG inputs and ac-
cordingly, more fuzzy rules. Such upgrading should be used for
fine tuning of the prediction. Additionally comparing with the
other research, in this work more features of EMG signals are
used, namely besides of typically applied RMS the MFL feature
(summed up to current time instant) is used. Differently than in
majority of the works foretasted are the angular positions but not
the torques. The torques are calculated basis on the difference be-
tween the current and inferred position. Such strategy allows for
incorporating the simple safety mechanism in the controller, using
the position error. If such error, evaluated as the difference be-
tween the intended position and the current position, exceeds some
(realistically defined) threshold the controller should not force the
movement. Such condition, adopted from robot control systems,
is logically natural as a human never changes its joint position
tremendously. To impose similar constraint in pure torque control
method is problematic as it is more troublesome to estimate the
range of torque change, especially when the hand (or leg) is loaded
or the dynamic interaction is involved. Despite of some shortcom-
ings, the presented studies sufficiently justify the feasibility of the
control method. The research plans are to father extend the dy-
namic model allowing to consider more complicated movements
and the complexity of the shoulder joint. However the numerical
simplicity must be kept.
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