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1 Introduction

The equivalence principle follows from the consistency of Einstein’s theory of gravity. The
conservation of the stress tensor of the point particle, which is necessitated by the Bianchi
identity, implies that the particle should move along a geodesic. The Nambu-Goto equation
generalizes the geodesic equation by implying that the string’s motion should extremize its
worldsheet area. Could the Nambu-Goto equation also follow from gravity?

We examine this question in pure three-dimensional gravity in flat and AdS spaces. We
consider solutions which are obtained by gluing two copies of a spacetime M across a junction
constituted of a string with a finite tension. We find that such solutions of pure gravity are in
one-to-one correspondence with the solutions of the Nambu-Goto equation for the motion of
the string in M up to corrections due to the finite tension and a finite number of possible rigid
deformations. By rigid deformations, we mean additional contributions that arise due to the
worldsheet isometries or are related to displacements of a hypersurface via isometries of the
embedding spacetime which preserve its extrinsic curvature.1 In particular, we show that the
Nambu-Goto equation is recovered in the tensionless limit in absence of the rigid deformations.

The equivalence principle thus generalizes non-trivially to the string since the inclusion
of the backreaction on the three-dimensional spacetime due to the tension does not preserve
the extremality of the worldsheet area for the motion of the string. However, when the
string tension and rigid deformations vanish, a solution of the Nambu-Goto equation for the
string in M is obtained by taking the average of the embedding coordinates of the junction
in the two copies of M. We will demonstrate these claims by employing a perturbative
expansion around trivial solutions of the junction conditions. It should be possible to obtain
a non-perturbative proof, but we will leave this for future work.

1We discuss possible physical interpretations of the rigid deformations especially in section 5.
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Our results lead to a fresh perspective on Einstein’s dilemma of whether to consider the
right hand side of his eponymous equations of gravity as ugly. The usual formulation of string
theory prioritizes the right hand side. It geometrizes and unifies matter as quantum vibrations
of a fundamental string, and also makes semi-classical gravitational spacetimes emerge from
the worldsheet. However, our results imply that the classical motion of the fundamental string
is itself a consequence of spacetime dynamics in three dimensions. Therefore, it is natural
to ask whether the spectrum and quantum dynamics of the (first quantized) fundamental
string [1–5] can also be part of quantized pure three-dimensional gravity in which junctions
with a finite tension are included.2

Furthermore, the holographic correspondence states that the classical gravitational
dynamics of pure AdS3 can be described by a universal sector of two-dimensional conformal
field theories with large central charges (see [6] for a review with discussions on applications
to black hole physics). It is then also natural to ask if the Nambu-Goto equation can
also emerge from dynamical interfaces in conformal field theories with large central charges
implying that the fundamental string can be found directly in the dual field theory.3 As
discussed later, our solutions with junctions in anti-de Sitter space can indeed have holographic
interpretations as a class of interfaces in the dual conformal field theory where there is relative
time-reparametrization at the interface encoding the Nambu-Goto solution corresponding to
the bulk junction. In this way we generalize previous works that used backreacted strings
with tension in AdS as bottom-up models of conformal defects and boundaries, see [9–14].

In the rest of the paper, we proceed by first discussing the setup of our calculations and
then giving a precise statement of our results in section 2. Subsequently, we demonstrate
the one-to-one correspondence between the solutions of the Nambu-Goto equation and
the gravitational solutions with junctions carrying finite tension in three-dimensional flat
space and anti-de Sitter space in sections 3 and 4, respectively. Finally, we conclude with
discussions on the implications of our results in section 5.

2 Setup and statement of results

2.1 The question and why D = 3 is special

Consider a junction Σ constituted by a co-dimension one brane with tension T0 embedded in
a D-dimensional manifold M. The full manifold M involves the union of two D-dimensional
spacetimes ML and MR which are glued at the brane junction Σ. The Einstein-Hilbert

2Since we are discussing three-dimensional gravity, we cannot hope to recover the full spectrum of the
fundamental string in critical number of dimensions.

3Remarkably, a precise version of AdS3/CFT2 correspondence has been derived in [7, 8] in which the
quantum gravity in AdS3 is described by a superstring theory. In this case, the spacetime has extra compact
directions (S3× T4) and also one unit of NS-NS flux, and the dual CFT can be written in terms of free
fields. Here, we are in the limit in which the gravitational dynamics is classical and described by Einstein’s
equations so that the dual CFT has a large central charge and is also strongly interacting. Quantization could
require the presence of extra dimensions for consistency. However, the three-dimensional classical solutions
with junctions described here should be dual to interfaces between states in the universal sector involving the
Virasoro identity block only.
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action with a cosmological constant with the brane source is

S = 1
16πGN

∫
M

dDx
√
−g(R + 2Λ) + T0

∫
Σ

dD−1y
√
−γ + GHY terms, (2.1)

where g is the bulk metric, γ is the induced metric on Σ and GHY terms stand for the
Gibbons-Hawking-York boundary terms.4 It is to be noted that the bulk metric g is the only
physical field in this action. The embedding of Σ should be determined from the junction
conditions obtained from extremizing this action with respect to variations of the bulk metric
at the junction, and not from separate equations of motion. Therefore, the limit T0 → 0
need not correspond to the probe brane in an Einstein manifold.

The natural question is whether we can identify a generic solution of the gravitational
theory described by the action (2.1) with solutions of the worldvolume extremization equations
of a co-dimension one brane in M. We can readily argue this is not possible for D ≥ 4,
and that the case D = 3 is special, as follows.

Instead of using continuous bulk coordinates in which the normal and the tangents of Σ
are continuous across the junction, it is convenient for our purposes to adopt the methodology
of [12] (but without restricting to only linear perturbations about a simple solution and
assuming any specific boundary conditions). Following [12], we adopt coordinates (tL, xL, z⃗L)
for ML and (tR, xR, z⃗R) for MR, where tL,R are the time coordinates, while xL,R and the
z⃗L,R with D − 2 components are the D − 1 spatial coordinates in the respective halves. The
hypersurface Σ has two images in ML and MR, which are ΣL and ΣR respectively, and
should be glued via solving the junction conditions. The hypersurface ΣL in MR is given by

xL = fL(tL, z⃗L). (2.2)

Similarly, the hypersurface ΣR in MR is given by

xR = fR(tR, z⃗R). (2.3)

Furthermore, ML is the set of points xL ≤ fL(tL, z⃗L) while MR is the set of points xR ≥
fR(tR, z⃗R).

A point PL on ΣL is identified with another point PR on ΣR if these points carry the
same brane coordinate labels (τ, σ⃗). However, we also need to fix the diffeomorphisms on the
brane. It is convenient to fix the diffeomorphisms on the brane via these gauge conditions:

τ = 1
2(tL(PL) + tR(PR)), σ⃗ = 1

2(z⃗L(PL) + z⃗R(PR)). (2.4)

Therefore, the parametric forms of ΣL and ΣR are

tL(τ, σ⃗) = τ − τa(τ, σ⃗), z⃗L(τ, σ⃗) = σ⃗ − σ⃗a(τ, σ⃗), xL(τ, σ⃗) = fL (tL(τ, σ⃗), z⃗L(τ, σ⃗)) ,

tR(τ, σ⃗) = τ + τa(τ, σ⃗), z⃗R(τ, σ⃗) = σ⃗ + σ⃗a(τ, σ⃗), xR(τ, σ⃗) = fR (tR(τ, σ⃗), z⃗R(τ, σ⃗)) , (2.5)

where τa = (1/2)(tR − tL) and σ⃗a = (1/2)(z⃗R − z⃗L) are the relative time and spatial shifts
which are not fixed by the choice of gauge and should be determined via the junction

4There are two GHY terms associated to Σ as it is the part of the boundary of both ML and MR. If there
are additional boundaries, then there are more GHY terms. However, the latter will not be relevant for the
current discussion.
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conditions. In total, the junction conditions need to determine D + 1 functions of τ and σ⃗,
namely the D − 1 relative coordinates τa and σ⃗a, and fL and fR which give the images of
the embedding of the brane. Solving the D + 1 variables we can determine the geometric
embedding of the brane in the bulk spacetime completely.

Explicitly by extremizing the action (2.1), we obtain Einstein’s equations

RMN − 1
2RgMN + ΛgMN = 0, (2.6)

away from Σ, i.e. away from ΣL and ΣR in ML and MR, respectively. Above, M and N

stand for the D bulk indices. The extremization on the junction gives [15]

γµν |ΣR
− γµν |ΣL

= 0, (2.7)
(Kµν − Kγµν)ΣR

− (Kµν − Kγµν)ΣL
= 8πGN T0γµν , , (2.8)

where µ and ν are the D − 1 brane indices, and Kµν is the (respective hypersurface’s)
extrinsic curvature. The above are called the Israel junction conditions [15]. The combination
Kµν − Kγµν is also called the Brown-York stress tensor [16].

The first set of junction conditions (2.7) involving the continuity of the induced metric
give D(D − 1)/2 equations. Although the second set of junction conditions (2.8) involving
the discontinuity of the Brown-York stress tensor give D(D − 1)/2 equations as well, D − 1
of them are redundant as the Brown-York stress tensor of any hypersurface is identically
conserved (in the background given by the induced metric) on an Einstein manifold by virtue
of the Gauss-Codazzi equations. Therefore, the junction conditions give in total

D(D − 1) − (D − 1) = (D − 1)2

equations. However, we have already seen that the embedding of the junction is determined
by D + 1 variables. We readily observe that for D ≥ 3,

(D − 1)2 ≥ D + 1,

with this inequality saturated only when D = 3. Therefore, for D ≥ 4, there are more
equations that are obtained from the junction conditions than the number of variables which
determine the geometric embedding of the brane. This argument implies that we cannot
recover generic solutions of the worldvolume extremization equations of the brane from the
junction conditions in the tensionless limit for D ≥ 4.

The case D = 3 is special as the junction conditions give 4 equations that can fully
determine the 4 variables which in turn completely specify the geometric embedding of the
brane. In this paper, we will show that the naive counting argument is indeed correct and
we can identify any solution of the gravitational equations as the backreaction of a string
which satisfies the Nambu-Goto equations in the probe limit (T0 → 0) up to a finite number
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of rigid deformation parameters in this case. We will describe our setup and summarize
our results precisely in the following subsection.5

2.2 Setup and results

In this paper, we study the solutions of the action (2.1) in D = 3. However we also further
specialize to the case of gluing two identical copies of an Einstein spacetime satisfying the
equations (2.6) for the simplicity of understanding how the Nambu-Goto equation arises
from the junction conditions. For the sake of clarity, we describe our setup from scratch
instead of falling back upon the general discussion in the previous subsection although many
aspects of the discussion are going to be repetitive.

Consider two copies of a 2+1-dimensional Einstein manifold M, which is locally flat or an
AdS space. We label the copies of M as M1 and M2. Let Σ1 and Σ2 be two 1+1-dimensional
hypersurfaces embedded in M1 and M2, respectively, and splitting each of these spacetimes
into two halves. We will study solutions of Einstein’s equations obtained by gluing one of
the halves of M1 with one of the halves of M2 by identifying points in Σ1 and Σ2 such that
the induced metrics and extrinsic curvatures satisfy the Israel junction conditions [15]. As
mentioned before, our methodology is similar to that adopted in [12], except that allow more
general boundary conditions and also not restrict ourselves to linear perturbations about
a simple solution. See figure 1 for an illustration of the setup in AdS.

Let t, z and x be the coordinates of M, where t is the time coordinate, and z and x

the spatial coordinates. The identical copies M1 and M2 of M are endowed with identical
copies of the coordinate charts of M, and the respective coordinates are (t1, z1, x1) and
(t2, z2, x2). The hypersurface Σ1 in M1 is given by

x1 = f1(t1, z1), (2.9)

and we will call the half of M1 with x1 ≤ f1(t1, z1) as M1,L, and the other half as M1,R.
Similarly, the hypersurface Σ2 is given by

x2 = f2(t2, z2), (2.10)

which splits M2 into M2,L with x2 ≤ f2(t2, z2) and M2,R. We can glue either of the two
halves of M1 with one of the halves of M2.

In order to describe the gluing, it is convenient to fix a coordinate system (τ, σ) on the
identified hypersurfaces Σ1 and Σ2 such that there is a pair of points, P1 and P2 belonging
to Σ1 and Σ2, respectively, corresponding to each (τ, σ) (see figure 1). We use the following
choice of the junction (worldsheet) coordinates — for each P1 ≡ P2, we assign (τ, σ) such that

τ = 1
2(t1(P1) + t2(P2)), σ = 1

2(z1(P1) + z2(P2)). (2.11)

5The case D = 2 is also special. It can be shown that in this case, the general solutions involve gluing two
copies of flat spaces (Λ = 0), or two AdS2 (Λ < 0), or two dS2 (Λ > 0) spacetimes with identical metrics, but
with an isometry performed on one of the two copies. The junction follows the geodesic equation and this
geodesic is invariant under a one parameter family of isometries. The isometry which is operated on one of
the two bulk copies of flat space, AdS2 or dS2 is within this one parameter family, and is determined by the
conserved charge of the geodesic. (For every isometry, a geodesic has a conserved charge.)

– 5 –
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Figure 1. Illustration of the setup in AdS. We consider two copies of a locally AdS3 spacetime,
namely M1 and M2 with coordinates (t1, z1, x1) and (t2, z2, x2), respectively. Each of these manifolds
is further subdivided into two regions by the hypersurfaces Σ1 and Σ2 which are respectively given by
x1 = f1(t1, z1) and x2 = f2(t2, z2). M1,L(R) corresponds to x1 ≤ (≥)f1(t1, z1) and similarly for M2.
We glue M1,L with M2,R by identifying points on Σ1 and Σ2, such as (blue dots) P1 and P2 in the
figure, which have the same worldsheet coordinates τ and σ. The gluing should satisfy the junction
conditions with the stress tensor of a tensile string at the junction hypersurface resulting from the
identification of Σ1 and Σ2.

Having chosen this gauge fixing for the worldsheet diffeomorphisms, Σ1 and Σ2 take the
parametric form

t1(τ, σ) = τ − τa(τ, σ), z1(τ, σ) = σ − σa(τ, σ), x1(τ, σ) = f1 (t1(τ, σ), z1(τ, σ)) ,

t2(τ, σ) = τ + τa(τ, σ), z2(τ, σ) = σ + σa(τ, σ), x2(τ, σ) = f2 (t2(τ, σ), z2(τ, σ)) . (2.12)

Note τa = (1/2)(t2 − t1) and σa = (1/2)(z2 − z1) are determined by the junction conditions,
and not by the worldsheet gauge choice (2.11). Together with f1 and f2, we thus obtain
four functions which should be solved to obtain a gluing of one of the halves of M1 with
one of the halves of M2. For later purposes, let us define

xs(τ, σ) = 1
2 (f1 (t1(τ, σ), z1(τ, σ)) + f2 (t2(τ, σ), z2(τ, σ))) ,

xa(τ, σ) = 1
2 (f2 (t2(τ, σ), z2(τ, σ)) − f1 (t1(τ, σ), z1(τ, σ))) , (2.13)

so that xs is the average and xa is the relative x-coordinate of Σ1 and Σ2.
For the sake of convenience, let us consider gluing M1,L with M2,R first. In this case,

the normals to both Σ1 and Σ2 are oriented along the directions in which the respective
x-coordinate increases. Let γ1

µν and γ2
µν be the induced metrics, and K1

µν and K2
µν be the

extrinsic curvatures of Σ1 and Σ2, respectively (µ and ν are worldsheet indices). Then
the first junction condition

γ1
µν(τ, σ) = γ2

µν(τ, σ) := γµν(τ, σ), (2.14)

– 6 –
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implies the continuity of the induced metric. The second junction condition states that the
discontinuity of the Brown-York tensor Kµν − Kγµν should equal 8πG times the (conserved)
stress tensor of the junction, which is T0γµν if the junction consists of a string with a tension
T0 (G is the three-dimensional Newton’s constant). Let λ = 8πGT0. It is easy to see that
the trace-reversed second junction condition takes the following form,

K1
µν(τ, σ) − K2

µν(τ, σ) = −λγµν(τ, σ). (2.15)

Henceforth, we will refer to λ as the tension. The two junction conditions give six equations.
However, the Brown-York stress tensor is identically conserved on any hypersurface of an
Einstein manifold by virtue of the Gauss-Codazzi equations and this guarantees that the
traceless part of the Brown-York tensor is continuous at the junction even when λ ̸= 0.
Therefore, the gluing conditions (2.15) give only one independent equation which together
with (2.14) amount to four equations for determining the four variables, namely τa, σa,
f1 and f2.

We will see that a solution of the junction conditions depends on the tension λ and a finite
number of integration constants δi, that we call rigid deformations. The latter are associated
with worldsheet isometries and rigid displacements of the hypersurface via isometries of the
embedding spacetime which do not change its extrinsic curvature.

The main results we obtain in this paper are the following:

• Given a solution of the junction conditions, the hypersurface ΣNG in M given by

t = τ, z = σ, x = xs(τ, σ; λ, δi), (2.16)

satisfies an equation which reduces to the Nambu-Goto equation in the background
M in the limit λ, δi → 0. We readily note that ΣNG has the average of the embedding
coordinates of Σ1 and Σ2. Both the Nambu-Goto equation and the junction conditions
(which give the deformed Nambu-Goto equation) can be solved with the same boundary
and/or initial conditions for xs, and this leads to a one-to-one correspondence between
solutions xs(λ = 0, δi = 0) of the Nambu-Goto equation and solutions xs(λ, δi) of the
junction conditions. Generically, xs(λ, δi) are smooth deformations of the corresponding
Nambu-Goto solutions xs(λ = 0, δi = 0).

• The other three variables τa, σa and xa are always determined uniquely by the Nambu-
Goto solution xs(λ = 0, δi = 0) for fixed values of λ and δi.

We will demonstrate the above results both in flat space and in AdS3 using a perturbation
expansion in which the tension is treated as a small parameter and we expand around solutions
with zero tension. At the leading order, we choose an embedding for the junction which is a
hypersurface with vanishing extrinsic curvature and which is also a simple solution of the
Nambu-Goto equation. The generic solutions of the Nambu-Goto equation appear at higher
orders in the expansion. As a special case, when the solution is the trivial one, we recover
the non-linear static solution of [17] for xa which is determined solely by the tension.

If we glue M1,L and M2,L instead of gluing M1,L and M2,R, we can use the same
parametrizations in (2.12) for Σ1 and Σ2, but because of the change of orientation of the

– 7 –
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normal of Σ2, the second gluing condition (2.15) will be modified to

K1
µν(σ, τ) + K2

µν(σ, τ) = −λγµν(σ, τ). (2.17)

The new solutions for the junction conditions are simply the same solutions for gluing M1,L

and M2,R but with xs and xa interchanged. Therefore, in that case, xa instead of xs coincide
with the solutions of Nambu-Goto equations when the rigid deformation parameters including
the string tension vanish. One can similarly discuss the cases of gluing M1,R and M2,R,
and gluing M1,R and M2,L.

Although the junction’s stress tensor vanishes in the tensionless limit, it is not clear
whether the spacetime is smooth in this limit. We need to construct coordinates in the
bulk such that the tangents and the normal to the junction hypersurface are continuous to
clarify this issue. This can be done in practice by utilizing the freedom of changing bulk
coordinates on one side of the junction, but we leave this to the future. The discontinuities,
if present, are determined by the rigid deformation parameters δi and the solution of the
Nambu-Goto equation which fully characterize the junction.

3 Junctions in flat space and the Nambu-Goto equation

3.1 Solving the junction conditions perturbatively

We choose M to be Minkowski space R2,1 endowed with the metric

ds2 = −dt2 + dz2 + dx2. (3.1)

As described in the previous section, we consider two copies of M denoted by M1 and M2,
each of which is split into two halves by the hypersurfaces Σ1 and Σ2, respectively. The
parametric forms of these hypersurfaces are given in (2.12). We then glue M1,L and M2,R

with the junction conditions (2.14) and (2.15). Here, we proceed with considering λ to be
small, i.e. λ = O(ε), so that we can determine the four functions τa, σa, f1 and f2 by solving
the junction conditions perturbatively in ε.

To set up the perturbative expansion, we choose Σ1 and Σ2 identically at the zeroth
order such that their extrinsic curvatures vanish, while the continuity of the induced metric
holds trivially at this order. This is accomplished by the choices

f1 = x0 + O(ε), f2 = x0 + O(ε), τa = σa = O(ε), (3.2)

so that Σ1 and Σ2 are the planes x1 = x0 and x2 = x0, respectively, at the zeroth order. To
proceed systematically, the perturbative expansions of τa and σa are taken to be

τa(τ, σ) =
∞∑

k=1
εkτa,k(τ, σ), σa(τ, σ) =

∞∑
k=1

εkσa,k(τ, σ), (3.3)

and similarly,

f1 = x0 +
∞∑

k=1
εkf1,k(τ, σ), f2 = x0 +

∞∑
k=1

εkf2,k(τ, σ). (3.4)

– 8 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
3

It is convenient to use the average and relative coordinates xs and xa as defined in (2.13).
Obviously, the coefficients of their perturbative expansions are

xs,k(τ, σ) = 1
2(f1,k(τ, σ) + f2,k(τ, σ)), xa,k(τ, σ) = 1

2(f2,k(τ, σ) − f1,k(τ, σ)) (3.5)

for k = 1, 2, · · · , and at the zeroth order xs,0 = x0 and xa,0 = 0.
It turns out that xs is the only propagating degree of freedom. Therefore, we need to

specify initial/boundary conditions for xs just like for a scalar field satisfying Klein-Gordon
equations in 1 + 1-dimensions. Here we will use an arbitrary length scale implicitly to make
τ and σ dimensionless. For the sake of illustration, we will choose these initial conditions
for xs at τ = 0:

xs(0, σ) = x0 + A sin σ, ẋs(0, σ) = 0, (3.6)

where ḟ denotes partial derivative of f w.r.t. τ . We will also assume that A = O(ε) so
that the initial conditions for xs,1 is

xs,1(0, σ) = A sin σ, ẋs,1(0, σ) = 0 (3.7)

while the initial conditions for xs,k are

xs,k(0, σ) = ẋs,k(0, σ) = 0, for k = 2, 3, · · · . (3.8)

We will find the most general solutions of the junction conditions corresponding to these
initial conditions. These general solutions will have additional six rigid constant parameters
as explained below.

As mentioned, the junction conditions are trivially satisfied at the zeroth order because

γ1
µν = γ2

µν = ηµν + O(ε), K1
µν = K2

µν = O(ε), (3.9)

where ηµν = diag(−1, 1).
At the first order, the junction conditions (2.14) for the continuity of the induced

metric give

τ̇a,1 = 0, σ̇a,1 − τ ′
a,1 = 0, σ′

a,1 = 0, (3.10)

where ˙ and ′ imply partial derivatives w.r.t. τ and σ, respectively. At this order, the
junction conditions (2.15) give

ẍa,1 = −λ

2 , ẋ′
a,1 = 0, x′′

a,1 = λ

2 . (3.11)

Notice that at this order, the junction conditions do not give an equation for xs. The
solutions for τa,1 and σa,1 are

τa,1 = βh + γhσ, σa,1 = αh + γhτ, (3.12)

which imply that the vector ξµ = (τa,1, σa,1) is a generic Killing vector on the worldsheet in the
background of the zeroth order metric ηµν . We note that αh and βh correspond to spacetime
translations on the worldsheet while γh is a worldsheet boost. The generic solution for xa,1 is

xa,1 = −λ

4 (τ2 − σ2) + αk + βkσ + γkτ. (3.13)
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It is easy to see that αk, βk and γk are rigid displacement parameters that preserve the
extrinsic curvature of a hypersurface. Explicitly, these correspond to infinitesimal isometries of
the embedding flat space which do not keep the hypersurface x = 0 (where Σ1 and Σ1 coincide
at the zeroth order) invariant; αk is a transverse spatial displacement, βk is an infinitesimal
rotation and γk is an infinitesimal transverse boost. The other three isometries, namely time
translation, longitudinal spatial displacement and the longitudinal boost keep x = 0 invariant.

It will turn out that the higher orders in the expansion will not introduce new parameters,
so that in total αh, βh, γh, αk, βk and γk give six rigid parameters which together with the
initial conditions for xs uniquely specify a solution of the junction conditions to all orders. By
assumption, all these six rigid parameters are small, i.e. O(ε). Although these infinitesimal
rigid parameters are related to worldsheet and spacetime isometries, at higher orders they
generically affect the full non-linear solution non-trivially. Furthermore, these parameters
should be determined by appropriate boundary conditions depending on the physical context,
and therefore can generally be physical parameters. We will discuss boundary conditions
explicitly in the context of junctions of AdS in the next section.

Continuity of the induced metric at second and higher orders. At second and
higher orders, the junction conditions (2.14) for the continuity of the induced metric take
the following form

τ̇a,n −
(

λ

2 τ − γk

)
ẋs,n−1 = AF

n1(τ, σ), (3.14)

σ̇a,n − τ ′
a,n +

(
λ

2 τ − γk

)
x′

s,n−1 −
(

λ

2 σ + βk

)
ẋs,n−1 = AF

n2(τ, σ), (3.15)

σ′
a,n −

(
λ

2 σ + βk

)
x′

s,n−1 = AF
n3(τ, σ), (3.16)

where AF
n1, AF

n2 and AF
n3 are sources which are constituted of lower order terms, and also

depend on the tension and the rigid parameters. These sources vanish for n = 2. However,
they are non-trivial for n ≥ 3.

We use the following algorithm determine τa,n, σa,n and xs,n−1 uniquely:

• We solve (3.14) and (3.16) first to obtain

σa,n(τ, σ) = hn1(τ) + βkxs,n−1(τ, σ)

+ λ

2

∫ σ

0
dσ1 (σ1x′

s,n−1(τ, σ1) + AF
n3(τ, σ1)),

τa,n(τ, σ) = hn2(σ) − γkxs,n−1(τ, σ)

+ λ

2

∫ τ

0
dτ1 (τ1ẋs,n−1(τ1, σ) + AF

n1(τ1, σ)). (3.17)

• Substituting (3.17) in (3.15) we obtain

ḣn1(τ) − h′
n2(σ) + λ

2

(∫ σ

0
dσ1 σ1ẋ′

s,n−1(τ, σ1) −
∫ τ

0
dτ1 τ1ẋ′

s,n−1(τ1, σ)
)

(3.18)

−λ

2
(
σẋs,n−1(τ, σ) − τx′

s,n−1(τ, σ)
)

= S̃F
n (τ, σ),

where S̃F
n gets contribution from AF

n1, AF
n2 and AF

n3.
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• Differentiating (3.18) first w.r.t. τ and then w.r.t. σ (or the other way around) we
obtain

ẍs,n−1 − x′′
s,n−1 = −∂τ ∂σS̃F

n (τ, σ). (3.19)

With the initial conditions (3.7) and (3.8) we obtain unique solutions for xs,n−1. As
mentioned the source vanishes for n = 2 yielding just the massless Klein-Gordon
equation for xs,2 on the worldsheet. It turns out that at the third order, ∂τ ∂σS̃F

3 = 0
(although S̃F

3 ̸= 0) implying that xs,2 also follows the just the massless Klein-Gordon
equation without any source term. We will show in section 3.2 that the equations (3.19)
are just the deformations of perturbative expansion of the non-linear Nambu-Goto
equations.

• Substituting the solution for xs,n−1 in (3.18) we get

ḣn1(τ) − h′
n2(σ) = 0, (3.20)

whose solutions are

hn1(τ) = αhn + γhnτ, hn2(σ) = βhn + γhnσ, (3.21)

where αhn, βhn and γhn are constants. From (3.17) it should be clear that these
constants just modify the isometries given by τa,1 and σa,1, and can be absorbed into
αh, βh and γh, respectively. Therefore, these constants can be set to zero.

At the second order, the initial conditions (3.7) give

xs,1(τ, σ) = A sin σ cos τ (3.22)

and then we obtain explicitly that

τa,2(τ, σ) = −Aγk cos τ sin σ + Aλ

2 (τ cos τ − sin τ) sin σ,

σa,2(τ, σ) = Aβk cos τ sin σ + Aλ

2 (σ sin σ + cos σ) cos τ. (3.23)

At the third and fourth orders, the initial conditions (3.8) give

xs,2(τ, σ) = 0,

xs,3(τ, σ) = 1
4

(
1
2A sin σ

(
τ(2A2 + (2βk + λσ)2 sin τ

+ (λτ − 2γk)2 + 2λ2) −
(

A2

4 + 2λ2τ2
)

cos τ + 1
4A2 cos(3τ)

)

+ 1
2A3 sin(3σ) cos τ(sin τ)2

− A(2βk + λσ) cos σ ((2γk + λτ) sin τ + τ(λτ − 2γk) cos τ)
)

, (3.24)

and so on.
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It is important to point out that we cannot obtain the Nambu-Goto equations if we
directly work with λ = 0 instead of taking the limit λ → 0. We do not obtain the equations
for xs,n given by (3.19) from (3.18) when λ = 0. In this case, the sources S̃F

n vanish and
we obtain (3.20) directly from (3.18) so that τa,n and σa,n are given by xs,n−1 and lower
order terms, and xs as expected can be chosen arbitrarily.6 On the other hand, if we take
the limit λ → 0, xs,n coincides with a rigid deformation of a perturbative solution of the
Nambu-Goto equation.

Discontinuity of the extrinsic curvature at second and higher orders. The other set
of junction conditions (2.15) relating the discontinuity of the extrinsic curvature to the stress
tensor of the junction yield the equations which determine xa,n for n ≥ 2. Schematically,
these equations are

ẍa,n = BF
n1(τ, σ), ẋ′

a,n = BF
n2(τ, σ), x′′

a,n = BF
n3(τ, σ), (3.25)

where BF
n1, BF

n2 and BF
n3 are sources determined by lower order terms and λ. These equations

are of the same form as (3.11) which appear in the first order except for more complicated
source terms. As already discussed, the condition (2.15) gives only one independent equation.
This implies that the source terms are not independent. Our general strategy for solving
these equations is as follows:

• Use the last equation in (3.25) above to obtain

xa,n = kn1(τ) + kn2(τ)σ +
∫ σ

0
dσ1

∫ σ1

0
dσ2 BF

n3(σ2, τ) (3.26)

• Substituting the above form of xa,n into the second equation in (3.25) simply yields

k̇n2(τ) = Fn1(τ), (3.27)

with Fn1(τ) derived from BF
n2(τ, σ) and BF

n3(τ, σ), and thus

kn2(τ) = βkn +
∫ τ

0
dτ1Fn1(τ1). (3.28)

This statement is far from obvious since both BF
n2 and xa,n depend on both τ and σ.

However, as noted before, due to the conservation of the Brown-York tensor on any
hypersurface in an Einstein manifold, the junction conditions (2.15) are not independent
of each other.

• Finally substituting the above form of xa,n and kn2 into the first equation in (3.25)
simply yields

k̈n1(τ) = Fn2(τ), (3.29)
with Fn2(τ) derived from BF

n2(τ, σ) and BF
n3(τ, σ), and thus

kn2(τ) = αkn + γknτ +
∫ τ

0
dτ1

∫ τ1

0
dτ2 Fn2(τ2). (3.30)

Once again this statement is far from obvious but fundamentally is also a result of the
consistency of the junction conditions.

6At least when xa = 0, Σ1 and Σ2 can coincide on any arbitrary hypersurface giving back the full spacetime
after gluing when we set λ = 0.
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• Finally, we set αkn, βkn and γkn to zero as these can be absorbed into αk, βk and γk,
respectively which appear at the first order and give generic rigid deformations of a
hypersurface which do not change its extrinsic curvature. Thus we fully determine xa,2.

At the second order, we obtain

xa,2 = A(αh + γhτ) cos τ cos σ − A(βh + γhσ) sin τ sin σ, (3.31)

and so on. We can immediately note from the form of xa,2 that the tensionless limit λ → 0
is non-trivial since xa,2 is actually independent of the tension like xa,1.

We also readily note that the perturbative expansion breaks down at large |τ | and large
|σ|. Therefore, we cannot determine the asymptotic behavior of the junction; this issue
could perhaps be addressed by studying the problem in the Bondi coordinates of M. We
leave this to the future.

3.2 Matching with the solutions of the Nambu-Goto equation

Let us consider the hypersurface ΣNG in M whose parametric form is

t = τ, z = σ, x = f(τ, σ). (3.32)

The Nambu-Goto equation for this hypersurface in three-dimensional Minkowski space is

f̈
(
1 + f ′2

)
− f ′′

(
1 − ḟ2

)
− 2ḟf ′ḟ ′ = 0. (3.33)

We can solve this perturbatively via the following expansion in ε (the amplitude of the
linearized perturbation):

f(τ, σ) = x0 +
∞∑

k=1
εkfk(τ, σ). (3.34)

In order to examine the correspondence with the gravitational spacetime with junction, we
use the same initial conditions (3.6) for xs, i.e.

f(0, σ) = x0 + A sin σ, ḟ(0, σ) = 0. (3.35)

Assuming that A is O(ε), the above amounts to

f1(0, σ) = A sin σ, ḟ1(0, σ) = 0 (3.36)

and
fk(0, σ) = ḟk(0, σ) = 0, for k = 2, 3, · · · , (3.37)

which coincide with the initial conditions for xs,k as given in (3.7) and (3.8).
Since the Nambu-Goto equation (3.33) is odd in f , clearly fn vanishes when n is a

positive even integer. Else we obtain,

f̈1 − f ′′
1 = 0, f̈2n+1 − f ′′

2n+1 = SF
2n+1, for n ≥ 1, (3.38)

where SF
2n+1 are sources constituted of lower order terms.
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At the first order, the initial conditions (3.36) give

f1 = A sin σ cos τ. (3.39)

We note that f1 is identical with xs,1 which given by (3.22). At the third order, the initial
conditions (3.37) give

f3 = 1
2A3 sin σ sin τ(2τ + cos(2σ) sin(2τ)), (3.40)

and so on. Using trigonometric identities, we can check that f3 coincides with xs,3 (given
by (3.24)) when λ, αk, βk and γk vanish.

Generally, we can verify that when λ and the six rigid parameters αh, βh, γh, αk, βk and
γk vanish, then xs,n vanish for positive even integral values of n, while xs,n coincides with
fn for positive odd integral values of n. This implies that f coincides with xs when λ and
the rigid deformations vanish. Thus when we set identical initial conditions for xs and f ,
there is a one-to-one correspondence between the solutions of the junction conditions and
the Nambu-Goto equations up to the six rigid deformations.

We emphasize that the specific choice of initial conditions is not important to show
this correspondence since the perturbative expansions of the Nambu-Goto equation (3.38)
themselves coincide with the equations for xs,n given by (3.19) when the string tension
and the rigid parameters vanish. As for illustration, the source terms appearing in (3.19)
and (3.38) at the first non-trivial order are

−∂τ ∂σS̃F
4 :≡ 4A3 cos τ sin σ (2 − cos 2τ + cos 2σ)

+ 2A (λσ − 2γk) sin τ (2βk cos σ + λ(σ cos σ + 2 sin σ))

+ A

2 cos τ
(
−4λ(2βk + λσ) cos σ +

(
(λτ − 2γk)2 + (λσ + 2βk)2

)
sin σ

)
,

SF
3 :≡ 4A3 cos τ sin σ (2 − cos 2τ + cos 2σ) .

which source xs,3 and f3, respectively. Clearly these sources agree in the limit λ → 0, βk →
0, γk → 0.

4 Junctions in anti-de Sitter space and the Nambu-Goto equation

4.1 Solving the junction conditions perturbatively

Here we will study the case of gluing two identical copies of a locally AdS3 spacetime M
across a stringy junction. As in the case of flat space, we will glue M1.L with M2.R.

Especially motivated by applications to the holographic correspondence and to the
understanding of black holes, we consider the locally AdS3 space to be a Bañados-Teitelboim-
Zanelli (BTZ) black hole [18, 19] with a finite mass M . For simplicity, we consider the
case of vanishing (angular) momentum. We proceed with the choice of units in which the
radius of AdS3 is unity and the following convenient coordinates in which the metric of
the BTZ black hole is of the form:

ds2 = dz2

z2 − M
− (z2 − M)dt2 + z2dx2. (4.1)
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Note that z is the radial coordinate and the spacetime boundary is at z = ∞. There is a
coordinate singularity at the horizon z =

√
M . Note that x is not periodic so the above

is the metric for the black hole in Poincaré AdS3.
We set up the perturbative expansion exactly like in the case of flat space with the tension

λ = O(ε). We choose Σ1 and Σ2 to be the hypersurfaces x1 = x0 and x2 = x0, respectively
at the zeroth order, and we choose the worldsheet gauge to be (2.11) so that the average
time coordinate ts = 1/2(t1 + t2) and the average radial coordinate zs = 1/2(z1 + z2) coincide
with τ and σ, respectively. At the zeroth order, the induced metrics on the hypersurfaces
Σ1 and Σ2 are trivially identical. Explicitly,

γ1
ττ = γ2

ττ = −(σ2 − M) + O(ε), γ1
τσ = γ2

τσ = O(ε),

γ1
σσ = γ2

σσ = 1
σ2 − M

+ O(ε). (4.2)

This induced metric at the leading order is locally AdS2. It actually describes a AdS2 black
hole with horizon at σ =

√
M and boundary at σ = ∞. Furthermore, the extrinsic curvatures

K1
µν and K2

µν vanish at the leading order. The perturbative expansions for τa and σa are
given by (3.3), while those of f1 and f2 are given by (3.4). Obviously, xs,0 = x0, xa,0 = 0,
and at higher order expansions of xs and xa are given by (3.5).

Once again xs will be the only propagating degree of freedom emerging from solving the
junction conditions. To specify the solutions for xs, we need to specify boundary conditions
just like for a scalar field in AdS2. We impose Dirichlet boundary conditions at σ = ∞ for xs

so that we can readily compare the solutions of xs with those of the Nambu-Goto equation for
a string in M in which the endpoint of the string is pinned to a fixed value at the boundary
of M. Particularly, this boundary condition implies that

lim
σ→∞

xs = x0, i.e., lim
σ→∞

xs,i = 0, for i = 1, 2, · · · , (4.3)

since xs,0 = x0 identically. Furthermore, we also demand that xs and therefore each xs,i

individually satisfy the ingoing boundary condition at the worldsheet horizon σ =
√

M . These
boundary conditions are also natural when we compare these solutions with the solutions of
the Nambu-Goto equations. In both cases, we will obtain the same spectrum of quasi-normal
modes and there will be a one-to-one correspondence between the two solutions even at the
non-linear level up to rigid deformations. Although here we will restrict our analysis to the
ingoing boundary condition at the horizon and Dirichlet boundary condition at the boundary
of AdS, we expect the correspondence to be valid for other boundary conditions as well.

As in the case of flat space, we study general solutions of the junction conditions with
the above boundary conditions for xs. We find that these solutions have additional finite
number of rigid parameters. However, in the case of AdS, it is well motivated to impose the
Dirichlet boundary conditions on both x1 and x2 so that the boundary spacetime remains
unmutilated; therefore we require that

lim
σ→∞

x1 = x0, i.e., lim
σ→∞

x2 = x0. (4.4)

This implies that the endpoints of both Σ1 and Σ2 at the boundary of M1 and M2, re-
spectively, are pinned to the same constant value x0. To implement this, together with
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the Dirichlet boundary conditions (4.3) on xs we need to impose the following Dirichlet
boundary condition for xa:

lim
σ→∞

xa = 0, i.e., lim
σ→∞

xa,i = 0, for i = 1, 2, · · · , (4.5)

since xa,0 = 0 identically. It is not at all obvious that such boundary conditions can be
implemented since xa, unlike xs is not a degree of freedom. However, as discussed below,
we will see that the boundary conditions (4.3) and (4.5) can be simultaneously imposed if
we reduce the number of possible rigid deformations.

One crucial point is that we do not impose any boundary conditions on τa and σa. In
fact, these will be given by two rigid parameters related to worldsheet isometries at the
leading order.7 The diffeomorphisms related to these two parameters preserve the worldsheet
boundary at σ = ∞ but induce relative time-reparametrization at the junction since τa

does not vanish at the boundary of AdS.
Unlike the case of flat space, our perturbative expansion will be valid near the boundary

although it will be unreliable near the horizon.
At the zeroth order, the junction conditions are trivially satisfied just like in the case of

flat space discussed previously. At the first order, the conditions (2.14) for the continuity
of the induced metric at the junction gives

τ̇a,1 + σ

σ2 − M
σa,1 = 0,

τ ′
a,1 −

1
(σ2 − M)2 σ̇a,1 = 0,

σ′
a,n − σ

σ2 − M
σa,n = 0, (4.6)

while the other set of junction conditions (2.15) relating the discontinuity of the extrinsic
curvature at the junction to the worldsheet stress tensor gives

ẍa,1 − σ(σ2 − M)x′
a,1 = −λ(σ2 − M)

2σ
,

ẋ′
a,1 −

Mẋa,1
σ(σ2 − M) = 0,

x′′
a,1 + 3σ2 − 2M

σ(σ2 − M)x′
a,1 = λ

2σ(σ2 − M) . (4.7)

The general solutions for (4.6) are

τa,1 = αh + σ√
σ2 − M

(
−βhe

√
Mτ + γhe−

√
Mτ
)

,

σa,1 =
√

M(σ2 − M)
(
βhe

√
Mτ + γhe−

√
Mτ
)

, (4.8)

and it is easy to check that ξµ = (τa,1, σa,1) is a generic Killing vector in the zeroth order
background metric, which in this case is the locally AdS2 metric (4.2). The parameters αh,
βh, and γh therefore correspond to the (infinitesimal) generators of the SL(2, R) isometries.

7This is in contrast to the setup of [12], where they imposed Dirichlet boundary conditions on all the
variables and found a unique solution for each given frequency in pure AdS.
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We note that although the boundary at σ = ∞ is preserved, the time is reparametrized at
the boundary. The general solutions of (4.7) are

x1,a = − λ

2σ
+ αk +

√
σ2 − M

σ

(
βke

√
Mτ + γke−

√
Mτ
)

(4.9)

Just like in the case of flat space, the parameters αk, βk, and γk parametrize the rigid
infinitesimal deformations of a hypersurface which preserves its extrinsic curvature. As in
the context of flat space, these correspond to infinitesimal isometries of the background
metric which do not preserve the zeroth order hypersurface x = 0.8 The rigid parameters
affect the generic full solution of the junction at higher orders non-trivially. Generally, the
boundary conditions can determine some of the rigid parameters, and the remaining ones
could physically characterize the nature of the interface dual to the bulk junction. We will
comment more on this in the concluding section.

Specifically, imposing the Dirichlet boundary condition on both x1 and x2, leads to
the boundary conditions (4.5) for xa,1 implying that it should vanish at σ → ∞. This
can be satisfied if

αk = βk = γk = 0. (4.10)

We will find that the junction conditions can be solved perturbatively only when the exponen-
tially growing modes βh and βk are set to zero when we impose ingoing boundary conditions
for xs at the worldsheet horizon. We will proceed below with imposing Dirichlet boundary
condition on xs only to keep our discussion more general and so we will not set αk, βk, and
γk to zero. Later we will impose the Dirichlet boundary condition on xa as well.

Continuity of the induced metric at second and higher orders. At second and higher
orders, the continuity of the induced metric gives

τ̇a,n + σ

σ2 − M
σa,n −

√
Mσ√

σ2 − M

(
γke−

√
Mτ − βke

√
Mτ
)

ẋs,n−1 = AA
n1, (4.11)

τ ′
a,n − 1

(σ2 − M)2 σ̇a,n + 1
σ2 − M

(
λ

2 + e
√

Mτ M√
σ2 − M

βk + e−
√

Mτ M√
σ2 − M

γk

)
ẋs,n−1

+
√

Mσ√
σ2 − M

(
e
√

Mτ βk − e−
√

Mτ γk

)
x′

s,n−1 = AA
n2, (4.12)

σ′
a,n − σ

σ2 − M
σa,n

− 1
2(σ2 − M)1/2

(
λ
√

σ2 − M + 2Me−
√

Mτ γk + 2Me
√

Mτ βk

)
x′

s,n−1 = AA
n3, (4.13)

8Explicitly, the six Killing vectors of the metric (4.1) with parameters a1, a2, a3, a4, b and c are

ξz =
√

z2 − M a(t, x), ξt = b − z

M
√

z2 − M
∂ta(t, x), ξx = c −

√
z2 − M

zM
∂xa(t, x),

with
a(t, x) = a1e

√
M(x+t) + a2e

√
M(x−t) + a3e−

√
M(x+t) + a4e−

√
M(x−t).

Comparing (4.9) with ξx after setting z = σ (as at the zeroth order) and x = 0, we find that αk, βk and σk

correspond to the isometries which do not preserve the hypersurface x = 0.
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where the sources AA
ni are constituted of lower order terms. The second order sources AA

2i

vanish. We determine τa,n, σa,n, and xs,n−1 from these equations following the algorithm
mentioned below which is very similar to the case of flat space. It is based on the nested
structure of these equations (it may be helpful for the reader to recall the discussion in
the previous section).

• We first solve (4.13) to obtain σa,n and substitute this form of σa,n into (4.11) to
determine τa,n. From these equations, we can readily see that we determine these up to
two additive functions of only σ and only τ respectively. Explicitly, we obtain

τa,n = s1n(τ, σ) − σ√
σ2 − M

hn1(τ) + hn2(σ),

σa,n = s2n(τ, σ) +
√

σ2 − M ḣn1(τ), (4.14)

where s1n and s2n are determined fully by xs,n−1 and lower order terms while hn1(τ)
and hn2(σ) are undetermined functions of τ and σ, respectively.

• When the above forms of σa,n and τa,n are substituted in (4.12), the latter assumes the
form we call E (of course E should vanish). Similarly to the case of flat space, we find
that (Ė(σ2 −M)3/2)′ = 0 implies a differential equation for xs,n−1 which takes the form:

1
σ2 − M

ẍs,n−1 − (σ2 − M)x′′
s,n−1 −

2(2σ2 − M)
σ

x′
s,n−1 = S̃A

n , (4.15)

where S̃A
n is determined by AA

n2, s1n and s2n. As discussed in the next subsection, the
above matches exactly with the perturbative expansion of the Nambu-Goto equation in
M when the rigid parameters and λ vanish. For n = 2 and n = 3, the source vanishes
and the above results in identical homogeneous equations for xs,1 and xs,2 which match
exactly with the linearized Nambu-Goto equation in M.

• Finally, when xs,n−1 satisfies (4.15), we find that (4.12) (i.e. E) reduces to

ḧn1 − Mhn1(τ) − (σ2 − M)
3
2 h′

n2(σ) = Kn(τ, σ). (4.16)

This equation is not guaranteed to have a solution. However, when the exponential
growing modes βh and βk vanish, it turns out that

Kn(τ, σ) = Fn(τ), (4.17)

a function of τ only. Then we obtain that

hn1(τ) = βh,ne
√

Mτ + γh,ne−
√

Mτ

+ e
√

Mτ

2
√

M

∫ τ

0
dτ1 e−

√
Mτ1Fn(τ1) − e−

√
Mτ

2
√

M

∫ τ

0
dτ1 e

√
Mτ1Fn(τ1),

hn2(σ) = αh,n. (4.18)

We readily see by comparing (4.14) with (4.8) that the parameters αh,n, βh,n and γh,n

can be respectively absorbed into αh, βh and γh, the infinitesimal generators of the
SL(2, R) isometries of the zeroth order locally AdS2 worldsheet metric (4.2). Therefore,
we set αh,n, βh,n and γh,n to zero for n ≥ 2. Note that βh and βk should also vanish
for (4.16) to have solutions as mentioned above.
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Thus the above algorithm determine the solutions for τa,n and σa,n for n ≥ 2, and xs,n for
n ≥ 1 up to four rigid deformation parameters, namely αh, γh, αk and γk since solutions
of (4.11), (4.12) and (4.13) exist only when βh = βk = 0. The latter is an artefact of
choosing in-going boundary conditions for xs,n at the worldsheet horizon. If we would have
chosen outgoing solutions instead, then we would have needed to set γh = γk = 0. Thus
the perturbative expansion breaks down either in the far past or in the far future, and we
choose βh = βk = 0 so that the expansion works in the far future.

As mentioned above, xs,n satisfies the Dirichlet boundary conditions (4.3) at the boundary
of the worldsheet and also the ingoing boundary condition at the worldsheet horizon. For
n = 1, (4.15) is a homogeneous equation whose general solutions satisfying these boundary
conditions are:

xs,1(τ, σ) =
∞∑

n=0
Ane−(2+n)

√
Mτ σ−1Q2+n

1

(
σ√
M

)
, (4.19)

where Qq
p(x) is an associated Legendre function of the second kind. Explicitly,

Q2
1(x) = 2

1 − x2 , Q3
1(x) = − 8x

(1 − x2)3/2 , Q4
1(x) = 8(1 + 5x2)

(1 − x2)2 , · · · . (4.20)

Note that An are all O(ε) and are defined with phases so that xs,1 is real. The general linear
solution (4.19) is a superposition of quasi-normal modes with spectrum −i(2 + n)

√
M (where

n = 0, 1, 2, · · · ). Asymptotically, all Q2+n
1 (x) falls off like 1/x2 as x → ∞ when n is a non-

negative integer, and therefore xs,1 falls off as σ−3 as σ → ∞. As mentioned, xs,2 also satisfies
the same homogeneous equation but we can set it to zero since its amplitudes can be absorbed
into those of xs,1. Let us choose A0 ̸= 0 and Ai = 0 for i ≥ 1 for the sake of illustration.

In addition to the boundary conditions, we should set an initial condition to get a unique
solution. Here we will follow an alternative strategy. In order to get a unique solution at
third and higher orders, we will demand that they vanish faster than σ−3 as σ → ∞ so
that it removes the ambiguity of adding homogeneous pieces which falls off as σ−3 as noted
above. Then the solution for xs,3 is

xs,3 = A3
0e−6

√
Mτ 4(7M − 81σ2)

21σ3(σ2 − M)3 + A0Mλ2e−2
√

Mτ 1
4σ3(σ2 − M)

+ A0Mλγke−3
√

Mτ M − 5σ2

σ3(σ2 − M) 3
2

+ A0M2γ2
ke−4

√
Mτ M − 7σ2

σ3(σ2 − M)2 . (4.21)

The first term above is exactly the first non-linear correction to the solution of the Nambu-
Goto equations when we consider the same boundary conditions for the latter as discussed
in the next subsection. Note that, the second term proportional to A0λ2 implies that we
get further corrections even when the rigid parameter γk vanishes. Similarly, we get unique
solutions for xs,4, etc. which reproduce the non-linear corrections to the solutions of the
Nambu-Goto equation when λ and the rigid parameters vanish. Explicitly, τa,2 and σa,2 are

τa,2 = −A0λe−2
√

Mτ M + σ2

2M3/2(σ2 − M)
− 2A0γke−3

√
Mτ

√
M

(σ2 − M) 3
2

,

σa,2 = −A0λe−2
√

Mτ M + σ2

Mσ
− 2A0γke−3

√
Mτ M

σ
√

σ2 − M
, etc. (4.22)
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Note that

τa,2 = − A0λ

2M3/2 e−2
√

Mτ + O
( 1

σ

)
, σa,2 = −A0λ

M
e−2

√
Mτ σ + O

( 1
σ

)
. (4.23)

Therefore, we note that even when we impose the Dirichlet boundary conditions for both x1
and x2 (the coordinates transverse to Σ1 and Σ2, respectively) so that αk = γk = 0, there
is a non-trivial relative time-reparametrization at the boundary which encodes the solution
of the Nambu-Goto equation corresponding to the bulk junction. Furthermore, this is true
even when we set αh and γh, which parametrize the linearized isometries, to zero. (In the
above case, the time-reparametrization at the boundary reveals that we have turned on only
the lowest order quasi-normal mode at the linear order.)

Furthermore, we note that when αk = γk = 0, we have

τa,3 =
Mγh

(
48A2

0 e−5
√

Mτ +3λ2 e−
√

Mτ (σ2−M)2−4γ2
h e−3

√
Mτ σ2(σ4−4Mσ2 +3M2)

)
24σ(σ2−M)5/2 ,

σa,3 =
M3/2γh

(
16A2

0 e−5
√

Mτ +λ2 e−
√

Mτ (σ2−M)2−4γ2
h e−3

√
Mτ σ2(σ4−M2)

)
8σ2(σ2−M)3/2 . (4.24)

Near the boundary σ → ∞, these functions behave as

τa,3 = −1
6Mγ3

h e−3
√

Mτ + O
( 1

σ

)
, σa,3 = −1

2M3/2γ3
h e−3

√
Mτ σ + O

( 1
σ

)
. (4.25)

Therefore, even when we set λ = 0 and impose the Dirichlet boundary conditions on both
x1 and x2, there is a non-trivial time-reparametrization at the boundary at higher orders
as well even when the tension vanishes.

Discontinuity of the extrinsic curvature at second and higher orders. The junction
conditions (2.15) giving the discontinuity of the extrinsic curvature at the junction in terms
of the worldsheet stress tensor are of the form

ẍa,n − σ(σ2 − M)x′
a,n = BA

n1, (4.26)

ẋ′
a,n − Mẋa,n

σ(σ2 − M) = BA
n2, (4.27)

x′′
a,n + 3σ2 − 2M

σ(σ2 − M)x′
a,n = BA

n3, (4.28)

for n ≥ 2 with BA
ni being sources constituted by lower order terms and λ. These equations

are in nested form. Solving (4.28) first gives

xa,n = s̃n(τ, σ) +
√

σ2 − M

σ
kn1(τ) + kn2(τ), (4.29)

where s̃n(τ, σ) is fully determined by BA
n3, and kn1 and kn2 are undetermined functions of

τ . Substituting (4.29) into (4.27), we simply get

k̇n2(τ) = 0, (4.30)
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and then substituting (4.29) into (4.26) and using the above, we get

k̈n1(τ) − Mkn1(τ) = Kn(τ) (4.31)

with Kn(τ) determined by lower order terms when βh = βk = 0. Both of these are highly
non-trivial. In fact the simultaneous solutions of (4.26), (4.27) and (4.28) exist only because
the junction conditions (2.15) are not independent of each other as discussed before and as
we have seen previously also in the case of flat space. The general solutions of kn1 and kn2 are

kn1(τ) = βk,ne
√

Mτ + γk,ne−
√

Mτ

+ e
√

Mτ

2
√

M

∫ τ

0
dτ1 e−

√
Mτ1Kn(τ1) − e−

√
Mτ

2
√

M

∫ τ

0
dτ1 e

√
Mτ1Kn(τ1),

kn2(σ) = αk,n. (4.32)

Comparing (4.29) with (4.9), we readily see that αk,n, βk,n and γk,n can be absorbed into
the parameters αk, βk and γk which give infinitesimal rigid deformations of the hypersurface
that preserve its extrinsic curvature. So we can set αk,n, βk,n and γk,n to zero. We note again
that both βh and βk should vanish for (4.26), (4.27) and (4.28) to have solutions similar to
the case of the junction conditions related to the continuity of the induced metric. Thus we
can determine xa,n to all orders. As for an illustration, explicitly

xa,2 = 4A0αhe−2
√

Mτ M

σ(σ2 − M) + 8A0γhe−3
√

Mτ M
1
2

(σ2 − M) 3
2

, etc. (4.33)

for the choice of solution of xs corresponding to A0 ̸= 0, Ai≥1 = 0 (cf. eq. (4.19)).
The above discussion should make it clear that xa,n for n ≥ 2 are completely determined

by the choice of solution for xs, which is the only degree of freedom, and the four rigid
parameters, namely αh, γh, αk and γk. So, it is not obvious that we can satisfy the Dirichlet
boundary conditions for xa given by (4.5). However, just like in the case of xa,1, we can
satisfy (4.5) to higher orders simply by requiring that αk = γk = 0. In this case, we are only
left with two rigid parameters, namely αh and γh corresponding to worldsheet isometries
at the leading order.

We also observe that the Dirichlet boundary conditions for τa and σa, the relative time
and spatial coordinates of the worldsheet, can be imposed only if we choose the trivial solution
for xs, namely xs = x0 (so that xs,i = 0 for i ≥ 1) as should be clear from the asymptotic
behavior of τa,2 and σa,2 (see eq. (4.23)), and also set αh and γh to zero as should be clear
from the asymptotic behavior of τa,1 and σa,1 (see eq. (4.8)). In this case, we obtain only a
unique static solution for xa which is determined only by the tension and which vanishes when
the tension goes to zero. This static solution agrees with the solution reported in [17] where
Dirichlet boundary condition was imposed for all four variables, namely xs, xa, τa and σa.

As discussed before, the Dirichlet boundary conditions on τa and σa can be relaxed
because the Dirichlet boundary conditions on xs and xa are enough to ensure that both Σ1
and Σ2 end at a common spatial point at the boundary of the full spacetime although the
time coordinates at the boundaries of these hypersurfaces can be non-trivially related to each
other. Therefore only two rigid parameters, namely αh and γh, related to the worldsheet
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isometries at the leading order, parametrize such general solutions with Dirichlet boundary
conditions on both Σ1 and Σ2. In fact, as discussed above (recall the discussion about τa,2),
the boundary time-reparametrization persists to higher orders even when we set αh and γh

to zero, and the solution of the Nambu-Goto solution corresponding to the bulk junction can
actually be decoded from the relative time-reparametrization at the boundary.

We note from the explicit expressions above that the perturbation expansion breaks
down near the worldsheet horizon σ =

√
M . The same is true for the solutions of the

Nambu-Goto equation.

4.2 Matching with the solutions of the Nambu-Goto equation

To compare with the solutions of the Nambu-Goto equation, we proceed as in the flat space
case by choosing the following parametric form of a hypersurface:

t = τ, z = σ, x = f(τ, σ). (4.34)

The Nambu-Goto equation for this hypersurface in the background metric (4.1) is( 1
σ2 − M

+ σ2f ′2
)

f̈ −
(
σ2 − M − σ2ḟ2

)
f ′′ − 2(2σ2 − M)

σ
f ′

− 2σ2ḟf ′ḟ ′ + σ

(
4 + 3M

σ2 − M

)
ḟ2f ′ − σ(M2 − 3Mσ2 + 2σ4)f ′3 = 0. (4.35)

With the perturbative expansion for f given by (3.34), we obtain the following equations:

1
σ2 − M

f̈n − (σ2 − M)f ′′
n − 2(2σ2 − M)

σ
f ′

n = SA
n (4.36)

where the sources SA
n vanish for n = 1 and is constituted of lower order terms for n ≥ 3.

Since the Nambu-Goto equation is odd in f , we can set fn = 0 for positive even integral
values of n. Also, SA

n vanishes for all positive integral values of n. For odd values of n, we
can solve the above equations by demanding Dirichlet boundary conditions for fn, i.e. they
vanish at σ = ∞, and that they satisfy the ingoing boundary condition at the worldsheet
horizon as discussed in the context of xs,n. Furthermore, in order to obtain fn uniquely for
n ≥ 3, we need to further demand that it vanishes faster than σ−3 as σ → ∞.

When λ and the rigid parameters αh, γh, αk and γk vanish, xs,n also vanishes for positive
even integral values of n like fn, and for positive odd integral values, the equations of xs,n given
by (4.15) coincide with that those of fn given by (4.36). Therefore, xs coincides exactly with
f when λ and the rigid parameters αh, γh, αk and γk vanish. As for illustration, if we keep
only the lowest quasi-normal mode for f1, then f3 is just the first term of xs,3 given in (4.21)
which is the only surviving term when λ and the rigid parameters αh, γh, αk and γk vanish.

Since xa, τa and σa are determined by the chosen solution of xs and the rigid parameters
as demonstrated earlier, it follows that there is a one-to-one correspondence between the
solutions of the junction conditions and the Nambu-Goto equations. We have checked that
this correspondence holds up to the seventh order in the perturbative expansion. As discussed
before, the number of rigid parameters is only two, namely αh and γh if we further impose
Dirichlet boundary conditions on both the hypersurfaces.
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It is not clear whether the limit λ → 0 produces a smooth spacetime in the presence of
rigid deformations since the relative transverse coordinate xa does not vanish in this case
when the tensionless limit is taken. These solutions are still in one-to-one correspondence
with the solutions of Nambu-Goto equations up to the rigid deformations.

We also want to emphasize that the tensionless limit produces non-trivial solutions even
when we impose the Dirichlet boundary condition identically on both the hypersurfaces so
that αk = γk = 0 and we have only the deformation parameters αh and γh related to the
worldsheet isometries at the leading order. Nevertheless, when all the rigid parameters vanish
implying that the Dirichlet boundary condition is imposed on all the four variables (τa, σa,
xs and xa), the solutions of the junction conditions are trivial in the tensionless limit as xa,
τa and σa vanish leading to a smooth spacetime, while xs coincides exactly with a solution of
the Nambu-Goto equation representing just a probe string in this spacetime.9

5 Discussion

Using a perturbative approach in which the string tension and the amplitudes of fluctuations
of the hypersurfaces from a common configuration with vanishing extrinsic curvature are small,
we have demonstrated that the Nambu-Goto equation directly emerges from the junction
conditions of gravitational equations both in a locally AdS and a locally flat spacetime with
three spacetime dimensions. Here, we have glued two identical copies of a spacetime. However,
there are other possible solutions in which two different Bañados spacetimes [20], e.g. two
BTZ black holes with different masses and angular momentum can be glued. Solutions of
such type have been studied in [12, 13, 17], and solutions with null interfaces have been
explored in [21, 22]. We should also study solutions where the two spacetimes glued at the
junction can have different cosmological constants.

While we have obtained our results by solving the perturbative expansion up to eighth
order, it would be very interesting to have a non-perturbative proof of our statements. This
would probably uncover some deep structural reasons underlying the correspondence between
the Nambu-Goto equations and the junction conditions.

A natural question is the interpretation of our solutions and their generalizations within
the AdS3/CFT2 correspondence. We recall that when we glue two copies of a BTZ black hole
and set Dirichlet boundary conditions for all the four variables τa, σa, xs and xa, we obtain a
unique static solution in which xs is a trivial constant solution of the Nambu-Goto equation
while τa and σa vanish, and xa is determined just by the tension. This solution corresponds
to a defect [23–25] in the dual conformal field theory with large central charge, where the
string tension λ is simply a parameter that characterizes the defect. The tension determines
the full spacetime, and thus the dual correlation functions. Furthermore, it was shown in [13]
that the bulk junction conditions indeed reproduce the reflection and transmission coefficients
of the defect which had been analyzed in [26–28].

9However, when λ ̸= 0, the Dirichlet boundary condition can be imposed on τa,n and σa,n (recall the
case of τa,2) only if we choose the trivial solution for xs, which is xs = x0, implying that all the fluctuations
corresponding to the Nambu-Goto quasi-normal modes should vanish. For non-vanishing λ, we simply recover
the known static solution for xa, while τa and σa vanish as discussed before, when all the four variables satisfy
the Dirichlet boundary condition.
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Our general solutions which correspond to the Nambu-Goto solutions up to the rigid
deformations should be interpreted as general state-dependent interfaces in the dual conformal
field theory. Note that the Nambu-Goto equation has no intrinsic dimensionful parameters,
and the quasinormal mode spectrum that characterize the solutions is determined by the mass
of the background spacetime, i.e. the dual state. When we impose the Dirichlet boundary
condition identically on both the hypersurfaces (i.e. for both xs and xa), the solutions should
holographically represent dynamical interfaces between two copies of the same state in the
dual CFT, particularly two thermal states with the same temperature since the BTZ black
hole is dual to a thermal state. No transfer of energy and momentum occur through the
interfaces. Nevertheless, the interfaces have their own dynamics, which are characterized by
the solutions of the Nambu-Goto equations and the rigid parameters of the bulk solution. All
these parameters and the solutions of the Nambu-Goto equation together with the tension
determine the correlation functions of the full system. In this aspect, it could be important
to recall that two sides of the interface necessarily have a relative time-reparametrization
(given by the asymptotic limit of τa) which can decode the non-trivial Nambu-Goto solution
in the bulk. This feature is not present in a usual defect. In this context, it is important to
understand such interfaces in the vacuum which correspond to bulk junctions in pure AdS3.

The holographic interpretation of our solutions would be important to understand whether
the rigid parameters are related to the physical properties of the interface. The appropriate
boundary conditions for the junction corresponding to the dual interface set the values
of some of the rigid physical parameters (as we have seen in the context of the Dirichlet
boundary condition in AdS). The remaining rigid parameters may actually characterize
physical properties of the interface. Although the latter can be absorbed via relative isometries
at the leading order, they might correspond to physically inequivalent solutions (as in the
case of improper diffeomorphisms in AdS/CFT). In the context of AdS, these issues can also
be addressed by the computation of holographic entanglement and Renyi entropies, which
can directly reveal the full bi-partite state in the CFT glued at the interface, and also clarify
whether the tensionless limit leads to a trivial interface.

In the future, we would like to construct such interfaces between two identical thermal
states in two-dimensional conformal field theories and generalizations of such setups because
such constructions can reveal how the fundamental string of the dual string theory emerges
directly from the conformal field theory even beyond the strong coupling and large central
charge limit. As a special case, it would be also interesting to see how the solutions of
the junction conditions discussed here which appear in the limit of vanishing string tension
correspond to non-trivial dynamical interfaces in the strongly coupled conformal field theory
with large central charge.

The general solutions describing junctions between two different Bañados spacetimes with
the same or different (negative) cosmological constants should represent interfaces between
two different states in the same or different CFTs and these could give fresh insights into
bulk reconstruction in holographic duality (see [29, 30] for reviews). Furthermore, these
constructions should have their own utilities in the study of quantum thermodynamics of non-
equilibrium ensembles and quantum engines. In the latter aspect, the study of null junctions
has shown that holography can give novel understanding of quantum thermodynamics of
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irreversible entropy production in phase transitions in many-body systems and also in quantum
channels like the Landauer erasure implemented in many-body systems [21, 22] (in the latter
case it has shown the utility of novel non-isometric dense encodings for quantum memories
which cannot be erased in microscopic time-scales).

A related question is whether we can go beyond a perturbative approach and formulate a
way to solve the gravitational equations with the junction conditions via numerical relativity
setting necessary initial conditions and also boundary conditions. In fact, a fundamental
question in this context is which types of initial data would lead to non-singular spacetimes
such as those not having closed time-like curves. Such an initial value formulation should
lead to the most general constructions of gravitational solutions involving junctions which
can be interpreted as novel interfaces holographically.

Another fundamental question is whether we can quantize our three-dimensional gravita-
tional solutions with junctions generalizing the approach in [31–33] (based on rewriting
three-dimensional gravity in AdS as PSL(2,R) × PSL(2,R) Chern-Simons theory [34, 35]
and further work in [36, 37]) and obtain part of the spectrum of first quantized bosonic
string theory in background flat space [1, 2] or AdS space [3–5] within the full Hilbert space.
The latter should however also include boundary gravitons that scatter off the quantum
string. Aspects of quantum string theory can thus emerge directly from lower dimensional
gravity together with additional degrees of freedom. The presence of rigid deformations of
the Nambu-Goto equations arising from the junction conditions implies that the quantized
string theory obtained from quantizing such gravitational solutions can have other non-trivial
features as well. Of course, we can generalize the junctions in the context of gauged super-
gravities and wonder if some aspects of classical and quantum superstring theory can emerge
similarly from super-spacetime dynamics in three dimensions.
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